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ABSTRACT 

We consider the difference process N of two independent renewal 

(counting) processes. Second-order approximations to the distribution 

function of the level crossing time are given. Direct application of 

the second-order approximation is complicated by the occurrence of an 

(in general) unknown term EE,  which denotes the expected minimum of 
the stationary version of N. However, this number is obtained for a 

wide class of processes N, using matrix-geometric techniques. 

Numerical experiments have been carried out, in which the new 

approximations were compared to simulation, first-order and/or exact 

results. These results confirm that the second-order approximations 

are considerably better than the (known) first-order ones. 

Copyright O 1992 by Marcel Dekker, Inc. 
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Although renewal processes are among the most basic and important 

processes in queuing and reliability theory, some areas in renewal 

theory seem to have been not fully explored. In Kroese & Kallenberg 

[8], for example, the difference process N - N1 - N2 of two 

independent renewal processes N1 and N2 was studied. In applications, 

one is often interested in the distribution of the first time that N 

crosses some level n, 7 ,  say. For example, in a reliability model r, 

may indicate the time of a system failure. Only in very special cases 

it is possible to give a tractable formula for ~ ( r ,  I x). It is 

however possible to expand ~ ( r ,  s x) for large n. A first-order 

approximation to P( r, 5 x) , based on asymptotic normality, can be 

easily established using Cox [4] p.73. To obtain greater accuracy, a 

second-order approximation was obtained in [8], which reduces the 

approximation error from o(1) to o(n-1'2), as -. 

The motivation for this paper is two-fold. Firstly, we address 

the difficulty that direct application of the second-order 

approximation is complicated by the occurrence of the term EE - 
E inf E(t), where E is the stationary version of N. This number is in 

tzo 
general intractable. However, for a large class of processes N it is 

possible to calculate ER explicitly or numerically. In Sections 3-5 
the distribution of the infimum of N is derived for a number of cases 

in which N, and/or N2 has some kind of Markov structure. Moreover, the 

distribution function of r, is given for a few cases of interest 

(Sections 3-4). The main new results on the distribution of the 

infimum of N are given in Section 5, where N1 is a Phase-type renewal 

process and N2 a general delayed renewal process. This shows that the 

second-order approximation may be used for a wide class of N's. 

Secondly, we need to verify that the second-order approximations 

are indeed useful for finite (small) n. Numerical experiments have 

been carried out to compare first- and second-order approximations to 

simulation or exact results. It appears (cf. Section 6) that the 

second-order approximations indeed give considerable improvement on 
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the known first-order results. Numerical results show good agreement 

with the theoretical error structure as described in [8]. Even for 

small n quite satisfactory approximations are obtained. It is 

therefore worthwhile to use the new second-order approximation instead 

of the known first-order one. In these numerical examples we do not 

restrict ourselves to stationary renewal processes, although formally 

the expansion from which the second-order approximation is derived, 

has yet only been proved for the stationary case (cf. [8]). We adopt 

here a more pragmatic point of view and state an approximation for 

arbitrary delayed renewal processes. In the next section we give the 

definitions and model assumptions for the rest of the paper, and state 

the second-order approximation to ~(r,, 5 x ) .  

The definitions and assumptions given in this section hold 

throughout the paper, unless otherwise specified. 

Let N1 - (N, (t)) t20 and N, - (N, (t)) t10 denote two independent delayed 

renewal processes with renewal sequences (xi ) ) IP1 and (x: ' )lei, 
respectively (cf. [8] for definitions). In other definitions N1 and Nz 

may be called renewal counting processes. Denote the renewal times of 

N, by sii'- xi"+..+ xi", i-1,2, n E H,. Let F, be the distribution 

function (d.f . )  of xii)and let G, be the d.f. of xii), 1-1,2. We 
2 assume that the expectation pi, the variance a, and the third central 

moment p3, of X: i ,  finitely exist and that Gi is non-lattice, i-1,2. 

We denote EX; ) by gi , i-1,2, which we assume to be finite as well. 
The Laplace-Stieltjes transforms of Fi and Gi are denoted by Ai and 

B,  , respectively, i-1,2. We assume that p1 < p2 , in which case N has 
an upward drift a-l, 

The difference process N - (~(t)) tzO of N1 and N, is defined by 

(t) - N (t) - N (t), t r 0. Let r, denote the first time that N 
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Fig. 1. Definitions concerning the delayed renewal processes N1 and N,. 

crosses level n E H,, that is r, - inf I n 0  : N(t) 2 nl. We denote the 

random variable inf N(t) by M. An overview of the definitions is 

given in fig. 1. t20 

2.1 REMARK The stationary version 3 of N is defined as the difference 
process of two stationary independent renewal processes 31 and i2, - 
with corresponding inter-arrival d. f. 's F1, GI, F2 and gz, such that 

gi - G , and (hence) Fi ( x )  - 1 -  u d u i  1-1.2. If N is itself 

stationary (i.e. Fi - Fi, 1-1,2), then qi - (pi + of/pi)/2, 1-1.2 (and 

hence e - 0 in the next approximation). 
In Kroese [7] the following second-order approximation to the 

d.f. of r ,  was stated. For a proof of the stationary case see [ 8 ] .  In 

Kroese & Kallenberg [6] a similar result on the sum process of k 

independent delayed renewal processes was proved. 

2.2 APPROXIMATION Let N1 and Nz be independent delayed renewal 

processes that satisfy the conditions above. Let ~ f i  - E inf 8 ( t )  be 
-0 
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the expected infimum of the stationary version of N (cf. Remark 2.1), 

then 1 E ~ I  < Q and moreover, 

where O denotes the standard normal d.f., and p its density function, 

and 

1/2 -1 e, - -di - a, / 2  + pi o, r], , i-1,2 and e - el )-I - e2 (7a2 

2.4 REMARK A first-order approximation is obtained from (2.3) by 

suppressing the second term in the right-hand side of (2.3). The 

approximation error is in this case of order o(l), as m, whereas the 

second-order approximation (presumably) yields an error of order 

o(n-1/2), as -. For a proof in the stationary case, cf. [ 8 ] .  

Note that ER is not specified further because it is in general 
intractable. This complicates the direct application of the 

approximation. However, we can derive this quantity for a number of 

important cases for which the exact d.f. of z, is very difficult to 

compute (or cannot be computed at all) and hence an accurate 

approximation is welcome. In Sections 3-5 we consider typical cases 

for which ~ f i  can be computed. In each case at least one of the renewal 

processes has a Markov structure (phase-type or Poisson). 
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A similar approximation can be found for the difference process 

of two processes K1 and K 2 ,  which themselves are sum processes of a 

finite number of independent renewal processes, cf. [ 7 ] .  

In this section N1 is a delayed renewal process and N2 a Poisson 

process. We first give an explicit expression for the d.f. of r ,  in 

terms of pz, F1 and GI. This expression is in general too complicated 

to be handled numerically. However a simple expression for EM, in 

terms of the first few moments of F1 and G1 is found (along with the 

generating function of M) which makes the second-order approximation 

very simple to evaluate. A numerical example is given in section 6.2. 

3.1 PROPOSITION Let N, be an ordinary renewal process (F1 - G1 ) . 
Denote the n-fold convolution of an arbitrary function F by F"*. The 

d.f. of r, is given by 

where H is defined by 

Proof Let Ti be the first entrance time of N into level i, starting 

from level i-1 , i-1, . . ,n. Note that since Nz is a Poisson process, 

T I ,  Tz,. . , T, are i.i.d. random variables. Moreover r, - T1 + Tz + 
. .  + T,. Since we can regard T, as the busy period of an M/G/l queue, 

we have by Cohen [3] , p .25O, that P(T~s~) - H ( t )  and hence (3.2) 

follows. 0 

Next we consider the distribution of M and derive an expression 

for its expectation. We do not restrict ourselves to ordinary renewal 

processes N1 this time. It is seen in (3.6) that the expression for 

EM is easily computed and depends only on the first two moments of GI, 
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Fig. 2. Difference of renewal processes. N1 delayed, N2 Poisson. 

the first moment of F1 and p2 . For all x E R , let X- = min(0 ,x) and 

x+ = max(0,x). 

3 . 4  THEOREM For all r E C , I r 151 we have 

((l-r)/rz)(r - 1) ( ~ - P I / ~ z )  
(3.5) ~r-' - p 

r - Bl ((~-~I/PZ) 
and moreover, 

Prooff First let N, be an prdinary renewal process. Let 4 be the 
minimum of N until time S: ' ) , that is 

(3.7) 
( 1 )  Mn - min ( N(S1 ),..,N(s:')) 1 - 1 , II t 1 ,  

Define 
( 1 )  ( 1 )  En - min ( N(S2 ),..,N(Sn+l) - N(x;')) - I , n t 1. 

Note that M - inf Mn. Denote s:')- xi1) by X .  It is easy to see that 
tlll 

Mn and jn have the same distribution. Moreover % and N ( X )  are 

independent and the following recurrence relation holds (see fig. 2 

for an illustration) 
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There are several ways to obtain the generating function of M .  

Note for example that M is the minimum of the random walk (N(s: ) ) - 1; 
n 1 1). We adopt however another point of view here. A short 

reflection will show that -Hn has the same distribution as the number 

of customers Un in an M/G/l system, just after the departure of the 

nth customer. For, if we denote the number of customers that arrive 

during the service of the nth customer by Z,, we have for all e l ,  

Un - [U,-,-I]+ + Z,, U, - 0, Zn - -N(X) + 1 and the random variables 
Un-I and Zn are independent. Hence by (3.8), M,, - -Un , for all nL1. 
Therefore the generating function of M is by Cohen [ 3 ] ,  Ch.4 s2 (4.17) 

equal to 

Next let N1 be a delaved renewal processes (F1 is not necessarily 

equal to G1 ) . 
Similarly to (3.8) we have 

where M* and X are independent random variables. M* is distributed as 

the random variable M in (3.9) and, for Irlsl, r E C, 

Moreover, * - * 
Er-lM +11 - (I-~-~)P(M*-o) + r-l~r-~ 

so that (3.5) follows from (3.9), (3.12) and (3.13). (3.6) follows 
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directly from (3.5) after some calculations. N.B. : In (3.11) Ex 

denotes conditional expectation w.r.t. X. 0 

3.14 REMARK The d.f. of r, in (3.3) is difficult to evaluate. Matters 

become even more complicated (numerically) in the case that N, is an 

arbitrary phase-type renewal process. However, the interpretation of 

r, as a busy period of a PH/GI/l-queue (starting with n customers) is 

still valid, and a generalization of Proposition 3.1 can be given for 

this case. Suppose that N, is a phase-type renewal process with rn 

phases. Let V, be the number of transitions involved in crossing level 

-1 (the crossing time is r,), and let J, denote the phase of N2 at 

time 7,. Denote by Pi the probability measure under which N, starts at 

phase i, i E (l,..,,rn). By Neuts [lo], Chapter 2, we can interpret r, 

as the first passage time from level r to level 0 of a Markov renewal 

process of M/G/1 type. Hence, if we write G:;) ( k ; x )  for Pi (r,Sx, J,-5, 

V,-k), -1, -0, k 0 ,  lsi,jlm, then, formally, a generalization of 

Proposition 3.1 is given by Lemma 2.2.1 and Theorem 2.2.1 of Neuts 

[lo]. Is seems not very likely that an easv to comDute analogue of 

equations (3.5) or (3.6) can be obtained for this "Delayed, Phase- 

type" case. 

In this section N1 and N, are Poisson processes with intensities X - 
- 1 - 1 

p1 and v - p, , respectively. Of course this model is a special case 
of the one considered in the previous section. The reason for 

including this particular case is that the d.f. of r, can actually be 

evaluated numerically. This gives us the opportunity to compare the 

exact d. f. of r, with the first- and second-order approximation. This 

is done for several values of X - v in Section 6.3. 

4.1 PROPOSITION Let I, denote the modified Bessel function of order 

n, then 
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Proof Let f denote the probability density of the distribution of r, 

and denote its Laplace transform by d. Let a be the Laplace transform 

of T,, where T1 is defined in the previous section. Define for Ossd 

the functions g, : C + C by 

X 
g, (2) - - , Z E C .  

s + u(1-2) + X 

By Cohen [3], p.250, a(s) is the only zero of g, inside the unit 

circle, thus 

and hence, in view of (3.2), 

+ + s  - 1- 
d(s) - 

2v I 
After some manipulation with inverse Laplace transforms (cf . for 

example [12]), we find f(t) - e -(X+bf)t nXn/2V-n/2~n (2tfS)/t. 

In this section N1 is a Phase-type renewal process (PH-renewal 

process) and N2 a delayed renewal process. This is the most general 

case (together with the "Delayed, Phase-type" case) for which one 

could expect to obtain explicit, numerically feasible expressions for 

the distribution of H. Since phase-type distributions are widely used 

in applications, and since any lifetime distribution G1 of renewal 

process N1 can be approximated by phase-type distributions, this case 

is also of practical relevance. In contrast to the two previous 

sections it is not possible to write r, as the sum of n i.i.d. random 

variables here. We can however still derive the distribution of H. 

An essential difference with the model in Section 3 is that there EH 

only depended on the first two moments of F1 and GI, but here EM 

possibly depends on gJJ moments of F2 and G2. ~umerical results are 

given in Sections 6.4-6.5. 
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Let p E H+ and let 7 denote a probability distribution on 

(1,2,. . ,p), we use the same letter 7 to denote the corresponding row 
vector. We introduce a family of probability measures (P') on our 

probability space (n,K) such that under P' N1 is a PH-renewal process 

with p phases, characteristics (p,S) and with initial phase 

distribution 7 (cf. Neuts [ 9 ]  for definitions on PH-renewal 

processes). Moreover, under these probability measures we let N2 be a 

delayed renewal process, independent of N1. Let Pi denote the 

probability measure under which N1 starts at phase i, i E (l,..,p), in 

other words P, - , where 6, is the Dirac measure at i on (1, . . ,PI. 
Define the pxp matrices P(n,t), n E H ,  0 ,  by (~(n,t)),~ - 
pi ( N ~  (t)-n, zt -j) , i, j E (1,. . ,p), where Zt denotes the phase of N, at 
time t. Define pxp matrices A(k) and i(k), k E H by 

Q Q 

A(k) - J P(k,t)dGz(t) and i(k) - J  P(k,t)dF'(t). 
0 0 

Not surprisingly, these matrices are the same as the ones that 

frequently arise in PH/G/l- or GI/PH/l-queuing systems, see for 

example [ 9 ] ,  [lo] and [Ill. 

In the next theorem we give the distribution of M. Note that H is 

the limit of the decreasing sequence of random variables ( h ) ,  
M,, - min(O, N(s:')), . . ,N(s,!,~))), re0. We denote xi2) and N(x:')) by X 

and Y, respectively. And Z denotes the phase of N1 at time X. Let 1 - 
T 

[l,..,ll - 

5.1 THEOREM Let G be the unique minimal non-negative solution to the 

matrix equation 

(5 - 2) 
then for m E H+ , 

(5.3) 

and hence 

where 

(5.4) 

P'(M 0) a 7 (I-H) 1, 
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As a consequence we have, 

Proof First suppose N2 is an ordinary renewal process (F2 - G2). 
(2) Denote the negative ladder epochs of (N(s, ) )  by TI, T2,. . put To-0 

and, for -1, let Jn denote the phase of N1 at time T, if T, < +co, and 

Jn - a else, for some cemetery state a .  Let G be the matrix (gij), 

where gi j  - Pi (J,-j) , i, j E (1, . . , p )  . We first show that if G is 

sub-stochastic then 

(5.6) P (M-m) - (I-G)G~T, for all m E PI, 

T 
where P(M-m) - [P1(M-m),. .,Pp(M-m)] . The proof of (5.6) goes as 

follows: Obviously (.In) is a Markov chain taking values in 

(l,..,p)u(a), with transition matrix 

which leads to (5.6), provided that G is sub-stochastic (which we will 

show later). Next we show that G satisfies matrix equation (5.2). This 

follows immediately from Neuts [lo], Chapter 2. Namely, matrix G is 

exactly the same as matrix G defined on Page 81 of [lo]. Hence by 

Theorem 2.2.2 and (2.215) of [lo] we deduce that G is the minimal 

non-negative solution to (5.2). 

It remains to show that G is sub-stochastic and hence that (5.6) 

holds. This follows from an argument from PH/G/l-queues. Matrix G (the 

rate matrix) is stochastic if and only if the mean service time o is 

smaller than or equal to the mean inter-arrival time A ,  cf. 

Neuts [ 9 ]  p. 122. In our case a - p2 > p1 - X by assumption, which 

implies that G is sub-stochastic. 
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Finally consider a delayed renewal process N2. Let M - inf N(t) 
t20 

and let M* denote a random variable with the same distribution as the 

M if N, were an ordinarv renewal process (in other words, the 

distribution of M* is given by (5.7)). Since now Pi (Y-k-I, Z - j )  - 
.&k~'~~, we have for i E (1,. . , p )  and m E N,, 

which in matrix notation is 

so that P (M-0) - (I-H)1. This concludes the proof, since P'(M--m) - 
7 P (M--m) , for all m E N . 0 

5.10 COROLLARY If N1 is a Poisson process with intensity X - l/pl, 
then the generating function of H is given by 

where g is the only zero of f(y) - y - B2(X(l-y)) inside the unit 

circle. (Remember that A, and B2 are the Laplace-Stieltjes-transforms 

of F, and G,, respectively.) 

Proof 

(5.2) 

(5.13 

Let 0 5 g < 1 denote the minimal non-negative solution to 

, which reduces in this case to 
eO m 

k (Wk 
x - 1 x -7 eAtdG2 (t) - B2 (*(I-x)) . 

k-0 0 

By the proof of Theorem 5.1, we know that 0-1. By RouchB1s theorem 
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the function f : C 4 ,  defined by f (y) - y - B2 (X (1 -y ) )  , y E C has only 
one solution inside the unit circle, which must therefore be equal to 

g. Let h - H as defined in (5.4), then similarly to (5.13) we have 

h - A z ( X ( l - g ) ) ,  so that (5.11) and (5.12) follow easily from equations 

(5.3) and (5.5). 0 

5.14 REMARK In Neuts [ l o ]  is shown that G can be computed by means of 
succesive substitutions in (5.2). Direct application of this procedure 

requires however a lot storage and is numerically not very simple. An 

efficient algorithm for solving the non-linear matrix equation (5.2) 

is given in Lucantoni & Ramaswami [ll], where it is shown that G also 

satisfies the following system of equations 

0 
-et(etjn where B - max -S,, . 7, - S e 7 dG2 (t), P - 8-'S + I, PO- 1 - P1. 

1liSm 0 

Remember that (B,S) are the characteristics of N1. The matrix G can be 

computed by iterating equations (5.15) and (5.16) by starting with the 

initial iterate X(0) - 0. Moreover, a short reflection will show that 
matrix H is given by 

Q Q - -e t  (et)" 
H - C 7n41, where 7n - S e - n! dF,(t), n E N. 

n-0 0 

5.18 REMhWC Other closely related results on first-passage times and 

busy periods may be found in Hsu & He [5] and Asmussen [I], Chapter X. 

To verify how well the asymptotic theory applies for finite n, several 

experiments were carried out. Exact calculations were performed for 
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the case of Section 4. FORTRAN routines from the NAG library were used 

to compute modified Bessel functions and to perform numerical 

integration. In all other cases the true d.f. of r ,  was estimated 

through Monte-Carlo simulation of size 10000. This simulation size 

reduces the error in the estimated d.f. to less than 0.01 with 

confidence 0.95. 

For each example (except 6.3) a table is presented with the 

(estimated) true d.f of 7 ,  , the (normal) first-order approximation and 
the second-order approximation which is given in (2.3). The 

first-order approximation is obtained from (2.3) by suppressing the 

second term on the right-hand side. Along with these tables come 

pictures of the approximation errors for the first- and second-order 

approximation. In the picture we made use of the unrounded numerical 

results. 

6.1 REMARK Note that in the second-order approximations we need to 

calculate EZ through the procedures described in Sections 3-5. Now it 
is important to remember that although N1 and N2 can be arbitrary 

delayed renewal processes characterized by F,, F 2 ,  G1 and G 2 ,  the 

number EZ is the expected infimum of R ,  the stationary version of N 
(see Remark 2.1). 

6 . 2  N1 WEIBULL, N2 POISSON 

In our first example N2 is a Poisson process with intensity v ,  N1 is 

stationary and G, is a Weibull d.f. with shape parameter @ and scale 

parameter c ,  i.e. 

For the parameter values we take p - 3, c - 0.3, v - l/pz - 0.2 and 
n - 20. Note that since G1 is a Weibull d.f., 

pl - r(l+l/p)/c and of - r(1+2/p)/c2 - (r(l+l/p)/~)~ 

(cf. p.31 of Beichelt & Franken [2]). Here r is the Gamma function. 
Since N1 is stationary, we have ql = (pl + 0 1 2 / ~ , ) / 2 ,  where in the 
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Table  1 .  Estimated d . f .  o f  r, together w i th  first- and second-order 

approximation. Here N1 i s  a  s ta t i onary  renewal process such that  GI 

has a  Weibull d . f .  w i th  parameters 8-3 .O, c - 0 . 3 .  N2 i s  a  Poisson 

process w i th  i n t e n s i t y  0 . 2  . Level 11-20. 

ESTIMATED NORMAL 2ND.ORDER 
X D.F. APPR. APPR. ......................................... 

58.90 0.00 0.02 0.00 
67.73 0.00 0.04 0.01 
76.55 0.02 0.05 0.03 
85.37 0.05 0.08 0.07 
94.19 0.09 0.12 0.11 
103.01 0.16 0.16 0.18 
111.83 0.25 0.21 0.25 
120.65 0.33 0.27 0.33 
129.47 0.43 0.34 0.42 
138.29 0.52 0.42 0.51 
147.11 0.60 0.50 0.60 
155.93 0.67 0.58 0.67 
164.75 0.74 0.66 0.73 
173.57 0.79 0.73 0.79 
182.39 0.83 0.79 0.83 
191.21 0.86 0.84 0.86 
200.03 0.89 0.88 0.88 
208.85 0.92 0.92 0.91 
217.67 0.94 0.95 0.92 
226.49 0.95 0.96 0.94 

X - A X I S  

Fig. 3 .  Error s t ruc ture  f o r  the f i r s t -  and second-order approximation 

o f  t a b l e  1 .  
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Fig. 4. Error structure for  second-order approximation t o  the  d . f .  of 

7, i n  the case that N, and N, are Poisson processes wi th  X-1. Here 

n-10 and v takes the values 0 . 0 ,  0 . 1 ,  0 . 3 ,  0 . 5  and 0 . 7 .  

present case we have p1 - 2.976598342 and ul - 1.0818341148, so that 
q1 - 1.6848935579. Hence, by (3.6) we find EM = EZ - -0.83270345. Note 
that, since we deal here with stationary renewal processes, e - 0 in 
Approximation 2.2 (cf. Remark 2.1). 

6.3 Nl POISSON, N, POISSON 

We can expect poor results of approximation 2.2 when the drift term 
- 1 

a is to close to 0. In order to study the influence of a-' on the 

approximation we compare the second-order approximation for the doubly 

Poisson case of Section 4 with the exact d.f. of r , ,  given in 

Proposition 4.1. This is done for several values of a-' . Specifically, 
we fix the intensity X of N1 to 1 and let the intensity v of N, vary 

from v-0, 0.1, 0.3, 0.5 to 0.7 and we let n-10. 
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6.4 N1 POISSON, N2 HYPER-EXPONENTIAL 

In this example N 1  is a Poisson process and N2 a ordinary renewal 

process with hyper-exponential d.f. G2, that is 

for some Ospd and virO, i-1,2. Here we take vl  = 1, u2 - 2, p = 1/3 

and X - 2. Moreover, we take n - 15. It is easy to see that 

We need to calculate EG, which is obtained by applying Corollary 5.10 
to the stationary version E of N. Let F2 denote the d. f. of the first 
inter-arrival epoch of E2 , as in Remark 2.1, and let 7i2 denote the 

corresponding Laplace-Stieltjes-transform. Then it is not difficult to 

where 

In order to apply (5.12), we need to find g, the only zero inside the 

unit circle of function f, given by 

1/3 
- 

4/3 
f(y) - y - IYI<~I 

1+2 (1-y) 2+2 (1-y) 

which is 

g - (15 - m / 1 2  = 0.771286446. 

And with Z2 (~(l-~)) = 3/4, we find EZ - -3.279210992. 

In the last numerical example we apply the theory developed in Section 

5. We use the same notation as in Section 5. Let N, be an ordinary 
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Table 2. Estimated d.f. of z, together with first- and second-order 

approximation. Here N1 is a Poisson process with intensity 2 and N2 is 

a ordinary renewal process such that G2 has a hyper-exponential d.f. 

with parameters ul  - 1 ,  u2 = 2, p - 1/3. Level 11-15. 
ESTIMATED NORMAL 2ND.ORDER 

X D.F. APPR. APPR. 
......................................... 

0.00 0.00 0.08 0.02 
3.66 0.00 0.11 0.07 
7.31 0.03 0.15 0.13 

10.97 0.11 0.19 0.20 
14.63 0.22 0.24 0.28 
18.28 0.33 0.29 0.36 
21.94 0.45 0.35 0.45 
25.60 0.54 0.42 0.53 
29.25 0.62 0.49 0.61 
32.91 0.68 0.55 0.67 
36.57 0.73 0.62 0.72 
40.22 0.78 0.68 0.76 
43.88 0.81 0.74 0.79 
47.54 0.84 0.79 0.81 
51.19 0.87 0.84 0.83 
54.85 0.89 0.88 0.84 
58.51 0.91 0.91 0.85 
62.16 0.92 0.93 0.87 
65.82 0.93 0.95 0.88 
69.48 0.94 0.97 0.90 

- 1 . 6 0  I I I I I 
IS 30 45 60 I S 

X - A X I S  

Fig. 5. Error structure for the first- and second-order approximation 

of table 2. 
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Table 3. Estimated d.f. of 7 ,  together with first- and second-order 

approximation. Here N1 and N2 are ordinary Erlang2-renewal processes 

and level n-10. 

ESTIMATED NORMAL 2ND.ORDER 
X DI ST. FNC APPR. APPR. ...................................... 

0.00 0.00 0.03 -0.01 
3.03 0.00 0.04 0.00 
6.07 0.00 0.06 0.02 
9.10 0.02 0.09 0.06 

12.13 0.06 0.12 0.11 
15.16 0.14 0.17 0.18 

Fig. 6. Error structure for the first- and second-order approximation 

of table 3. 
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PH-process with characteristics (B,S) (under #), given by 

and let N2 be an ordinary renewal process with (generalized) Erlang2 

inter-arrival d. f . G2 , given by 

where we take vl-1 and v2-2. Note that G1 is an Erlang2 d.f. as 

well. Moreover, N ,  is an ordinary renewal process only under 9. Under 
p7, with 7 - [1/2, 1/21 , N1 is stationary. We take n - 10. 

EE is obtained by application of Theorem 5.1 to the stationary 
version R of N. Using the iteration scheme of Remark 5.14, we find 
that the matrices G and H are equal to 

0.2312992 0.3382979 I and H = 

0.078248025 0.3457446 

Application of (5.5) with 7 = [1/2, 1/2 , yields EE - - 1.12027. 

6.6 CONCLUSIONS 

Several other experiments have been carried out, all giving similar 

results. The second-order approximations indeed give considerable 

improvement on the first-order approximations, even for quite small n .  

The results show good agreement with the theoretical error structure 

as described in [a]. Compared to the first-order approximation, the 

new one has additional corrections for systematic shift and skewness, 
- 1 / 2  -1/2 

corresponding to the terms qcp(yn)n-1/2 and ~ ( l - ~ n  )cp(y,)n s 

respectively, in (2.3). In [6] similar results for ths sum process of 

k independent renewal processes were found. Approximation 2.2 tends to 

give the best results for t near the expectation of 7 , .  In the various 

examples we see that for values of t that are relatively far away from 
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this expectation the second-order approximation is only slightly 

better than the first-order one. This is partly due to the relative 

smallness of q in these cases, which means that there is only an 

additional correction for skewness in (2.3), when compared to the 

first-order approximation. But perhaps these kind of approximations 

are not very suited for such small or large t, and one should be 

looking for other approximations in this range. When a-' is close to 

zero, application of approximation 2.2 is not very appropriate, as 

indicated by figure 4. In the case that a-l- 0, s, has, when properly 

normalized, for large n approximately a stable distribution of order 

1/2, and not a normal distribution. 
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