
Compositional Timing Analysis of Asynchronized Distributed

Cause-E�ect Chains

MARIO GÜNZEL, TU Dortmund University, Germany

KUAN-HSUN CHEN, University of Twente, the Netherlands

NIKLAS UETER, TU Dortmund University, Germany

GEORG VON DER BRÜGGEN, TU Dortmund University, Germany

MARCO DÜRR, TU Dortmund University, Germany

JIAN-JIA CHEN, TU Dortmund University, Germany

Real-time systems require the formal guarantee of timing constraints, not only for the individual tasks but also for the

end-to-end latency of data �ows. The data �ow among multiple tasks, e.g., from sensors to actuators, is described by a

cause-e�ect chain, independent from the priority order of the tasks. In this paper, we provide an end-to-end timing-analysis

for cause-e�ect chains on asynchronized distributed systems with periodic task activations, considering the maximum reaction

time (i.e., the duration of data processing) and the maximum data age (i.e., the worst-case data freshness). We �rst provide an

analysis of the end-to-end latency on one local electronic control unit (ECU) that has to consider only the jobs in a bounded

time interval. We extend our analysis to globally asynchronized systems by exploiting a compositional property to combine

the local results. Throughout synthesized data based on an automotive benchmark as well as on randomized parameters, we

show that our analytical results improve the state-of-the-art.

CCS Concepts: � Computer systems organization ! Embedded and cyber-physical systems; Real-time systems;

Additional Key Words and Phrases: Cause-e�ect chains, maximum data age, maximum reaction time, compositional end-to-end

analysis

1 INTRODUCTION

Industrial systems with real-time constrains require timeliness to ensure their correct functionality. Speci�cally,

timing properties like end-to-end latencies are used to validate safety-critical tasks that have to perform a desired

control within a certain time interval, e.g., when analyzing the interaction of electronic control units (ECUs) in a

car.

A cause-e�ect chain is a strictly ordered set of tasks where the order describes data read and write dependencies.

The WATERS industry challenge 2019 [20] provided an example, shown in Figure 1, that consists of the strictly

ordered set of a lidar grabber task, a localization task, a sensor fusion task, a trajectory planner task, and a control

task that also sets the actuators with velocity and steering signals. In this example, an instance (job) of the lidar

grabber task reads information from the LiDAR sensor, builds a point cloud, and shares that point cloud data with

a job of the localization task. Similarly, the computed data from the trajectory planner job is shared with a control

and actuation job. In a so-called end-to-end timing analysis, the timing behavior of the function implemented by

Authors’ addresses: Mario Günzel, TU Dortmund University, Dortmund, Germany, mario.guenzel@tu-dortmund.de; Kuan-Hsun Chen,

University of Twente, Twente, the Netherlands, k.h.chen@utwente.nl; Niklas Ueter, TU Dortmund University, Dortmund, Germany, niklas.

ueter@tu-dortmund.de; Georg von der Brüggen, TU Dortmund University, Dortmund, Germany, georg.von-der-brueggen@tu-dortmund.de;

Marco Dürr, TU Dortmund University, Dortmund, Germany, marco.duerr@tu-dortmund.de; Jian-Jia Chen, TU Dortmund University,

Dortmund, Germany, jian-jia.chen@tu-dortmund.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

' 2023 Copyright held by the owner/author(s).

1539-9087/2023/3-ART

https://doi.org/10.1145/3587036

ACM Trans. Embedd. Comput. Syst.

HTTPS://ORCID.ORG/0000-0001-7575-7014
HTTPS://ORCID.ORG/0000-0002-7110-921X
HTTPS://ORCID.ORG/0000-0002-6722-4805
HTTPS://ORCID.ORG/0000-0002-8137-3612
HTTPS://ORCID.ORG/0000-0001-8114-9760
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0002-8137-3612
https://orcid.org/0000-0001-8114-9760
https://doi.org/10.1145/3587036
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587036&domain=pdf&date_stamp=2023-03-09

2 � Günzel, et al.

LiDAR Localization EKF Planner DASM

CAN Polling

Detection

Lane Det.

cloud pose pose steer, vel.

bounding box

vehicle stat.

vehicle stat. vehicle stat. lane bound.

occupancy grid

Fig. 1. An example application redrawn from the WATERS challenge 2019 [20]. An exemplary chain in the application is
emphasized by the bold blue arrows.

the task chain, i.e., the steering and velocity control based on the LiDAR sensory inputs, is analyzed with respect

to maximum reaction time and maximum data-age.
The maximum reaction time denotes the length of the longest time interval starting from the occurrence of an

external cause (in the WATERS example new LiDAR sensor data) to the earliest time where this external cause is

fully processed (actuated), i.e., the maximum button to action delay. The maximum data age denotes the length of

the longest time interval starting with sampling a value to the last point in time where an actuation is based on

this sampled value.

Most approaches in the literature that validate timing requirements of cause-e�ect chains can be classi�ed into

two categories: active approaches [9, 16, 28], which control the release of jobs in the subsequent tasks in the chain

to ensure that the data is correctly written and read, and passive approaches [2, 3, 6, 10, 11, 13, 15, 18, 22, 27, 29],

which analyze how the data is produced and consumed among the job of the recurrent tasks in the cause-e�ect

chain. The approaches proposed in this work can be classi�ed as passive approaches.

When all tasks in the system are mapped to one embedded device, they can be assumed synchronized as

they have access to the same local clock. However, when tasks are mapped to multiple embedded devices, each

device usually has its own clock with di�erent o�set and jitter; a so-called globally asynchronized system. To

enable a coherent collaboration among multiple distributed devices, clock synchronization techniques [23]

enable one global system clock for all devices; a so-called globally synchronized system. Globally synchronized

systems are usually easier to be optimized and analyzed, but the synchronization mechanism imposes strong

dependencies (e.g., on the master node for clock synchronization), which makes the distributed system fragile

against fault tolerance [6]. Therefore, accepting globally asynchronous clocks with o�set and jitter enables

distributed embedded systems that are robust against imperfect synchronization of the architecture. We call such

systems globally asynchronized locally synchronized (GALS) systems.

Multiple results for the end-to-end timing analysis of distributed systems with di�erent synchronization

assumptions have been provided in the literature:

� Davare et al. [10] provide an upper bound for the maximum reaction time of cause-e�ect chains for periodic

task sets on globally asynchronized locally synchronized (GALS) systems.

� Dürr et al. [11] present two upper bounds, one for maximum reaction time and one for maximum data age,

considering cause-e�ect chains for sporadic task sets on GALS systems.

� Kloda et al. [22] provide an upper bound for the maximum reaction time of cause-e�ect chains for periodic

task sets on globally synchronized systems.

� Becker et al. [4] provide an upper bound for the maximum data age of cause-e�ect chains for periodic task

sets on globally synchronized systems.

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 3

Since Dürr et al. [11] show that the maximum data age is less than or equal to the maximum reaction time, the

upper bounds provided by Davare et al. [10] and Kloda et al. [22] also hold for the maximum data age. However,

the analysis by Kloda et al. [22] is restricted to synchronous task releases, i.e., the �rst job of each task is released

at time 0, and assumes that the worst-case response time of each task is known beforehand. Moreover, the paper

from Schlatow et al. [29] focuses on the analysis of maximum data age of harmonic task systems. Their analysis

for non-harmonic cases is in fact more pessimistic than Davare’s analysis [10], i.e., Eq. (36) in [29] plus the

worst-case response times of the tasks in the chain is dominated by Davare’s analysis [10]. Becker et al. [2, 3, 5]

analyze end-to-end timing agnostic of the scheduler, i.e., only using information about the task release and

deadline, with the goal to synthesize job-level dependencies to tighten timing guarantees. Their extension [4]

analyzes the maximum data age with various levels of timing information. Recently, Gohari et al. [18] provided an

analysis for the maximum data age under non-preemptive scheduling, whereas this work focuses on preemptive

systems.

Dürr et al. [11] introduce job chains to describe data �ow through a task set and to de�ne maximum reaction

time and maximum data age. In particular, they show that the maximum reaction time (maximum data age,

respectively) of a schedule can be determined by computing the maximum length of immediate forward (backward,

respectively) job chains. However, these de�nitions of maximum reaction time and maximum data age are limited

to a sporadic task model where each task has a minimum and a maximum inter-arrival time. This work provides

a de�nition that is not bounded to any speci�c task model.

Previous results [10, 11, 22] (implicitly) assume that maximum reaction time and data age are only measured

when all tasks are already in the system, i.e., when all tasks have released their �rst job. Validation of this

assumption is only possible by correctly accounting for the globally asynchronous clocks of the ECUs, which

may be di�cult to achieve or even impossible. Furthermore, such an assumption also prohibits the possibility of

compositional end-to-end timing analysis, where a cause-e�ect chain is decomposed into smaller segments that

can be analyzed separately with a compositional property to be used for analyzing the maximum reaction time

and data age. We re�ne this assumption so that a compositional property can be achieved and there is no need of

any assumption on global time.

It is worth noting that Dürr et al. [11] showed that their proposed end-to-end timing analyses for the sporadic

task model analytically dominate the upper bound proposed by Davare et al. [10]. In this work, we leverage on

the analytical upper bounds by Dürr et al. [11] as a backbone and improve them by showing that considering

only a �nite time window is su�cient for the analysis.

We provide an end-to-end analysis for single ECUs, in which prede�ned periodic tasks are scheduled under

a �xed-priority preemptive scheduling policy. Subsequently, we utilize the compositional property to extend

the analysis to the interconnected ECU scenario, in which multiple single ECUs are connected by an inter-

communication infrastructure, e.g., controller area network (CAN) [8] or FlexRay [14]. For the interconnected

scenario, we assume partitioned scheduling, i.e., there are individual periodic task sets for each ECU. Whereas

tasks on a single ECU are scheduled using one synchronized clock, the clocks among di�erent ECUs are usually

not synchronized. Such GALS are of high practical relevance. For instance, according to the Flexray standard [14],

the data communication cycle is divided into static segments (i.e., synchronous time-triggered communication)

and dynamic segments (i.e., asynchronous event-driven communication). We note that, although the notion of

ECUs is adopted from automotive systems, our work is not limited to automotive systems but can be extended to

similar settings.

Contributions: We examine maximum reaction time and maximum data age of cause-e�ect chains for asyn-

chronous periodic task sets on GALS distributed systems. Our main contributions are:

� In Section 4, we provide precise de�nitions of maximum reaction time and maximum data age. The

underlying model only assumes recurrently released jobs with certain read- and write-operations. Hence, the

ACM Trans. Embedd. Comput. Syst.

4 � Günzel, et al.

de�nition is valid for all well-known task models (e.g., periodic tasks and sporadic tasks) and communication

models (e.g., implicit communication and logical execution time (LET)). It covers the single ECU as well as

the interconnected ECU scenario. In particular, in Section 4.3 we show that maximum reaction time and

maximum data age allow a compositional property in form of the Cutting-Theorem.

� In Section 5.1, we provide a method to analyze maximum reaction time and maximum data age in the single

ECU scenario for periodic tasks under preemptive �xed-priority scheduling. In particular, we show that a

safe upper bound can be conducted from two extreme cases, i.e., applying only the best-case execution

time and the worst-case execution time over a bounded time horizon.

� Section 5.2 extends the local analysis to interconnected ECUs and shows how to bound the time for

communication between ECUs in a globally asynchronized distributed system.

� In Section 6, we discuss how the results of this work regarding the maximum data age can be applied to

the maximum reduced data age, which is more common in the literature.

� We evaluate the proposed analysis for single and for interconnected ECUs in Section 7, showing that it

outperforms state-of-the-art analyses for both maximum reaction time and maximum data age. Moreover,

we compare it with lower bounds for maximum data age and maximum reaction time, and conclude that

our bounds are close to the exact result.

This manuscript is based on a conference paper [17] which focuses on a special scenario, assuming �xed

execution time of a periodic task, i.e., the worst-case execution time is the same as the best-case execution time.

The solution presented in Section 5.1 is also an exact end-to-end analysis for the special scenario in the conference

paper [17] but can be applied for more general cases, in which the execution time of a task can be any value

between its best-case and worst-case execution time.

2 SYSTEM MODEL

In this section, we introduce de�nitions and notation for the task model, the communication model, cause-e�ect

chains, and job chains utilized in this work.

2.1 Jobs and Tasks

For a general de�nition of maximum reaction time and maximum data age, we rely on a very basic model of jobs

and tasks that are executed on multiple electronic control units (ECUs). If the ECUs are not synchronized, i.e.,

their clocks are not aligned, then we take their clock shifts into account to compare the time of events on the

ECUs on a global level. First, we introduce jobs, schedules, and tasks. We assume that there is no parallel execution

of jobs on one ECU, i.e., each ECU is a uniprocessor system.

A job � is an instance of a program, which produces an output based on its input. It is released at time A � and

has to be executed for a certain amount of time 2 � � 0 to �nish. A schedule S speci�es the execution behavior of

jobs on the ECUs. If � is scheduled by S, the start time (or start) of � is denoted BS
�

and the �nishing time (or

�nish) of � is 5 S
�

. For the sake of readability, we omit the index S for all de�nitions if the choice of a schedule is

clear in the context. The aggregation of all jobs which are instances of the same program is called a task, denoted

by g . We assume that each task is assigned to one ECU, i.e., all jobs of one task are scheduled on the same ECU,

and that the jobs aggregated to one task g are countable. We denote the set of all tasks as T and the jobs of g as

„g „<””<2N, with 0 8 N. Furthermore, we assume that the task set T is �nite.

Whereas the general de�nitions from Section 4 are valid for all kinds of task models, e.g., for periodic or

sporadic tasks, the analysis in Section 5 is limited to periodic tasks. A periodic task is described by the tuple

g = „�D
g ,�

ℓ
g ,)g , qg ” 2 R4, where�D

g and�ℓ
g� 0 are the worst-case (WCET) and the best-case execution time (BCET)

of the task, respectively,)g ¡ 0 is the period, and qg � 0 is the phase of the task. By de�nition, �D
g � �ℓ

g� 0. The

�rst job is released at time qg . Afterwards, g recurrently releases a job every)g time units. More speci�cally, we

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 5

0 2 4 6 8 10 12 14 16

g1
g1 „1” g1 „2” g1 „3” g1 „4”

A4 A4 A4 A4F4 F4 F4 F4

g2

C
g2 „1” g2 „2”

A4 A4F4 F4

Fig. 2. Read- and write-events under implicit communication.

have Ag „<” = qg ‚ „< � 1” �)g and 2g „<” 2 »�D
g ,�

ℓ
g … for all< 2 N. The utilization of a task g is de�ned by*g :=

�D
g

)g
.

We assume that the total utilization *T :=
∑

g2T*g of a task set T on a single ECU is at most 1. The maximal

phase of T is denoted by Φ = Φ„T” := maxg2T qg . The hyperperiod of T is � = � „T” := lcm„f)g j g 2 Tg”, i.e., the

least common multiple of all periods in the system. The existence of such hyperperiod is required for our analysis

in Section 5.

During analysis, usually only the task description is known instead of the actual jobs. Therefore, all schedules

S that are compatible to the task speci�cation must be considered. If the underlying scheduling algorithm is

deterministic, then each schedule is uniquely determined by the release time and execution time of all jobs in the

schedule. In this case it is su�cient to consider all job sequences that are compatible to the task speci�cation to

cover all possible schedules. We call one of those job sequences for task g a job collection for g . Let �� „g” be the

set of all job collections of task g . Since in each schedule S for each task one job collection is under consideration,

we de�ne the set of all job collections for T as the cartesian product of the sets of job collections for each task,

i.e., �� „T” :=
∏

g2T �� „g”. One schedule S is then equivalent to one job collection 92 2 �� „T”, and we write

S = S„ 92”. To distinguish jobs from di�erent job collections, we denote by g „<, 92” the<-th job of a task g in

the job collection 92 , and use g „<” if the underlying job collection 92 is clear in the context.

2.2 Communication Model

When jobs communicate, they receive (read) their input from a shared resource and hand over (write) their

output to a shared resource. Jobs from the same tasks write to the same resource and messages are overwritten;

that is, at any time only the latest output of a task is available. We denote the �rst read-event of a job � in the

schedule S by A4S
�

, and we denote the last write-event of � in S by F4S
�

. For the sake of clear notation, we write

A4 � and F4 � if the schedule S is obvious or irrelevant to determine the read- and write-events. We consider two

common communication policies. One is called implicit communication, where the read- and write-events are

aligned with the start and �nish of the jobs, respectively (i.e., A4S
�
= BS

�
and F4S

�
= 5 S

�
), as depicted in Figure 2.

The other one is based on the concept of logical execution time (LET) [21]. To utilize LET, each task g is equipped

with a relative deadline �g . Each job � released by a task g has an absolute deadline 3 � = A � ‚ �g . The read- and

write-events of each job � are set to its release time and deadline, respectively (i.e., A4S
�
= A � and F4S

�
= 3 �).

Although LET is originally limited to single ECU, Ernst el al. [12] provide a generalization to the interconnected

ECU setup. If we utilize LET in the following, we consider only feasible schedules, in which each job �nishes

before its deadline, i.e., 5 S
�

� 3 � for all jobs � in S. Note that these two approaches provide a tradeo�: While

implicit communication leads to shorter latencies, LET provides timing determinism [19].

We assume that the following (not very restrictive) requirements are met:

� The read- and write-events of the jobs of each task g 2 T are ordered in the sense that A4S
g „<”

� A4S
g „<‚1”

,

F4S
g „<”

� F4S
g „<‚1”

, and A4S
g „<”

� F4S
g „<”

for all< 2 N.

ACM Trans. Embedd. Comput. Syst.

6 � Günzel, et al.

� The sets fA4S
g „<”

j < 2 Ng and fF4S
g „<”

j < 2 Ng have no accumulation point, i.e., in each bounded time

interval there are only �nitely many read- and write-events.

We note that the above properties are ful�lled, if we consider the most common task models; that is, periodic or

sporadic tasks together with LET or implicit job communication.

We assume systems composed of multiple ECUs. The communication infrastructure between di�erent ECUs is

modelled by additional communication tasks g2 . Those are usual tasks in the sense of Section 2.1, where each job

has the purpose of transferring data between ECUs. More speci�cally, jobs released by communication tasks

read data from a shared resource of one ECU and write it to a shared resource of another ECU. We assume

that the communication tasks are executed on dedicated components and do not impair job execution of the

non-communication tasks. For notational convenience those dedicated components are treated as communication

ECUs. This abstraction is valid for common inter-communication infrastructures like controller area network

(CAN) [8] or FlexRay [14].

2.3 Cause-E�ect Chains

A cause-e�ect chain � = „g1 ! � � � ! g: ” describes the path of data through di�erent programs by a �nite sequence

of tasks g8 2 T. For example, if task g1 uses data provided by g3, then � = „g3 ! g1”. The task order in a cause-e�ect

chain is not necessarily identical with the order given by the scheduling algorithm, i.e., a task may consume

data produced by a lower-priority task. We denote by j� j the number of tasks in �, where j� j � 1. Moreover, for

< 2 f1, . . . , j� jg, � „<” denotes the <-th task of the cause-e�ect chain �. For example, let � = „g4 ! g5 ! g1”,
then j� j = 3, � „1” = g4, � „2” = g5, and � „3” = g1. We note that cause-e�ect chains are inspired by event-chains of

the AUTOSAR Timing Extensions [1], which represent chains of more general functional dependency.

To obtain data for the �rst task in a cause-e�ect chain, data may need to be sampled. We assume an implicit

sampling rate, where the sampling for a cause-e�ect chain � happens at the read-event of each job of � „1”.
Nevertheless, we can easily model any kind of sampling by adding sampling tasks to the system which read

and write data at the time the sampling happens. Please note that the read- and write-events of the jobs of the

sampling tasks need to ful�ll the requirements assumed in the previous subsection. Such sampling tasks can

usually be modeled as a task assigned to an additional ECU or as a task with WCET of 0, which means they do

not a�ect the schedule S.

We consider two types of cause-e�ect chains. Local cause-e�ect chains only contain tasks on a single ECU

(with synchronized clock). The tasks of interconnected cause-e�ect chains are spread among multiple ECUs. These

ECUs may either be synchronized or asynchronized, i.e., they have synchronized or asynchronized clocks. We

note that the de�nitions in Section 4 are valid for all kinds of cause-e�ect chains; the distinction is only necessary

for the analysis in Section 5.

2.4 Job Chains

The concept of job chains is essential to determine maximum reaction time and maximum data age. We adapt the

de�nition from Dürr et al. [11] to our model with read- and write-events. Let � and S be a cause-e�ect chain and

a schedule for T, respectively.

De�nition 1 (Job chain). A job chain of � for S is a sequence 2�,S = „�1, . . . , � j� j ” of data-dependent jobs of

tasks in T with the following properties:

� �8 is a job of � „8” for all 8 2 f1, . . . , j� jg.

� Data is read by �8‚1 after it is written by �8 in the schedule S, i.e., F4 �8 � A4 �8‚1 for all 8 2 f1, . . . , j� j � 1g.

Like Dürr et al. [11], we consider two types of job chains, namely forward and backward job chains.

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 7

External

activity
Sampling

of data

Read-event and

write-event of a

job of � „1”

Read-event and

write-event of a

job of � „ j� j”
Processed Actuation

Fig. 3. Chain of events to trace one data stream of �.

De�nition 2 (Immediate forward job chain). An immediate forward job chain is a job chain 2�,S = „�1, . . . , � j� j ”
where for all 8 2 f1, 2, . . . , j� j � 1g the read-event of the job �8‚1 is the earliest after the write-event of the job �8 .

That is, �8‚1 = arg min� 2� „8‚1”,A4 � �F4 �8
A4 � .

De�nition 3 (Immediate backward job chain). An immediate backward job chain is a job chain 2�,S = „�1, . . . , � j� j ”
where for all 8 2 fj� j, j� j � 1, . . . , 2g the write-event of the job �8�1 is the last before the read-event of the job �8 .

That is, �8�1 = arg max� 2� „8�1”,F4 � �A4 �8
F4 � .

If we consider the schedule from Figure 2 with � = „g1 ! g2”, then „g1 „1”, g2 „1””, „g1 „2”, g2 „2””, and

„g1 „3”, g2 „2”” are immediate forward job chains, while „g1 „1”, g2 „1”” and „g1 „3”, g2 „2”” are immediate backward

job chains.

3 PROBLEM DEFINITION

In this paper we analyze the maximum reaction time and the maximum data age of distributed cause-e�ect chains

� in globally asynchronized locally synchronized (GALS) systems. We assume that the task set associated to each

electronic control unit (ECU) as well as communication tasks between the ECUs are given.

� Input: Some (interconnected) cause-e�ect chain �.

� Output: An upper bound on the maximum reaction time and an upper bound on the maximum data age of

�.

To solve this problem, we 1) provide a local analysis in Section 5.1 under implicit communication policy, and 2)

extend the analysis to several ECUs in Section 5.2.

4 MAXIMUM REACTION TIME AND MAXIMUM DATA AGE

This paper presents an end-to-end timing analysis based on cause-e�ect chains, i.e., the time interval between the

occurrence of a cause (external activity or sampling a sensor value) and a recognizable e�ect (�nish processing

the data or movement of an actuator) is determined. Such an end-to-end timing analysis guarantees the correct

functionality of safety critical tasks within a given time frame. For control engineering the maximum reaction
time (How long does it take until an external cause is processed?) and the maximum data age (How old is the

data used in an actuation?) of a cause-e�ect chain are of special interest.

4.1 Augmented Job Chains

Let � be a cause-e�ect chain and let (be a schedule for the task set T. Data movement through the schedule S
following the dependencies of � can be captured by a sequence of events from an external activity to actuation

as shown in Figure 3: The (change of) data is the result of some external activity and is fed into the system by

sampling. By our assumption in Section 2.3, the sampling coincides with the read-event of a job of the �rst task

� „1”. When the �rst job in the sequence of events �nishes execution, it writes the data to a shared resource.

Afterwards, the second job reads the data from that shared resource, processes it, and writes it again to a shared

resource for the next task, etc. When the last job in the sequence writes to a shared resource, the data is completely

processed by the system. After that, an actuation can happen based on that data.

ACM Trans. Embedd. Comput. Syst.

8 � Günzel, et al.

Maximum data age and maximum reaction time are de�ned by Dürr et al. [11] using backward and forward job

chains, respectively. In fact, job chains describe only the data stream from sampling until the data is processed. In

this paper, we cover the whole data stream by adding events for external activity and actuation. We call such

extended job chains augmented job chains.

De�nition 4 (Augmented job chain). An augmented job chain of� for schedule S is a sequence 2�,S = „I, �1, . . . , � j� j , I
0”,

where „�1, . . . , � j� j ” is a job chain, and I � A4 �1 and I0 � F4 �j� j
are time instants of an external activity and an

actuation, respectively.

We denote by 2�,S „:” the:-th entry of the augmented job chain 2�,S . To be precise, 2�,S „1” = I, 2�,S „ j� j‚2” = I0,

and 2�,S „:” = �:�1 for 2 � : � j� j ‚ 1. To describe the time from external activity to actuation for one data

stream, we de�ne the length ℓ „2�,S” of an augmented job chain 2�,S as

ℓ „2�,S” := 2�,S „ j� j ‚ 2” � 2�,S „1” = I0 � I. (1)

In the following we omit the indices (and � of job chains if they are clear in the context.

The maximum reaction time bounds the time from external activity to the instant where data is completely

processed by the system. We omit time between processed-event and actuation, by only considering augmented

job chains where the actuation is the time of the processed-event, i.e., I0
= F4 �j� j

. The longest time from external

activity to sampling occurs, if the external activity takes place directly after the previous sampling event. Hence,

we construct immediate forward augmented job chains, to determine the maximum reaction time, in the following

way:

De�nition 5 (Immediate forward augmented job chain). An immediate forward augmented job chain fi2�,S< is the

unique augmented job chain „I, �1, . . . , � j� j , I
0”, such that:

� The external activity happens directly after the<-th sampling, i.e., I = A4� „1” „<” .

� The sampling happens at the next read-event of � „1”, i.e., �1 = � „1” „< ‚ 1”.
� The sequence „�1, . . . , ��” is an immediate forward job chain for � in S.

� The actuation is set to the time where the data is processed, i.e., I0
= F4 �j� j

.

For each< 2 N there is an immediate forward augmented job chain. Comparing them, as done in the next

subsection, yields the de�nition of maximum reaction time.

On the other hand, the maximum data age bounds the time from the sampling of data to an actuation based on

that sampling. In the worst case, the actuation based on the data processed at a certain time happens directly

before the next processed-event.

De�nition 6 (Immediate backward augmented job chain). An immediate backward augmented job chain fi2�,S< is

the unique augmented job chain „I, �1, . . . , � j� j , I
0”, such that:

� The actuation happens directly before the<-th processed-event, i.e., I0
= F4� „ j� j ” „<” .

� The processed-event happens at the previous write-event of � „ j� j”, i.e., � j� j = � „ j� j” „< � 1”.
� The sequence „�1, . . . , ��” is an immediate backward job chain for � in S.

� The external activity is set to the time where the data is sampled, i.e., I = A4 �1 .

Please note that there is not necessarily an immediate backward augmented job chain for all< 2 N. We call

such chains incomplete backward augmented job chains. As no data is read for an imcomplete backward augmented

job chain, it is ignored when analyzing the data age. For brevity, the length of incomplete augmented job chains

is set to 0.

Example 7 (Backward augmented job chain determination). Figure 4 shows a single ECU schedule with two

periodic tasks g1 = „�D
g1
=1,�ℓ

g1
=1,)g1=5, qg1=1” and g2 = „�D

g2
=1,�ℓ

g2
=1,)g2=3, qg2=0”. We assume implicit job

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 9

g1 �1�1 �1�2 �1�3

g2

C

�2�1 �2�2 �2�3 �2�4 �2�5

fi21

?

fi22

?

fi23 fi24 fi25

0 2 4 6 8 10 12 14

Fig. 4. An example of backward augmented job chains under implicit communication. The cause-e�ect chain under analysis
is � = „g1 ! g2”.

communication, i.e., data is read at the start of each job and written at the �nishing time of each job. The

determination of the direct backward augmented job chain for fi25 of cause-e�ect chain � = „g1 ! g2” starts with

5-th write-event of the last task in the cause-e�ect chain at time 13. The backward job chain included in fi25 is

„�1,2, �2,4”, and sampling is set to 6, which is the read-event of �1,2. This leads to fi25 = „6, �1,2, �2,4, 13”. Similar to

the described procedure, fi24 and fi23 are determined. A special case occurs if we consider fi21 or fi22. The immediate

backward augmented job chain fi21 is incomplete, since there is no write-event of a job of g2 before F4 �2�1 = 1.

Moreover, fi22 is incomplete as well since there is no immediate backward job chain with second entry �2,1.

We note that immediate forward augmented job chains and immediate backward augmented job chains are

already uniquely determined by their corresponding job chain. The auxiliary entries for external activity and

actuation are included for the simplicity of calculations.

4.2 Definition of Maximum Reaction Time and Maximum Data Age

Let � be a cause-e�ect chain and let S be a schedule with task set T. With respect to Figure 3,

� reaction time is the time from an external activity until the data is processed, and

� data age is the time from sampling of data to actuation based on that data.

We note that our de�nition di�ers from other de�nitions in the literature. For example, the data age de�nition

by Dürr et al. [11] (denoted as the maximum reduced data age in this paper) only covers the time until the data is

processed. Our de�nition of maximum data age is necessary to obtain a compositional property in Section 4.3;

that is, our de�nition ensures that the maximum data age of a cause-e�ect chain � is the sum of the maximum

data age of the segments of �. However, in Section 6, we explain how the compositional property and local

analysis can be applied to the reduced data age as well.

Similar to [11], we could de�ne maximum reaction time (data age) as the supremum of the length of all
immediate forward (backward) augmented job chains. However, due to shifting of the �rst read-event, e.g.,

induced by phases, the reaction time might become arbitrarily large:

Example 8. We consider a task set T = fg1, g2g with cause-e�ect chain � = „g1 ! g2” and A4g1 „1” = 0, A4g2 „1” = G .

The immediate forward augmented job chain fi2�,S1 has a length of at least G .

A solution to avoid this counterintuitive behavior is to only consider immediate forward (backward) augmented

job chains 2�,S which start when all relevant tasks are in the system, i.e.,

2�,S „1” � Re„�,S” := max
8=1,..., j� j

A4S
� „8 ” „1” . (2)

ACM Trans. Embedd. Comput. Syst.

10 � Günzel, et al.

g1
�1�1 �1�2

g2

C

�2�1 �2�2 �2�3 �2�4 �2�5

0 2 4 6 8 10 12 14

Fig. 5. Under implicit communication, the second task has slightly shi�ed read-event.

This is similar to the (implicit) assumption by Dürr et al. [11] to measure maximum reaction time and data

age only when all tasks are already in the system. However, due to this assumption, a slight shift of only one

read-event might exclude multiple augmented job chains from consideration:

Example 9. For the schedule from Figure 5, if the jobs adhere implicit communication, the read-event of the �rst

job of g2 is slightly shifted. With the approach from Eq. (2), for a cause-e�ect chain � „g1 ! g2” only augmented

job chains 2 with 2 „1” � 12 would be considered, although fi21, fi22, fi23, fi24, and fi25 should be included.

Hence, we only consider augmented job chains 2�,S , if all tasks have their �rst read-event until the next

read-event of � „1” after 2�,S „1”. We call these augmented job chains valid.

De�nition 10 (Valid). Let 2�,S = „I, �1, . . . , � j� j , I
0” be some immediate forward or immediate backward aug-

mented job chain for the cause-e�ect chain � in the schedule S. Let ? 2 N, such that I = A4� „1” „? ” holds. We call

2�,S valid if and only if A4� „1” „?‚1” ¡ Re„�,S”.

We are now prepared to de�ne the maximum reaction time and maximum data age.

De�nition 11 (Maximum reaction time and data age). For a cause-e�ect chain � with schedule S we de�ne the

schedule speci�c maximum reaction time (MRT) and maximum data age (MDA) by

MRT„�,S” := sup
{
ℓ „fi2�,S< ”

���< 2 N, fi2�,S< valid
}

(3)

MDA„�,S” := sup
{
ℓ „ fi2�,S< ”

���< 2 N, fi2�,S< valid
}

(4)

where the length ℓ of an event-chain is de�ned as in Eq. (1).

Please note that this de�nition holds for all types of task sets and communication policies since the critical

part is o�oaded to the determination of the read- and write-events.

We also formulate a de�nition for maximum reaction time and data age which is not bounded to a speci�c

schedule. If the procedure to pull job releases and execution times from a task set is speci�ed, e.g., the task sets

are periodic or sporadic, and if the scheduling algorithm is known beforehand, then this characterizes all possible

schedules. Additionally, if the read- and write-events are uniquely determined by the schedule, e.g., by following

implicit communication or LET, then we de�ne the overall maximum reaction time (MRT) and maximum data age
(MDA)

MRT„�” := sup
S

MRT„�,S” (5)

MDA„�” := sup
S

MDA„�,S” (6)

by the supremum over all possible schedules S. Furthermore, if the scheduling algorithm is deterministic, then

there is a one-to-one mapping between the set of job collections �� „T” and the set of schedules. In this case, the

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 11

maximum reaction time and maximum data age can be formulated as:

MRT„�” = sup
922 �� „T”

MRT„�,S„ 92”” (7)

MDA„�” = sup
922 �� „T”

MDA„�,S„ 92”” (8)

In their Theorem 6.2, Dürr et al. [11] prove that the data age is bounded by the reaction time for their system

model. We note that even for this generalized de�nition

MDA„�,S” � MRT„�,S” (9)

holds for all possible schedules S: Let fi2�,S< with< 2 N be some valid immediate backward augmented job chain.

Furthermore, let ? 2 N such that fi2�,S< „1” coincides with the read-event of the ?-th job of task � „1”, that is,

fi2�,S< „1” = A4� „1” „? ” . Similar to the proof of Theorem 6.2 in [11] we show that

ℓ „ fi2�,S< ” � ℓ „fi2�,S? ”, (10)

which is clearly upper bounded by the reaction time. Applying the supremum over all valid immediate backward

job chains concludes the result. We note that also MDA„�” � MRT„�” holds, since Eq. (9) holds for all possible

schedules S.

4.3 Cu�ing of Augmented Job Chains

One essential ingredient to apply a local analysis to the interconnected case in Section 5.2 is to cut the cause-e�ect

chain into smaller (local) parts. Our de�nition of maximum reaction time and maximum data age enables the

possibility to deduce upper bounds by determining maximum reaction time and maximum data age on the

smaller segments, respectively. In this section, we prove that this compositional property holds for any task or

communication model.

Theorem 12 (Cutting). Let � = „g1 ! � � � ! g j� j ” be any cause-e�ect chain. Furthermore, let : 2 f1, . . . , j� j�1g
be some integer. For the cause-e�ect chains �1 := „g1 ! � � � ! g: ” and �2 := „g:‚1 ! � � � ! g j� j ” holds that

MRT„�,S” � MRT„�1,S” ‚ MRT„�2,S” (11)

MDA„�,S” � MDA„�1,S” ‚ MDA„�2,S” (12)

for any schedule S.

The proof of the Cutting-Theorem relies on cutting immediate forward (backward) augmented job chains

into smaller immediate forward (backward) augmented job chains, such that their combined length is at least

the length of the initial immediate forward (backward) augmented job chain. Figure 6 shows the concept for

immediate backward augmented job chains, assuming that jobs adhere implicit communication. We see that

ℓ „ fi2�,S< ” � ℓ „ fi2�1,S
@‚1 ” ‚ ℓ „ fi2�2,S

< ”. The jobs in the sequence of fi2�,S< , marked with the pattern, are distributed among

fi2�1,S
@‚1 and fi2�2,S

< . Only the events for external activity and actuation have to be determined properly.

Proof of Theorem 12 (Cutting). We �rst prove Eq. (12). By de�nition, MDA„�,S” is the supremum of the

length of all valid immediate backward augmented job chains. We consider some valid immediate backward

augmented job chain fi2�,S< = „A4 �1 , �1, . . . , � j� j , I
0” with< 2 N. Let @ 2 N, such that �: is the @-th write-event of task

� „:”, i.e., � „:” „@” = �: . This scenario is depicted in Figure 6. By the de�nition of immediate backward augmented

job chains, the write-event of � „:” „@ ‚ 1” occurs after the read-event of �:‚1, i.e., ~I0 := F4� „: ” „@‚1” ¡ A4 �:‚1
.

ACM Trans. Embedd. Comput. Syst.

12 � Günzel, et al.

� „1”
.
.
.

fi2
�1�S
@‚1

� „: ”

� „: ” „@”

� „: ‚ 1”
.
.
.

fi2
�2�S
<

� „ j� j ”

fi2��S
<

Fig. 6. Cu�ing one immediate backward augmented job chain fi2�,S< into two as in the proof of Theorem 12 (Cu�ing).

Furthermore, „A4 �1 , �1, . . . , �: , Ĩ
0” = fi2�1,S

@‚1 and „A4 �:‚1
, �:‚1, . . . , � j� j , I

0” = fi2�2,S
< are immediate backward augmented

job chains. They are both valid since A4 �:‚1
� A4 �1 and since fi2�,S< is valid. We obtain

ℓ „ fi2�,S< ” = I0 � A4 �1 � I0 � A4 �:‚1
‚ Ĩ0 � A4 �1 = ℓ „ fi2�1,S

@‚1 ” ‚ ℓ „ fi2�2,S
< ” � MDA„�1,S” ‚ MDA„�2,S”.

Applying the supremum yields the result from Eq. (12).

Analogously, we prove Eq. (11). By de�nition, MRT„�,S” is the supremum of the length of all valid immediate

forward augmented job chains. Let fi2�,S< = „I, �1, . . . , � j� j ,F4 �j� j
” with < 2 N be some valid immediate forward

augmented job chain. Furthermore, let ? 2 N such that �:‚1 is the ?-th job of � „: ‚ 1”, i.e., �:‚1 = � „: ‚ 1” „?”.
By de�nition of immediate forward augmented job chains, the read-event of � „: ‚ 1” „? � 1” occurs before the

write-event of �: , i.e., Ĩ := A4� „:‚1” „?�1” � F4 �: .

Since it is not clear directly, we shortly discuss the existence of the job � „: ‚1” „?�1”. We know that � „: ‚1” „?”
exists, i.e., ? 2 N. It remains to show that ? < 1. We know that, by de�nition of an immediate forward augmented

job chain, A4� „:‚1” „? ” � A4 �1 ¡ Re„�,S” since fi2�S
< is valid. If ? would be 1, then Re„�,S” � A4� „:‚1” „? ” which

contradicts A4� „:‚1” „? ” ¡ Re„�,S”. This proves the existence of � „: ‚ 1” „? � 1”.
With the de�nition of ~I from above, we de�ne two immediate forward augmented job chains „I, �1, . . . , �: ,F4 �: ” =

fi2�1,S
< and „ ~I, �:‚1, . . . , � j� j ,F4 �j� j

” = fi2�2,S
?�1 . The augmented job chain fi2�1,S

< is valid since the start coincides with

the one of fi2�,S< and since Re„�,S” � Re„�1,S”. The augmented job chain fi2�2,S
?�1 is also valid since A4� „:‚1” „? ” �

A4 �1 ¡ Re„�,S” � Re„�2,S”. Hence,

ℓ „fi2�,S< ” = F4 �j� j
� I � F4 �j� j

� ~I ‚F4 �: � I = ℓ „fi2�1,S
< ” ‚ ℓ „fi2�2,S

?�1 ” � MRT„�1,S” ‚ MRT„�2,S”.

Applying the supremum yields the result from Eq. (11). �

Since Eq. (11) and (12) hold for all schedules S, the Cutting-Theorem does also hold for the overall maximum

reaction time and overall maximum data age, i.e., MRT„�” � MRT„�1” ‚ MRT„�2” and MDA„�” � MDA„�1” ‚
MDA„�2”. This compositional property can deal with clock-shifts by cutting at those positions where clock shifts

occur.

5 ANALYSIS OF END-TO-END LATENCIES OF PERIODIC TASKS

In this section, we assume that the tasks on each ECU are scheduled according to preemptive �xed-priority

scheduling. That is, on each ECU the tasks have a static priority-ordering and at each time the pending job of

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 13

g1

ℓ „fi23 ”

g2

0 2 4 6 8 10 12

g3

C

(a) Every task executes its WCET.

g1

ℓ „fi21 ”

g2

0 2 4 6 8 10 12

g3

C

(b) Early completion of task g2.

Fig. 7. Two schedules of jobs released periodically by 3 tasks. For � = „g1 ! g3”, early completion of the first job of g2 leads
to a larger immediate forward augmented job chain.

the task with the highest priority is executed. Our objective is to determine the maximum reaction time and the

maximum data age of such systems.

Consider a schedule S of a periodic task system T and a cause-e�ect chain � of T. If a recurrent pattern of

the read- and write-events in S can be observed, then it su�ces to analyze a limited time window to compute

maximum reaction time and maximum data age. The way to achieve a recurrent pattern of read- and write-events

depends on the communication policy.

For LET, the release pattern of all jobs repeats each hyperperiod after the maximal phase Φ := maxg qg .

Therefore, the read- and write-events repeat each hyperperiod after the maximal �rst read, which is at the

maximal phase Φ, as well. Furthermore, all immediate forward and immediate backward augmented job chains

with external activity at or after Φ are valid. In this case it su�ces to simulate all immediate backward and

immediate forward augmented job chains with event for external activity during »0,Φ ‚ � ” and compute the

maximum value among the length of all those valid augmented job chains. Kordon and Tang [24] compute the

maximum data age on single ECU systems e�ciently for LET, using this procedure as a backbone.

For implicit communication, the read- and write-events depend signi�cantly on the execution time of the

jobs under analysis. Furthermore, the read- and write-events might change when additional tasks are released. Due

to this behavior, the pattern of read- and write-events in S does not repeat after Φ ‚ � . However, in Section 5.1.1

we show that the pattern of minimal and maximal read- and write-events for each job repeats after Φ ‚ 2� , and

that it can be determined by simulating the schedule with the worst-case and with the best-case execution time

in a bounded interval. This information can then be exploited to obtain an upper bound on the maximum data

age and maximum reaction time. Please note that it is not su�cient to simulate the maximum data age and the

maximum reaction time for the job collection where each job executes the worst-case execution time, as depicted

in Figure 7. The remaining part of this section considers implicit communication.

5.1 Local Analysis

We assume that the cause-e�ect chain � under analysis is local, i.e., it contains only tasks on one (synchronized)

ECU. Moreover, the tasks adhere to the implicit communication policy and all schedules are obtained by a

�xed-priority preemptive scheduling algorithm with �xed task priorities. For the sake of simplicity, we consider

T to contain only tasks from one ECU as well, as the tasks from other ECUs have no impact on the scheduling

behavior of the tasks on that ECU.

In the conference version [17] of this manuscript, the local analysis is achieved by enumerating possible

immediate backward and forward augmented job chains, assuming a �xed execution time for each periodic task,

i.e., the worst-case execution time is the same as the best-case execution time. Our new analysis is applicable for

ACM Trans. Embedd. Comput. Syst.

14 � Günzel, et al.

more general cases, in which the execution time of a task can be any value between its best-case and worst-case

execution time. It requires three steps:

(1) We calculate upper and lower bounds for both the read- and write-events of each job by simulating the

schedule two times, once with the tasks worst-case execution times and once with the best-case execution

times.

(2) Based on these upper and lower bounds, we bound the length of all immediate forward and immediate

backward augmented job chains.

(3) We bound the maximum data age and the maximum reaction time.

In addition to the generality provided in the analysis, we also show in Corollary 29 that our new analysis remains

exact for the special scenario discussed in the conference version [17].

5.1.1 Step 1: Obtain Bounds for Read- and Write-Events. Since under implicit communication the read- and

write-events coincide with start and �nish of the jobs, it is su�cient to examine those. Intuitively if the execution

time of any job is increased, the interference on the other jobs does not decrease, and therefore the start and

�nish of all jobs cannot be decreased as well. Hence, the latest (earliest, respectively) start and �nish of a job

is achieved if all jobs execute their worst-case (best-case, respectively) execution time. Formally, we state the

following two Propositions and refer for a rigorous proof to Appendix A.

Proposition 13. Let 92<0G be the job collection of a set T of periodic tasks where all jobs execute according to
their worst-case execution time. Consider the<-th job � = g „<, 92<0G ” of a task g 2 T in the job collection 92<0G .
Then, for the preemptive �xed-priority schedule S„ 92<0G ”, the starting time and �nishing time of � in S„ 92<0G ” are
upper bounds on the starting time and �nishing time of the<-th job of g for any job collection, respectively. That

is, for any other job collection 92 2 �� „T”, we have B
S„ 92<0G ”
�

� B
S„ 92 ”

g „<,92 ”
and 5

S„ 92<0G ”
�

� 5
S„ 92 ”

g „<,92 ”
.

Proposition 14. Let 92<8= be the job collection of a set T of periodic tasks where all jobs execute according to
their best-case execution time. Consider the<-th job � = g „<, 92<8=” of a task g 2 T in the job collection 92<8= . Then,
for the preemptive �xed-priority schedule S„ 92<8=”, the starting time and �nishing time of � in S„ 92<8=” are lower
bounds on the starting time and �nishing time of the<-th job of g for any job collection, respectively. That is, for

any other job collection 92 2 �� „T”, we have B
S„ 92<8= ”
�

� B
S„ 92 ”

g „<,92 ”
and 5

S„ 92<8= ”
�

� 5
S„ 92 ”

g „<,92 ”
.

Under implicit communication, the starting time and the �nishing time coincide with the read- and write-events.

Hence, the lower and upper bounds for starting time and �nishing time from Proposition 13 and Proposition 14

are lower and upper bounds for the read- and write-events as well. We conclude that for each job we can provide

upper and lower bounds for the read- and write-events by simulating the schedule two times until the job �nishes:

Once when all jobs execute their worst-case execution time and once when all jobs execute their best-case

execution time.

Since for each task there are in�nitely many jobs, we cannot simulate the schedule for each job individually.

Therefore, in the following, we show that it is su�cient to simulate the schedule for a �nite time window since

the release pattern repeats. The following considerations are based on the work of Leung and Whitehead [26].

Their proofs cannot be used directly, since they create a new schedule (they call it a partial schedule) and show

that this one repeats. We need to show that even the original schedule repeats.

In the following, let S0 be the �xed-priority schedule of the task set T = fg1, . . . , g=g on one ECU where either

the execution of all jobs is �xed to their worst-case, i.e., S0
= S„ 92<0G ”, or the execution of all jobs is �xed to

their best-case, i.e., S0
= S„ 92<8=”. We denote by �1, . . . ,�= the �xed execution times of all jobs of the tasks

g1, . . . , g= . Without loss of generality, we assume that the tasks’ indices are assigned according to their priority,

i.e., g8 has a higher priority than g 9 if and only if 8 � 9 . For a time instant C , we denote by 4G42 „S0, C” the tuple

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 15

„B1,C , . . . , B=,C ” where each B8,C is the amount of time that jobs of g8 have been executed since their last release.

Similar to the proof of Leung and Whitehead [26, Lemma 3.3], we show the following.

Lemma 15. For all C � Φ the relation 4G42 „S0, C” � 4G42 „S0, C ‚ � ” (component-wise) holds.

Proof. For a proof by contradiction, we assume that there are some C � Φ and 8 2 f1, . . . , =g such that

B8,C � B8,C‚� . We show that in this case in�nitely many tasks g 9 have a time instant

C 9 � qg 9
with B 9,C 9

� B 9,C 9 ‚� . (13)

This contradicts the fact that T is �nite.

By assumption, there is at least one task with the property from Eq. (13). Assume there are only �nitely many

tasks with this property and let g 9 be the one of them with the highest priority. Since B 9,C 9
� B 9,C 9 ‚� , there exists

some C 0 2 »qg 9
, C 9 …, where g 9 is not executing at time C 0 but at C 0 ‚ � . Hence, there is some higher priority task g 9 0

which executes during C 0 but not during C 0 ‚ � , i.e., B 9 0,C 0 � B 9 0,C 0‚� = � 9 0 since all jobs of task g 9 0 have the same

execution time. Since g 9 0 executes during C 0, we know that qg 9 0 � C 0. This contradicts the assumption that g 9 is

the highest priority task with the property from Eq. (13). �

Furthermore, similar to Leung and Whitehead [26, Lemma 3.4], we use the preceding lemma to show that

the schedule repeats after Φ ‚ 2� ; that is, the schedule in the interval »Φ ‚ �,Φ ‚ 2� ” coincides with the one

in »Φ ‚ 2�,Φ ‚ 3� ”, »Φ ‚ 3�,Φ ‚ 4� ”, and so on. We only utilize that the total utilization*T =
∑

g2T
�g

)g
of the

system is at most 1, as assumed in Section 2.

Lemma 16. When*T � 1, then 4G42 „S0, C” = 4G42 „S0, C ‚ � ” holds for all C � Φ ‚ � .

Proof. We assume that there is some C � Φ ‚� with 4G42 „S0, C” < 4G42 „S0, C ‚� ”. Then, by Lemma 15, there

is some index 9 with B 9,C ¡ B 9,C‚� . There are two cases. Either, (a) the ECU idles at some time instant C 0 2 »C, C ‚� …,
or (b) the ECU is busy during the interval »C, C ‚ � ….

For (a), by Lemma 15, 4G42 „S0, C 0” = „�1, . . . ,�=” � 4G42 „S0, C 0 � � ”, i.e., the ECU also idles at time C 0 � � .

Since the job releases are the same, the schedule coincides in the intervals »C 0 � �, C… and »C 0, C ‚ � …. Hence,

4G42 „S0, C” = 4G42 „S0, C ‚ � ”.
For (b), since B 9,C ¡ B 9,C‚� and B8,C � B8,C‚� for all 8 , by Lemma 15, there is more remaining workload by jobs

in the ready queue at time C than at time C ‚ � . We conclude that there was more workload released during

„C, C ‚ � … than could be executed by the ECU. Since the ECU did not idle between C and C ‚ � , this means that
∑=

8=1�8
�
)g8

¡ � , which contradicts
∑=

8=1

�g8

)g8
� 1. �

Based on Lemma 16, the schedule repeats after Φ ‚ 2� . More precisely, the starting time and �nishing time of

any<-th job � = g „<, 92<0G ” of g 2 T for the schedule obtained by the job collection 92<0G that is released not

before Φ ‚ 2� can be recursively computed using the formulas:

� B
S„ 92<0G ”
�

= B
S„ 92<0G ”

g „<� �
):

, 92<0G ”
‚ �

� 5
S„ 92<0G ”
�

= 5
S„ 92<0G ”

g „<� �
):

, 92<0G ”
‚ �

Similarly, the starting time and �nishing time of any<-th job � = g „<, 92<8=” of g 2 T for the schedule obtained

by the job collection 92<8= that is released not before Φ ‚ 2� can be recursively computed using the formulas:

� B
S„ 92<8= ”
�

= B
S„ 92<8= ”

g „<� �
):

, 92<8= ”
‚ �

� 5
S„ 92<8= ”
�

= 5
S„ 92<8= ”

g „<� �
):

, 92<8= ”
‚ �

ACM Trans. Embedd. Comput. Syst.

16 � Günzel, et al.

As a result, for our settings with 92<8= and 92<0G it is su�cient to generate a schedule until all jobs that are

released before Φ ‚ 2� are �nished.

In particular, the results from the previous propositions and the fact that read- and write-events are set to the

starting time and �nishing time enables us to provide upper and lower bounds for the read- and write-events.

Independent from the job collection, they are formulated by functions remin, remax,wemin,wemax : T � N! R as

follows:

De�nition 17 (remin, remax,wemin,wemax). For a task set T, we denote by remin, remax,wemin,wemax functions

T � N! R. Let g 2 T and< 2 N. We de�ne:

� remin „g,<” = B
S„ 92<8= ”

g „<,92<8= ”
and remax„g,<” = B

S„ 92<0G ”

g „<,92<0G ”

� wemin „g,<” = 5
S„ 92<8= ”

g „<,92<8= ”
and wemax „g,<” = 5

S„ 92<0G ”

g „<,92<0G ”

The values of the functions from De�nition 17 at any „g,<” 2 T � N are constructed as follows:

(1) We conduct two �xed-priority preemptive schedules, one for 92<8= and one for 92<0G , until all jobs released

before Φ ‚ 2� are �nished.

(2) If qg ‚< �)g � Φ ‚ 2� , then the values of starting time and �nishing time are directly taken from the

corresponding schedules.

(3) If qg ‚< �)g � Φ‚2� , then we calculate the read- and write-events recursively as described after Lemma 16

and set the values accordingly.

By the results from Proposition 13 and Proposition 14, we obtain that

� remin „g,<” � re
S„ 92 ”

g „<,92 ”
� remax „g,<” and

� wemin „g,<” � we
S„ 92 ”

g „<,92 ”
� wemax „g,<”

for all tasks g 2 T, for all job collections 92 2 �� „T”, and for all< 2 N.

5.1.2 Step 2: Bound Length of Augmented Job Chains. The fundamental step for the computation of maximum

reaction time and maximum data age is the construction of immediate forward and immediate backward aug-

mented job chains, respectively. However, the jobs in those job chains are associated with a job collection whereas

our estimation targets to provide a bound independent of the job collection. Therefore, we need to replace the

jobs in the chain by an integer indicating the job. To that end, we construct abstract integer representations fi��8 and
fi��8 , which estimate the immediate forward and immediate backward augmented job chains independent of the

job chain under analysis.

An abstract integer representation � 2 N j� j‚2
= „80, . . . , 8 j� j‚1” is an j� j ‚ 2 tuple of natural numbers. Its purpose

is to de�ne an augmented job chain „I, �1, . . . , � j� j , I
0” under any job collection. In particular, I is always at the

read-event of the 80-th job of � „1”, I0 is at the write-event of the 8 j� j‚1-th job of � „ j� j” and � 9 is the 8 9 -th job of

� „ 9”. More precisely, we say that an abstract integer representation can be evaluated at a job collection 92 by

applying an evaluation function.

De�nition 18. For a given cause-e�ect chain � we de�ne the evaluation function

Eval� :

abstract integer

representations

for �

� �� !

{
augmented

job chains

}

„� = „80, . . . , 8 j� j‚1”, 92” 7! Eval� „� , 92”,

where Eval� „� , 92” = „I, �1, . . . , � j� j , I
0” is the augmented job chain with I = re

S„ 92 ”

� „1” „80, 92 ”
, I0

= we
S„ 92 ”

� „ j� j ” „8 j� j‚1 ”
, and

� 9 = � „8” „8 9 , 92” for all 9 2 f1, . . . , j� jg.

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 17

g1

1 2 3

g2

0 2 4 6 8 10 12

1 2

= read-event

lower bound

= write-event

upper bound

Fig. 8. Construction of fi��1 = „1, 2, 2, 2” for � = „g1 ! g2”. We assume that the read-event lower bound and write-event upper
bound for each job are given and that g2 has higher priority than g1.

In the following, we utilize the minimal and maximal read- and write-events determined in Section 5.1.1 to

construct fi��8 and fi��8 . Subsequently, we show that the evaluations Eval� „fi��8 , 92” and Eval� „ fi��8 , 92” are augmented

job chains which are not smaller than fi2
�,S„ 92 ”
8 and fi2

�,S„ 92 ”
8 , respectively. Therefore, the evaluations can be utilized

to bound the maximum data age and maximum reaction time.

De�nition 19 (Construction of fi��8). Let 8 2 N be a natural number. The abstract integer representation
fi��8 = „80, . . . , 8 j� j‚1” 2 N j� j‚2 is an (j� j ‚ 2)-tuple with:

� 80 = 8 and 81 = 8 ‚ 1.

� For 9 2 f2, . . . , j� jg the entry 8 9 is the smallest number in N such that

(1) remin „� „ 9”, 8 9 ” � wemax „� „ 9 � 1”, 8 9�1”, or

(2) remin „� „ 9”, 8 9 ” is no less than the 8 9�1-th release of � „ 9 � 1” and � „ 9 � 1” has higher priority than � „ 9”.
� 8 j� j‚1 = 8 j� j .

We de�ne by ℓ „fi��8 ” := wemax
(
� „ j� j”, 8 j� j‚1

)
� remin „� „1”, 80” the length of the abstract integer representation fi��8 .

Please note that 81 represents the „8 ‚ 1”-th job of � „1” and 82, . . . , 8 j� j are chosen such that the 8 9 -th job of � „ 9”
safely reads data after it was written by the 8 9�1-th job of � „ 9 � 1” for all 9 = 2, . . . , j� j. Furthermore, 80 and 8 j� j‚1

represent the read-event of the 8-th job of � „1” and the write-event of the 8 j� j -th job of � „ j� j”, respectively. This

description is similar to the description of immediate forward augmented job chains presented in De�nition 5.

Example 20. Figure 8 shows how the abstract representation fi��1 = „1, 2, 2, 2” is constructed. The �rst entry is set

to 1 due to the index of fi��1 . The second entry is computed by 1 ‚ 1, which represents the second job of g1. The

write-event upper bound of the second job of g1 is lower than the read-event of the second job of g2 under any
job collection, since the write-event upper bound wemax „g1, 2” = 7, is no less than the read-event lower bound

remax „g2, 2” = 7. The last value of fi��1 = „1, 2, 2, 2” is simply repeated to account for the event for actuation.

The abstract integer representation yields an upper bound on the immediate forward augmented job chains as

stated in the following lemma.

Lemma 21 (Forward bound). Let fi��8 = „80, . . . , 8 j� j‚1” be some abstract representation as speci�ed in De�nition 19.
We have the following inequality

ℓ
(
fi2
�,S„ 92 ”
8

)
� ℓ

(
Eval�

(
fi��8 , 92

))
� ℓ

(
fi��8

)
(14)

for all job collections 92 2 �� „T”.

ACM Trans. Embedd. Comput. Syst.

18 � Günzel, et al.

Proof. We �rst show that ℓ
(
fi2
�,92
8

)
� ℓ

(
Eval�

(
fi��8 , 92

))
. In the following, we use the notation fi2

�,92
8 = „I, �1, . . . , � j� j , I

0”

and Eval�

(
fi��8 , 92

)
= „ ~I, ~�1, . . . , ~� j� j , ~I0”. Since the �rst entry of fi��8 is 8 , we know that ~I is at the read-event of the

8-th job of � „1”. In addition, I is at the read-event of the 8-th job of � „1”. Therefore, I = ~I. Moreover, �1 and ~�1 are

both the „8 ‚ 1”-th job of � „1” and therefore coincide as well. In the following we show that

A �9 � A ~�9
(15)

for all 9 2 f1, . . . , j� jg by induction. For 9 = 1, Eq. (15) holds by the above discussion. Assume Eq. (15) holds for

9 � 1, then the write-event of � 9�1 is no later than the write-event of ~� 9�1. By De�nition 19, the job ~� 9 reads data

after it was written by ~� 9�1. Therefore, ~� 9 reads data after it was written by � 9�1 as well. Since � 9 is the earliest job

which reads data that was written by � 9�1, it must be released not later than ~� 9 , i.e., A �9 � A ~�9
. This concludes the

proof of Eq. (15) by induction. Since A �j� j
� A ~�j� j

, � j� j writes data no earlier than ~� j� j writes data, and ~I0 � I0. We

conclude that ℓ
(
fi2
�,S„ 92 ”
8

)
= „I0 � I” � „ ~I0 � ~I” = ℓ

(
Eval�

(
fi��8 , 92

))
.

Next, we prove ℓ
(
Eval�

(
fi��8 , 92

))
� ℓ

(
fi��8

)
. Let fi��8 = „80, . . . , 8 j� j‚1”. By Proposition 13 and Proposition 14,

remin „� „1”, 80” � re� „1” „80, 92 ” = I and wemax „� „ j� j”, 8 j� j‚1” � we� „ j� j ” „8 j� j‚1, 92 ” = I0 hold. We conclude that

ℓ
(
Eval�

(
fi��8 , 92

))
= I0 � I � wemax „� „ j� j”, 8 j� j‚1” � remin „� „1”, 80” = ℓ

(
fi��8

)
. �

Now, we consider fi��8 , constructed as follows.

De�nition 22 (Construction of fi��8). Let 8 2 N be a natural number. The abstract integer representation
fi��8 = „80, . . . , 8 j� j‚1” 2 N j� j‚2 is a (j� j ‚ 2)-tuple with:

� 8 j� j‚1 = 8 and 8 j� j = 8 � 1.

� For 9 2 fj� j � 1, . . . , 1g the entry 8 9 is the highest number in N such that

(1) remin „� „ 9 ‚ 1”, 8 9‚1” � wemax „� „ 9”, 8 9 ”, or

(2) � „ 9” has higher priority than � „ 9 ‚ 1” and remin „� „ 9 ‚ 1”, 8 9‚1” is no earlier than the release of the 8 9 -th

job of � „ 9”.
� 80 = 81.

We de�ne by ℓ „ fi��8 ” := wemax
(
� „ j� j”, 8 j� j‚1

)
� remin „� „1”, 80” the length of the abstract integer representation fi��8 .

As for immediate backward augmented job chains, we call the abstract representation fi��8 complete, if it can be

fully constructed. Otherwise, we call it incomplete. Note that this construction of fi��8 is similar to the construction

of immediate backward augmented job chains in De�nition 6.

By using the evaluation function speci�ed in De�nition 18, we provide a bound for the immediate backward

augmented job chains as well. The only di�erence with respect to Lemma 21 is that we have to exclude the

incomplete representations.

Lemma 23 (Backward bound). Let fi��8 = „80, . . . , 8 j� j‚1” be some complete abstract representation. Then fi2
�,92
8 is

complete as well and we have the following inequality

ℓ
(

fi2
�,S„ 92 ”
8

)
� ℓ

(
Eval�

(
fi��8 , 92

))
� ℓ

(
fi��8

)
(16)

for all job collections 92 of T.

Proof. Let fi��8 = „80, . . . , 8 j� j‚1” be complete. Moreover, let fi2
�,S„ 92 ”
8 = „I, �1, . . . , � j� j , I

0” and Eval�

(
fi��8 , 92

)
=

„ ~I, ~�1, . . . , ~� j� j , ~I0”. We have I0
= ~I0 and � j� j =

~� j� j . Analogous to the proof of Lemma 21, we obtain A �9 � A ~�9
for

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 19

all 9 2 fj� j, . . . , 1g inductively since we have we ~�9
� re ~�9‚1

� re�9‚1 and � 9 is the latest job which writes before

A4 �9 . In the end, we obtain I = re�1 � re ~�1
= ~I. We conclude that ℓ

(
fi2
�,S„ 92 ”
8

)
= I0 � I � ~I0 � ~I = ℓ

(
Eval�

(
fi��8 , 92

))
.

Please note that, since for all 9 a job ~� 9 exists which is writes data before the read-event of � 9�1, the immediate

backward job chain fi2
�,S„ 92 ”
8 can be fully constructed and is therefore complete.

As in the proof of Lemma 21, we observe that ℓ
(
Eval�

(
fi��8 , 92

))
= ~I0� ~I is upper bounded by wemax „� „ j� j”, 8 j� j‚1”�

remin „� „1”, 80” = ℓ
(

fi��8

)
. This concludes the proof of Eq. (16). �

However, there may still be some immediate backward augmented job chains fi2
�,S„ 92 ”
8 which are complete

but whose corresponding abstract representation fi��8 is not. For those chains we provide an upper bound in the

following.

Lemma 24 (Second backward bound). Let 8 2 N be a natural number and let 92 be some collection of jobs for T,

such that the immediate backward augmented job chain fi2
�,S„ 92 ”
8 is complete. The length of fi2

�,S„ 92 ”
8 is upper bounded

by:

ℓ
(

fi2
�,S„ 92 ”
8

)
� wemax „� „ j� j”, 8” � remin „� „1”, 1” =: �„8” (17)

Proof. Let fi2
�,S„ 92 ”
8 = „I, �1, . . . , � j� j , I

0”. Then I0 is at the write-event of the 8-th job of � „ j� j”, i.e., I0 �

wemax „� „ j� j”, 8”. Moreover, if fi2
�,S„ 92 ”
8 is complete, then the job �1 of � „1” exists. The read-event of that job (which

equals I) is no earlier than the read-event of the �rst job of � „1”. Therefore, I � remin „� „1”, 1”. We conclude

ℓ
(

fi2
�,S„ 92 ”
8

)
= I0 � I � wemax „� „ j� j”, 8” � remin „� „1”, 1”. �

5.1.3 Step 3: Provide End-To-End Latency. By Lemma 21 (respectively, Lemmas 23 and 24), the computation of

maximum reaction time (respectively, maximum data age) is reduced to a construction of the abstract representa-

tions fi��8 (respectively, fi��8). As proven in Section 5.1.1, the upper and lower bounds on the read- and write-events

repeat each hyperperiod after Φ ‚ 2� . Therefore, the construction and also the length of the abstract integer

representations fi��8 and fi��8 repeats as well and only a �nite number of them has to be considered to provide a

latency bound. The following two lemmas show that it is su�cient to consider abstract integer representations

where the job that is described by the �rst entry is released until Φ ‚ 2� .

Lemma 25. Let fi��8 = „80, . . . , 8 j� j‚1” be an abstract integer representation with q� „1” ‚ „80 � 1” �)� „1” � Φ ‚ 2� .

There exists 9 2 N such that for fi��9 = „ 90, . . . , 9 j� j‚1”:

� q� „1” ‚ „ 90 � 1”)� „1” 2 »Φ ‚ �,Φ ‚ 2� ”

� ℓ
(
fi��9

)
= ℓ

(
fi��8

)

Proof. Since / := »Φ ‚ �,Φ ‚ 2� ” has length � and F := q� „1” ‚ „80 � 1” �)� „1” is no less than the right

boundary of/ , there exists some b 2 N such thatF�b �� 2 / . We choose 9 := 8�b � �
)� „1”

and consider fi��9 . Since the

maximal and minimal read- and write-events repeat each hyperperiod � , the underlying job sequence of fi��9 is just

the abstract representation of fi��8 shifted b hyperperiods to the left. Therefore q� „1” ‚ „ 90 �1” �)� „1” = F � b �� 2 /

and ℓ
(
fi��9

)
= ℓ

(
fi��8

)
. �

Please note that since for fi��8 the �rst entry is 80 = 8 , if 8 is increased, then 80 is increased as well. As a consequence,

to �nd all 8 such that q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� is ful�lled, it is su�cient to consider 8 = 1, 2, 3, . . . and stop

as soon as q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� .

ACM Trans. Embedd. Comput. Syst.

20 � Günzel, et al.

In a similar way, we formulate the lemma for fi��8 .

Lemma 26. Let fi��8 = „80, . . . , 8 j� j‚1” be an abstract integer representation with q� „1” ‚ „80 � 1” �)� „1” � Φ ‚ 2� .

There exists 9 2 N such that for fi��9 = „ 90, . . . , 9 j� j‚1”:

� q� „1” ‚ „ 90 � 1”)� „1” 2 »Φ ‚ �,Φ ‚ 2� ”

� ℓ
(

fi��9

)
= ℓ

(
fi��8

)

Proof. The proof is analogous to the proof of Lemma 25, except that 9 := 8 � b � �
)� „ j� j”

. �

Please note that for fi��8 the �rst entry is not necessarily 80 = 8 . However, if 8 is increased, then 80 is increased as

well as proven in the following lemma. As a consequence, to �nd all 8 such that q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� is

ful�lled, it is su�cient to consider 8 = 1, 2, 3, . . . and stop as soon as q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� .

Lemma 27. Let fi��8 = „80, . . . , 8 j� j‚1” and fi��9 = „ 90, . . . , 9 j� j‚1”. If 8 � 9 , then 80 � 90 as well.

Proof. It holds 8 j� j‚1 = 8 � 9 = 9 j� j‚1. Now we perform induction over : = j� j, . . . , 1 to show that 8: � 9: . Since

8: ful�lls properties 1) and 2) in De�nition 22 with respect to 8:‚1, and remin „� „: ‚ 1”, 8:‚1” � remin „� „: ‚ 1”, 9:‚1”
by induction, 8: also ful�lls properties 1) and 2) with respect to 9:‚1. Since 9: is the maximal value that ful�lls 1)

and 2) with respect to 9:‚1, it holds 8: � 9: . We conclude 80 = 81 � 91 = 90. �

Under the assumption that the read- and write-event upper and lower bounds as de�ned in De�nition 17

are computed for all jobs, we can construct fi��8 and fi��8 for all 8 = 1, 2, 3, . . . until q� „1” ‚ „ 90 � 1”)� „1” � Φ ‚ 2� .

The abstract representations fi��8 and fi��8 provide an upper bound on the length ℓ
(
fi2
�,S„ 92 ”
8

)
of the corresponding

immediate forward augmented job chain fi2
�,S„ 92 ”
8 and on the length ℓ

(
fi2
�,S„ 92 ”
8

)
of the corresponding immediate

backward augmented job chains fi2
�,S„ 92 ”
8 by Lemma 21 and Lemma 23, respectively. By Lemma 25 and Lemma 26

this �nite number of abstract representations is su�cient to bound the length of all immediate forward/backward

augmented job chains. By taking the maximum max8 ℓ
(
fi��8

)
and max8 ℓ

(
fi��8

)
of the length of these �nitely many

abstract representations, we obtain upper bounds on the maximum reaction time MRT„�” and maximum data age

MDA„�”, namely Eq. (7) and Eq. (8), respectively. Please note that we need to account for the complete fi2
�,S„ 92 ”
8

which do not have complete fi��8 by Lemma 24.

Theorem 28 (Upper bound for implicit communication). Let � be a cause-e�ect chain where all tasks are

on one ECU and all tasks adhere to implicit communication. We denote by I 5 F the set of all 8 2 N such that

q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� for fi��8 = „80, . . . , 8 j� j‚1”. Furthermore, we denote by I1F the set of all 8 2 N� f1g such

that q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� for fi��8 = „80, . . . , 8 j� j‚1”. The following equations hold:

MRT„�” � max
82I 5 F

ℓ
(
fi��8

)
(18)

MDA„�” � max
82I1F

{
ℓ
(

fi��8

)
, fi��8 complete

�„8” , >Cℎ4AF8B4
(19)

Proof. According to Eq. (7), the maximum reaction time of the cause-e�ect chain� is de�ned by sup82N sup922 �� ℓ „fi2
�,S„ 92 ”
8 ”.

Since ℓ „fi2
�,S„ 92 ”
8 ” � ℓ „fi��8 ” for all 92 2 �� by Lemma 21, the maximum reaction time is upper bounded by

sup82N sup922 �� ℓ „fi��8 ”. Since ℓ „fi��8 ” is independent from 92 , we obtain the upper bound sup82N ℓ „
fi��8 ”. We conclude

that by Lemma 25 only those abstract representations with 8 2 I 5 F have to be considered. This yields Eq. (18).

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 21

Algorithm 1 MRT bound under implicit communication.

1: Compute wemax and remin by conducting concrete schedules. � After De�nition 17

2: I 5 F
= fg, 80 = 1, 8 = 1

3: while True do

4: Construct fi� 8 . � De�nition 19

5: 80 := �rst entry of fi� 8
6: if q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� then

7: Add 8 to I 5 F .

8: 8 = 8 ‚ 1

9: else

10: break

11: Compute upper bound from Eq. (18).

Algorithm 2 MDA bound under implicit communication.

1: Compute wemax and remin by conducting concrete schedules. � After De�nition 17

2: I1F
= fg, 80 = 1, 8 = 2

3: while True do

4: Construct fi� 8 . � De�nition 22

5: 80 := �rst entry of fi� 8
6: if q� „1” ‚ „80 � 1”)� „1” � Φ ‚ 2� then

7: Add 8 to I1F .

8: 8 = 8 ‚ 1

9: else

10: break

11: Compute upper bound from Eq. (19).

By Eq. (8), the maximum data age of � is sup82N sup922 ��

{
ℓ „ fi2

�,S„ 92 ”
8 ”

��� fi2
�,S„ 92 ”
8 complete

}
. If fi��8 is complete,

then fi2
�,S„ 92 ”
8 is complete and we know that ℓ „ fi2

�,S„ 92 ”
8 ” � ℓ „ fi��8 ” by Lemma 23. If fi��8 is not complete but fi2

�,S„ 92 ”
8 is

complete, then we know ℓ „ fi2
�? ,S„ 92 ”

8 ” � �„8” by Lemma 24. Hence, we conclude that Eq. (19) holds. �

The procedures to compute our maximum reaction time and maximum data age bounds are shown in Al-

gorithm 1 and Algorithm 2, respectively. Please note that although the maximum data age is bounded by the

maximum reaction time, the bounds provided in this section are over-approximations and do not necessarily

follow this ordering. In particular, the bound obtained for the maximum data age may be larger than the bound

for the maximum reaction time.

Furthermore, we note that in the case that �D
g = �ℓ

g for all tasks g 2 T, the execution time of every job of

each task is �xed. In this case only the job collection 92 = 92<0G = 92<8= must be considered and the maximal

and minimal read- and write-events coincide with the actual read- and write-events. As a result, the abstract

integer representations fi��8 and fi��8 constructed in De�nition 19 and De�nition 22 always evaluate to fi2
�,S„ 92 ”
8 and

fi2
�,S„ 92 ”
8 , respectively. Hence, the maximum data age and the maximum reaction time upper bounds obtained by

Theorem 28 when excluding �„8” from Eq. (19) are exact.

Corollary 29. If�D
g = �ℓ

g holds for all tasksg 2 T, then MRT„�” = max82I 5 F ℓ
(
fi��8

)
and MDA„�” = max82I1F ℓ

(
fi��8

)

hold as well.

ACM Trans. Embedd. Comput. Syst.

22 � Günzel, et al.

Proof. If �D
g = �ℓ

g for all tasks g 2 T, then there is only one job collection in �� „T” = f 92g and one schedule

S„ 92”. Moreover, the maximal and minimal read- and write-events utilized in the construction of fi��8 and fi��8

are the actual read- and write-events of the jobs, respectively. Hence, ℓ
(
fi2
�,S„ 92 ”
8

)
= ℓ

(
Eval�

(
fi��8 , 92

))
= ℓ

(
fi��8

)
.

Moreover, fi2�,S„ 92 ” is complete if and only if fi��8 is complete and we have ℓ
(

fi2
�,S„ 92 ”
8

)
= ℓ

(
Eval�

(
fi��8 , 92

))
= ℓ

(
fi��8

)
.

We conclude that MRT„�” = sup8 ℓ
(
fi2
�,S„ 92 ”
8

)
= sup8 ℓ

(
fi��8

)
= max82I 5 F ℓ

(
fi��8

)
and MDA„�” = sup8 ℓ

(
fi2
�,S„ 92 ”
8

)
=

sup8 ℓ
(

fi��8

)
= max82I1F ℓ

(
fi��8

)
. �

Complexity: Two components play a decisive role for the time complexity of our analysis. We (a) create the

schedule for the job collections 92<0G and 92<8= for the bounded time frame to obtain minimal and maximal read-

and write-events for each job, and (b) create and compare abstract integer representations based on the minimal

and maximal read- and write-events. We examine the time complexity for a cause-e�ect chain � on an ECU with

task set T = fg1, . . . , g=g with = tasks.

Since the schedule repeats after Φ ‚ 2� , it su�ces to schedule the jobs in the interval »0,Φ ‚ 2� ”. Hence, the

time complexity for (a) is O
(
Φ‚2�
)<8=

� =
)
, where)<8= := min

g2T
)g is the minimal period in T.

For each abstract integer representation we have to determine j� j ‚ 2 integers. There is a cost of query1 &

depending on the data structure for �nding the next integer for the abstract representation. To compute the

maximum reaction time, we have to simulate and compare up to Φ‚2�
)� „1”

abstract integer representations, and for the

maximum data age up to Φ‚2�
)� „ j� j”

abstract integer representations are under analysis. Hence, the time complexity

for component (b) is O
(
j� j �& � Φ‚2�

)� „1”

)
for reaction time and O

(
j� j �& � Φ‚2�

)� „ j� j”

)
for data age.

We note that the time complexity for the method by Kloda et al. [22] coincides with the complexity of component

(b) for our reaction time computation, except that they have to call a latency function for each job instead of

determining the job itself. The methods by Dürr et al. [11] and by Davare [10] have complexity O„j� j”. Since

these methods all assume that the worst-case response times (WCRTs) are known, i.e., computed in advance, the

time complexity of the WCRT computation should also be taken into account.

5.2 Interconnected Analysis

In this subsection we analyze the timing behavior of cause-e�ect chains that are distributed among several

ECUs. If clock shifts are known and all tasks (even communication tasks) behave like periodic tasks, then the

analysis from the preceding subsection can be utilized. However, since global clock synchronization is often

avoided in distributed real-time systems to reduce failure dependencies, the clock shifts between di�erent ECUs

are unknown by the observer. Moreover, the implementation of communication tasks varies depending on the

underlying architecture, e.g., these tasks may behave in a non-preemptive or non-periodic manner. This hinders

exact determination of data age and reaction time.

We discuss how to provide proper upper bounds on data age and reaction time of interconnected cause-e�ect

chains. Our estimations utilize only knowledge about the worst-case response time 'g2 and maximum inter-arrival

time)<0G
g2 , i.e., maximum time between two recurrent job releases, of each communication task g2 .

1The data structure can be designed such that & = O„1” . Let all jobs for each task g be stored in a list ;g , ordered by their release. If we want

to �nd the �rst job of g with minimal read-event after a time instant C and assume that all jobs �nish their execution before the subsequent job

release, then only those jobs in the list with index 9 between
⌈

C �qg �)g
)g

⌉
and

⌊
C �qg

)g

⌋
are candidates to be checked, i.e., O„)g �)g ” many jobs.

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains � 23

Let S be a schedule of the task set T. Consider some interconnected cause-e�ect chain �� of T. We separate ��

into local cause-e�ect chains �1, . . . , �: with communication tasks g21 , g
2
2 , . . . , g

2
:�1

. More speci�cally, we have

�� = „�1 ! g21 ! �2 ! g22 ! � � � ! g2:�1 ! �: ”, (20)

where each �8 , 8 = 1, . . . , : only contains tasks on a single ECU, namely ��* „�8 ”, and each g28 , 8 = 1, . . . , : � 1

communicates from ��* „�8 ” to ��* „�8‚1”.
We utilize the Cutting-Theorem (Theorem 12) to estimate reaction time and data age of �� by its local

components, i.e., MRT„��,S” �
∑:

8=1 MRT„�8 ,S” ‚
∑:�1

8=1 MRT„„g28 ”,S” and MDA„��,S” �
∑:

8=1 MDA„�8 ,S” ‚
∑:�1

8=1 MDA„„g28 ”,S”. Please note that „g28 ”, 8 = 1, . . . , : � 1 can be considered as a cause-e�ect chain of just one

task. We apply the bound from Davare et al. [10] to estimate data age and reaction time of „g28 ” by)<0G
g2

8
‚ 'g2

8

under implicit communication.

Corollary 30. The maximum reaction time and data age of the interconnected cause-e�ect chain �� under
implicit communication can be estimated by the timing behavior of its local parts:

MRT„��,S” �

:∑

8=1

MRT„�8 ,S” ‚

:�1∑

8=1

„)<0G
g2

8
‚ 'g2

8
” (21)

MDA„��,S” �

:∑

8=1

MDA„�8 ,S” ‚

:�1∑

8=1

„)<0G
g2

8
‚ 'g2

8
” (22)

Proof. The result follows from the Cutting-Theorem (Theorem 12) together with the estimation by Davare et

al. [10] as discussed above. �

We note that the values of MRT„�8 ,S” and MDA„�8 ,S” can be upper bounded by applying our Analysis in

Section 5.1.

Under LET we obtain a similar result.

Corollary 31. The maximum reaction time and data age of the interconnected cause-e�ect chain �� under LET
can be estimated by the timing behavior of its local parts:

MRT„��,S” �

:∑

8=1

MRT„�8 ,S” ‚

:�1∑

8=1

2)<0G
g2

8
(23)

MDA„��,S” �

:∑

8=1

MDA„�8 ,S” ‚

:�1∑

8=1

2)<0G
g2

8
(24)

Proof. This also follows from the Cutting-Theorem (Theorem 12). We use that under LET MDA„„g28 ”,S” �
MRT„„g28 ”,S” � 2)<0G

g2
8

. �

For Corollary 31, the values of MRT„�8 ,S” and MDA„�8 ,S” can be computed by comparing valid augmented

job chains with events for external activity during »0,Φ ‚ � ”.
Please note that a similar approach can be utilized to analyze end-to-end latencies on multiprocessor systems

with partitioned scheduling algorithms, even if the cores are not synchronized. In such a case each subchain

�8 represents a part of the cause-e�ect chain � that is executed on one processor (instead of one ECU) and the

communication tasks g28 account for the core communication.

ACM Trans. Embedd. Comput. Syst.

24 � Günzel, et al.

6 ALTERNATIVE DATA AGE DEFINITION

The de�nition of maximum data age from other analyses [4, 11, 22] di�ers from our de�nition of maximum data

age in the following way: If we consider the chain of events as outlined in Figure 3, their maximum data age

includes only the time from sampling until the processed-event and not until the actuation-event. This does not

mean that their estimation is more precise, but that they bound a smaller time interval. For comparison with the

maximum data age from [4, 11, 22], we introduce the de�nition of a maximum reduced data age MRDA„�,S”. It

follows De�nition 6, except that we set the event for actuation to the processed-event.

De�nition 32 (Reduced immediate backward augmented job chain). A reduced immediate backward augmented

job chain fi2��,S
< with< 2 N is the unique augmented job chain „I, �1, . . . , � j� j , I

0” where

� the actuation is set to the time of the processed-event, which happens at the<-th write-event of � „ j� j”,
i.e., I0

= F4 �j� j
and � j� j = � „ j� j” „<”,

� the sequence „�1, . . . , ��” is an immediate backward job chain for � in S, and

� the external activity is set to the time where the data is sampled, i.e., I = A4 �1 .

More speci�cally, the �rst j� j ‚ 1 entries of fi2��,S
< coincide with those of fi2�,S<‚1 and I0 is set to F4 �j� j

. We de�ne

fi2��,S
< to be valid if and only if fi2�,S<‚1 is valid in the sense of De�nition 10. The reduced data age is de�ned similar

to De�nition 11:

De�nition 33 (Maximum reduced data age). For a cause-e�ect chain � with schedule S we de�ne the schedule
speci�c maximum reduced data age by

MRDA„�,S” := sup
{
ℓ „ fi2��,S

< ”
���< 2 N, fi2��,S

< valid
}
, (25)

where ℓ is the length of an augmented job chain as de�ned in Eq. (1). As before, the overall maximum reduced
data age is obtained by the supremum over all schedules, i.e., MRDA„�” = supS MRDA„�,S”.

The Cutting-Theorem (Theorem 12) is transferred to the de�ned reduced data age as follows. In the proof, we

cut o� an immediate backward augmented job chain at the beginning. This works independently from the choice

of I0, i.e., we cut o� an immediate backward augmented job chain also from a reduced immediate backward

augmented job chain. For � = „�1 ! �2” this leads to:

MRDA„�,S” � MDA„�1,S” ‚ MRDA„�2,S” (26)

The computation in the local case is similar to Section 5.1. However, to match the pattern of fi2��,S
8 we introduce

the abstract integer representation fi� ��
8 which are constructed by the same rule set as fi��8 but the last two entries

are set to 8 . With periodic job releases and �xed execution times, the schedule repeats after Φ ‚ 2� where Φ is the

maximal phase and and � is the hyperperiod of tasks on that ECU, respectively. Therefore, it su�ces to construct

and compare all fi� ��
8 such that the �rst entry of fi� ��

8 is less than Φ ‚ 2� , i.e., we denote this set of 8 by I1F�. We

obtain the bound:

MRDA„�” � max
82I1F�

{
ℓ
(

fi� ��
8

)
, fi� ��

8 complete

�„8” , 4;B4
(27)

For the interconnected case, we rely on the new cutting theorem from Eq. (26) and obtain

MRDA„��,S” �

:�1∑

8=1

„MDA„�8 ,S” ‚)<0G
g2

8
‚ 'g2

8
” ‚ MRDA„�: ,S”, (28)

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains ˆ 25

for any interconnected cause-e�ect chain� � = ¹� 1 ! g2
1 ! � 2 ! � � � ! g2

: � 1 ! � : º as in Corollary 30. The
local values of maximum (respectively, maximum reduced) data age from Eq.(28)are computed by simulating all
the abstract integer representations®� �

8 (respectively, ®� � �
8) in a bounded time frame and using Eq.(19)(respectively,

Eq. (27)).

7 EVALUATION
A relevant industrial use-case of the presented end-to-end latency analyses is the timing veri�cation of cause-
e�ect chains in the automotive domain. To assess the practical bene�t of our proposed analyses, we evaluated it
using synthesized task sets and cause-e�ect chains that adhere to the details described inAutomotive Benchmarks
For Free[25]. Furthermore, we generated task sets with the UUnifast algorithm [7] to assess the performance for
general task parameters. We consider periodic task sets and implicit job communication to apply our analysis
results from Section 5 and Section 6. Two setups are considered in the evaluation, which is released on Github [30].
Intra-ECU setup: All tasks in each cause-e�ect chain are mapped to one ECU and have a locally synchronized
clock.
Inter-ECU setup: Tasks within a cause-e�ect chain are mapped to di�erent ECUs that are not synchronized. An
interconnect fabric is used for data communication across di�erent ECUs.

In the following, we use the method by Davare et al. [10] to normalize all other end-to-end bounds, since this
method yields the most pessimistic result. We de�ne thelatency reduction!' ¹Mº of an analysis methodM with
respect to an evaluated bound� ¹�º, e.g., maximum reaction time, by

!' ¹Mº := ¹� ¹Davareº � � ¹Mºº• � ¹Davareº” (29)

Additionally, for the Intra-ECU case where all jobs execute the worst-case execution time (i.e.,���) = , ��)),
an exact analysis of maximum reaction time and maximum data age is given by Corollary 29. Since this is a
valid execution scenario for the case where���) � , ��) , Corollary 29 provides a lower bound for the case
���) � , ��) . Therefore, we also consider thegap reduction�' ¹Mº , de�ned by

�' ¹Mº := ¹� ¹Davareº � � ¹Mºº•¹ � ¹Davareº � � ¹Corollary 29ºº” (30)

In particular, the closer the gap reduction is to1, the tighter that bound is to the lower bound, and therefore the
tighter that value is to the exact latency bound.

7.1 Task and Task Set Generation
In this evaluation, a taskg8 is described by the worst-case execution time� 8, period) 8, phaseq8, and priority c8.
Furthermore,* 8 = � 8•) 8 is the utilization of taskg8.

Automotive benchmark [25]: A taskg8 is generated as follows:2

(1) The period) 8 in <B of a taskg8 is drawn from the set) = f 1•2•5•10•20•50•100•200•1000gaccording to the
related share3 of [25, Table III, IV, and V].

(2) The average-case execution time (ACET) of a task is generated based on a Weibull distribution that ful�lls
the properties in [25, Table III, IV, and V].

(3) The task's worst-case execution time (WCET) is determined by multiplying its ACET with its WCET factor,
which is drawn equally distributed from an interval»5<8=• 5<0G¼[25].

2In the automotive benchmark [25], atomic software components containrunnablessubject to scheduling. Multiple runnables with the same
period are afterwards grouped together as a task. Since communication usually happens on the runnable level, we set up the experiments
accordingly, and denote each runnable as a task to match the common notation in real-time systems research and the cause-e�ect chain
model in the literature.
3The sum of the probabilities in [25, Table III, IV, and V] is only 85%. The remaining 15% is reserved for angle-synchronous tasks that we do
not consider. Hence, all share values are divided by0”85in the generation process.

ACM Trans. Embedd. Comput. Syst.

26 ˆ Günzel, et al.

For the single ECU case, we generate1000automotive task setsfor each cumulative task set utilization of
* = 50%, 60%, 70%, 80%, and90%. Since the tasks' utilizations are determined by the worst-case execution-time
and the automotive speci�c semi-harmonic periods, we used a fully-polynomial approximation scheme to solve
the subset-sum problem to select a subset of tasks within a candidate task set such that the cumulative utilization
satis�es the above requirements. We initially generateT , a set of1000to 1500tasks, and then select a subset
T 0 of tasks using the subset-sum approximation algorithm to reach the targeted utilization within1 percentage
point error bounds, i.e.,j¹

Í
T 0* 8º � * j � 0”01. On average, the generated task sets consist of50tasks.

Uniform task set generation [7]: For user-speci�ed values= 2 N and0 Ÿ * � � 1, the UUniFast algorithm [7]
draws utilizations¹* 1• * 2• ” ” ” • *=º from ¹0•1¼= uniform at random under the constraint that

Í =
8=1* 8 = * � .

Due to the fact that the analyses are computationally tractable only for su�ciently small hyperperiods, we
draw semi-harmonic periods based on the automotive benchmark. For each of the utilization values, i.e.,* � =
50%•60%•70%•80%, and90%, we generate1000task sets with50tasks each. Each task's period is drawn from
the interval »1•2000¼according to a log-uniform distribution and rounded to the next smallest period in the set
f 1•2•5•10•20•50•100•200•500•1000g. Given the periods and utilizations, the worst-case execution-time is set to
* 8 �) 8.

To the best of our knowledge, there are no benchmarks published that detail and reason how to experimentally
set up an asynchronous release of tasks, i.e., what a task's phase value should be. Furthermore, the analysis
by Kloda et al. [22] is formulated only for cause-e�ect chains with synchronous tasks. Hence, we consider
synchronous task sets (withq8 = 0) in this evaluation. All tasks are scheduled by preemptive Rate Monotonic
(RM) scheduling.

7.2 Communication Tasks
In order to evaluate interconnected cause-e�ect chains, we assume a �xed-priority communication fabric.
Speci�cally, we draw the period of each message log-uniform at random from the range10<B to 10•000<B and
truncate the result to the next smallest integer to model the communication frequency. Furthermore, we assume
that the transmission time of a message, i.e., execution time on the communication fabric, is a constant. In our
evaluations, we utilize the constant time from standard 2.0A CAN-Bus with1Mbps bandwidth, where transmitting
8 bytes of data (along with its66bits overhead due to its header and tail) takes� 8 = 130� 10� 3 <B. Given the set
of all messages and with random priority assignment, the worst-case response time of each communication task
is calculated using time-demand analysis for non-preemptive tasks.

7.3 Cause-E�ect Chain Generation
Intra-ECU cause-e�ect chain generation : Given a generated task set as described in Section 7.1, the set of
cause-e�ect chains is generated according to the description in Section IV-E in [25]. Namely, a set of cause-e�ect
chains containing30to 60cause-e�ect chains is generated from each task set as depicted in the following steps:

(1) The number of involved activation patterns%9 2 f1•2•3g, i.e., the number of unique periods of tasks in a
generated cause-e�ect chain, is drawn according to the distribution shown in Table VI in [25].

(2) %9 unique periods are drawn from the task set from a uniform distribution without replacement. More
speci�cally, this step yields a setT9 of %9 distinct periods.

(3) For each period inT9 we draw2 to 5 tasks at random (without replacement) according to the distribution
in Table VII in [25] from the tasks in the task set with the respective period.

The resulting cause-e�ect chains consist of2 to 15tasks and no task occurs multiple times in the same cause-e�ect
chain.

Inter-ECU cause-e�ect chain generation : We generate 10,000 interconnected cause-e�ect chains by selecting
5cause-e�ect chains of di�erent task sets with the same utilization under a uniform distribution. For each selection,

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains ˆ 27

= All values = Half of the values = Median

(a) MRT, LR. (b) MRT, GR

(c) MRDA, LR. (d) MRDA, GR.

Fig. 9. Intra-ECU experiments for theautomotive benchmark . Our method improves the state of the art, especially for
the MRDA.

we create20communication tasks as described in Section 7.2. Among them,4 are chosen randomly to connect
the 5 communication tasks.

7.4 Evaluation Results
In Figures 9 and 10, we show the evaluation results for the Intra-ECU case with automotive and uniform task
generation, respectively. Figures 11 and 12 we show the evaluation results for the Inter-ECU case with automotive
and uniform task generation, respectively. Since our de�nition ofmaximum reduced data agefrom Section 6
coincides with the de�nition of data age from [4, 11, 22], we compare our analysis using maximum reduced data
age instead. The boxplots display the evaluation results of the methods by Dürr et al. [11] (D19)and Kloda et
al. [22] (K18), as well as of our method(0.0,0.3,0.7,1.0)where the BCET of the task is set to0”0•0”3•0”7 or 1”0 of
the WCET. Since1.0 is the bound given by Corollary 29, the gap reduction is always equal to 1 and therefore
not reported. For the MRDA, the method by Becker et al. [4]4 (B17) is displayed as well. The plots show the
latency reduction (LR) from Eq.(29)or the gap reduction (GR) from Eq.(30). The method by Schlatow et al. [29]
is omitted since it is dominated by Davare's method for non-harmonic task systems.

For the Intra-ECU case, our analysis performs similar to K18 for MRT ((a) and (b) in Figures 9 and 10) and
outperforms the state of the art for MRDA ((c) and (d) in Figures 9 and 10). We observe that under both benchmarks

4We apply the method where the WCRT is known (see [4, Table 1]).

ACM Trans. Embedd. Comput. Syst.

28 ˆ Günzel, et al.

= All values = Half of the values = Median

(a) MRT, LR. (b) MRT, GR.

(c) MRDA, LR. (d) MRDA, GR.

Fig. 10.Intra-ECU experiments for theuniform benchmark . Again, our method improves the state of the art, especially
for the MRDA.

the LR and GR of our method increases when the BCET is closer to the WCET. The GR ((b) and (d) in Figures 9
and 10) is in median over 90 percent for our methods and for K18, whereas D19 and B17 have a median GR of
less than 55 percent in all scenarios.

For the Inter-ECU case (Figures 11 and 12), our method outperforms the state of the art signi�cantly: Whereas
our method shows a median LR of more than 30 percent in all cases, D19 has a median LR of around 5 percent or
less.

7.5 Runtime Evaluation
In the following, we study the control parameters that regulate the runtime of our analysis. More speci�cally,
we show that 1) the runtime of our single ECU algorithm is dependent on the number of jobs to be scheduled
in the simulation, and 2) the runtime can be controlled by bounding the hyperperiod of the task sets under
analysis. For the measurements, we use a machine equipped with 2x AMD EPYC 7742 running Linux, i.e., in
total 256 threads with 2,25GHz and 256GB RAM. Each measurement runs on one independent thread and covers
the time for simulation of the best-case and worst-case schedule and for deriving the single ECU maximum
reaction time, maximum data age and maximum reduced data age. Both experiments rely on uniform task
generation [7] with synchronous tasks. The total utilization is pulled uniformly from»50•90¼[%] and task periods
are pulled log-uniformly from the integers in»1•20¼. As a result, the hyperperiod of the task set is between1

ACM Trans. Embedd. Comput. Syst.

30 ˆ Günzel, et al.

For 1), we generate1•000task sets with5 to 20tasks each. The results are depicted in Figure 13a for task
sets where the number of scheduled jobs is below100•000. The number of scheduled jobs is upper bounded by
#9>1B�

Í #C0B:B
8=1

2��~?
) 8

� 2��~?
) 1

� #C0B:Bas explained in Section 5.1. For a �xed number of tasks and a �xed range
of periods, we can control the number of scheduled jobs by constraining the hyperperiod. For example, when
the hyperperiod is1•000and the number of tasks is20, then there are at most40•000scheduled jobs. The exact
number of jobs may be lower since big hyperperiods require bigger periods) 8.

In 2), for a given number of tasks per set, we create1•000task sets with hyperperiod in the range from0
to 1•000, 1•000to 2•000, 2•000to 3•000, and3•000to 4•000, each. The median and maximal runtimes sorted by
hyperperiod bounds are depicted in Figure 13b and 13c, respectively. We observe that with a low hyperperiod,
the maximum runtime can be controlled.

8 CONCLUSION
In this paper, we analyze themaximum reaction timeandmaximum data age. We provide a precise de�nition in
terms of augmented job chains and present a local analysis which performs close to the exact results. Moreover,
we make this local analysis available to the interconnected ECU case by bounding the communication time
between ECUs.

We plan to further explore priority assignments such that all cause-e�ect chains in a system meet their
requirements. Moreover, we look for more e�cient algorithms potentially obtained by partitioning cause-e�ect
chains not only at the ECU-communication but also on one ECU.

ACKNOWLEDGMENTS
This result is part of a project (PropRT) that has received funding from the European Research Council (ERC)
under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 865170).
This work has been supported by Deutsche Forschungsgemeinschaft (DFG), as part of Sus-Aware (Project no.
398602212)

REFERENCES
[1] AUTOSAR. 2017. Speci�cation of Timing Extensions, Release 4.3.1.
[2] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. 2016. Mechaniser-a timing analysis and synthesis

tool for multi-rate e�ect chains with job-level dependencies. InWorkshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS).

[3] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. 2016. Synthesizing Job-Level Dependencies for
Automotive Multi-rate E�ect Chains. InInternational Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 159�169. https://doi.org/10.1109/RTCSA.2016.41

[4] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. 2017. End-to-end timing analysis of cause-e�ect
chains in automotive embedded systems.Journal of Systems Architecture - Embedded Systems Design80 (2017), 104�113. https:
//doi.org/10.1016/j.sysarc.2017.09.004

[5] Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, and Thomas Nolte. 2017. A generic framework facilitating early
analysis of data propagation delays in multi-rate systems. InInternational Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). 1�11. https://doi.org/10.1109/RTCSA.2017.8046323

[6] Albert Benveniste, Paul Caspi, Paul Le Guernic, Hervé Marchand, Jean-Pierre Talpin, and Stavros Tripakis. 2002. A Protocol for Loosely
Time-Triggered Architectures. InInternational Conference on Embedded Software (EMSOFT). 252�265. https://doi.org/10.1007/3-540-
45828-X_19

[7] Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the Performance of Schedulability Tests.Real-Time Systems30, 1-2 (2005), 129�154.
https://doi.org/10.1007/s11241-005-0507-9

[8] Bosch. 1991. Controller Area Network speci�cation 2.0.
[9] Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim. 2020. Chain-Based Fixed-Priority Scheduling of Loosely-Dependent Tasks. In

International Conference on Computer Design (ICCD). 631�639. https://doi.org/10.1109/ICCD50377.2020.00109

ACM Trans. Embedd. Comput. Syst.

Compositional Timing Analysis of Asynchronized Distributed Cause-E�ect Chains ˆ 31

[10] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Alberto L. Sangiovanni-Vincentelli. 2007. Period Optimization
for Hard Real-time Distributed Automotive Systems. InDesign Automation Conference (DAC). 278�283. https://doi.org/10.1145/1278480.
1278553

[11] Marco Dürr, Georg von der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen. 2019. End-to-End Timing Analysis of Sporadic Cause-
E�ect Chains in Distributed Systems.ACM Trans. Embedded Comput. Syst. (Special Issue for CASES)18, 5s (2019), 58:1�58:24. https:
//doi.org/10.1145/3358181

[12] Rolf Ernst, Leonie Ahrendts, and Kai Bjorn Gemlau. 2018. System Level LET: Mastering Cause-E�ect Chains in Distributed Systems. In
IECON- 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 4084�4089. https://doi.org/10.1109/IECON.2018.8591550

[13] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. 2009. A compositional framework for end-to-end path delay calculation
of automotive systems under di�erent path semantics. InWorkshop on Compositional Theory and Technology for Real-Time Embedded
Systems.

[14] FlexRay Consortium. 2005. FlexRay Communications System-Protocol Speci�cation.
[15] Julien Forget, Frédéric Boniol, and Claire Pagetti. 2017. Verifying end-to-end real-time constraints on multi-periodic models. InIEEE

International Conference on Emerging Technologies and Factory Automation (ETFA). 1�8. https://doi.org/10.1109/ETFA.2017.8247612
[16] Alain Girault, Christophe Prevot, Sophie Quinton, Ra�k Henia, and Nicolas Sordon. 2018. Improving and Estimating the Precision of

Bounds on the Worst-Case Latency of Task Chains.IEEE Trans. on CAD of Integrated Circuits and Systems, (Special Issue for EMSOFT)37,
11 (2018), 2578�2589. https://doi.org/10.1109/TCAD.2018.2861016

[17] Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco Dürr, and Jian-Jia Chen. 2021. Timing Analysis of
Asynchronized Distributed Cause-E�ect Chains. InIEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS).
40�52. https://doi.org/10.1109/RTAS52030.2021.00012

[18] Pourya Gohari, Mitra Nasri, and Jeroen Voeten. 2022. Data-Age Analysis for Multi-Rate Task Chains under Timing Uncertainty. InThe
30th International Conference on Real-Time Networks and Systems (RTNS). ACM, 24�35. https://doi.org/10.1145/3534879.3534893

[19] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. 2017. Communication Centric Design in Complex
Automotive Embedded Systems. InEuromicro Conference on Real-Time Systems (ECRTS). 10:1�10:20.

[20] Arne Hamann, Dakshina Dasari, Falk Wurst, Ignacio Sañudo, Nicola Capodieci, Paolo Burgio, and Marko Bertogna. 2019. WATERS
Industrial Challenge 2019. InWorkshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS).

[21] Christoph M. Kirsch and Ana Sokolova. 2012. The Logical Execution Time Paradigm. InAdvances in Real-Time Systems. Springer,
103�120. https://doi.org/10.1007/978-3-642-24349-3_5

[22] Tomasz Kloda, Antoine Bertout, and Yves Sorel. 2018. Latency analysis for data chains of real-time periodic tasks. InIEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). 360�367. https://doi.org/10.1109/ETFA.2018.8502498

[23] Hermann Kopetz. 1997.Real-time systems - design principles for distributed embedded applications. The Kluwer international series in
engineering and computer science, Vol. 395. Kluwer.

[24] Alix Munier Kordon and Ning Tang. 2020. Evaluation of the Age Latency of a Real-Time Communicating System Using the LET
Paradigm. InEuromicro Conference on Real-Time Systems (ECRTS). 20:1�20:20. https://doi.org/10.4230/LIPIcs.ECRTS.2020.20

[25] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real world automotive benchmark for free. InInternational Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS).

[26] Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of �xed-priority scheduling of periodic, real-time tasks.Perform.
Eval.2, 4 (1982), 237�250. https://doi.org/10.1016/0166-5316(82)90024-4

[27] AC Rajeev, Swarup Mohalik, Manoj G Dixit, Devesh B Chokshi, and S Ramesh. 2010. Schedulability and end-to-end latency in
distributed ECU networks: formal modeling and precise estimation. InInternational Conference on Embedded Software (EMSOFT).
129�138. https://doi.org/10.1145/1879021.1879039

[28] Johannes Schlatow and Rolf Ernst. 2016. Response-Time Analysis for Task Chains in Communicating Threads. InIEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 245�254. https://doi.org/10.1109/RTAS.2016.7461359

[29] Johannes Schlatow, Mischa Möstl, Sebastian Tobuschat, Tasuku Ishigooka, and Rolf Ernst. 2018. Data-Age Analysis and Optimisation
for Cause-E�ect Chains in Automotive Control Systems. InIEEE International Symposium on Industrial Embedded Systems (SIES). 1�9.
https://doi.org/10.1109/SIES.2018.8442077

[30] TU Dortmund LS12. 2022. End-To-End Timing Analysis. https://github.com/tu-dortmund-ls12-rt/end-to-end_inter.

A BOUNDS FOR START AND FINISH
In the following we show that the latest starting time and �nishing time of any job is achieved when all jobs
execute their worst-case execution time, and the earliest starting time and �nishing time is achieved when all
jobs execute their best-case execution time. In particular, we prove Propositions 13 and 14.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 System Model
	2.1 Jobs and Tasks
	2.2 Communication Model
	2.3 Cause-Effect Chains
	2.4 Job Chains

	3 Problem Definition
	4 Maximum Reaction Time and Maximum Data Age
	4.1 Augmented Job Chains
	4.2 Definition of Maximum Reaction Time and Maximum Data Age
	4.3 Cutting of Augmented Job Chains

	5 Analysis of End-To-End Latencies of Periodic Tasks
	5.1 Local Analysis
	5.2 Interconnected Analysis

	6 Alternative Data Age Definition
	7 Evaluation
	7.1 Task and Task Set Generation
	7.2 Communication Tasks
	7.3 Cause-Effect Chain Generation
	7.4 Evaluation Results
	7.5 Runtime Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Bounds for start and finish

