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Introduction. Accurate risk stratification in patients with suspected stable coronary artery
disease is essential for choosing an appropriate treatment strategy. Our aim was to develop and
validate a machine learning (ML) based model to diagnose obstructive CAD (oCAD).

Method. We retrospectively have included 1007 patients without a prior history of CAD
who underwent CT-based calcium scoring (CACS) and a Rubidium-82 PET scan. The entire
dataset was split 4:1 into a training and test dataset. An ML model was developed on the
training set using fivefold stratified cross-validation. The test dataset was used to compare the
performance of expert readers to the model. The primary endpoint was oCAD on invasive
coronary angiography (ICA).

Results. ROC curve analysis showed an AUC of 0.92 (95% CI 0.90-0.94) for the training
dataset and 0.89 (95% CI 0.84-0.93) for the test dataset. The ML model showed no significant
differences as compared to the expert readers (p ‡ 0.03) in accuracy (89% vs. 88%), sensitivity
(68% vs. 69%), and specificity (92% vs. 90%).

Conclusion. The ML model resulted in a similar diagnostic performance as compared to
expert readers, and may be deployed as a risk stratification tool for obstructive CAD. This
study showed that utilization of ML is promising in the diagnosis of obstructive CAD. (J Nucl
Cardiol 2023)
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Abbreviations
CACS Calcium scoring

CT Computed tomography

ICA Invasive coronary angiography

MBF Myocardial blood flow

MFR Myocardial flow reserve

ML Machine learning

MPI Myocardial perfusion imaging

Ocad Obstructive coronary artery disease

PET Positron emission tomography

Rb-82 Rubidium-82

INTRODUCTION

Invasive coronary angiography (ICA) in combina-

tion with functional flow measurements is an important

procedure in diagnosing obstructive coronary artery

disease (oCAD). However, it is associated with inherent

risks of serious complications and accompanied by

considerable costs, relatively high radiation exposure,

and patient discomfort.1,2 In patients with low to

intermediate pre-test likelihood for oCAD, non-invasive

imaging, such as computed tomography (CT) based

calcium scoring (CACS), CT coronary angiography

(CCTA), and cardiac positron emission tomography

(PET) is recommended as gatekeeper for ICA.1,3,4

After non-invasive imaging, cardiologists combine

the imaging data, clinical data, and type of complaints to

estimate a post-test likelihood and, if needed, determine

a specific treatment strategy. Typically, they include

classical risk factors for oCAD such as age, body mass

index, smoking, hypertension, cholesterol, diabetes,

medical history and family history, and medication

usage. In the end, this may include tens of different

features which makes the cardiologist’s ability to inter-

pret and integrate all these data into one post-test

likelihood not straight forward. Artificial intelligence

(AI) applications can help to improve diagnosis of

patients with oCAD by combining all available infor-

mation.5,6 These applications may reduce costs, save

time, can help training or starting physicians and

increase diagnostic performance. In particular, machine

learning (ML) models have been shown suitable to

assess many features and are capable of modeling

complex non-linear relations between these features, to

finally result in an accurate diagnosis and to guide

physicians in the treatment strategy to choose.7,8

In order to integrate AI applications into clinical

practice it is appropriate that these applications result in

a diagnostic performance at least equal to that of an

experienced physician. Previous studies have shown the

potential of integrating imaging derived features with

clinical data in ML-based risk prediction models.7,8 To

our knowledge, a study applying ML to predict oCAD

based on clinical data, CACS, and PET imaging, has not

been performed yet.

Our aim was to develop and validate a ML-based

model to diagnose oCAD in patients without prior

history of CAD, based on clinical data, medication, and

imaging data, including CT-based CACS and Rubidium-

82 (Rb-82) PET. In addition, we compared the perfor-

mance of this ML model to that of expert imaging

physicians.

MATERIALS AND METHODS

Study population

We retrospectively have included a consecutive

cohort of 1007 patients who underwent CT-based CACS

and rest and regadenoson-induced stress Rb-82 PET

(Discovery 690, GE Healthcare) between 1 May 2017

and 1 February 2019. All included patients had no prior

history of CAD which was defined as prior myocardial

infarction, percutaneous coronary intervention (PCI) or

coronary artery bypass grafting (CABG). Information

about the patients’ history, patients’ characteristics, and

clinical data were obtained by review of medical

records. As this study was retrospective, approval by

the medical ethics committee was therefore not required

according to Dutch law. Nevertheless, all patients

provided written informed consent for the use of their

data for research purposes.

Image acquisition and reconstruction

Prior to myocardial perfusion imaging (MPI), a

low-dose CT scan was acquired during free-breathing to

provide an attenuation map of the chest. This scan was

made using 0.8 s rotation time, pitch of 0.97, collima-

tion of 32 9 0.625 mm, tube voltage of 120 kV, and a

tube current of 10 mA. Images were reconstructed using

a matrix of 512 9 512 and a 5 mm slice thickness.

Next, 740 MBq Rb-82 was administered intravenously

with a flow rate of 50 mL/min using a Sr-82/Rb-82

generator (CardioGen-82, Bracco Diagnostics Inc.). Ten

minutes after the first elution, we induced pharmaco-

logical stress by administrating 400 lg (5 mL) of

Regadenoson over 10 s. After a 5 mL saline flush (NaCl

0.9%), we administered a second dose of 740 MBq Rb-

82. Seven-minute PET list-mode acquisitions were

acquired after both Rb-82 administrations. Attenuation

correction was applied to all data on the PET system

after manual rigid registration of CT and PET data.
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CT-based CACS scans were performed using a 64-

slice CT scanner (Light-Speed VCT XT, GE Health-

care). An unenhanced ECG-gated scan was obtained

prospectively, triggered at 75% of the R–R interval by

using the following scanning parameters: 2.5 mm slice

thickness; 330 ms gantry rotation time; tube voltage of

120 kV; and a tube current of 125-250 mA, depending

on patient’s size.

Static and ECG-gated rest and stress PET images

(Discovery 690, GE Healthcare) were obtained from

data acquired from 2:30 to 7:00 min after Rb-82

administration. The voxel size was 3.3 9 3.3 9 3.3

mm3. The dynamic PET datasets were reconstructed

using 26 time-frames (12 9 5 s, 6 9 10 s, 4 9 20 s,

and 4 9 40 s) with default settings as recommended by

the manufacturer using 3D iterative reconstruction using

2 iterations and 24 subsets, while correcting for decay,

attenuation, scatter and random coincidences, and dead

time effects. Neither time-of-flight information nor

resolution modeling was used for reconstruction of the

dynamic PET datasets.

Data processing

CACS was obtained per vessel (left anterior

descending (LAD), left circumflex (LCX), and right

coronary artery (RCA)) according to the standard

Agatston criteria.9 All acquired PET data were post-

processed using Corridor4DM software (Invia medical

imaging solutions, v2015.02.64) to obtain the left-

ventricle ejection fraction (EF) and semi-quantitative

PET parameters including summed stress score (SSS)

and summed difference score (SDS). The reconstructed

dynamic images were used in combination with the one-

tissue compartment model of Lortie et al. to calculate

the myocardial blood flow (MBF),10 as also described

previously.11 The MBF was calculated for the myocar-

dium as a whole and for the LAD, LCX, and RCA

territories, for both stress and rest. The MFR was

calculated by dividing the stress MBF by the rest MBF.

The dynamic images were visually inspected for the

presence of myocardial creep and manually corrected if

necessary. Rest MBF was calculated without rate-

pressure product correction.

To possibly further improve the diagnostic accuracy

of the MBF measurements, we also calculated the

myocardial perfusion entropy (MPE). MPE can be

interpreted as the amount of disorder between the 17-

segmental MBF values and can possibly better discrim-

inate ischemic from non-ischemic areas as compared to

global or regional MBF values.12 MPE was calculated

using Shannon’s equation for entropy13 with the 17-

segmental MFR values as input.12

Follow-up

A reference standard was used to determine the

diagnostic value of a ML-based model in the diagnosis

of oCAD. As reference standard, we classified patients

as having oCAD if follow-up included a conclusive

invasive coronary angiography (ICA) for CAD defined

by an intermediate stenosis with a fractional flow

reserve\ 0.8, or a[ 70% stenosis in the LAD, LCX

or RCA, or a[ 50% stenosis in the left main coronary

artery.14

Machine learning

For the selection of the machine learning model for

this study we compared the diagnostic performance of

the following models using test data that were not used

for training of the models (as explained further below):

Least Absolute Shrinkage and Selection Operator

(LASSO), Logistic Regression, Support Vector Machine

(SVM), and the eXtreme Gradient Boosting (XGBoost)

algorithm. Finally, we continued with XGBoost (library

v1.4.2) to diagnose oCAD in patients without prior

history of CAD, based on clinical data, medication and

imaging data, including CAC-score and Rb-82 PET.15

The XGBoost model implements the gradient boosting

decision tree model and was carried out in Python from

the Scikit-Learn library (v0.24.2) for binary classifica-

tion of the presence of oCAD.16 The dataset was

randomly split into a training and test set with a 4:1 ratio

as illustrated in Figure 1, stratified by occurrence of

obstructive events, so that both the training and test set

had a comparable prevalence of oCAD. Each patient

was characterized by an array of features, including

(semi-)quantitative SDS, SSS, MBF and MFR measure-

ments and CACS, and various other clinical features

which are shown in Table 1. All features except MBF,

MFR, CACS, age, resting heart rate, and body mass

index (BMI), were transformed to dichotomous vari-

ables. The remaining continuous variables of the

training dataset were normalized such that the mean

value was 0 and standard deviation was 1. Next, the

mean and standard deviation of the training dataset were

used to normalize the test dataset.

Model development and feature
importance

The XGBoost model was optimized with the train-

ing dataset, using hyperparameter optimization via grid

search in combination with fivefold stratified cross-

validation as shown in Figure 1. Additionally, the

feature importance was extracted from the model. The

feature ranking is based on the number of times a feature

Journal of Nuclear Cardiology� van Dalen et al.

ML model to diagnose obstructive CAD



appeared (F-score) in decision trees within the model.

The model with the highest F1-score was evaluated on

the test dataset.

Model and readers’ performance

Two expert readers, a cardiologist and nuclear

medicine physician, assessed the clinical data, CACS,

and the Rb-82 PET data for each patient. After the

expert readers reached consensus of possible or definite

defect, based on all these data, patients were categorized

as having oCAD. Otherwise, patients were categorized

as non-oCAD. To assess the value of the XGBoost

model in the detection of oCAD, the predictive perfor-

mance of the model was compared to that of the expert

readers. The reference for both the expert readers and

the XGBoost model was oCAD on ICA.

Statistical analysis

Statistical analysis was performed using IBM SPSS

(IBM SPSS Statistics for Windows, Version 26.0.

Armonk, NY: IBM Corp). Differences in patient char-

acteristics between the training and test dataset were

evaluated using Student’s t-test, or Mann–Whitney U
test, when appropriate. Following a Bonferroni correc-

tion for the comparisons of the basic characteristics

between the training and test dataset, the level of

statistical significance was set to 0.05/48 = 0.001 for all

statistical analyses.

Furthermore, we computed the accuracy, sensitivity,

and specificity, achieved by the expert readers, for

detecting oCAD. Next, the area under the receiver

operating curve (AUC) was computed for the XGBoost

model for both the training and test dataset. From the

receiver operating curve (ROC) of the training dataset we

determined two differentmodel thresholds to discriminate

between non-oCAD and oCAD. The first being the model

threshold that resulted in a similar sensitivity as compared

to the sensitivity obtained by the expert readers (thresh-

oldsens). The second being the model threshold that

resulted in a similar specificity as compared to the

specificity obtained by the expert readers (thresholdspec).

Next, the performance metrics (accuracy, sensitivity, and

specificity) were calculated on both the training and test

dataset. The performance metrics of the XGBoost model

was compared to those of the readers using McNemar’s

test. Following a Bonferroni correction for the compar-

isons of the expert readers to the two model thresholds

applied to both datasets, the level of statistical signifi-

cance was set to 0.05/4 = 0.0125.

RESULTS

Data that were used as input features for the ML

model and follow-up data for the training and test set are

summarized in Table 1. Of the included 1007 patients,

Figure 1. Visualization of the cross-validation procedure of the development of the XGBoost
model. The entire dataset is initially split 4:1 into a training and test dataset. The training set is used
to optimize hyperparameters via cross-validation. The test dataset is used in to evaluate the
performance in an independent patient population.
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Table 1. Summary of data that were used as input features for the XGBoost model and follow-up data
of both the training and test dataset

Training set (n = 805)
Test set
(n = 202) p values

Input features

Age (years) 66 ± 11 66 ± 11 0.54

Male (%) 50 52 0.77

Length (cm) 174 ± 10 174 ± 11 0.54

Weight (kg) 89 ± 20 89 ± 20 0.80

BMI 25.6 ± 5.2 25.6 ± 5.1 0.93

Pulse (beats/min) 70 ± 14 70 ± 11 0.56

Creatinine serum (lmol/L) 97 ± 76 90 ± 41 0.19

Smoking never (%) 40 39 0.70

Smoking ever (%) 47 47 0.84

Smoking present (%) 13 15 0.38

Diabetes mellitus (%) 20 18 0.49

Hypercholesterolemia * (%) 41 41 0.89

Hypertension (%) 62 61 0.80

Family history (%) 51 47 0.25

Medical history (%) 20 27 0.02

COPD (%) 12 16 0.09

CVA (%) 9 13 0.12

Medication usage (%) 94 97 0.12

Aspirin (%) 28 27 0.78

Clopidogrel (%) 4 5 0.82

Acenocoumerol (%) 9 11 0.40

Beta blockage (%) 54 62 0.03

Ace/AII inhibitor (%) 41 45 0.34

Ca-channel blocker (%) 24 18 0.08

Statin (%) 43 47 0.33

Diuretic (%) 29 36 0.06

Total CAC-score 449 ± 771 505 ± 845 0.36

LM CAC-score 21 ± 55 24 ± 67 0.49

LAD CAC-score 187 ± 298 194 ± 258 0.77

LCX CAC-score 88 ± 210 77 ± 186 0.48

RCA CAC-score 153 ± 360 200 ± 442 0.16

PET SSS 6 ± 7 6 ± 6 0.87

PET SDS 2 ± 4 3 ± 4 0.24

EF stress 64 ± 12 63 ± 13 0.06

EF rest 59 ± 12 58 ± 12 0.23

Global stress MBF (mL/min/g) 2.5 ± 0.7 2.5 ± 0.8 0.30

Global rest MBF (mL/min/g) 1.1 ± 0.3 1.1 ± 0.3 0.75

Global MFR 2.5 ± 0.6 2.4 ± 0.6 0.36

LAD stress MBF (mL/min/g) 2.5 ± 0.7 2.5 ± 0.7 0.27

LAD rest MBF (mL/min/g) 1.1 ± 0.3 1.1 ± 0.3 0.61

LAD MFR 2.4 ± 0.6 2.4 ± 0.6 0.45

LCX stress MBF (mL/min/g) 2.5 ± 0.7 2.4 ± 0.8 0.32

LCX rest MBF (mL/min/g) 1.1 ± 0.3 1.1 ± 0.3 0.80

LCX MFR 2.4 ± 0.7 2.4 ± 0.7 0.38

RCA stress MBF (mL/min/g) 2.7 ± 0.8 2.6 ± 0.9 0.46

RCA rest MBF (mL/min/g) 1.1 ± 0.4 1.1 ± 0.4 0.99

RCA MFR 2.6 ± 0.7 2.5 ± 0.8 0.36
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111 (11%) patients were classified as having oCAD

during follow-up. An additional 26 (3%) patients died

during follow-up. The median follow-up time was

1.8 years. The minimum follow-up time was 1 year

while the longest follow-up time was 2.7 years. Most

cases of oCAD occurred within 90 days after the PET

scan (early revascularization), 67% in the training

dataset and 73% in the test dataset, respectively. No

significant differences were found in patient character-

istics between the training and test datasets (p[ 0.02).

Machine learning

We tested multiple ML models to compare the

performance: LASSO (AUC of 0.84), Logistic Regres-

sion (AUC of 0.84), and SVM (AUC of 0.75), but the

XGBoost algorithm (AUC of 0.89, see further below)

performed best. Features were ranked in order of

importance for the XGBoost model for oCAD. The top

10 predictors for the XGBoost model consisted of CACS

and PET-derived features, as shown in Figure 2. The

summed difference score (SDS) was the most important

feature with an F-score of 44. Features with a feature

importance of less than one and therefore with little to

non-predictive value for oCAD were length, family

history, medical history, COPD, past CVA, hyperten-

sion, and present smoking. In addition, all prescribed

medication categories were found to hold little to non-

predictive value (F-score B 1).

Using oCAD on ICA as reference ROC curve

analysis showed an AUC of 0.92 for the training dataset

and 0.89 for the test dataset, respectively, as shown in

Figure 3. The expert readers achieved an accuracy of

88% (sensitivity 69% and specificity 90%) for the

detection of oCAD as shown in Table 2 and Figure 4.

No significant (p C 0.03) differences in accuracies (89%

and 82%), sensitivities (68% and 73%), and specificities

(92% and 83%) were found for the XGBoost model on

the test data as compared to the expert readers, using

either thresholdsens or thresholdspec, respectively.

To put our results into perspective we conducted

ROC analyses based on the SSS alone, stress MBF

(global) alone, and MFR (global) alone. The corre-

sponding ROCs for the test dataset are shown in the

supplementary material. With AUCs ranging from 0.71

to 0.76, the performance of these single PET-based

features is inferior to that of the ML model (AUC of

0.89) that includes multiple features.

DISCUSSION

In this study we have developed and tested an

XGBoost model to diagnose patients with oCAD, using

clinical data, CACS, and Rb-82 PET imaging data. The

ML model resulted in a high AUC (0.89) on the test data

and showed a comparable performance to that of the

expert readers. In clinical practice, such a model can

serve as a post-test likelihood test for oCAD and be used

to improve risk stratification and thereby decisions in

low to intermediate risk patients regarding further

testing or therapies.

We were also able to identify the most important

predictors of oCAD via feature importance ranking of

the XGBoost model. PET derived (semi-)quantitative

values including SDS, SSS, MBF, and MFR, as well as

CACS were much stronger predictors as compared to

classical risk factors such as smoking and hypertension.

The importance of PET and CACS features is not

unexpected, since these are well established as indepen-

dent and complementary predictors.17,18 Furthermore,

the creatinine serum level was ranked as a relatively

strong predictor. This may be explained by the

Table 1 continued

Training set (n = 805) Test set
(n = 202)

p values

MPE 1.3 ± 0.7 1.2 ± 0.7 0.16

Follow-up data

Obstructive CAD (%) 11 11 0.95

All cause death (%) 2.6 2.5 0.92

Time to obstructive CAD (months) 1 [0–5.5] 1 [0–3] 0.23

Event\90 days after scan (%) 8 8 0.82

*Hypercholesterolemia was defined as a known history of dyslipidemia (total cholesterol[200 mg/dl or LDL cholesterol
levels[130 mg/dl) or treatment with cholesterol-lowering medication
Data are presented as mean ± SD, median [interquartile range] or percentage;
The p values are given for either the v2 test, t-test or Mann–Whitney U test
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experience that renal dysfunction increases the likeli-

hood of CAD and has a negative impact on the

prognosis.19

There are several studies on the performance of

models on the basis of clinical data, CACS and/or

nuclear imaging data (SPECT or PET), but none of them

combined all these features into one model. In 2013,

Arsanjani et al.8 already showed that ML significantly

improved diagnostic performance of MPI with SPECT

by computational integration of quantitative perfusion

and clinical data to the level rivaling expert analysis.

Fathala et al.3 showed that the addition of CACS to MPI

with PET may help in the detection of subclinical CAD,

especially in patients with unknown history of CAD.

Al’Aref et al. compared the performance of a ML model

alone, ML model with CACS, CAD consortium clinical
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Figure 2. Feature importance ranking of features with F-scores[ 0 of the XGBoost model to
detect obstructive CAD. The F-score was calculated by the improvement in accuracy brought by a
feature to the branches it is on. Features with low importance can be interpreted as weak predictors
for obstructive CAD. BMI body mass index; CAC-score coronary artery calcium score; EF ejection
fraction; LAD left anterior descending artery; LCX left circumflex; LM left main artery; MBF
myocardial blood flow; MFR myocardial flow reserve; MPE myocardial perfusion entropy; RCA
right coronary artery; SDS summed difference score; SSS summed stress score.
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score, CAD consortium score with CACS and updated

Diamon-Forrester score to predict the presence of oCAD

on CCTA.20 They concluded that ML using clinical data

in addition to CACS can accurately estimate the pretest

likelihood of oCAD. ML with CACS produced the best

performance with an AUC of 0.87. In our study all

relevant data (clinical, CACS, and PET) were combined

and the ML model resulted in a performance with an

AUC of 0.89 on the test data using oCAD on ICA as

reference.

This study has several limitations. First, we used

data of one hospital which makes generalizability to

other centers not straight forward. Although most input

parameters of the ML model are or can be standardized

(clinical information and CACS), MBF measurements

based on PET are generally not standardized among

different centers and depend on several technical aspects

such as reconstructions settings and post-processing

software.21-24 Still, for each center it is possible and

even recommendable to retrain and test the ML model to

their unique patient data. Although this will take effort,

it will lead to center-specific optimized hyperparameter

values and hence likely to the best diagnostic

performance.

Second, we classified patients as having oCAD if

follow-up included a conclusive invasive coronary

angiography (ICA) for oCAD7 during follow-up. Inher-

ently, we might have missed patients with oCAD as not

Figure 3. ROC curve of the XGBoost model for detection of obstructive CAD on the (A) training
(n = 805) and (B) test (n = 202) dataset. The sensitivity and specificity of the expert readers, is
plotted (black dot) with corresponding 95% confidence intervals.

Table 2. Diagnostic performance of expert readers and the ML model for the detection of obstructive
CAD. By definition the 69% sensitivity and the 90% specificity of the training data are equal to those of
the expert readers

Expert readers
(reference)

Training data Test data

Thresholdsens Thresholdspec Thresholdsens Thresholdspec

Accuracy 88% 92%* 88% 89% 82%

Sensitivity 69% 69% 76% 68% 73%

Specificity 90% 95%* 90% 92% 83%

*p\0.013
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all were referred for ICA. This bias may lead to

underestimation of the positive cases.

Third, CACS was obtained using the Agatston

method, which has limitations,25,26 e.g., it assumes that

calcium should be upwardly weighted with increased

calcium density in the CT scan and it does not account

for the regional distribution within the coronary tree.

However, its use is current practice in most hospitals and

therefore we used it in our study. Moreover, if we would

have used a different method to obtain the CACS, we do

not expect that it would change our conclusion. Both the

ML model and the expert readers used the same CACS.

Fourth, the number of patients included was rela-

tively low. In particular we had an imbalanced dataset as

the number of patients who were classified as having

oCAD was only 111 (11%) of the total population.

Furthermore, only 20% of the patients were included in

the test dataset, which resulted in performance metrics

with relatively large confidence intervals. This only

allowed us to demonstrate that the ML model perfor-

mance did not significantly differ from the readers’

performance. Using a larger database or using more

advanced artificial intelligence algorithms might possi-

bly show a superiority of the ML model. Moreover, the

retrospective study design may have led to some bias in

our study population, since we only included patients

who were referred to our institution for both CACS and

Rb-82 PET imaging.

Finally, the ML model was only trained and tested

on patients without prior history of CAD. Therefore, the

ML model might not be generalizable to patients with a

prior history of CAD. However, by retraining the model

on data from a different patient population we expect

that a high diagnostic performance can be obtained as

well.

NEW KNOWLEDGE GAINED

The XGBoost model derived in this study is an

objective classification approach for identifying patients

with oCAD and led to a similar performance compared

to that of expert physicians. It is therefore expected to

facilitate the detection of oCAD, risk stratification, and

finally optimize patient-specific treatment when using it

as a post-test likelihood tool. As this technological

innovation provides automated interpretation of data it

might also help physicians in training.

CONCLUSION

We have developed and validated a machine learn-

ing model to diagnose obstructive CAD in patients

without prior history of CAD, based on clinical risk

factors, medication, and imaging data, including CACS

and Rb-82 PET. It resulted in similar performance as

compared to the performance of experts imaging physi-

cians. Therefore, utilization of such a model is

promising in the diagnosis of obstructive CAD. It may

be used for risk stratification for obstructive CAD and

eventually for guiding further patient treatment.
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