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Chapter 1: Introduction 

1.1 Problem statement 
 
Communities living within mountainous environment may face grave danger 
from landslide disasters triggered both due to unsustainable anthropogenic 
activities such as mining, road cutting, and urbanisation and natural causes 
such as earthquakes and extreme rainfall. According to official figures from 
the United Nations International Strategy for Disaster Reduction (UN/ISDR) 
and the Centre for Research on the Epidemiology of Disasters (CRED), 
landsliding ranked 3rd in terms of number of deaths among the top ten 
natural disasters in 2006 and has affected approximately 4 million people 
(OFDA/CRED, 2006). The immediate priority after a landslide disaster is to 
carry out relief and rescue operations, which are often hampered by lack of 
timely information on the location, number and size of landslides in vastly 
inaccessible mountainous areas. 
 
Remote sensing technology has been used extensively to provide landslide 
specific information to policy makers and emergency managers during a 
disaster period (Metternicht et al., 2005; Tralli et al., 2005). Recent advances 
in computer vision and machine intelligence have led to the development of 
new techniques, such as object-oriented analysis (OOA) for automatic 
content extraction of both man-made and natural geospatial objects from 
remote sensing images (Akcay and Aksoy, 2008; Holt et al., 2009). Terms 
similar to OOA and commonly available in literature are OBIA (object-based 
image analysis) and GEOBIA (geographic object-based image analysis). OOA, 
wherein the information content of an object is used to classify a landscape, 
is a step towards replicating the human interpretation process (Navulur, 
2007b), and has the potential to accurately and meaningfully detect 
landslides by integrating the contextual information to image analysis, 
thereby reducing the time required for creation of landslide inventory for 
large areas. Figure 1.1 shows an example of the Wenchuan earthquake in 
2008, which caused thousands of landslides. Mapping these landslides 
manually using a stereoscopic image interpretation costs many man months 
of time (Gorum et al., 2010). Furthermore, the landslide inventory prepared 
using OOA can easily be converted to GIS data, which then form an input 
essential for landslide susceptibility, hazard and risk analysis, and thus, can 
indirectly contribute to the formulation of long-term disaster mitigation 
strategies.  
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Figure 1.1: Cartosat-1 (2.5 m) image showing numerous landslides triggered by the 
Great Sichuan Earthquake in China on 12 May 2008. It shows the labour intensiveness 
of landslide inventory preparation using visual image interpretation technique, 
particularly when quick results are desirable. 

1.2 Remote sensing for landslide inventory 
mapping 

Landslide inventories can make use of a variety of approaches, ranging from 
manual image interpretation using digital stereo images coupled with field 
investigations to automatic identification based either on elevation or spectral 
information, or a combination of both, and a complete list of landslide 
inventory mapping methods is provided by van Westen et al. (2008). Digital 
elevation models (DEM) produced from overlapping aerial photographs or 
stereoscopic satellite images are the major sources of elevation data for 
landslide studies (van Westen and Lulie Getahun, 2003). Note that the term 
DEM is used here as a generic descriptor; where appropriate we use the 
terms digital surface model (DSM) and digital terrain model (DTM) in the 
remainder of this thesis. A DEM was shown to be useful for estimating the 
volume of landslides by an elevation change analysis (Kerle, 2002; Tsutsui et 
al., 2007). Shaded relief images produced from a DEM obtained from light 
detection and ranging (LiDAR) have proven to be very suitable for generating 
landslide inventories under forest areas in hilly regions and to refine the 
boundaries of landslides prepared during field investigations. These data are 
not only useful for mapping old landslides but also can improve field surveys 
in regions with subdued morphology (van Den Eeckhaut et al., 2007). 
Microwave remote sensing, such as synthetic aperture radar (SAR) images 
are also useful for the identification of landslides, and particularly with SAR 
interferometry, subtle movement of landslides can be picked up from 
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interferograms generated from SAR image sequences (Singhroy and Molch, 
2004). Another advantage of SAR data over optical sensor data is its all 
weather monitoring ability. Therefore, a combination of SAR imagery with 
high resolution optical multispectral imagery is useful for monitoring 
landslides in mountainous areas (Tsutsui et al., 2004). However, problems 
such as foreshortening and layover effects associated with SAR data in 
mountainous areas have to be addressed carefully.  
 
The availability of a new generation of high resolution optical satellite 
imageries (e.g. WorldView, GeoEye, SPOT-5, Resourcesat, Cartosat, 
Formosat and ALOS-PRISM) has caused a paradigm shift in the use of Earth 
observation (EO) data for landslide studies. The number of such satellites is  
increasing year by year (van Westen et al., 2008) which reduces the revisit 
time, and thus has led to their increased preference over aerial photographs 
for landslide inventory mapping using visual interpretation technique. 
Previous researchers attempted to automatically identify landslides using 
spectral information. Change detection and image fusion are examples of 
such methods used to identify landslides automatically (Nichol and Wong, 
2005b). However, change detection requires a minimum of two images (pre- 
and post-event), which are not always available from the same sensor, and 
the atmospheric conditions and the bandwidth of spectral channels may also 
be different, which makes the image standardisation difficult. Moreover, it is 
a pixel-based method and geomorphic processes such as landslides cannot 
be represented only with pixel digital number (DN) values. Therefore, objects 
(groups of homogeneous pixels) can better identify landslides by bringing in 
the landslide process information in the form of shape, size and context to 
image analysis. Since landsliding is a geomorphic process, using DEMs as 
additional data during image analysis will yield better classification result in 
comparison to spectral data alone (Florinsky, 1998). OOA has also the 
potential to include morphometric information derived from a DEM. 
 
Object-based identification of landslides from high resolution data is more 
appropriate than the pixel-based methods, since with higher resolution 
landslides are represented by a large number of pixels in comparison to fewer 
pixels of coarse resolution images. Therefore, context information is more 
useful than the spectral information alone, when classification is attempted 
with high resolution images. OOA supports rule-based classification, wherein 
expert knowledge can also be incorporated to increase the accuracy of 
classification results in comparison to the traditional nearest neighbourhood 
classification (Daniels, 2006) (Figure 1.2). OOA for landslide studies is an 
emerging topic of research, since it has the potential to detect landslides 
rapidly for a very large area, particularly in the aftermath of a disastrous 
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event such as earthquake or cyclonic storms. Rapid landslide inventory will 
enable efficient disaster response planning. Although previous researchers, 
such as Barlow et al. (2006; 2003) and Moine et al. (2009), have attempted 
object-based detection of landslides, a comprehensive characterisation and 
development of a generic method for the detection of landslides is still 
lacking.   

 
Figure 1.2: Conceptual diagram showing the methodology for the detection of 
landslides by OOA. 

1.3 Research objectives 
The main research objective is to develop a knowledge-based generic 
spectral-spatial-morphometric approach for the detection of landslides from 
high resolution satellite and DEM data using OOA. The purpose is to rapidly 
create a landslide inventory for planning disaster response using newly 
acquired post-event images, and to prepare a historical landslide database by 
analysing time series images from archives that can be used for landslide 
susceptibility and hazard mapping essential for preparing long term disaster 
management strategies. To do this, we first characterised the landslides from 
an OOA perspective using Resourcesat-1 (5.8 m) multispectral imagery and 
DEM derived from Cartosat-1 (2.5 m) along-track stereoscopic images. The 
criteria commonly used by analysts during visual interpretation (Soeters and 
van Westen, 1996; van Westen et al., 2008) of landslides were applied to 
image analysis using object-oriented method. Classification of landslide types 
as per the Varnes’ criteria requires information on shape, context and 
morphometry. The aim is to use morphometric information, such as slope, 
flow direction, terrain curvature and stream network derived from the DEM, 
and spectral information such as normalised difference vegetation index 
(NDVI), brightness, hillshade derived from the multispectral satellite image 
and various shape-forms (e.g. roundness, compactness and asymmetry) to 
characterise landslides, and subsequently apply the process knowledge to 
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classify them. The methodology was tested in two active landslide areas in a 
steep mountainous terrain in the Indian Himalayas, where image distortion, 
occlusion and spectral heterogeneity are common, thereby also exploring the 
potential of OOA for a new class of high resolution data.  
 
The objectives of this dissertation were to:  
 
 assess the accuracy of multi-temporal DEMs extracted from high 

resolution satellite stereo images to derive elevation and morphometric 
information to be used in OOA for the identification of landslides. 

 verify the requirement of ground truth for DEM generation from Cartosat-
1 data for estimating landslide volume. 

 characterise landslides using spectral, texture, shape, morphometric and 
contextual properties determined from high resolution satellite data and 
DEM, and create a knowledge-based method for the detection of 
landslides using OOA. 

 validate the robustness and transferability of the knowledge-based 
object-oriented method for the detection of landslides. 

 test the usefulness of semi-automatically prepared landslide inventories 
for landslide hazard and risk assessment. 

1.4 Test area 
The Himalayas are one of the global hotspots for landslide hazard (Nadim et 
al., 2006). A test area was selected covering 81 km2 in parts of the Mandakini 
river valley in the Western Indian Himalayas around Okhimath town (30° 30' 
48" N and 79° 05' 41" E) in the Rudraprayag district of Uttarakhand state, 
India (Figure 1.3). This area was selected because of the occurrence of many 
recent landslides of different types associated with a variety of land covers 
and litho units. Okhimath is situated at an average elevation of 1300 m at 
the confluence of the Mandakini and Madhyamaheshwar rivers. In August 
1998, a total of 466 landslides were triggered by a major rainfall event, 
which killed 103 people and damaged 47 villages in the entire Mandakini 
valley (Naithani, 2002). Some of the landslides in the area are as much as a 
century old but permanently active. The area was divided into two parts, 
using a watershed divide, into the Madhyamaheshwar sub-catchment (28 
km2) and the Mandakini catchment (53 km2). The landslide detection 
algorithm was developed for the Madhyamaheshwar sub-catchment and 
subsequently tested in the Mandakini catchment. 
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Figure 1.3: Location of the test area. White dotted line separates the 
Madhyamaheshwar and Mandakini catchments. 
 
The area is very rugged, where the elevation ranges between 867 and 2626 
m with a high relative relief. Glacial landforms dominate this region, but are 
frequently modified by denudational activity. Some of the glacial landforms 
(e.g. moraines and solifluction lobes) with relatively gentle slopes have been 
converted into terraces for cultivation. Being a tectonically active zone, 
structural landforms such as escarpments and structurally controlled valleys 
are also found in this area. Lithological units exposed in this area are granite 
gneisses, quartzite-sericite schist, quartzite, garnetiferous mica schist, 
marble and occasional basic intrusives (Rawat and Rawat, 1998). The 
foliations dip at moderate angles in NE to NNW directions. The main central 
thrust (MCT) dipping N to NE directions is the cause of neo-tectonic activity in 
this region, and has caused significant shearing of the rocks, rendering them 
vulnerable to landsliding. The soil in this area is transported and composed of 
sub-angular rock fragments with high proportion of sandy to sandy-silty 
matrix. However, small patches of silty and clayey soil, remnants of glacial 
deposits, are also present (Rawat and Rawat, 1998). The NE and SW part of 
the study area is covered by evergreen oak forest. 
 
The methodology developed in the Okhimath area was also applied to 
another geomorphologically and geologically dissimilar area in the Eastern 
Indian Himalayas near Darjeeling (26° 54' 06" N and 88° 15' 00" E) to test 
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its robustness and transferability (Figure 1.3). The dominant land use in 
Darjeeling is tea plantation and semi-urban areas compared to rocky barren 
land and agricultural terraces in Okhimath. The variability between the two 
areas offers a good opportunity to verify the generic nature of the rule set 
developed for the automatic detection of landslides. 

1.5 Structure of the thesis 
The remainder of the dissertation is organised into six core chapters (2, 3, 4, 
5, 6 and 7) and one synthesis chapter (8).  
 
Chapter 2 deals with assessing the accuracy of DSMs extracted from the 
along-track stereoscopic Cartosat-1 data to derive morphometric information 
for detection of landslides. The advantages of along-track stereoscopy, such 
as improved image correlation between the image pairs, and disadvantages, 
such as poor matching in steep valleys oriented across the satellite track, are 
discussed in this chapter. The global accuracy of the DSMs is calculated by 
comparing with the check points collected using differential GPS (DGPS) 
survey. Drainage lines are used as a proxy for the assessment of error due to 
spatial auto-correlation.  
 
Chapter 3 makes an attempt to verify the role of ground truth for creation of 
DSM from Cartosat-1 data for quantifying the volume of landslides. 
Volumetric analysis was done using pre- and post-event DTMs. This chapter 
shows how non-uniform vegetation correction using the tree height data is 
useful for accurate calculation of the landslide volume. 
 
Chapter 4 characterises landslides using their morphometric and spectral 
properties derived from a high resolution DEM and multispectral satellite 
image, respectively. Fractal Net Evolution Approach (FNEA), a region growing 
technique known as multi-resolution segmentation in eCognition software, is 
used to derive objects/segment from the multispectral image. A knowledge-
based method is presented using OOA to classify the object. Initially 
landslides are detected along with false positives, which are subsequently 
eliminated leaving only the actual landslides. Five types of landslide using 
Varnes’ criteria (UNESCO-WP/WLI, 1993b) are identified. However, the object 
size and thresholds used for classification were determined by trial and error 
method. 
 
Chapter 5 mainly focuses on the creation of a robust and transferable 
approach to detect landslides by: 1) optimising the segments: and 2) using 
data-driven rather than user-driven thresholds of landslide diagnostic 
parameters. Multi-scale classification-based segment optimisation with scale 
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factor determined from a plateau objective function, an indicator of 
intrasegment homogeneity and intersegment heterogeneity, is used to detect 
landslides. Multi-scale treatment of the false positives also helped in reducing 
the error of commission. In this chapter, the proposed methodology is tested 
in an independent area. 
 
Chapter 6 presents a method for the detection of landslides from 
panchromatic images. The object-oriented method discussed in chapters 4 
and 5 requires spectral information from NIR and Red bands, and therefore 
cannot be directly used to detect landslides from greyscale images. In this 
chapter, time-series images are analysed to create a historical landslide 
inventory. Local contextual-based threshold coupled with change detection is 
used to extract landslide candidates. We have used texture, the main 
information available in panchromatic images to identify false positives. 
Subsequently, false positives are eliminated and landslides are classified by 
suitably modifying the methodology explained in chapters 4 and 5.  
 
Chapter 7 deals with the evaluation of the effectiveness of semi-automatically 
derived landslide inventories for landslide hazard and risk assessment, which 
is the ultimate goal of any landslide investigation. Multi-temporal inventories 
created using OOA are used to derive weights for landslide predisposing 
factors to prepare landslide susceptibility map, which are later integrated 
with elements at risk, vulnerability and temporal probability for generating a 
risk curve.  
 
Chapter 8 provides a summary of the obtained results and discusses the 
advantages and issues of the developed algorithm to detect landslides for the 
creation of a routine landslide inventory mapping method that can be used 
operationally. It also discusses the issues related to the creation of DSM in 
mountainous areas from satellite stereo images using digital 
photogrammetric techniques. 
 
Overall, the dissertation presents an array of objective and robust methods 
to create landslide inventories from high resolution EO data, both newly 
acquired and from the archives. 
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Chapter 2: Accuracy Assessment of DSMs* 
This chapter explores the accuracy of digital surface models (DSMs) extracted 
from the along-track stereoscopic data from Cartosat-1 acquired under high 
and low sun elevation angle conditions in the High Himalayan terrain. The 
effect of valley orientation on the spatial accuracy of DSMs which in turn can 
influence the accuracy of landslide diagnostic parameters is also discussed in 
this chapter.  

2.1 Introduction 
A Digital Elevation Model (DEM) is one of the primary data sources for the 
study of earth surface processes. Contours from topographic maps, spot 
heights measured on the ground using a total station or GPS, LiDAR, 
interferometric synthetic aperture radar (InSAR) data, aerial photos and 
satellite images are typical sources for DEM generation (Li et al., 2005; Smith 
et al., 2006; van Den Eeckhaut et al., 2007; Weibel and Heller, 1991). 
Techniques for DEM generation have been an active area of research for 
decades. Over the years, these techniques have been automated and new 
data sources were developed, most recently based on high resolution 
stereoscopic data from new satellite missions. Large scale automation and 
the emergence of new satellite data sources for the generation of DSMs 
necessitate accuracy testing before the data can be used for terrain analyses. 
The term DEM has been used widely in the literature as a generic descriptor 
for digital spatial representations of altitude. In fact the terms DEM, digital 
terrain model (DTM) and DSM are often used as synonyms. However, when 
dealing with spatial digital representation of the Earth that include the objects 
above the surface, such as vegetation and man-made features, the term DSM 
should be used, whereas DTM is appropriate if the actual ground surface is 
represented. In this chapter we only use the term DEM in the generic 
discussion on elevation models. 
 
In photogrammetric processing, the terrain elevation is computed from a 
satellite stereo pair by measuring the parallax between the two overlapping 
images. SPOT-5 HRS (high resolution stereoscopic) data have been shown to 
be a valuable along-track stereoscopic data source for DSM generation 
(Berthier and Toutin, 2008; Toutin, 2006). Cartosat-1 and ALOS-PRISM are 
other, more recent, sources of along-track stereoscopic data, with the 
potential for easier and more accurate DSM generation. They offer 
considerable advantages compared to across-track methods, such as 

                                          
* This chapter is based on the article: Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V. and 
Kumar, K.V. (2010) Effect of sun elevation angle on DSMs derived from Cartosat - 1 data. 
Photogrammetric Engineering and Remote Sensing, 76 (4), 429-438. 
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employed by the SPOT 1-4 and IRS-1C/D satellites, which are frequently 
affected by atmospheric differences between the images. Cartosat-1, 
launched in May 2005 by the Indian Space Research Organisation (ISRO), is 
a global mission, designed to acquire high resolution stereoscopic images for 
cartographic application, urban development and disaster management 
(NRSC, 2006). It is the first satellite in the along-track category with 2.5 m 
spatial resolution. Cartosat-1 has several distinct features, such as unique 
sensor geometry, 10-bit radiometric resolution, rational polynomial co-
efficients (RPC), on-demand tilting capability and five days revisit period with 
dedicated stereoscopic cameras, making it a suitable choice for DSM 
generation in any part of the world. Cartosat-1 has two panchromatic 
cameras, PAN-Aft and PAN-Fore, with an off-nadir viewing angle of -5° and 
+26°, respectively, acquiring images of a 900 km2 area (12 000 x 12 000 
pixels) with a gap of 52 seconds (Radhika et al., 2007), minimising 
radiometric differences. Images are acquired with a base to height ratio 
(B/H) of 0.62, which is within the suitable range specified by Light et al. 
(1980) for topographic mapping. Detailed technical specifications of Cartosat-
1 are available in NRSC (2006).  
 
The availability of DEMs from global datasets has given rise to new 
applications (Ehsani and Quiel, 2008; Murphy and Burgess, 2006) and also 
widened its user community. Also due to commercial off-the-shelf (COTS) 
software tools, the data are increasingly used by non-photogrammetrists. 
However, assessing the accuracy of DEMs has always been difficult (Gong et 
al., 2000; Gooch et al., 1999). While traditional airborne photogrammetric 
projects covered comparatively small areas and typically used differential 
GPS (DGPS) to provide needed ground control, satellite-based 
photogrammetry covers vast areas without the strict need for GPS 
observations. Particularly, but not exclusively, for non-photogrammetrist 
assessing the accuracy of the derived data is a substantial challenge. 
Unfortunately, also commercially generated DEMs contain little information 
on the error distribution (Holmes et al., 2000). Some standards exist for 
assessing the absolute accuracy of DEMs. According to FGDC (1998) a 
minimum of 20 check points is required for calculating the accuracy. Höhle 
and Potuckova (2006) of the European Spatial Data Research (EuroSDR) 
group suggested that DTM accuracy assessment methods should be 
universal, and the reference check points should have accuracies at least 3 to 
5 times better than the error metrics of the DTM. Although stereoscopic data 
from new generation along-track satellites are able to generate high 
resolution DSMs in a more robust and sophisticated manner, principally 
through the use of RPCs, the challenge remains to assess their accuracy. 
DEM accuracy is typically expressed through the root mean square error 
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(RMSE) of the elevation, calculated by comparing sampled elevation points of 
the produced DEM with independent ground control points (GCP). This does 
not, however, result in a representative accuracy figure, as the RMSE is 
based on only a limited number of points, whereas the DEM contains 
thousands to millions of elevation points, and thus conveys nothing about the 
actual error distribution, and little about the accuracy in the vast parts of the 
DEM where no ground truth exists. In recognition of the limitations of using a 
small number of GCPs for accuracy assessment, a DEM with higher resolution 
and better quality can be used as a reference (Bolstad and Stowe, 1994; 
Gorokhovich and Voustianiouk, 2006). However, suitable reference DEM data 
are typically not available.  
 
We selected an area in steep, mountainous terrain, where topographic 
shadows are likely to have a critical effect on photogrammetric DSM 
generation, a problem we investigate by using recently developed satellite 
image precision processing (SAT-PP) software (Zhang and Gruen, 2006). In 
addition to global accuracy assessment using independent check points, we 
also test the reliability of those values using the models developed by Aguilar 
et al. (2007). 
 
According to Aguilar et al. (2005) and Chaplot et al. (2006), DEM 
inaccuracies result from errors in the source data, interpolation method, 
sampling density, and are also more prominent for steep terrain surfaces. 
However, in addition, errors in a DEM can also be a function of the viewing 
direction of the sensor, the valley orientation and the sun elevation angle, 
effects that have not been studied to our knowledge. In this chapter, along-
track stereoscopic Cartosat-1 data acquired in summer and winter seasons of 
an area in the High Himalayas were analysed to evaluate the accuracy of 
DSMs as a result of different sun elevation angle conditions and variable 
valley orientation. Thus implicitly we also consider the effect of local sensor 
orientation. 
 
Errors in elevation data can have different facets, and therefore, a 
comprehensive assessment of these possible errors is needed. For example 
hydrologists and geomorphologists may be less concerned about absolute 
accuracy, but more about DEM derivatives, such as slope, aspect or 
curvature (Wise, 2007). However, conceptual challenges persist, e.g. how to 
compare aspect and slope values from different resolution DEMs, or indeed 
how to measure those values accurately in the field. Particularly in high-relief 
terrain, this scale-dependency of derivatives poses immense difficulties. The 
importance of accuracy assessment of such DEM derivatives has been 
emphasized by previous workers (Bolstad and Stowe, 1994; Chaplot et al., 
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2006; Wise, 2000). Wise (2000) used drainage lines to investigate the effect 
of different DEM interpolation methods and consequences for hydrological 
applications. Similarly, Holmes et al. (2000) investigated DEM error 
distributions in 30 m USGS elevation data using statistical measures, and 
how these errors propagate into derivatives such as drainage networks. 
Endreny et al. (2000) assessed the effect of errors in DEMs derived through 
satellite photogrammetric methods on entire stream networks and basin 
boundaries. In this chapter we invert this approach by using the drainage 
network as a proxy in the actual DEM accuracy assessment, a novel 
departure from previous studies.  

2.1.1 Automatic DSM generation 
Stereoscopic satellite images are acquired either along or across the track. 
Satellite photogrammetry using multi-date across-track data first became a 
viable method for DSM extraction in the 1980s with the availability of SPOT-1 
(Kratky, 1989) and IRS-1C/1D data (Bahuguna et al., 2004; Malleswara Rao 
et al., 1996). However, the difficulty in obtaining cloud free across-track 
stereo data over large areas prompted the development of a stereo system 
using along-track images acquired nearly simultaneously (Hirano et al., 
2003). This reduces the radiometric variation between the two images of a 
stereo pair and leads to the extraction of more accurate elevation data 
(Radhika et al., 2007; Toutin, 2004). 
 
Toutin (2001) gives a detailed description of the methods of DEM extraction 
from satellite visible and infrared data. An important step in this process is 
the calculation of elevation parallax for conjugate points. Image matching in 
mountainous areas frequently fails as a result of shadow or poor contrast in 
areas of snow, glaciers or homogenous vegetation. Due to different viewing 
angles of the two cameras in Cartosat-1, steep slopes are also frequently 
occluded, depending on the steepness of the slope; similarly, the extent of 
shadow depends upon the sun elevation angle (Figure 2.1). Another cause for 
the partial failure of image matching of along-track stereo pairs in such areas 
is the relative distortion of features between the two images (Eckert et al., 
2005). In such cases image matching produces inaccurate, less dense and 
irregularly distributed match points. According to Bahuguna et al. (2008) 
problems in image matching due to steep terrain result in a inaccurate DEM, 
even with appropriate B/H ratio. Other common problems of image matching 
for automatic DSM generation are listed by Zhang and Gruen (2006). A list of 
COTS software for extraction of DSM from stereoscopic data is given by 
Toutin (2008). These software packages employ various matching 
algorithms, and should be selected with respect to the data to be used and 
the terrain characteristics. 
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Figure 2.1: Schematic diagram showing occlusion on the slope facing south due to 
high viewing angle of the camera in along-track stereoscopy, and shadow due to steep 
slope facing north. 
 
A rational function model (RFM) is an alternative to a physical sensor model 
that facilitates photogrammetric processing of satellite data (Tao and Hu, 
2002). The RFM allows users to perform orthorectification and 3D extraction 
from imagery without having knowledge of the sensor model, and the 
accuracy of the 3D model can be increased with additional GCPs (Hu and Tao, 
2002). The RFMs are generated from onboard instruments, in particular GPS 
and improvised star sensors, and are provided by the data vendor (Sadasiva 
Rao et al., 2006). RPCs are determined from RFM and provided to the end 
user for DSM generation. Since RPCs are terrain independent, they require 
refinement at scene/block level. Refinement of the orientation result obtained 
using Cartosat-1 RPC at scene/block level with GCPs can produce a DSM of 
about four meters vertical accuracy (Ahmed et al., 2007). So far there is no 
consensus on the optimum number of GCP(s) required for extracting a 
sufficiently accurate DSM from Cartosat-1 data. Sadasiva Rao et al. (2006) 
observed that one control point is adequate for restitution of the Cartosat-1 
model. However, according to Baltsavias et al. (2007) the distribution of 
GCPs (planimetric and vertical) is crucial to achieve high accuracy, and they 
recommended that a minimum of six GCPs should be used for a Cartosat-1 
scene. 

2.2  Study area 
Cartosat-1 scene used for DEM generation covers a part of the Mandakini 
river valley in the High Himalayas (Figure 2.2). The Mandakini river is a 
tributary to the Ganges river, one of the largest river systems in the world. 
The elevation ranges from 718 m to 4510 m with highly variable terrain relief 
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and land cover. The northeastern part of the area is always snow covered. 
This area is dominated by low altitude oak forest, which does not shed its 
leaves seasonally. Therefore, the vegetation surface commonly does not 
change, and is discarded as a potential reason for DSM differences in this 
chapter. The terrain is dominantly steep and rugged with few flat fluvial 
terrace areas along the Mandakini river. Since the rugged topography is 
controlled by the geological structure, there are many fault-related south 
facing escarpments in this area. The northeastern and western parts of the 
area are very difficult to access.  

2.3  Methods  

2.3.1  DGPS survey 
The DGPS survey was carried out using three GPS receivers, one located at 
the base station, operated continuously throughout the survey period, and 
the remaining two used as rovers to collect ground coordinates in the study 
area. A Leica SR 520 dual frequency (L1 and L2) receiver was used in the 
DGPS survey. The DGPS survey in this steep mountainous area was 
challenging because of terrain inaccessibility, difficulty in identifying ground 
points, and narrow valleys restricting the satellite signal for the receiver. 
However, by taking systematic traverses along the accessible routes, 16 
points were collected, with a fairly good planimetric and vertical distribution 
across the scene (Figure 2.2). Post processing of the data recorded in the 
GPS receivers was carried out using Leica Geo Office software to calculate the 
co-ordinates of the ground control points. The standard deviation of the 
errors of elevation, longitude and latitude of the points obtained from the 
DGPS survey range between 0.10 m to 0.46 m, 0.04 m to 0.15 m and 0.04 
m to 0.21 m, respectively. 
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Figure 2.2: Location map with 3D perspective view (1.5 times vertical exaggeration) 
of the study area. South of Okhimath the Mandakini river valley is mainly N-S oriented, 
while the valleys of the tributaries have a predominant E-W orientation. North of 
Okhimath, the Mandakini river valley is NW-SE oriented and the Madhyamaheshwar 
river valley runs NE-SW. White circles represent the DGPS points. Note that the scale is 
variable. 

2.3.2 Processing of Cartosat-1 data 
Two sets of stereoscopic Cartosat-1 data were processed: one from a 
summer season (06 April 2006) with a high sun elevation angle (62°), and 
the other from a winter season (01 December 2005) with a low sun elevation 
angle (38°). We first used Leica Photogrammetric Suite (LPS) to process the 
data. Despite optimisation and adaptation of the extraction strategy, the 
resulting DSM contained spurious spikes and sinks, an artefact frequently 
reported in previous studies (Gooch and Chandler, 2001; Gooch et al., 1999; 
Kerle, 2002). 
 
Manual removal of such spikes and sinks can be attempted, but despite being 
time-consuming it can only be accurately done with additional data or 



Accuracy assessment of DEM  

 16

extensive stereoscopic assessment of the source image data. Instead, SAT-
PP photogrammetric software was used to re-process the data and the 
resulting DSMs were found to have virtually no spikes and sinks (Figure 2.3). 
SAT-PP was developed by the Institute of Geodesy and Photogrammetry of 
ETH Zurich for photogrammetric processing of high resolution images. Unlike 
LPS, it not only uses a template matching technique, but incorporates an 
additional edge-matching strategy. It is capable of generating DSMs and 
orthoimages with pixel level accuracy (Gruen et al., 2007). The general steps 
of SAT-PP processing of stereoscopic images are: (i) image pre-processing, 
(ii) multiple primitive multi image matching and (iii) refinement of matching 
by least square method. Details of these methods are explained in Zhang and 
Gruen (2006). The advanced matching approach is based on combining 
matching results of feature points, grid points and edges (Zhang and Gruen, 
2006). The approach is robust and has been reported to result in 75% 
matching success for high resolution stereo pairs even in steep mountainous 
areas (Zhang and Gruen, 2006). It accounts for both gray scale and 
geometric differences of features on the ground, thus making it especially 
useful for mountainous terrain. 
 

Table 2.1: RMSE of control point residuals after block orientation. 

Elevation model RMSEx (m) RMSEy (m) RMSEz (m) 

AprCartoDSM 0.874 0.781 0.465 

DecCartoDSM 0.599 0.392 0.972 

 
We used six GCPs as control points to refine the orientation result of the RPC 
model during the processing of Cartosat-1 data from both seasons. The 
RMSEs of the residuals obtained after the block triangulation are given in 
table 2.1. We generated DSMs with 10 m grid size (Figure 2.4), and labelled 
them as AprCartoDSM and DecCartoDSM for 06 April 2006 and 01 December 
2005, respectively. 

2.3.3 Accuracy assessment 
We calculated the following statistical parameters for global accuracy 
assessment of the DSMs: RMSE (Aguilar et al., 2005), range, mean error (μ) 
and standard deviation error (σ) (Li et al., 2005). Although RMSE is widely 
used for DEM accuracy assessment, its limitation has also been highlighted 
(Florinsky, 1998; Wise, 2000). Westaway et al. (2001) suggested that mean 
error is the true measure of global accuracy as it reflects any systematic bias 
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Figure 2.3: 3D terrain profile showing the DSM extracted using (a) LPS and (b) SAT-
PP. Note the presence of spikes (white circles) and sinks (black circles) in the DSM 
extracted using LPS, and the absence of the same in the other DSM. Location is shown 
in figure 2.2. 
 

in the DEM, with the standard deviation showing the error distribution. We 
calculated these parameters by comparing the check points between the 
produced and reference data. The check points measured on the ground by 
DGPS survey are used as reference for comparison. The equations to 
calculate these errors are given below. 
 

minmax eeRange −=  (2.1) 
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where, Z dsm  is elevation of DSM, Z ref is elevation from reference data, n is 

number of point, and maxe and mine are the maximum and minimum errors, 

respectively, obtained by comparing the check points from the DGPS survey 
with the DSM. 
 
In order to estimate the spatial pattern of errors in the DSM, and thus to 
address DEM accuracy in a more comprehensive way, we used drainage lines 
as an accuracy proxy. Drainage lines were derived manually from the 
Cartosat-1 data of 06 April 2006 and 01 December 2005 using a feature 
extraction tool in LPS. They were used as reference, and compared against 
the drainage lines extracted automatically from the DSMs using the FLOW 
ACCUMULATION algorithm of ArcView GIS. Prior to that, spurious depressions 
in the DSMs were eliminated with a FILL function to make it hydrologically 
correct (Murphy et al., 2008). During automatic drainage extraction, a 50 
000 m2 area threshold was selected in order to restrict the extraction of some 
first order drainages, as the corresponding reference drainages were difficult 
to demarcate through 3D visualisation. 
 
We compared the drainage lines for their degree of mismatch, adapting a 
method of Carrara et al. (1992) developed to compare spatial discrepancy of 
two landslide inventory maps. Using this method, we compared the closeness 
of the automatically extracted drainage line with the standard reference 
drainage line. A buffer of 30 m around the drainage lines was calculated in 
GIS to prepare the area of influence (Figure 2.5). Since a 3x3 pixel window 
was used in the automatic drainage extraction algorithm, we used a buffer 
distance of 30 m (3 times the DSM resolution) on both sides of the drainage 
lines. An error index (EI) was calculated using the following formula. 
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Where 1A  is the area of the reference drainage buffer, 2A  is the area of the 

drainage buffer extracted from the DSM, and 21 AA I  is the common area 

between the two drainages. EI ranges between 0 – 1, with lower values 
signalling a higher degree of match of the drainage lines. 
 

 
Figure 2.4: 10 m DSM extracted from the Cartosat-1 data (06 April 2006). The four 
boxes show the location of valleys that were analysed for the spatial accuracy 
assessment. 

2.3.4 Effect of valley orientation  
Although along-track stereoscopic images are increasingly used for DSM 
generation, similar to across-track viewing there are limitations when the 
DSM is generated for steep mountainous areas due to the viewing angle of 
the cameras. Since Cartosat-1 data are acquired in the descending mode, the 
PAN-Aft camera cannot view a terrain with slopes greater than 85° and 
northerly aspect, and the PAN-Fore camera cannot view a terrain with slopes 
greater than 64° and southerly aspect (Radhika et al., 2007). The relative 
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compression and elongation of features in the image is a function of slope of 
the terrain in the along-track direction of the satellite (Radhika et al., 2007). 
It means that in the along-track stereoscopic data this problem will 
predominantly occur on slopes with both south and north aspects, i.e. E-W 
oriented valleys, where we can expect image matching problems. Conversely, 
for N-S valleys, image distortion is expected to be minimal. Radhika et al. 
(2007) reported good image matching results for Cartosat-1 data for slopes 
ranging from -30° (direction opposite to the satellite motion, i.e. north 
facing) to 10° (in the same direction of the satellite motion, i.e. south 
facing). It means that slope and orientation of the valley, with reference to 
the satellite track, do influence the spatial accuracy of the DSM. 
 

 
Figure 2.5: Drainage line buffer, used for calculation of spatial accuracy. This area 
corresponds to the lower part of the box (figure 2.6b) shown in figure 2.4. 
 
To evaluate this effect, an experiment was performed by considering four 
principal types of main valley orientation i.e. E-W, N-S, NW-SE and NE-SW. 
Drainage lines, an important characteristics of valleys, were used to evaluate 
the spatial accuracy of the DSMs. The distribution of the valleys in the study 
area (Figure 2.4) offers an ideal opportunity to evaluate the effect of their 
orientation on DSM extraction in four major directions. 
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2.4 Results  

2.4.1 DSM Global accuracy  
The vertical and planimetric accuracies of the AprCartoDSM and 
DecCartoDSM were estimated using 10 independent check points, resulting in 
vertical RMSEs for both DSMs nearly identical to the spatial resolution of the 
image (Table 2.2). 
 
To verify the reliability of the DSM global accuracy values shown in table 2.2, 
we followed the theoretical approach developed by Aguilar et al. (2007), 
because of the non-Gaussian distribution of elevation residuals for this area. 
The two models developed by Aguilar et al. (2007) estimate the reliability of 
the global statistical measures as a percentage by calculating the standard 
deviations of σ and RMSE, with lower values indicating higher reliability. The 
models were applied to the residual dataset and the results are shown in 
table 2.3.  
 
Table 2.2: Statistical assessment of the global accuracy of DSMs using 10 check 
points. X and Y show the planimetric, Z the vertical accuracy. 

Variables 
Statistical parameters 

(errors) 
AprCartoDEM 

(m) 
DecCartoDEM 

(m) 

X Minimum 0.02 0.02 
Maximum 1.14 1.46 
μ 0.60 0.27 
RMSE 0.71 0.48 
σ 0.40 0.44 

Y Minimum 0.03 0.02 
Maximum 0.93 0.46 
μ 0.46 0.15 
RMSE 0.58 0.21 
σ 0.37 0.16 

Z Minimum 0.12 0.10 
Maximum 4.98 5.80 
μ 1.27 0.96 
RMSE 2.31 2.51 
σ 1.99 2.02 

 
Table 2.3: Reliability of the vertical global accuracy of both the DSMs. 

DSM Reliability of σ (%) Reliability of RMSE (%) 

AprCartoDEM 22.1 23.4 
DecCartoDEM 34.2 37.5 
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2.4.2 Effect of valley orientation on DSM accuracy  
Spatial accuracy assessment of the DSMs extracted from the two Cartosat-1 
datasets with high and low sun elevation angles was carried out by 
calculating the degree of match between the reference and automatically 
extracted drainage lines. Two reference drainage systems (from April and 
December images), when compared, showed negligible mismatch. We 
selected valleys for the required orientations with comparatively little 
topographic shadow in both datasets. It was observed that for an E-W valley, 
the main valley drainage lines extracted from AprCartoDSM showed 
significant spatial deviation from the reference drainage line (Figure 2.6a1). 
Surprisingly, the main valley drainage derived from DecCartoDSM showed a 
better match (EI = 0.35) with the reference drainage (Figure 2.6a2) than 
those from AprCartoDSM (EI = 0.64). For the remaining three types of valley 
orientation (N-S, NW-SE and NE-SW), no significant deviations of drainage 
lines were observed between both DSMs (Figures 2.6b1 and b2, c1 and c2, 
d1 and d2).  
 
Steep hill slopes are the probable areas for failure of image matching in 
Cartosat-1 (Radhika et al., 2007). Therefore, DSM portions in those areas are 
more prone to error than the main valley floor. To know precisely the areas 
of good degree of match, we divided the drainage lines into two categories: 
one corresponding to the main valley (one drainage line in the central part of 
the valley), the other corresponding to hill slopes. The EI was calculated 
using equation 2.5. 

2.4.3 Effect of shadow on DSM generation 
Shadow is a homogeneous area in the image and automatic image matching 
mostly fails in such areas, resulting in elevation values in these areas that 
are incorrect due to poor interpolation from the sparsely distributed 
surrounding match points. The extent of topographic shadow depends on the 
steepness of the terrain, valley orientation and sun elevation angle. In the 
area studied in this chapter, some parts with a steep slope and north aspect 
are under more shadow in the winter season data than the summer season. 
For example, the small part of the valley shown in figure 2.7 is 51% under 
shadow in the winter season data, compared to only 2% in the summer 
season data. Hence, differences in the distribution and density of match 
points were observed for the data of both seasons (Figure 2.7a and 2.7b). 
The density of match points was lower for the winter season data than the 
summer season data around the areas affected by shadow. A terrain profile 
of the area (along the transect E–F) shows significant differences in elevation 
(Figure 2.7c). For areas that are not under shadow the match points were 
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generated evenly and there was no significant difference of elevation in the 
two DSMs (Figure 2.7c). 

2.5 Discussion 
DSMs for a steep mountainous area were extracted from Cartosat-1 stereo 
pairs of both summer and winter seasons using SAT-PP. This software proved 
to be robust for automatic DSM extraction due to its superior image matching 
algorithm (based on feature points, grid points and edges), as compared to 
LPS. 
 
A high level of global accuracy was achieved due to the use of additional 
GCPs for refining orientation result of the RPC model (Table 2.2). It  was 
better than previously reported for Cartosat DSMs by Ahmed et al. (2007) 
due to better planimetric and vertical distribution of control points used for 
triangulation of our datasets. No significant differences in vertical and 
planimetric RMSEs between the two DSMs were observed (Table 2.2). 
However, the reliability of global accuracy values for AprCartoDSM is better 
than the DecCartoDSM (Table 2.3). Reliability of global accuracy values is a 
function of the number of check points. For example, Aguilar et al. (2007) 
obtained a good reliability value of 6.3% when a sample size of 128 check 
points was used. The overall reliability of the two DSMs generated in this 
study must be considered unsatisfactory by Aguilar et al.’s (2007) measure, 
a result of the low number check points available.  Local errors were also 
observed in the DecCartoDSM due to the presence of shadow (Figure 2.7c). 
This is due to lack of contrast in the shadow areas, which leads to absence of 
matched points. 
 
Apart from the terrain steepness, orientation of valleys with respect to 
satellite track is another important factor in along-track stereoscopy that has 
a significant effect on the DSM spatial accuracy. According to Radhika et al. 
(2007), image matching is a function of slope along the direction of satellite 
track in Cartosat-1. This means that E-W valleys are problematic areas for 
image matching, as the variation of slope is mainly in the along-track 
direction. Conversely, we can expect minimum problems for image matching 
in N-S valleys. We found maximum EI values for the main valley and hill 
slope drainages along E-W oriented valleys, in comparison to the three other 
types of orientations (Figure 2.6). Further, in the E-W valley the spatial 
accuracies of the main valley drainage  from  both  DSMs  are  better  when 
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Figure 2.6: Drainage comparison for four types of valley orientations (E-W, N-S, NW-
SE and NE-SW) with automatically derived drainage from the DSM superimposed on 
the manually extracted reference drainage, for the AprCartoDSM (a1-d1) and 
DecCartoDSM (a2-d2). 
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Figure 2.7: Difference in the distribution and density of matched points (black dots) in 
shadow areas from Cartosat-1 images of (a) 06 April 2006 and (b) 01 December 2005. 
E-F profile in (c) shows the difference of elevation in shadow affected areas. (a) and 
(b) have the same scale and orientation. The insets in (a) and (b) show the shadow 
conditions. The image contrast is reduced to highlight the distribution of points. 
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compared to the hill slope drainage (Figure 2.6). This difference in spatial 
accuracy is due to limited variation of slope along the valley floor than, as 
compared to high variation in the hill slopes areas. Therefore, overall lower 
spatial accuracy for E-W oriented valleys than for other orientations can be 
attributed to image matching problem. 
 
In the Himalayas, geological structure has a strong influence on shaping the 
topography. The valleys and ridge lines mostly follow geological structure. 
We observed that the drainage lines in an E-W valley were better matched on 
hill slopes facing north than the drainage lines on the hill slopes facing south 
(Figure 2.6a1 and a2). This is due to the typical topography of this area as 
shown in figure 2.8, where hill slopes facing north are gentle and hill slopes 
facing south are steep. 
 

 
Figure 2.8: Field photograph showing typical topography of the study area with gentle 
north facing dipslopes and steep south facing faceslopes. The signs of topographic 
slope are with reference to the satellite motion. 
 
The spatial accuracy of the main valley and hill slope drainages extracted 
from the DecCartoDSM are 45% and 20% higher than the AprCartoDSM for 
E-W valleys, respectively. This is a result of a higher number of match points 
generated in the valley floor and hill slope portions of the E-W valleys for 
winter season data than the summer season data. When analysing the pixel 
information we found a good local contrast in the winter image compared to 
the summer image (Figure 2.9), meaning that radiometric variation is better 
in the winter than the summer season data, even though land cover remains 
the same. The image shows a higher range and standard deviation in the 
winter than the summer season data (Figure 2.9), and explains the presence 
of more match points in the former, as most image matching algorithm rely 
on strong local contrast (e.g. Kerle, 2002). Better radiometric variation in the 
winter season data may be due to proper illumination of the hill slopes, 
particularly those facing south, by the sun with a low elevation angle. 
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Although shadow is seen in the north facing slope of the winter season image 
(Figure 2.9a), these are small pockets (ellipses in Figure 2.9a), embedded in 
less intensively but sufficiently illuminated areas for SAT-PP to identify match 
points, unlike in the area shown in figure 2.7b, where the DN value range 
within the shadow areas was too low, and the shadow area too extensive, 
resulting in blanket interpolation. 
 

 
Figure 2.9: Cartosat-1 PAN-Aft image showing better local contrast in the winter 
season image (a) than the summer season image (b), for an E-W valley. This area 
corresponds to the box (figure 2.6a) in figure 2.4. Ellipses inside figure (a) show small 
shadow areas. 

2.6 Conclusion 
In this chapter we generated two DSMs using high and low sun elevation 
angle Cartosat-1 data for a steep mountainous area in the Himalayas, and 
assessed the advantages and limitations of these stereoscopic images as a 
source of elevation data. High resolution along-track stereoscopic data, such 
as from Cartosat-1, have become a major source for DSM generation. GCPs 
were used to refine the orientation result of the RPC model of Cartosat-1 data 
and resulted in a DSM with a vertical RMSE equivalent to the spatial 
resolution of the images, although this also reflects a relatively low number 
of GCPs largely confined to less steep areas that we would expect to be more 
accurate in the resulting DSM. The RMSEs were found to be comparable for 
AprCartoDSM and DecCartoDSM with 23.4% and 37.5% reliability, 
respectively. This is lower than previously reported results (e.g. Aguilar et al., 
2007; Li, 1991), due to the lower number of independent check points 
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available. However, local errors exist in the DSM in shadow areas that result 
from low sun elevation. 
 
Apart from the metric accuracy, spatial accuracy of the DSMs was estimated 
by comparing automatically extracted drainage lines from the DSM with 
reference drainage information. We found that valley orientation has a 
significant effect on the planimetric as well as vertical accuracy of a DSM 
extracted from along-track stereoscopic data. The minimum and maximum 
spatial accuracies were obtained for E-W and N-S oriented valleys, 
respectively. This information is of use for hydrologists and geomorphologists 
when anticipating potential error sources, since the inaccuracies primarily 
affect commonly used DSM derivatives. 
 
Although it is commonly assumed that a high sun elevation angle (less 
topographic shadow) is favourable for automatic DSM generation, we found 
that for E-W oriented valleys the DSM extracted from low sun elevation angle 
data provides better spatial accuracy than the DSM from data captured under 
a high sun elevation angle, if the actual valley is sunlit in both datasets. This 
effect can be seen in the area shown in figure 2.7b, where extensive shadow 
resulted in blanket interpolation, vs. the slope shown in figure 2.9a where 
smaller shadow pockets led to spatially confined DSM errors. However, the 
effect of illumination needs to be studied in more detail.  
 
Both results are important for DEM users as they show that the sun elevation 
angle and local valley orientation can have a pronounced effect on the 
accuracy of a DSM, yet the consideration of these parameters is typically 
neglected. Our method of spatial accuracy assessment is simple and can be 
adopted by a DEM user as it does not require a reference DEM, which in most 
cases is unavailable. It will be interesting to evaluate the effect of valley 
orientation and sun elevation angle on the spatial accuracy of DSMs derived 
from other along-track data sources with similar sensor configuration, such 
as ALOS-PRISM and SPOT-5 HRS.  
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Chapter 3: Volumetric analysis of landslides* 
In this chapter we assess the suitability of a DSM derived from Cartosat-1 to 
quantify large-scale geomorphological changes. Landslide volume was 
estimated by elevation change analysis of pre- and post-event DEMs. 
Depletion and accumulation volumes estimated through this analysis can 
form an important part of the landslide inventory information necessary for 
the landslide hazard studies. 

3.1 Introduction 
Large scale anthropogenic landscape changes, such as those caused by 
mining and urban waste disposal, and those of natural origin, such as 
landslides and glacial melting, are primary topographic change drivers  
(Kerle, 2002; Martha et al., 2010a; Surazakov and Aizen, 2006; van Westen 
and Lulie Getahun, 2003). Small or subtle changes are readily quantified 
using techniques such as radar interferometry or, where available, laser 
scanning data. Volumetric analysis has the potential to monitor and quantify 
also large-scale events, and can be useful in implementing proper risk 
management strategies or to enforce environmental regulations. For 
example, reliable information on material volume can help government 
agencies to estimate the value of contract and number of days required to 
clear the debris from transportation routes in case of a landslide (Jaiswal and 
van Westen, 2009), or the amount of material required to reclaim the land in 
case of open-pit mining as a mandatory requirement under a mine control act 
(Townsend et al., 2009). In the past such assessments have typically been 
done through time-consuming field measurements, although those tend to 
suffer from difficulties in establishing accurate baseline topography. 
Photogrammetric techniques have been increasingly used because of their 
capability to rapidly reconstruct the 3D topography from aerial photographs 
(Dewitte and Demoulin, 2005; Kääb, 2002; Kerle, 2002) and, provided such 
data exist for different time periods, allow objective change detection. 
 

More recently, civilian Earth observation satellites have offered stereoscopic 
data with sufficient spatial resolution to allow aerial data to be effectively 
replaced (Martha et al., 2010c; Radhika et al., 2007; Tsutsui et al., 2007; 
Zhang and Gruen, 2006). In addition, new generation satellites such as 
Cartosat-1 have considerable advantages over airborne stereo imagery, due 
to their high periodicity, synoptic view, high data quality, relatively low cost, 

                                          
* This chapter is based on the article: Martha, T.R., Kerle, N., Jetten, V.G., van Westen, C.J. and 
Kumar, K.V. (2010) Landslide volumetric analysis using cartosat - 1 - derived DEMs. IEEE 
Geoscience and Remote Sensing Letters, 7 (3), 582-586. 
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and quick extraction of DEM using RFM (Baltsavias et al., 2008; Martha et al., 
2010c). Cartosat-1, launched by the ISRO in 2005, is a global mission 
planned for cartographic mapping, urban studies and disaster management 
(NRSC, 2006). Specifications of Cartosat-1 are provided in section 2.1. Data 
from Cartosat-1 are 10 bits and provided with RPCs for photogrammetric 
processing and extraction of 3D information using RFM. In principle, 
therefore, Cartosat-1 data are well suited for fast and accurate 3D surface 
reconstruction, although in practice there can be potential problems due to 
shadow, occlusion and steep slopes depending on the terrain (Baltsavias et 
al., 2008; Martha et al., 2010c). With Cartosat-1 acquiring along-track data, 
image matching is less problematic than for across-track images due to 
reduced radiometric variation between the two images of a stereo pair 
(Radhika et al., 2007); however, factors such as valley orientation, sun 
elevation angle and poor texture frequently hinder accurate extraction of 
elevation data (Martha et al., 2010c). We addressed some of these problems 
through SAT-PP photogrammetric software, especially developed for high 
resolution satellite data, and which previously demonstrated the ability to 
process such stereoscopic data due to its superior image matching algorithm 
(Zhang and Gruen, 2006), compared to other COTS software types (Martha 
et al., 2010c). 
 
In this chapter we tested the utility of Cartosat-1 data for quantitative 
volume analysis based on cut and fill assessment, an established method for 
estimating the volume of large landslides (Chen et al., 2005; Kerle, 2002; 
Tsutsui et al., 2007). We used the 2007 Salna landslide in the Indian 
Himalayas as a test case, which offers a great challenge to automatic DEM 
extraction due to steep slopes and large topographic shadows (Martha et al., 
2010c). Previous studies have demonstrated the utility of DEMs extracted 
from satellite data for monitoring topographic changes due to glacial melting 
(Kääb, 2002; Surazakov and Aizen, 2006; Tsutsui et al., 2007), landslides 
(Tsutsui et al., 2007), and rehabilitation planning of coal mining areas (Loczy 
et al., 2007). The purpose of this chapter is to assess if Cartosat-1 derived 
DEMs are sufficiently accurate to quantify such changes and to monitor 
compliance with related legislation. 

3.1.1 Landslide volume estimation 
Landslides are major mass wasting processes and landscape building factors 
in mountainous terrains. They are primarily triggered by seismic activity, 
rainfall or road construction, and cause enormous destruction to property and 
lives in those areas. Some of the major earthquakes that have created 
several deep-seated landslides in the recent past are the Kashmir earthquake 
in India and Pakistan in October 2005 and the Sichuan earthquake in China in 
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May 2008. Apart from direct damage landslides also contribute sediments to 
river systems and create siltation problems in reservoirs, reducing their 
capacity for hydro power generation. They also have the potential to create 
artificial lakes by blocking river courses, thus generating potential flash floods 
in downstream areas (Dunning et al., 2007; Wang et al., 2009). Knowledge 
of failure volumes is also critical for more accurate understanding of the 
landslide process (e.g. Scott et al., 2005) and the preparation of 
susceptibility maps, which show potential areas of future landslide 
occurrences. For example, landslide susceptibility maps will be more accurate 
if volume, instead of area of the landslide, is used to calculate weights of the 
terrain parameters. Okura et al. (2003) showed how the volume of a 
landslide directly affects its travel distance, while Dai and Lee (2001) 
demonstrated that frequency-volume relationships can be used to predict 
rainfall-induced landslides.  
 
Traditionally, failure volumes have been estimated by measuring landslide 
dimensions (length, width and depth) on the ground, using assumptions 
about the shape of the landslide (Cruden and Varnes, 1996). Such ground-
based methods may provide accurate volume figures, though are time-
consuming, error-prone and at times not possible due to terrain 
inaccessibility. Pre- and post-failure topographic maps can also be used for 
calculating the landslide volume using change detection techniques. However, 
topographic maps are typically not updated immediately after the event, or 
lack sufficient accuracy (Kerle, 2002).  In order to overcome these problems, 
multi-temporal aerial photographs were initially used to estimate landslide 
extents and volumes (Dewitte and Demoulin, 2005; van Westen and Lulie 
Getahun, 2003). Dewitte and Demoulin (2005) generated DEMs with a high 
accuracy from aerial photographs using photogrammetric techniques to 
estimate the volume of 13 deep-seated landslides in the Flemish Ardennes. 
However, with advancements in image matching techniques and increasing 
availability of high resolution stereoscopic satellite data, quantitative studies 
on landform changes using DEMs based on satellite data have become a 
viable option (Chandler, 1999). Recently, Tsutsui et al. (2007) used SPOT-5 
stereoscopic data and generated five meter DEMs to calculate the volume of 
landslides triggered due to an earthquake and a cyclone in Japan and Taiwan, 
respectively. However, their estimated volume showed a mismatch with the 
reference volume due to inaccuracies in the DEM resulting from poor texture 
in 8 bits SPOT images and topographic shadow. The problems of poor texture 
can be reduced by the use of 11 bits images from IKONOS or QuickBird  
(Zhang and Gruen, 2006). However, their low swath width and high cost 
render those sensors impractical for routine volumetric analysis. Moreover, 
pre-failure images, essential for volume estimation are mostly not available 
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from these satellites. Kerle (2002) and Scott et al. (2005) showed how lack 
of knowledge of pre-failure topography and limited access to the site led to a 
ground-based volume underestimation of the 1998 flank collapse at Casita 
volcano, Nicaragua, of almost an order of magnitude eight.  

3.2 Area and data analysis 

3.2.1 Test area 
The test area is located in one of the landslide prone areas in the Himalayas. 
Its centre co-ordinates are 30° 23′ 38″ N and 79° 12′ 42″ E. It is located in 
the Nagol Gad (River) sub-catchment in the High Himalayas in the 
Uttarakhand state of India (Figure 3.1). Nagol Gad is a part of Alaknanda 
catchment, which witnessed several major co-seismic landslides during the 
Chamoli earthquake in March 1999 and it lies very close to the Main Central 
Thrust (Barnard et al., 2001). Rocks such as banded quartzite at the crown, 
and quartzite inter-bedded with mica schist at the toe of the landslide, 
belonging to Proterozoic era are exposed in this area. However, the landslide 
investigated for this volumetric analysis was triggered by heavy rainfall in 
July 2007. It occurred near the Salna village in the Chamoli district of 
Uttarakhand state. The landslide-affected area is completely exposed to sun 
in both pre- and post-landslide images (Figure 3.2a and 3.2b). The general 
topography is steep, with slopes ranging from 18° to 63°. The elevations of 
the crown and tip of the landslide are 1636 m and 1261 m, respectively. The 
Salna landslide is a translational rock slide, which means that the failure has 
taken place along a planar surface of rupture. Its length (crown to tip) is 530 
m, with a maximum width at the centre of the landslide of 260 m (Figure 
3.1a). Although there were no fatalities, the major road connecting the 
surrounding area with Chamoli town was blocked for several months, causing 
hardship to local population and damage to the regional economy. 
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Figure 3.1: Location map of the Salna landslide. (a) 3D perspective view of Salna 
landslide with the Cartosat-1 image draped over a DEM, (b) and (c) pre- and post-
landslide DEM, respectively, showing distribution of control and check points, (d) field 
photograph showing synoptic view of the landslide, (e) view of the quartzite bedrock 
exposed in the scarp (the area above the black dotted line), and a part of the zone of 
accumulation as seen from the temporarily constructed road, and (f) large angular 
boulders with large voids in between, signaling a volume increase during deposition. 

3.2.2 DSM generation 
Two sets of stereoscopic Cartosat-1 data, acquired on 06 April 2006 (pre-
landslide) and 16 December 2007 (post-landslide), were processed using 
SAT-PP software. Compared to established COTS photogrammetric packages, 
SAT-PP has an improved image matching algorithm based on combined 
matching results of feature points, grid points and edges, leading to superior 
results also in steep terrain (Martha et al., 2010c; Zhang and Gruen, 2006). 
DSMs with 10 m grid size were generated using RPCs determined from the 
RFM and provided by the data vendor. RFM is a generic sensor model and is 
used as an alternative to physical sensor models for block orientation of the - 
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Figure 3.2: Salna landslide. (a) Cartosat-1 orthoimage of 06 April 2006 showing the 
pre-landslide area outlined in white. It was a distressed zone with presence of two 
minor landslides acting as a precursor to the main event, (b) Cartosat-1 orthoimage of 
16 December 2007 showing the landslide that occurred in July 2007, (c) post-landslide 
map showing main scarp (MS) and minor scarps (MS-1), and (d) non uniform 
vegetation height surface created by the interpolation of heights measured from 74 
trees, and post-landslide effects. The new road now has a convex outward shape, and 
the original river was pushed outward due to the deposition of debris at the foothill 
region. Profile along A-B is shown in figure 3.3. 
 

stereo-image pair. RPCs are terrain independent, and require refinement with 
GCPs at block level to increase the absolute geo-location accuracy of DSMs 
(Baltsavias et al., 2008). Therefore, we used six GCPs with good planimetric 
and vertical distribution to refine the orientation result of the RFM (Figure 
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3.1b) (Baltsavias et al., 2008). The GCPs were collected in a DGPS survey 
using a dual frequency (L1 and L2) Leica 520 receiver. The standard 
deviation of the errors of elevation, longitude and latitude of the points 
surveyed range between 0.10 m to 0.46 m, 0.04 m to 0.15 m and 0.04 m to 
0.21 m, respectively. 
 
The necessity of high DEM accuracy for an elevation change analysis has 
been emphasized by previous researchers (Kerle, 2002; Van Niel et al., 
2008). Kerle (2002) showed how especially the combination of errors in the 
vertical accuracy of photogrammetrically derived DSMs and the landslide 
thickness typically being the smallest dimension readily combine to 
substantial uncertainty. Errors in elevation difference can either result from 
mis-registration of the pre- and post-event DEMs (Van Niel et al., 2008), or 
from low spatial accuracy resulting from sun illumination and valley 
orientation with reference to the satellite track (Martha et al., 2010c). Along-
track satellite data such as from Cartosat-1 offer improved results of image 
matching due to reduced radiometric variation between images of a stereo 
pair (Radhika et al., 2007). However, distortion of feature geometry due to 
steep terrain and variable viewing angle of Cartosat-1 has compromised 
some of these advantages. This problem can be overcome using SAT-PP 
software, which relies on a robust point, grid and feature based image 
matching technique (Zhang and Gruen, 2006). Topographic shadow in 
mountainous area is another problem that creates inaccuracies in a DEM. 
SAT-PP is also capable of generating the adequate number of match points 
required for an accurate DSM generation for relatively small shadow areas; 
however, large shadows still remain a problem (Martha et al., 2010c; Zhang 
and Gruen, 2006). 
  
In chapter 2 we assessed the absolute accuracy of the pre-landslide DEM 
using 10 independent check points obtained from the DGPS survey, resulting 
in vertical and planimetric RMSE as 2.31 m and < one meter, respectively 
(Martha et al., 2010c). In addition, spatial accuracy of the pre-landslide DEM 
was estimated by a drainage line comparison method, wherein drainage lines 
were used as a proxy to estimate the error due to spatial auto-correlation in 
the absence of a very accurate reference DEM (Martha et al., 2010c). 
Subsequently, refinement of the orientation result of post-landslide RFM was 
done by using three GCPs common in the overlap area (Figure 3.1c). Thus 
both DSMs were brought into the same spatial framework. However, to verify 
the vertical and co-registration accuracies of two DSMs, a residual analysis 
was carried out between the two DSMs in an area adjacent to the landslide 
(Figure 3.1a). This area is unvegetated and no morphological changes have 
occurred during the observation period. The residual analysis showed a 
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vertical mean and standard deviation of errors of 0.11 m and 0.06 m, and 
corresponding planimetric errors of 0.09 m and 0.05 m, respectively. The low 
errors indicate that both DSMs are co-registered properly and have a good 
vertical accuracy relative to each other. Therefore, any change in height can 
be attributed to morphological changes, such as due to landslides, allowing 
volumes to be calculated. 

3.2.3 Volumetric analysis 
As volume calculation must be based on the actual pre- and post-landslide 
terrain surfaces, vegetation that may have covered the area before failure, or 
that was possibly retained during the landslide, must be corrected for, as it 
forms part of the photogrammetric surfaces. Accurate estimation of 
vegetation height has previously been shown to be challenging (Kerle, 2002). 
In the area of the Salna landslide mainly chir trees, a pine variety typical in 
the Himalayas, are found. The height of some of the uprooted and standing 
trees (in the adjacent area) was measured on the ground. This height, in 
conjunction with the height of the trees measured through manual 
interpretation of stereo images was used to create a non-uniform vegetation 
height surface (Figure 3.2d). A total of 74 trees (7 on the ground and 67 in 
the stereo image) with a mean height of 11.87 m (minimum 4.29 m and 
maximum 19.67 m) were used for the creation of the non-uniform vegetation 
height surface. Subsequently, this surface was subtracted from the 
automatically generated pre-failure DSM, and a vegetation-corrected DTM 
was created. Vegetation correction was not required for the post-failure DSM 
since trees were completely uprooted. After vegetation correction the area 
and volume of the Salna landslide were calculated by subtracting the post-
landslide DTM from the pre-landslide DTM, using the cut and fill operation in 
ArcGIS. This operation summarizes areas and volumes of change using 
surfaces of a given location at two different time periods, and identifies 
regions of surface material removal, addition and no change. 

3.3 Results and discussion 
The Salna landslide was triggered due to excessive rainfall, and the pre-
landslide Cartosat-1 image already showed the existence of small active 
landslides in the area (Figure 3.2a). The slope length of the main scarp below 
the crown of the landslide is approximately 50 m (Figure 3.2c). The landslide 
completely buried the road with material displaced from the crown part. The 
new road (Figure 3.1d), which was temporarily constructed to allow traffic to 
resume is now positioned 62 m outward from its previous location, and the 
shape of the road is convex outward (Figure 3.2d), indicating the deposition 
of a large amount of material and development of a hummocky structure. 
Similarly, the Nagol Gad (River) was pushed 25 m to its right bank by the 
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landslide (Figure 3.2d). Fortunately, no damming of the river occurred due to 
the landslide. Debris mainly composed of boulders of banded quartzite is 
seen in the zone of accumulation (Figures 3.1e and 3.1f). 
 
From the profile (Figure 3.3) and from the extent of the volume gain (Figure 
3.4b) it is clear that the area of the zone of depletion is smaller than the area 
of the zone of accumulation, indicating expansion, or bulking, of material 
after the displacement due to fragmentation of the bed rock. The elevation 
change map shows that maximum deposition of material has taken place at a 
height of approximately 1420 m (Figure 3.4a). The cut and fill volumes, i.e. 
the volumes of depleted and accumulated material, were estimated as 0.55 x 
106 m3 and 1.43 x 106 m3, respectively (Table 3.1). 
 

Table 3.1: Quantitative comparison of volume. 

DEM type 

Volume loss (106 m3) Volume gain (106 m3) 

Bulking 
Before 

vegetation 
correction 

After 
vegetation 
correction 

Before 
vegetation 
correction 

After 
vegetation 
correction 

DEM (with 
GCP) 

0.77 0.55 1.34 1.43 2.60 

DEM (without 
GCP) 

0.76 0.54 1.31 1.41 2.61 

DTM (spot 
height) 

0.67 1.26 1.88 

 
So far we have estimated the landslide volume from DEMs derived with the 
use of additional GCPs. However, the need for field-measured control points, 
a strictly required in traditional photogrammetry, severely undermines the 
utility of satellite data for rapid and independent post-landslide assessment. 
To assess the dependency of accurate volume estimation on additional field-
mapped GCPs, we also created DEMs only with the RPCs provided with 
Cartosat-1 data. Such a step is reasonable, as additional GCPs primarily 
affect the absolute accuracy of the DEM, and less the relative elevation value 
distribution. Nevertheless, the effect of integrating two such relative surfaces 
for accurate change assessment was unknown. Table 3.1 shows that the 
estimated volume values based on RPC-only DEMs fall to within 1–3% of the 
GCP-supported DEM values, indicating that the volume figures are less 
sensitive to GCPs support than expected. 
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Figure 3.3: Pre- and post-failure surface profile from the crown to tip of the landslide. 
Grey dotted line shows the possible extension of surface of rupture over which debris is 
temporarily deposited. Height of some of the chir pine trees were measured on the 
ground (e.g. an uprooted tree in the inset photograph). 
 
The bulking factor (ratio of volume gain to volume loss) of 2.60 (Table 3.1) is 
comparable to previously reported values for similar events, such as the 
bulking following the flank collapse of Casita volcano, Nicaragua studied by 
Scott et al. (2005). The bulking of Salna landslide is due to two factors: 1) 
incomplete separation of loss area from gain area, due to which material is 
still lying at the bottom of the hidden rupture surface (van Westen and Lulie 
Getahun, 2003), which is impossible to be reconstructed from post-failure 
stereo data (Figure 3.3), and 2) poor sorting of large and angular broken 
quartzite rock fragments (Figure 3.1f) created by the translational rock slide, 
leading to a possible overestimation of the gain volume. However, the 
estimated volume can be considered realistic, since the post-landslide surface 
was generated shortly (approximately five months) after the occurrence of 
the landslide, suggesting limited deposition material loss due to surface 
erosion and further remobilization. 
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Figure 3.4: Volumetric analysis of the Salna landslide. (a) elevation difference due to 
landslide with negative values showing lowering of surface and positive values showing 
rising of the surface after the event, and (b) extent of the volume loss and volume 
gain, which corresponds to the zones of depletion and accumulation, respectively. 

3.3.1 Accuracy assessment of volume 
The global accuracy of the DSM has been verified by independent check 
points, although previous studies have shown that digital photogrammetry 
with low global errors can still lead to substantial local errors, especially in 
areas of low contrast (e.g. uniform vegetation, landslide failure flanks). 
Volume accuracy assessment in such small, local areas is thus a challenge, 
particularly with only limited reference data, i.e. without a dense network of 
ground check points for both pre- and post-landslide affected area. Due to 
the absence of detailed verification data for the relatively small landslide area 
(i.e. part of the large DEMs for which accuracy has been checked), we 
manually extracted spot heights (Kerle, 2002), identifying 85 and 129 points 
from the pre- and post-failure datasets, respectively, using StereoAnalyst in 
ERDAS Imagine, and compared the volume obtained from spot height data 
with the automatic results (Table 3.1). The number of points is sufficient for a 
reliable comparison since they were collected with particular emphasis on 
break-in-slope and scarp areas, leading to a surface that models the actual 
failure area well. Spot heights from the pre-failure image were collected by 
selectively measuring ground elevations in between trees, thus eliminating 
the need for further vegetation correction, and directly on the failure and 
deposition surfaces in the post-failure image. These points were interpolated 
using the TOPOGRID algorithm in ArcGIS to derive reference DTMs (Wise, 
2007). 
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3.4 Conclusion 
Updated elevation data are essential for identifying areas of large-scale 
topographic changes for disaster management or enforcement of 
environmental legislation. The purpose of this study was to assess the 
potential of a new generation of space-borne sensors to provide DEMs for the 
quantification of landscape changes. In this study, DSMs with 10 m grid size 
corresponding to two different time periods, generated from Cartosat-1 data 
using digital photogrammetric methods, were used to quantify large-scale 
topographic changes resulting from a landslide. Following photogrammetric 
conventions, we generated DSMs with a grid size equivalent to 3–4 times of 
the ground sampling distance. With some data types, such as from SPOT-5, 
higher resolutions can be achieved, for example the 2.5 m resolution DEMs 
produced by Tsutsui et al. (2007), using super resolution processing (Latry 
and Rouge, 2003). Interestingly, the previously reported requirement for 
additional GCPs (Baltsavias et al., 2008) was found to be of lesser 
importance, allowing us to create surfaces with comparable relative accuracy 
also without such field-based measurements. This requires actual co-
registration of pre- and post-failure DSMs rather than use of absolute 
coordinates. This means that RPCs alone are sufficient for the estimation of 
volume, thus freeing rapid post-failure volume assessment entirely from field 
data requirements, although refinement of the RFM orientation result is 
required to improve the absolute geo-location accuracy necessary for 
cartographic applications. Knowledge on pre-failure topography is crucial for 
accurate estimation of volume (Kerle, 2002). Cartosat-1 was launched in 
2005, and its data were systematically acquired, providing substantial 
archives of images for major parts of the world. Availability of post-failure 
datasets from Cartosat-1 shortly after the event then enabled us to do rapid 
volume estimation. The cut and fill volumes derived from automatic DEMs 
showed reasonably good match with the reference volume derived from 
DEMs generated using manually extracted spot height data. This indicates 
that a 10 m DSM from Cartosat-1 data can be effectively used for large scale 
elevation change and volumetric analysis such as for a deep-seated landslide. 
The information on landslide volume can effectively be used to establish 
magnitude-frequency relationship for quantitative estimation of landslide 
hazard. However, the volume values calculated based on manually extracted 
spot heights show deviations of about +18% and -12% for the volume loss 
and gain areas, respectively, resulting also in a bulking factor that is 27% 
lower than based on automatic DEMs with GCPs. These deviations of volume 
values can be attributed to the steep slope (51°) near the crown of the 
landslide, where automatically generated DEMs are prone to error (Tsutsui et 
al., 2007). 
 



Chapter 3 

 41

This study showed that Cartosat-1 data have the potential to derive volume 
information critical for disaster assessment, in principle without any 
additional GPS field measurement, provided that any present vegetation 
artifacts are removed from the DSMs used in the change assessment. It must 
also be noted that, with landslide thickness, i.e. z, typically being the 
smallest dimension, elevation errors resulting from photogrammetric artifacts 
or inaccurate DSM-to-DTM correction will have a correspondingly large 
consequence on volume calculations. Quantitative estimation of similar large-
scale changes in the landscape, e.g. due to open-pit mining and urban waste 
disposal, although not shown in this study, can in principle also be done with 
Cartosat-1 derived DSMs since they require multi-temporal DEMs similar to 
the ones used in this study. 
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Chapter 4: Characterisation and detection of 
landslides* 
In this chapter the use of a combination of spectral, shape and contextual 
information to detect landslides is discussed.  This information was derived 
from multispectral data, DTMs and their derivatives. It uses objects derived 
from the segmentation of a multispectral image as classifying units for 
object-oriented analysis. Objects recognised as landslides were subsequently 
classified based on material type and movement.  

4.1 Introduction 
 
Landslides are a major natural hazard, causing significant damage to 
properties, lives and engineering projects in all mountainous areas in the 
world. Landslide hazard and risk management begins with comprehensive 
landslide detection/mapping, which serves as a basis to understand their 
spatial and temporal occurrences (Brardinoni et al., 2003; Carrara and 
Merenda, 1976; Guzzetti et al., 2000). Detection of landslides includes 
recognition and classification (Mantovani et al., 1996), frequently done using 
the systematic classification of landslides based on type of material and type 
of movement proposed by Varnes (1978). In Varnes’ classification, the types 
of material are rock, debris and earth, with falls, topples, slides, spreads and 
flows constituting movement types (Cruden and Varnes, 1996). The 
classification proposed by Varnes, and consistent with the UNESCO Working 
Party on the World Landslide Inventory (UNESCO-WP/WLI, 1993a), is 
essentially a field based method, conceptualised and illustrated using block 
diagrams, without reference to their surrounding morphometry and 
contextual relationship. However, Earth observation data are increasingly 
used for landslide mapping, with automatic methods being preferable over 
manual approaches for obtaining quicker results over large area, whereby the 
use of spectral, spatial, morphometric and contextual properties is essential 
to their success (Barlow et al., 2006; Borghuis et al., 2007). A 
comprehensive characterisation of landslides from an automatic detection 
perspective is required for the extraction of fast and accurate results that will 
help decision makers in implementing disaster management strategies.  

                                          
* This chapter is based on the articles: Martha, T.R., Kerle, N., Jetten, V.G., van Westen, C.J. and 
Kumar, K.V. (2010) Characterising spectral, spatial and morphometric properties of landslides for 
semi - automatic detection using object - oriented methods. Geomorphology, 116 (1-2), 24-36. 
 

Martha, T.R. and Kerle, N. (2010) The potential of object - based and cognitive methods for rapid 
detection and characterisation of landslides. In: 6th International Symposium on Geo-information 
for Disaster Management (Gi4DM), 2-4 February 2010, Torino, Italy (In CDROM). 
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Visual interpretation of aerial photographs, combined with field 
investigations, remained the major source for landslide inventory map 
preparation until recently (Casson et al., 2003; Kääb, 2002; van Westen and 
Lulie Getahun, 2003). Although aerial photographs accurately depict details 
of a landslide, they are often not available in a timely manner for the 
majority of landslide prone areas in the world. Satellite imagery has become 
an alternative data source since it allows a more economic assessment of 
larger landslide affected areas, as well as a synoptic appreciation of the 
context within which landslides occur, especially in terms of land cover 
dynamics. Limited initially by low spatial resolution, early studies focused on 
pure detection of large landslides. However, recent studies have increasingly 
made use of very high resolution imagery (e.g. QuickBird, Ikonos, 
WorldView-1, Cartosat-1 and 2, SPOT-5 and ALOS-PRISM) for landslide 
mapping, and the number of operational sensors with similar characteristics 
is growing year by year (van Westen et al., 2008). Other remote sensing 
approaches of landslide inventory mapping, though infrequent, include 
shaded relief images produced from LiDAR and Synthetic Aperture Radar 
(SAR) interferometry based DEMs (Singhroy et al., 1998; van Den Eeckhaut 
et al., 2007).  
 
Preparation of landslide inventory maps using automatic methods has been 
attempted by previous researchers. Borghuis et al. (2007) showed how  
unsupervised classification could detect 63% of all landslides mapped 
manually. Other familiar automatic methods of landslide mapping are change 
detection and image fusion. Nichol and Wong (2005a) showed the use of 
change detection technique to successfully differentiate landslides from 
spectrally similar features such as bare rock and soil. However, the automatic 
methods described above are pixel based methods, and pixels are ill-suited 
to represent a geomorphic process such as a landslide. Therefore, the output 
gives ‘salt and pepper’ appearance, and are mostly not verifiable on the 
ground. These methods also rely only on the spectral signature, a property 
not unique for landslides. In addition to spectral signature, landslide 
diagnostic features can include vegetation, slope angle, slope morphology, 
drainage, tension cracks, presence of man-made features such as retaining 
walls, or artificial surface drainage. Previous researchers have attempted to 
quantify some of these landslide diagnostic features. Pike (1988) calculated 
the geometric signature from a DEM for a set of topographic variables that 
separates a landslide from its surroundings. Similarly, Iwahashi and Pike 
(2007) used slope gradient, terrain texture and local convexity derived from 
a DEM for automatic classification of topography. Previous works have also 
shown that an integration of remote sensing data and DEM derivatives 
produces better result than the standalone approach (Florinsky, 1998; 
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McDermid and Franklin, 1994). OOA, a platform for integration of different 
types of data (spectral, elevation and thematic), has already proven its ability 
for successful automatic classification of landforms (Dragut and Blaschke, 
2006; van Asselen and Seijmonsbergen, 2006). It has the potential to detect 
landslides automatically in a better way than the pixel-based methods, by 
incorporating a multitude of landslide diagnostic features. 
 
Object-oriented image classification is a knowledge driven method, whereby 
spectral, morphometric and contextual landslide diagnostic features can be 
integrated based on expert knowledge to accurately detect landslides (Barlow 
et al., 2006; Barlow et al., 2003). Since landslides occur in diverse 
geomorphic settings, it is crucial to address a landslide as an object 
embedded in its surroundings. Image segmentation, a mandatory step prior 
to OOA does this by grouping spectrally homogenous pixels into an object 
(Baatz and Schäpe, 2000). The significant advantage of OOA is the realistic 
outputs that can be easily verified on the ground. However, to make effective 
use of OOA, we need a comprehensive understanding of all potentially useful 
landslide characteristics, and specifically from a segmentation-based 
perspective. We also need to update and synthesize the criteria for the 
detection of landslides as per Varnes’ classification scheme, using newer 
means of landslide inventory preparation, such as high resolution satellite 
data and DEMs. There have been limited attempts to detect landslides using 
OOA (e.g. Barlow et al., 2006). However, while they differentiated landslide 
types such as debris slides, debris flows and rock slides using OOA, their 
characterisation of different landslide types is essentially data driven by 
considering a very limited set of parameters.  In another recent study, Moine 
et al. (2009) used shape, spectral, texture and neighbourhood features, but 
no morphometric parameters, to detect landslides from aerial and satellite 
images using OOA. This clearly shows that the potential of OOA for automatic 
landslide detection has so far not been fully exploited. Using 
geomorphometry tools implemented in modern GIS softwares, and with the 
possibility of extracting many spectral, spatial and some morphometric 
parameters in image processing softwares, landslide characterisation can be 
done efficiently in comparison to tools available to previous researchers (e.g. 
Barlow et al., 2006; McDermid and Franklin, 1994; Pike, 1988), also creating 
possibilities for less data driven approaches. 
The purpose of this chapter is to update and synthesize the diagnostic 
features for semi-automatic detection (recognition and classification) of 
landslides, to provide an effective basis for researchers to develop object-
based landslide mapping routines. The potential of spectral landslide 
diagnostic features such as NDVI, shape features such as length/width ratios, 
asymmetry, texture, and morphometric features such as slope, terrain 
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curvature and flow direction, derived from high resolution satellite data and 
DEM, respectively, is discussed in this chapter. OOA is effectively a 
combination of segmentation to derive image primitives, and their 
subsequent classification based on characteristics calculated from the 
extracted objects. This chapter focuses primarily on object classification. In a 
separate study we address the segmentation and achievement of complex 
landslide shapes. Segmentation and extraction of spectral and texture 
characteristics were carried out using Definiens Developer software, while 
ArcGIS was used to derive additional morphometric indices. A complex 
analysis routine was then built in Definiens Developer to test how well all 
available spectral, textural, morphometric and contextual information can be 
used to detect landslides unambiguously. We test this routine in part of the 
High Himalayas that suffers extensively from landslides, and where efficient 
remote sensing data based techniques provide a real potential for improved 
landslide hazard and risk analysis. 

4.2 Landslide characterisation from satellite data 
and DEM  

Characterisation of landslides and development of a knowledge base for their 
automatic detection are briefly discussed here. Image characteristics used for 
visual interpretation of landslides are equally important to the success of an 
automatic detection technique. Some of them, such as vegetation, drainage 
and morphology, were discussed by Soeters and van Westen (1996). The 
spectral characteristics based on DN or NDVI values have been used by 
previous researchers for pixel based methods of automatic detection of 
landslides (Nichol and Wong, 2005a; Tarantino et al., 2007). To classify 
landslide types using object-based methods, Barlow et al. (2006) developed 
landslide diagnostic features using textural characteristics. However, they 
omitted one important parameter, morphometry, which is critical to 
distinguish commonly occurring landslide types: debris slides, debris flows 
and rock slides. Similarly, Moine et al. (2009) translated qualitative expert 
knowledge into quantitative criteria for characterising landslides using shape, 
spectral, texture and adjacency features. Although both studies made 
important contributions to object-based automatic detection landslides, 
failure mechanisms such as translational or rotational and their diagnostic 
features were not included. According to Varnes (1978), it is an important 
aspect of landslide studies when considering future hazard and ground 
stability analysis. Therefore, we discuss the following types of landslides 
based on their frequency of occurrence, and importance to landslide risk 
assessment. The discussion is illustrated with schematic block diagrams with 
emphasis on contextual and morphometric properties of landslide types 
(Figure 4.1). 
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• Translational rock slides  
These are defined as the “movement of rock down the slope along a 
planar or undulating surface of rupture” (Cruden and Varnes, 1996). The 
value of terrain curvature is very low, sometimes close to zero. The 
source area is in a rock outcrop and slope is generally steep (Figure 
4.1a). 

 

• Rotational rock slides  
These are defined as the “movement of rock down the slope along a 
curved and upwardly concave surface of rupture” (Cruden and Varnes, 
1996). It shows abrupt change in slope morphology, i.e. concavity in the 
zone of depletion and convexity in the zone of accumulation. The slope 
may be step-like due to backward tilting of slope facets (Soeters and van 
Westen, 1996). The crown shape is arcuate and located on or adjacent to 
the bed rock (Figure 4.1b). 

 

• Debris flows 
Debris flows are spatially continuous movements of debris saturated with 
water (Cruden and Varnes, 1996). It generally has a moderate slope and 
large run-out, and a scouring effect is observed along the run-out path 
(Figure 4.1c). The transition between slides to flows is gradual and 
depends on water content. Therefore, debris slides are characterised by a 
limited run-out length. The source area can be in a deep zone of 
weathering, or topographic surface with large overburden depth. 

 

• Shallow translational rock slides 
These landslides are surfacial in nature and normally associated with first 
or second order drainage. They have generally very small width in 
comparison to length (Figure 4.1d). Therefore, the length/width ratio is 
high and distance of the median line to the landslide periphery is very 
low. 
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Figure 4.1: Schematic block diagrams of landslide types. (a) translational rock slide, 
(b) rotational rock slide, (c) debris flow, and (d) shallow translational rock slide. Debris 
slide is not shown separately since it has characteristics similar to debris flow, except 
less run-out. 

4.3 Materials and methods 

4.3.1 Study area 
The Himalayas are one of the global hotspots for landslide hazard (Nadim et 
al., 2006). An area covering 81 km2 in parts of the Mandakini river catchment 
in the High Himalayas of India was selected for this study (Figure 1.3). The 
extent of the study area was restricted to the watershed boundary. Although 
direct economic damage in this area is not as high as elsewhere in the world, 
the limited number of transport corridors, vital life lines for 208 000 people 
are frequently disrupted by landslides, seriously affecting the livelihoods and 
development of the people. Identification of landslide events and their types 
can be of use for more comprehensive landslide risk modeling and mitigation. 
Detailed geology and geomorphology of the study area is given in section 
1.4. 
 
This area offers a good opportunity to test the applicability of the semi-
automatic detection technique, not only because of the occurrence of major 
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and minor landslides, but also due to presence of different types of landslides 
associated with a variety of land covers. The landslide recognition and 
classification algorithm was developed for the Madhyamaheshwar sub-
catchment and subsequently tested for the Mandakini catchment. 

4.3.2 Data sources 

4.3.2.1 Satellite data 
Steerable sensors and an increasing number of operational satellites have led 
to satellite data increasingly replacing aerial photographs for landslide 
studies. Multispectral data acquired on 16 April 2004 by Linear Imaging Self-
scanning System IV (LISS-IV) sensor onboard the Indian Remote Sensing 
Satellite (IRS) P6 (also known as Resourcesat-1) were used for extracting the 
spectral diagnostic features. These data have been shown to be useful for 
mapping of major and minor landslides after the Kashmir earthquake in 
October, 2005 (Vinod Kumar et al., 2006). They have 5.8 m spatial resolution 
and three spectral bands viz. green (0.52 to 0.59 µm), red (0.62 to 0.68 µm) 
and near infra-red (0.76 to 0.86 µm). The Resourcesat-1 LISS-IV image was 
orthorectified using the 10 m DTM created from a 2.5 m resolution 
stereoscopic Cartosat-1 data acquired on 06 April 2006. The multispectral 
image was used to calculate the spectral characteristics of landslides, such as 
NDVI and brightness.  

4.3.2.2 DEM 
High DEM accuracy is crucial for correctly quantifying the topographic 
parameters (Dewitte and Demoulin, 2005; Dragut and Blaschke, 2006). We 
used ground control points obtained from DGPS survey to improve the 
orientation result of the RPC model during block/scene triangulation of 
Cartosat-1 data (Baltsavias et al., 2008; Sadasiva Rao et al., 2006), and 
could achieve a vertical RMSE of 2.31 m. DEMs extracted automatically from 
aerial photographs/satellite images occasionally contain spurious spikes and 
pits (Kerle, 2002), although recent technical developments in 
photogrammetric processing, such as implemented in the SAT-PP approach 
(Zhang and Gruen, 2006) used in our work, have reduced this problem 
(Martha et al., 2010c). Photogrammetrically derived DEMs also reflect surface 
features such as vegetation and man-made objects, making them effectively 
DSMs. We used DEM editing tools in LPS for manual height correction of 
isolated trees, while Erdas Imagine Stereo Analyst was used to estimate the 
average height of the scattered vegetation patches. Subsequently, the height 
of the vegetation patches was subtracted from the DSM to create a DTM. 
Elevation values from other potential erroneous areas, such as shadows, 
were also corrected manually using breaklines. Finally, the DTM was 
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hydrologically corrected using the FILL function of ArcGIS, and then 
derivatives such as slope, terrain curvature, hillshade and flow direction were 
calculated. These derivatives along with DTM were used as input layers for 
OOA. 

4.3.3 Segmentation technique 
An important step before characterising diagnostic attributes of features of 
interest, such as landslides, is the creation of objects/segments that alone or 
in a group demarcate the boundary of the given feature. This is done using 
image segmentation, which is a process of dividing the image into objects or 
regions based on the homogeneity of the pixel values. Image segmentation 
can be done in different ways, using techniques such as density slicing, and 
split and merge (Kerle and de Leeuw, 2009). Our analysis was carried out in 
Definiens Developer software environment, which has different type of 
algorithms for the image segmentation, multiresolution, quadtree and 
chessboard being the most efficient ones (Definiens, 2007). These algorithms 
can be combined effectively to obtain realistic and accurately classified 
outputs. 
   
Landslides pose a particular challenge to segmentation, as land cover 
variability (e.g. partial vegetation), and illumination variations as a function 
of terrain characteristics, often result in spectrally diverse features. It is not 
practical to attempt outlining landslides as single segments, and some post-
segmentation merging or multi-scale processing is needed also due to the 
typical size variability of landslides in an image. In this study, we initially 
attempted multiresolution segmentation, a process controlled by scale, 
shape, colour, compactness and smoothness parameters (Baatz and Schäpe, 
2000; Definiens, 2007), for delineating landslide candidate objects. After the 
assignment of a landslide class to qualified objects, we merged them for 
refinement of landslide object boundaries using a chessboard segmentation 
technique. OOA supports combining explicit and implicit feature identification, 
meaning that we can look for features for which unambiguous discriminators 
are known (explicit), but also remove background features that are not of 
interest (implicit), iteratively approaching an appropriate label of the sought 
features, such as landslides (Kerle and de Leeuw, 2009). Research on 
optimizing the use of OOA to achieve proper landslide segmentation, 
particularly with a spatial cluster analysis and multi-step segmentation 
technique, is carried out in a separate study. Once objects are appropriately 
outlined, Definiens Developer calculates a vast number of parameters for 
each derived object, such as layer mean, shape, texture, and relationship, 
based on the available data layers, to be used as class discriminators in OOA. 
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In Definiens Developer, these attributes of image objects are referred to as 
object features (Definiens, 2007). 

4.3.4 Approach for landslide recognition and 
classification 
The approach for recognition and classification of landslides is mainly derived 
from the knowledge developed by experts for detection of landslides during 
image interpretation. It, therefore, mimics the cognitive approach a landslide 
expert would employ in visual image analysis. Figure 4.2 shows the 
methodology adopted for the semi-automatic detection of landslides. The 
approach for landslide recognition and classification is described in the 
following three steps. 

4.3.4.1 Identification of landslide candidates (Step-1) 
Bare rock or debris is exposed after a landslide event, giving a bright 
appearance to landslide affected areas in an image, although at times mixed 
with remaining or dislodged vegetation. This characteristic of a fresh 
landslide is very well captured by the remote sensing data and is used as a 
first criterion for recognition during visual image interpretation. This change 
to the land cover can be best represented in terms of NDVI, which is 
sensitive to low levels of vegetation cover. NDVI has been successfully used 
by previous workers (Barlow et al., 2006; Schneevoigt et al., 2008) to 
discriminate landslides from vegetated features. Therefore, we used NDVI as 
a first criterion to identify landslide candidates, and separate them from other 
areas such as forest land, orchards and crop land. 

4.3.4.2 Separation of landslides from false positives (Step-2) 
 
Since NDVI is used as a cut-off criterion, objects with similar or lower NDVI 
values, such as rock outcrops, roads, water bodies and river beds, are likely 
to be misclassified as landslides. In this step, these false positives are 
sequentially eliminated from the landslide class by integrating their spectral, 
morphometric and contextual information in OOA. Potential landslide false 
positives and the knowledge base for their classification are provided in table 
4.1, and the implementation of these criteria in Definiens Developer for OOA 
is described in section 4.4.2. 
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Figure 4.2: Generalised methodology flowchart for semi-automatic detection of 
landslides using object-based methods. 
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Table 4.1: Landslide false positives and their logical classification criteria. 

False positives Criteria 

Shadow  Hillshade, a hypothetical image created from DTM 
for shadow condition using the sun position at the 
time of acquisition of the multispectral image, gives 
better information of shadow areas than lower DN 
values in the multispectral image.  

Water body  Spectral information from the near infra-red (NIR) 
band, which shows lower values due to absorption 
of electromagnetic radiation (EMR) by water. 
Topographic information, such as very gentle slope 
and adjacency to high order drainage carrying 
perennial flow of water, is also useful. 

River sand High brightness, gentle slope and low relief. 
Contextual information, such as adjacency to water 
bodies, is useful. Relief is used to differentiate it 
from debris flow, which also shows gentle slope, 
but high relief as the source area is in the 
mountains. 

Built-up area Large standard deviation values with neighbours 
(Navulur, 2007), typical texture due to the building 
pattern and gentle slope. 

Non-rocky (e.g. 
agricultural land) 

Low to moderate slope, low to moderate NDVI and 
typical texture due to the terraced pattern of 
topography. 

Rocky (barren land ) Moderate slope (between 30° to 45°) and medium 
brightness. 

Rocky (escarpment) Steep slope (> 45°) and medium brightness.  
Road Orientation is across the general flow direction. 

Contextual information such as high contrast to 
neighbours, e.g. roads within a forest in the 
mountains, is helpful. 

Quarry High brightness, and anomalous local depression 
due to excavation obtained from up-to-date DEM. 
Contextual information, such as sudden truncation 
of road, is also useful. 

4.3.4.3 Identification of landslide types (Step-3) 
The Classification of landslides based on material and types of movement 
(Cruden and Varnes, 1996) was developed using the adjacency condition for 
source area. Morphometric criteria, quantified from Varnes’ definition and 
local field knowledge, were used to classify landslides according to their 
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failure mechanism. Shape criteria, such as length/width ratio and asymmetry 
(Barlow et al., 2006), were found to be useful for classifying shallow 
landslides. The knowledge base developed for classification of landslides from 
an semi-automatic detection perspective is explained in table 4.2, and their 
implementation in Definiens Developer for OOA is described in section 4.4.3. 
 

Table 4.2: Landslide types and their logical classification criteria. 

Landslide type Criteria 

Shallow translational rock slide Source area is in rocky land with shallow 
depth, and relatively narrow and 
elongated shape. 

Debris slide Source area is in a weathered zone or 
thickly covered soil, moderate slope and 
low length.  

Debris flow Source area is in a weathered zone or 
thickly covered soil and moderate slope, 
but has a long run out zone. 

Rotational rock slide Source area is in rocky land with steep 
slopes, and terrain curvature is concave 
upward.  

Translational rock slide Source area is in rocky land with 
moderate slope and planar terrain 
curvature. 

4.4 Results 

4.4.1 Extraction of landslide candidate objects 
We carried out multiresolution image segmentation in Definiens Developer 
using Resourcesat-1 LISS–IV multispectral data for extracting landslide 
candidates. This process can be guided through the use of scale and shape 
parameters, the former being used to constrain maximum allowed 
heterogeneity in a segment. Given the natural landslide size and form 
variability, there is no single set of segmentation parameters that can 
delineate all landslide candidates accurately. Figure 4.3 illustrates how 
sensitive results are to parameter changes. In principle over-segmentation is 
preferred to under-segmentation, as later merging is possible, but small 
image features subsumed into a larger segment cannot be resolved later on. 
Therefore, a small scale factor, although leading to a large number of objects 
(Figure 4.3b), was necessary to depict the relevant spectral, spatial and 
contextual properties of landslide. 
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Even though multiresolution segmentation initially produced sufficiently 
accurate landslide defining objects for analysis, they were occasionally found 
to contain impurities such as barren lands and small patches of vegetation. 
These landslide impurities were detected and removed by a resegmentation 
process, explained in section 4.4.2. 
 

 
Figure 4.3: Multiresolution segmentation of Resourcesat-1 LISS-IV multispectral 
image. (a) with scale parameter 30, the left and right flanks of the landslide 
(highlighted with dotted ellipse) are not correctly represented by image objects (with 
black outline), and (b) with scale parameter 10, objects are fully part of the landslide. 
Shape of 0.1 and compactness of 0.9 was used for both. 

4.4.2 Landslide recognition 
An NDVI of 0.18, a value close to the statistical mode of the image NDVI, 
was found to be useful for discriminating landslide candidates from 
vegetation cover. From the landslide candidate class all false positives were 
sequentially eliminated using the criteria provided in table 4.1, ultimately 
only retaining landslides. The classification sequence and the object features 
with their values used to classify the false positives are provided in figure 
4.4. False positives such as shadow, river water bodies and roads, whose 
classification needs special attention, are explained below. 
 
Even though detection of shadow areas is possible to some extent, using the 
low brightness values from multispectral data, a hillshade image is more 
reliable since other potential sources of low brightness such as water bodies 
and weathered rocks can be avoided. A hillshade image is generated from a 
DTM, and it shows the surface illumination for a given position of sun by 
calculating the illumination values for each cell of the DTM. The position of 
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sun, i.e. elevation and azimuth, on the date of acquisition of multispectral 
image is provided by the data vendor in the file header. 
 

 
 
Figure 4.4: Quantitative classification criteria for false positives. It also shows the 
sequence in which false positives were detected with top being attempted first. For 
acronyms, refer to text. 
 

Detection of water bodies, particularly the river water, was found to be 
difficult using the NIR band due to partial absorption of EMR. This is because 
river water in the mountains flows at a high speed carrying suspended 
sediment load and mostly big boulders on the river bed are exposed above 
water level, prohibiting complete absorption of EMR. Also, when a river flows 
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in a deep gorge it is either covered by trees or topographic shadow. We, 
therefore, used the DTM to automatically derive the stream network and 
ordered them using the Strahler method (Strahler, 1965). This was used as 
an input thematic layer during OOA. In the study area, stream order five and 
beyond shows perennial flow of water. Therefore, only candidate objects 
intersecting such high order streams were assigned river water bodies class 
(Figure 4.5). However, deep water bodies such as lakes were detected using 
low NIR values. 
 
Moderate to gentle slopes in mountainous areas are often converted to 
terraces for agricultural activity (Figure 4.6). These terraces are created 
contour parallel, and width of such terraces is largely uniform. This feature of 
the terrace offers a unique texture in the image and can thus serve as a 
diagnostic feature. The frequency of combination of grey levels, i.e. texture in 
an image, is calculated using grey level co-occurrence matrix (GLCM), and in 
Definiens Developer software GLCM values are calculated using Haralick’s 
method (Haralick et al., 1973). Mean GLCM of the red band discriminates the 
terrace pattern clearly and was thus used in combination with slope and NDVI 
to classify agricultural land in OOA (Figure 4.4). 
 

 
Figure 4.5: Image object (yellow outline) identified as river water body using 
automatically derived stream network. The numbers show the stream order. 
 

Flow direction is the direction of steepest descent, and roads are oriented 
perpendicular to flow (Figure 4.7). Flow direction was derived from the DTM 
in ArcGIS using the Dinf (infinity direction) approach, which calculates the 
flow in all possible directions and assigns a value in radians counter clockwise 
from east between 0 and 2π, based on steepest slope on a triangular facet 
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(Tarboton, 1997). The relatively orthogonal relationship between the flow 
direction and the main direction (longest axis direction) of false positives, 
combined with high length/width ratio was found to be extremely helpful for 
identification of roads (Figure 4.7). Candidate objects with a main direction 
relatively parallel to the flow direction are classified as landslides. 
 

 
Figure 4.6: Field photograph of a typical agricultural terrace. 

 

 
Figure 4.7: Relationship between landslide and road object axes with reference to 
general flow direction. 
 
Finally, a clean-up operation was performed to eliminate non-landslide areas 
occupying either all or parts of an object. First, an object, part of which was 
not landslide, was resegmented using a chessboard segmentation technique 
(Definiens, 2007) to produce small objects in a regular grid (Figure 4.8a). 
Some of these small objects corresponds to vegetation patches or rocky 
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barren land, which could not be classified using criteria discussed so far 
(Figure 4.4), being part of a larger object. However, since now the object size 
is reduced, they were correctly classified using the same criteria as explained 
in figure 4.4. This left the objects fully misclassified as landslides to be 
eliminated (labels ‘C’ and ‘D’ in the figure 4.8b). Definiens Developer provides 
an opportunity to search for additional criteria based on knowledge of the 
terrain, to refine the results. A careful observation of the image shows that 
the false positives were mostly river sands, either found along a tributary 
river (lower order stream) that flows seasonally, or in relatively high slope 
areas, which, therefore, could not be classified due to non-fulfilment of the 
river sand criteria defined in figure 4.4. This issue was addressed using a 
merge option for the objects to redefine the object feature value, and by 
adding an asymmetry (ratio of the lengths of minor and major axis of an 
ellipse approximation of the object) condition to the original river sand 
criteria. Low relative relief of the objects calculated from DTM was also useful 
in identifying river sands, particularly to differentiate it from debris flow, 
which has a high relative relief due to the location of its source area at a high 
altitude in the valley (Figure 4.4). Similarly, some other isolated misclassified 
landslides were classified as agricultural and rocky barren lands by refining 
their previous criteria. Thus only landslides were retained, ready to be 
classified based on type of material, type of movement and failure 
mechanism. 

4.4.3 Landslide classification 
To apply diagnostic criteria for landslide classification, the small grids that 
resulted from chessboard segmentation (Figure 4.8a) were merged (Figure 
4.8b). The recognised landslides were then classified by following a two-step 
approach. In the first step, the type of material was assigned to each 
landslide using contextual information, e.g. landslides adjacent to rocky land 
were classified as rock slide. Definiens Developer provides an opportunity to 
implement this knowledge (Table 4.2) by using ‘relative border to’ object 
feature (Figure 4.9). The type of movement was assigned using shape 
criteria (Barlow et al., 2006), with landslides categorised as debris slides, 
debris flows or rock slides. Rock slides with shallow depth, which is inferred 
based on the narrow and elongated shape of the objects, were classified as 
shallow translational rock slides due to their prevalence in the study area and 
implication on future hazard analysis. 
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Figure 4.8: Resegmentation and merging of objects. (a) chessboard segmentation to 
create small objects to eliminate small patches of vegetation or barren land (C and D in 
b) within bigger landslide objects, and (b) classification and removal of smaller patches 
and subsequent merging of the remaining gridded objects to a single landslide object 
for application of adjacency condition required for classification of landslide. 
 
Classification of landslides based on the mechanism of failure, i.e. rotational 
or translational, requires segmentation and classification based on terrain 
curvature (Table 4.2). Therefore, in the second step, objects classified as 
debris slide and rock slide were resegmented by multiresolution 
segmentation technique using the terrain curvature data instead of the 
multispectral data as done previously. Segmentation using curvature has an 
advantage that resulting objects reflect variation in concavity, convexity or 
planarity. Highly concave rupture surfaces thus indicate rotational failure, 
while planar rupture surface represent for translational failure (Cruden and 
Varnes, 1996). The objects with mean curvature values less than -1, and 
between -1 to +1 are classified as rotational and translational rock slides, 
respectively (Figure 4.9). 
 
The algorithm (segmentation, recognition and classification) developed for 
the training area, i.e. the Madhyamaheshwar sub-catchment, was 
subsequently applied to the Mandakini catchment. All detected landslides 
were exported as a GIS layer for accuracy assessment. Figure 4.10 shows the 
landslides recognised for the total study area, varying in size between 774 
and 291 591 m2, respectively. 
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Figure 4.9: Quantitative classification criteria for landslide types. It also shows the 
sequence in which the landslides were classified with top being attempted first. 

4.4.4 Accuracy assessment 
In total 73 landslides were detected automatically in the entire area. 
Accuracy assessment was carried out by comparing those against a manually 
prepared landslide inventory map. A detailed landslide inventory of the 
Okhimath area, including the watersheds analysed here, was prepared by 
Naithani (2002) and Rawat and Rawat (1998) after the occurrence of 
catastrophic landslides in August 1998. However, the inventory was not 
available in polygon shapes since they inventoried landslides by referring to 
the nearest village names. We used this information and carried out a 
stereoscopic analysis of satellite data to prepare a landslide inventory map. 
The manually drawn landslide polygons were verified during detailed field 
investigation. 
 
The accuracy of semi-automatically detected landslides was addressed on 
three levels: (i) number of correct recognition, (ii) correct classification of 
landslide types (Table 4.3), and (iii) correct detection of landslide extent 
(Table 4.4). 
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Figure 4.10: Landslides automatically detected for the whole study area are shown as 
black polygons. Three insets show the extent of major landslides detected 
automatically. Landslides mapped manually by visual image interpretation are shown in 
the background for comparison. Intersection of line symbols shows agreement. 
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Table 4.3: Accuracy assessment for the number of landslides. 

 Landslide detection 

Manually 
Automatically 

LCRC LCRWC TLCR LNR LOR 

Shallow translational 
rock slide 

31 16 4 20 11 2 

Debris flow 1 1 0 1 0 0 

Debris slide 4 3 0 3 1 17 

Rotational rock slide 6 6 0 6 0 3 

Translational rock slide 13 12 0 12 1 9 

Total number of 
landslides 

55 38 4 42 13 31 

%  69.1 7.3 76.4 23.6 56.4 

 
Table 4.4: Accuracy assessment for the extent (km2) of landslides. 

 
Landslide detection 

Manually 
Automatically 

LCRC LCRWC TLCR LNR LOR 

Shallow translational 
rock slide 

0.220 0.103 0.005 0.108 0.039 0.007 

Debris flow 0.387 0.292 0 0.292 0 0 

Debris slide 0.052 0.029 0 0.029 0.003 0.043 

Rotational rock slide 0.162 0.098 0 0.098 0 0.035 

Translational rock slide 0.379 0.312 0 0.312 0.003 0.026 

Total extent of landslide 1.200 0.834 0.005 0.839 0.045 0.111 

%  69.5 0.4 69.9 3.7 9.2 

LCRC:  Landslides correctly recognised and classified, LCRWC: Landslides correctly 
recognised but wrongly classified, TLCR: Total landslides correctly recognised 
(LCRC+LCRWC), LNR: Landslides not recognised (i.e. error of omission), LOR: 
Landslides over recognised (i.e. error of commission). 

4.5 Discussion 
Landslide mapping by field investigations is a challenging task in vast and 
inaccessible mountainous terrain. Visual interpretation of remote sensing 
data is time consuming, and thus also not ideal, particularly for disaster 
management and decision making activities, where timely results are valued 
most. So far there have only been a few attempts at automating the mapping 
of landslides by pixel based methods (Nichol and Wong, 2005a), which must 
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fail as DN values alone do not characterise geomorphic processes such as 
landslide (McDermid and Franklin, 1994). Recently, Barlow et al. (2006) and 
Moine et al. (2009) started to investigate how landslides can be treated as 
objects in a contextual analysis. Barlow et al. (2006) achieved good detection 
accuracy by only considering landslides that are quite large (>10 000 m2). 
Also, failure mechanisms, such as rotational and translational, are not 
addressed by them. However, Moine et al. (2009) could recognise small 
landslides, essentially using high resolution earth observation data, but did 
not use a DEM, eventually ruling out the possibilities of classifying landslide 
types. Use of expert knowledge to characterise landslides is crucial for semi- 
automatic detection in OOA. This was addressed partly by Moine et al. 
(2009), whereas Barlow et al. (2006) used supervised classification with 
object samples to classify landslide candidates. Therefore, a proper 
characterisation of landslide types is required for OOA. In this study we 
extracted objects from segmentation of high resolution (5.8 m) Resourcesat-
1 LISS-IV multispectral data and 10 m Cartosat-1 derived DTM, and 
characterised major landslide types as per Varnes’ classification scheme. 
 
A multi-step segmentation approach was followed to recognise and classify 
landslides accurately. Expert knowledge was quantified using spectral 
characteristics of the objects such as layer mean and brightness, 
morphometric characteristics such as flow direction, slope and curvature, 
shape characteristics such as asymmetry and length/width ratio, textural 
characteristics such as GLCM (Haralick et al., 1973), and contextual 
information such as adjacency and containment, to classify a total of nine 
false positive classes (Figure 4.4). A stream network automatically derived 
from a DTM was helpful in delineating river water body with ambiguous 
spectral properties. GLCM texture and orthogonal relationship between flow 
and main directions of objects were useful for classification of agricultural 
terraces and roads, respectively. Classification of false positives into non-
rocky and rocky lands was useful in classifying landslides based on material 
type. This study thus considers generic indicators based on expert knowledge 
to characterise landslides. However, the quantification of specific 
characteristic features may have to be adjusted, when our algorithm is 
applied to other areas or used with other image data types. 
 
Merging and resegmentation in Definiens Developer during OOA provided an 
ideal solution for detecting not only landslides of complex shape and size, but 
also landslides with multiple failures, e.g. rotational and translational, within 
a landslide body. Multiresolution segmentation used for the creation of 
landslide candidate objects, and subsequent chessboard segmentation, 
successfully eliminated smaller patches of vegetation or barren land, which 
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later proved essential for refinement of landslide boundaries. Segmentation 
of landslide objects using terrain curvature data was able to classify 
landslides based on their failure mechanism. 
 
We achieved 76.4% recognition and 69.1% classification accuracies for the 
whole study area in terms of number of landslides (Table 4.3). The 
recognition and classification accuracies achieved for the extent of landslides 
are 69.9% and 69.5%, respectively. 23.6% of the total number of landslides 
and 3.7% of corresponding extent could not be recognised. Shallow 
translational rock slides were recognised and classified with lower accuracy 
than other four types (Table 4.3). The reason for non-detection of 11 shallow 
translational rock slides was incorrect delineation of appropriate objects in 
the segmentation routine, due to their narrow shape and occurrence within 
spectrally identical land cover units, such as rocky land. Even though the 
number of identified debris slides was too high (17), their extent is small. 
These wrongly classified debris slides are actually parts of agricultural land, 
showing a mixed spectral response owing to their partial conversion to built-
up area. 
 
The smallest landslide correctly detected by our algorithm is 774 m2. 
However, to understand the detection capability of our algorithm in relation 
to landslide size, we applied the landslide frequency–size distribution 
analysis, a proven technique for landslide inventory assessment (Malamud et 
al., 2004). Manually (55) and automatically (42) recognised landslides were 
plotted against their frequencies. Since the range of landslide size is very 
high, we selected a logarithmic class interval (x-axis). As the class interval is 
not constant, we also normalised the frequency with their respective class 
interval to calculate the probability density (Malamud et al., 2004) and 
plotted it on the y-axis (Figure 4.11). Both trend lines showed good statistical 
correlation, meaning data resolution and algorithm are sufficient to 
accurately recognise the most commonly occurring landslide sizes. 
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Figure 4.11: Relationship between landslide area and frequency. 

4.6 Conclusion 
In this study landslides were semi-automatically recognised and classified as 
per Varnes’ classification scheme. Landslide diagnostic features typically used 
by experts during visual image interpretation were used for the 
characterisation. These characteristic features were updated from an 
automatic detection perspective, and then efficiently synthesized using OOA 
for recognition and classification of landslides. 
 
The algorithm was developed in Definiens Developer software using only two 
primary data sources, high resolution satellite data and a DTM. It comprised 
45 individual routines, such as segmentation, merging and classification, 
which are automatically executed in the assigned sequence. Other 
parameters used, such as NDVI, slope, flow direction, hillshade, terrain 
curvature and stream network were derived automatically using algorithms 
available in basic GIS and image processing softwares. Landslide candidate 
objects, once identified in the segmentation routine were separated from 
vegetation by a NDVI threshold. Nine false positive classes (Figure 4.4) were 
effectively removed by efficient use of DEM derivatives combined with 
spectral information. For the entire study area, we achieved 76.4% landslide 
recognition accuracy in five different landslide classes in a terrain featuring 
spectrally identical land use/cover units. It must also be noted that correct 
visual identification of these types based on image data alone would be very 
challenging and would also require the incorporation of elevation information. 
For example, the smallest automatically detected landslide (774 m2) was 
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missed in the visual stereo interpretation, and only verified with higher 
resolution Google Earth imagery. Another significant achievement of this 
study is detection of complex failure mechanism within large landslides. Since 
the algorithm uses NDVI in the beginning to identify landslide candidates, the 
result of the OOA, in principle, will be accurate if post-landslide satellite 
imagery and DTM are used. Therefore, our method has the potential to 
produce quick results after an earthquake or extreme rainfall event. Also, 
since the algorithm could distinguish between rotational and translational 
slides, future hazard analysis and immediate ground control measures can be 
planned efficiently (Varnes, 1978). 
 
The objective here was to evaluate to what extent landslides, once outlined in 
a (possibly iterative or multi-stage) segmentation routine, can be correctly 
detected, using an OOA. The challenge of segmenting complex landslide 
shapes, which are frequently distorted as a result of sensor and viewing 
characteristics, and which become indistinct when shadows overlap or 
contrast is low, we address in the next chapter. The algorithm developed 
here is available on our website (www.itc.nl/ooa-group), and we welcome 
testing of the approach with other data types and in other areas. 
 



Characterisation and detection of landslides  

 68

 
 



69 

Chapter 5: Segment optimisation and data-
driven thresholding* 
In the previous chapter, we have detected landslides using OOA. However, 
the size of the objects used to detect landslides was determined subjectively. 
Furthermore, a lot of hard coding was involved in the detection of landslides. 
This chapter presents an approach to select objectively parameters of a 
region-growing segmentation technique to outline landslides as individual 
segments, and also addresses removal of hard coding by statistical methods.  

5.1 Introduction 
Landslide inventories are essential for generating landslide susceptibility, 
hazard and risk maps. To be able to establish a relationship between the 
temporal probability of triggering events (e.g. earthquakes and rainfall) and 
the density of landslides caused by them, it is essential to prepare so-called 
event-based landslide inventories (Guzzetti et al., 2004; Lin and Tung, 
2004). Those depict the landslides associated with a single triggering event 
and should be generated as soon as possible after the occurrence of the 
event. Satellite remote sensing technology has proven to be the best tool for 
generating such landslide inventories, especially with the availability of high 
resolution images (Chang et al., 2007; Chen et al., 2007; Rau et al., 2007; 
Voigt et al., 2007). Recent advances in computer vision and machine 
intelligence have led to the development of new techniques, such as object- 
 
oriented analysis (OOA, frequently also referred to as OBIA or GEOBIA) for 
automatic content extraction of both man-made and natural geospatial 
objects (Akcay and Aksoy, 2008; Holt et al., 2009). In OOA both the 
information content of an object, as well as process or feature knowledge, 
are used to classify features in a landscape. It is a step towards replicating 
the human cognitive process that underpins visual image interpretation. 
Image segmentation, a method of dividing the image into non-overlapping 
regions or segments, is the first major step in OOA, and its quality controls 
the accuracy of image classification, such as for  land cover (Laliberte and 
Rango, 2009). However, visible features in a landscape are multi-

                                          
* This chapter is based on the articles: Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V.G. and 
Kumar, K.V. (2011) Segment optimisation and data-driven thresholding for knowledge-based 
landslide detection by object-based image analysis. IEEE Transactions on Geoscience and Remote 
Sensing (In Press). 
 
Martha, T.R. and Kerle, N. (2010) Segment optimisation for object - based landslide detection. In: 
GEOBIA 2010: geographic object - based image analysis, 29 June-2 July 2010, Ghent, Belgium: 
proceedings / editor E.A. Addink, F.M.B. Van Coillie: International Society for Photogrammetry and 
Remote Sensing (ISPRS), 2010. - (International Archives of Photogrammetry and Remote Sensing: 
IAPRS: ISPRS; XXXVIII-4/C7), 6 p. (In CDROM). 
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dimensional, and each feature is best represented at a certain scale. 
Therefore, a single scale factor, the principal segment size controlling 
parameter, for the generation of optimum segments/objects (group of 
homogeneous pixels) in such situations does not exist (Blaschke et al., 
2006). This is especially the case for features such as landslides that not only 
vary in shape and size, but also are embedded within different land cover and 
lithological units. Another challenge is how to classify segments using 
suitable thresholds for each landslide diagnostic parameter with a minimum 
level of human intervention, thereby reducing the processing time to provide 
landslide specific information. 
 
In OOA, classification is carried out on segments rather than on single pixels, 
by incorporating a multitude of additional information (e.g. shape, texture, 
and context) associated with the image objects. Availability of this additional 
information makes OOA more suitable for the detection of geomorphic 
features such as landslides, compared to pixel-based methods (Blaschke, 
2010; Dragut and Blaschke, 2006). OOA uses expert system rules for the 
classification and is best suited to exploit the spectral family of signatures for 
a given class and spectral overlap between the classes (e.g. landslides have 
spectral characteristics similar to roads, river sand or barren rock), due to 
limited spectral resolution and band width (Navulur, 2007b). However, key to 
unambiguous detection of landslides is the combined assessment of spectral, 
spatial, morphological and contextual parameters that help the analyst to 
define the expert system rules comprehensively (Benz et al., 2004; Navulur, 
2007b). 
 
Many landslide defining characteristics, such as those proposed by Varnes 
(1978), are not exclusively spectral in nature, but rather relate to dimensions 
and spatial associations, and thus can be meaningfully employed in OOA, 
where these characteristics are included as class discriminators to separate 
landslides effectively from other features. In one of the first attempts to 
apply OOA to landslide mapping, Barlow et al. (2006) used high resolution 
SPOT 5 data, a digital elevation model (DEM) and image segmentation to 
classify landslides into debris slides, debris flows and rock slides. However, 
they did not characterise landslides using landslide process knowledge, 
instead conducting a supervised classification using spectral, shape and 
textural properties derived from a limited set of parameters to identify 
landslides Only recently, Martha et al. (2010b) comprehensively 
characterised the spectral, spatial and morphometric diagnostic features of 
landslides using landslide process knowledge, and identified landslides by 
OOA using a hierarchical approach similar to (Barlow et al., 2006). Their 
approach was implemented using three sub-modules: 1) identification of 



Chapter 5 

 71

landslide candidates; 2) separation of landslides from false positives; and 3) 
classification of landslides. Although OOA for landslide detection has been 
attempted by previous workers (Barlow et al., 2006; Martha et al., 2010b), 
several critical issues have not been addressed. These concern: 1) finding 
reliable procedures to segment landslides of different shape and size, which 
are also internally strongly heterogeneous; 2) incorporation of relative rather 
than absolute contextual criteria, in addition to spectral, textural and 
morphometric criteria to eliminate false positives; 3) extracting suitable 
object characteristics that allow landslide-type specific identification; and 4) 
minimising user-driven thresholding of the landslide diagnostic parameters. 
All of these points are essential for the development of a robust and 
transferable landslide detection method. 
 
The principal objective of this chapter is to optimise segment boundaries with 
a combination of different segmentation algorithms and statistical 
optimisation techniques to delineate automatically landslides of variable 
shape and size. Another objective is to apply a data-driven/unsupervised 
thresholding technique to the landslide diagnostic parameters to minimise 
human intervention. This chapter does not aim at the validation of 
segmentation algorithms, but rather demonstrates how segmentation 
algorithms are used with landslide diagnostic parameters to outline landslides 
as individual segments. Those subsequently allow the application of shape 
and anatomy-related rules, creating the basis for proper contextual and 
knowledge-driven analysis. 

5.2 Segmentation and thresholding methods 
In this section we briefly discuss segmentation and thresholding methods and 
their main limitations from a landslide detection perspective. 

5.2.1 Segmentation methods 
The availability of commercial software packages for segmentation-based 
image analysis, such as eCognition, ERDAS Objective and Envi Zoom, and 
high resolution Earth observation (EO) data has led to an increase in the 
application of segmentation techniques for automatic feature extraction 
(Blaschke, 2010; Haralick and Shapiro, 1985). Initial segmentation 
approaches aim at the creation of homogenous segments using techniques 
such as texture-based segmentation (Hofmann et al., 1998) and 
segmentation based on fusion of colour and texture information (Dubuisson-
Jolly and Gupta, 2000). More recently, a multi-resolution segmentation 
technique, which is a bottom-up region merging technique that starts at a 
single pixel and continues in several steps until the fulfillment of a user-
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defined homogeneity criteria, was developed and implemented in eCognition 
(Benz et al., 2004; eCognition, 2009). This technique segments the image at 
both fine and coarse scales, depending upon the scale of interest, using fuzzy 
set theory, and the approach was explained in detail by (Baatz and Schäpe, 
2000; Benz et al., 2004). It has been used in several novel applications, as 
diverse as automatic vehicle detection, change detection studies, extraction 
of information from scanned paper maps, and geomorphological process 
understanding (Barlow et al., 2006; Dragut and Blaschke, 2006; Holt et al., 
2009; Kerle and de Leeuw, 2009; Laliberte et al., 2004), due to its capability 
to produce high quality segments at different scales. 
 
An effective incorporation of process or feature knowledge to segment 
classification is only possible if those image primitives correspond to actual 
features visible in a landscape. For example, Martha et al. (2010b) showed 
how different landslide types can be distinguished based on geomorphometric 
parameters, such as slope, terrain curvature and length/width ratios. Such 
attributes, however, need to correspond to the entire landslide in question. 
However, derivation of such optimal segments, particularly with the multi-
resolution segmentation used in this study, is an immense challenge, since it 
depends on a set of user defined segmentation parameters (Espindola et al., 
2006; Möller et al., 2007). Those values constrain both the allowed internal 
image heterogeneity and the object size. Such an approach works well where 
features of interest are largely homogenous and of comparable size. 
However, where features are highly variable in terms of shape, size and 
spectral appearance, the initial segmentation is typically reduced to a trial-
and-error method. Möller et al. (2007) proposed a comparison tool to assess 
the accuracy of image segmentation and to determine the optimal 
parameters for improving the reliability of a land use/cover classification. 
However, according to Zhang et al. (2008) an objective evaluation of 
segmentation quality is a preferable option since reference segments are not 
required, and criteria for such evaluation are application-dependant and 
difficult to define. Recently Dragut et al. (2010)  developed an estimation of 
scale parameter (ESP) tool using local variance of object heterogeneity within 
an image. Espindola et al. (2006) proposed an objective function, to assess 
the segmentation quality and to determine the optimal segmentation 
parameter. The objective function is a good indicator, particularly for 
segments obtained by region-based segmentation algorithms, since it 
evaluates both intra-segment homogeneity and inter-segment heterogeneity 
(Zhang et al., 2008). Furthermore, to select parameters for the segmentation 
of landslides, the approach of Espindola et al. (2006) is more suitable than 
Möller et al.’s (2007) method, since it does not require a priori knowledge 
about the terrain.  However, Blaschke et al. (2006) emphasised the difficulty 
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to define the term ‘meaningful object’, stating that “segments in an image 
will never represent meaningful objects at all scales, for any phenomena”. 
Therefore, use of multiple scales is crucial to the success of a landscape 
classification method. In this chapter, we determined the multiple optimal 
scales objectively, and subsequently linked them to landscape fragments for 
image-based identification of landslides. 

5.2.2 Thresholding methods 
The use of thresholds is a primary requirement for land cover classification 
using EO data. Where in typical classification methods a single threshold 
value may suffice, OOA is increasingly based on elaborate rule sets that can 
involve various segmentation, classification, shape adaptation and cleanup 
steps. For example, the processing routine developed by Martha et al. 
(2010b) comprised 45 individual steps. While such an approach affords 
processing flexibility and quasi-cognitive decision making, the resulting 
process quickly loses flexibility and transferability, as the required threshold 
values are determined manually from segment attributes. Objective and 
automated landslide detection thus requires a dynamic or data-driven 
thresholding approach. 
  
Sezgin and Sankur (2004) categorised thresholding methods into six groups 
according to the information they exploit. Among those methods, histogram-
based thresholding is a standard practice for classification of images (Rosin 
and Hervas, 2005). Unlike in bimodal histograms, where thresholds are easily 
calculated using the minimum value between the data population (Rosin, 
2001), thresholding in unimodal histograms generally pose a substantial 
challenge. Clustering methods, such as proposed by Otsu (1979), which are 
based on nonparametric unsupervised automatic thresholding, are effective 
for processing images with such unimodal data distribution. Other potential 
approaches to derive thresholds with cluster analyses for unsupervised land 
cover classification are K-means and fuzzy C-means. K-means cluster 
analysis finds natural cluster centers in continuous data, such as spectral 
class discriminators (normalised difference vegetation index (NDVI), 
brightness and hillshade) used for elimination of false positives from landslide 
candidates by Martha et al. (2010b), and is vital for the robustness of a 
landslide detection method. 

5.3 Data set, area and methodology 
In this study, Resourcesat-1 LISS-IV multispectral data, which are now 
available for most parts of the world, were used for image segmentation and 
derivation of spectral characteristics of landslides. They are 8 bit data with a 
5.8 m ground sampling distance. The multispectral channels are in the green 
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(0.52 to 0.59 µm), red (0.62 to 0.68 µm) and near infra-red (0.76 to 0.86 
µm) regions. Along-track stereoscopic data from Cartosat-1, provided with 
rational polynomial coefficients, were used for the extraction of a 10 m 
gridded digital surface model (DSM) (Martha et al., 2010c). Cartosat-1 
provides 10 bit data with a 2.5 m ground sampling distance. These data have 
also shown to be useful for mapping of landslides by visual image 
interpretation technique (Vinod Kumar et al., 2006). The DSM was later 
converted to a digital terrain model (DTM) and used for extraction of 
topographic parameters. We used these two primary datasets for the 
automatic detection of landslides in two perennially affected but 
geomorphologically diverse areas in the Himalayas (Table 5.1). The 
methodology was developed in the Okhimath area and tested in the 
Darjeeling area. While summer images were used for Okhimath area, winter 
images were used for Darjeeling area, thus, the sensitivity of landslide 
detection by OOA to seasonal variability in image acquisition was also 
explored (Table 5.1). 

5.3.1 Knowledge-based detection of landslides 
In this chapter, we detected landslides by adapting the methodology 
proposed by (Martha et al., 2010b), which identifies landslides initially along 
with its false positives and later eliminates them sequentially. We added a 
new sub-module for the objective determination of parameters for optimal 
segmentation, and modified the existing sub-module 1 by replacing the static 
threshold of NDVI with a dynamic threshold obtained from K-means 
clustering. We also improved the sub-module 2 by: 1) using multiple scales 
instead of a single scale for the elimination of false positives; 2) replacing the 
static thresholds of brightness and hillshade with dynamic thresholds; and 3) 
using relative rather than absolute criteria for identification of false positives. 
The modified approach for the detection of landslides was separated into four 
sub-modules, and implemented using eCognition (Figure 5.1). The modules 
are described in detail below. 
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Table 5.1: Description of study areas. 

 
Okhimath, Western 
Himalayas, India 

Darjeeling, Eastern 
Himalayas, India 

Centre location 
(Latitude/Longitude) 

30° 33' 07" N / 
79° 06' 32" E 

26° 54' 06" N / 
88° 15' 00" E 

Date of LISS-IV 
scene 

01 April 2007 13 January 2004 

Date of Cartosat-1 
scene 

06 April 2006 28 January 2006 

Maximum and 
minimum elevations 

2620 m and 1047 m 2024 m and 373 m 

Size of study area 29 km2 35 km2 

Landslide types Shallow translational 
rock slide, translational 
rock slide, rotational rock 
slide, debris slide and 
debris flow 

Shallow translational 
rock slide, 
translational rock slide 
and debris slide 

Size of largest and 
smallest landslide 

0.321 km2 and 0.001 
km2 

0.086 km2 and 0.001 
km2  

Major land use/cover 
categories 

Barren rocky land, forest 
and terraced cultivation 

Built-up area, forest 
and tea plantation 

Major event Okhimath landslide 
(1998) –38 fatalities 

Ambootia landslide 
(1968) – severe loss 
to cash crops such as 
tea and oranges. 

5.3.2 Optimisation of segments (Sub-module 1) 
A typical optimisation procedure aims at minimising the under- and over-
segmentation to increase the efficiency and accuracy of a classification 
technique. Given the natural spectral and size variability of landslides, 
however, a single optimal scale parameter does not exist. Therefore, we 
addressed segmentation as an iterative process, where an overall analysis 
may contain several segmentation stages of different types and for different 
purposes. We used the potential of eCognition’s multi-resolution 
segmentation technique to segment an image without a priori knowledge. 
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Figure 5.1: Concept diagram for knowledge-based detection of landslide using OOA by 
segment optimisation and data driven thresholding. 
 
In eCognition, segmentation is controlled by scale, colour and shape, with the 
shape being composed of compactness and smoothness (eCognition, 2009). 
The scale parameter is a function of the image resolution and is used to 
control the maximum allowed heterogeneity of the objects, with a lower scale 
parameter yielding a higher number of segments. Similar to other object-
based land cover studies with optical remote sensing data, we assigned a 
maximum weight for the spectral heterogeneity, i.e. colour, and a minimum 
weight for shape heterogeneity, since shape and size are not distinctive for 
natural features such as landslides, unlike for man-made features such as 
buildings, roads and vehicles. The weights for heterogeneity of compactness 
and smoothness were maintained equal for similar reasons. However, the 
principal uncertainty lies in the selection of a scale parameter that is suitable 
to represent all landslides. To find optimal multiple scales objectively we used 
Espindola et al.’s (2006) objective function, which is a combination of intra-
segment variance (ν) and Moran’s I index (I). By varying the scale factor and 
maintaining uniform weights for spectral and shape heterogeneities, objects 
at 50 different scales were created for estimation of the objective function. 
Mean and variance were calculated using the brightness value of objects, 
which is the average of DN values of the three multispectral bands. 
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where iz is the deviation of the brightness value of object i from its mean  

( ix X− ), ,i jw is the spatial weight between object i and j, which is 1 for 
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The objective function is defined as: 
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5.3.2.1 Optimisation strategy with objective function 
The maximum value of the objective function is a statistical indicator of 
optimal image segmentation (Espindola et al., 2006). However, a single 
optimal scale is insufficient to address the relationship between the spatial 
structure of an image and the structure of a landscape, although Gao et al. 
(In Press) reported the highest classification accuracy with single scale 
segments. To obtain multiple optimal scales instead, we created a simple 
plateau objective function: 

max( ) ( , )F plateau F Iν σ= −        (5.6) 

where F(ν, I)max is the maximum value and σ is the standard deviation of 
objective function calculated for 50 different scales, respectively. 
 
The plateau objective function value was used to demarcate the lower 
boundary of the plateau in the curve created by plotting scale factors and 
objective functions in x and y axes, respectively. The hypothesis for the 
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plateau objective function is that the peak values are close to the maximum 
value of the objective function, therefore, the balance between under- and 
over-segmentation still remains. Furthermore, the peaks are distinct from 
each other and locally optimal with respect to their immediate neighbour. 
Since landslides can occupy significant portions of a post disaster image, this 
type of plateau pattern can usually be expected. The segments obtained with 
scales corresponding to these peaks can be related to landscape features 
according to their size. 

5.3.3 Extraction of landslide candidates (Sub-module 2) 
The segments created with the scale factor corresponding to the first peak of 
the plateau were used to begin the landslide detection process. This scale 
factor has the highest potential to outline landslides of small size in 
comparison to other scales identified in the plateau function, and also 
captures the boundary of large landslides occurring in a contrast poor 
environment, such as within barren rocky land. Landslide candidates were 
extracted using a NDVI threshold. To standardise NDVI across image dates, 
pixel values were converted to top of the atmospheric reflectance by 
correcting for sensor gain and sun position (Song et al., 2001). 

5.3.3.1 Thresholding by K-means  
Data-driven thresholds derived from the landslide diagnostic features are 
essential for the development of an approach that is transferable to other 
areas and also works well with different types of EO data. The dynamic 
thresholds of these diagnostic features were derived by cluster analysis with 
K-means using SPSS software, as compared to the manually derived 
thresholds used by (Martha et al., 2010b). K-means identifies natural 
homogenous groups in a continuous variable (e.g. NDVI) and can handle a 
large number of cases (e.g. thousands of objects). The main objective is to 
identify K centroids, one for each cluster corresponding to a class. 
 
However, one of the prerequisites for the K-means algorithm is that the 
number of desirable clusters, i.e. K, has to be predefined. Although an initial 
guess can be made about the number of existing classes by analysing the 
image, we used a two-step clustering algorithm to determine the existing 
classes in an objective manner. Two-step clustering is an exploratory data 
analysis method that helps in automatic selection of best number of clusters 
by comparing each cluster solution using a Schwarz Bayesian criterion 
(Schwarz, 1978). This criterion resolves the problem of overfitting, typical in 
maximum likelihood estimation, by introducing a penalty term. The cluster 
centers in NDVI data obtained by K-means algorithm were used as thresholds 
to identify landslide candidates. 
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5.3.4 Identification of false positives (Sub-module 3)  
Since NDVI was used as a threshold for landslide candidate class, features 
having lower or equal NDVI values, such as roads, river sands, built-up areas 
and barren rocky lands, were also detected. Accurate identification of false 
positives is essential for reducing the error of commission. The false positives 
were identified with multiple scales, in contrast to the single scale used by 
(Martha et al., 2010b). 

5.3.4.1 Linking optimal scales 
Generally, false positives are of different sizes and, therefore, need to be 
linked to one of the optimal scales (Figure 5.2). This increases their chances 
of successful classification using texture and shape-based criteria, statistical 
neighbourhood conditions, such as the maximum mean difference to 
neighbour for the identification of built-up areas, and the minimum mean 
difference to neighbour for identification of barren agricultural land. Small 
and narrow features in hills, such as roads, built-up areas and rivers, were 
identified with scale factor corresponding to the first peak, while larger 
features, such as barren rocky lands and topographic shadows, were 
identified with higher scale factors corresponding to subsequent peaks. The 
scale to feature link was established by a quick onscreen reconnaissance of 
the spatial structure of the segments with respect to the landscape features 
(Figure 5.2). Finally, K-means cluster analysis was used to derive thresholds 
for the classification of false positives. 

5.3.5 Classification of landslides (Sub-module 4) 
Detection of landslides includes recognition and classification (Mantovani et 
al., 1996). Once all the false positives were identified, the remaining 
landslide candidate objects corresponded only to landslides. These features, 
particularly the large ones composed of multiple segments, were merged to 
single segments to apply process related criteria for their classification. At 
this stage further segment refinement based on chessboard segmentation 
was applied to eliminate small patches of vegetation and barren rocky land 
which had not been detected in the larger segmentation scale. 
 
Classification of landslides based on material (rock, earth or debris) was 
implemented using a relative border criterion. For example, landslides with 
high relative border to barren rocky land were classified as rock slides. 
Finally, landslides were segmented using terrain curvature for classification 
based on failure mechanism (rotational or translational). For example, rock 
slides with a negative curvature value represent a concave rupture surface, 
and thus were classified as rotational rock slides. 
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Figure 5.2: Spatial structure of the segments for most common landslide false 
positives (e.g. uncultivated agricultural terraces (AL), rocky land (RL), road (Rd), river 
(R) and river sand (RS)) in hilly areas. (a) and (b) show segmentation with high (23) 
and low (13) scale factors, respectively. 

5.3.6 Transferability of the method 
To verify the transferability of the proposed method to unknown areas, we 
tested the approach developed for Okhimath in the geomorphologically 
dissimilar Darjeeling area. We first calculated the accuracy in the Okhimath 
area to test the effectiveness of the proposed method to detect landslides, 
and then estimated the accuracy of the Darjeeling area to verify its 
transferability. Assessment of accuracy was carried out by comparing the 
manually and automatically prepared landslide inventory maps. For Okhimath 
the detailed landslide inventory maps prepared manually by (Martha et al., 
2010b; Naithani, 2002; Rawat and Rawat, 1998) were used as reference, 
while the map prepared manually by (Ghosh et al., 2010) served as basis for 
the Darjeeling assessment. Landslides in the reference inventory maps that 
were affected by shadow or vegetation cover in the satellite image were not 
selected in the accuracy assessment. Multiple polygons of large active 
landslides in the reference inventory map were also merged for accuracy 
assessment. The accuracy of the detected landslides was assessed in terms 
of their total number and areal extent. Higher success of the areal extent is 
more desirable than the total slide number, since the former is crucial for 
data-driven landslide susceptibility, hazard and risk assessment. 

5.4 Results 
Using the plateau objective function value derived through eq. 6, the plateau 
boundaries for Okhimath and Darjeeling were determined as 1.061 and 
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1.078, respectively (Figure 5.3). These peaks exceeding the plateau 
correspond to the optimal scales in the respective images.  

 
Figure 5.3: Objective function for Okhimath (a) and Darjeeling (b), indicating the 
optimal segmentation scales (the peaks shown with arrows) in the plateau area above 
dotted line that were used in the OOA process. 
 
Landslides and false positives were characterised using a DEM and its 
derivatives (slope, flow direction, curvature and hillshade), and parameters 
calculated from the optical image data (e.g. NDVI, brightness). These 
diagnostic parameters and their thresholds obtained from K-means clustering 
were used to create a rule set in eCognition (Table 5.2). This rule set was 
developed using the data of the Okhimath area and the results are explained 
in the following section. 
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Table 5. 2: Characteristic features, object properties and thresholds (O: Okhimath, D: Darjeeling) used for the identification of false positives and landslide types. 
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5.4.1 Training area (Okhimath) result 
A combination of statistical and classification-based multi-scale segment 
optimisation was attempted in this study. This had already been the basis for 
our earlier work that also focused on Okhimath (Martha et al., 2010b), 
though with the segment generation and subsequent landslide delineation 
being largely interactive. Here we used the peak scales (Figure 5.3a) from 
the objective function (13, 16 and 23) to segment the Okhimath image. Scale 
factor 13 was used to create objects to begin the landslide detection process. 
As illustrated in figure 5.4b, the next optimal scale factor (16) produced large 
size objects and was less suitable to delineate the landslide. Scale factor 13 
was also used to classify false positives, such as roads, river channels and 
built-up areas, using the criteria given in table 5.2. The other two scales, 16 
and 23, produced large size objects that were linked to correspondingly 
larger false positives, such as river sands, barren agricultural and rocky 
lands, and shadow areas. 
 

 
Figure 5.4: Important stages towards successful landslide recognition and 
classification illustrated for a large landslide in Okhimath. (a) Actual boundary of 
landslide. (b) Segmentation with scale factor 16 was unable to delineate the left and 
right flanks (shown with dashed lines) of the landslide. (c) Flanks were correctly 
delineated with scale factor 13. (d) Detection of landslide candidates with NDVI 
threshold. (e) and (f) Chessboard segmentation to refine the landslide candidate 
objects by removing impurities such as vegetation. (g) Resegmentation with scale 
factor 13, and elimination of barren lands from landslide candidates. (h) Merging again 
into a single object after removal of all false positives, and classification into rock slide. 
(i) Segmentation of rock slide using terrain curvature. (j) Classification of rock slide 
into rotational rock slide (rrs) and translational rock slide (trs) using a curvature 
criteria.  
 
Landslide candidates were identified on segment level 13 using an NDVI 
threshold derived from K-means clustering. This is the first and most 
important step in the landslide detection process, as it eliminates most of the 
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objects corresponding to forest and agricultural crop lands from the 
subsequent analysis. Using a two-step auto clustering analysis, four natural 
clusters of NDVI were obtained. These clusters are related to the major land 
cover classes of this area, and are also quite distinct (Figure 5.4d). 
Subsequently, K-means clustering was carried out with K=4 and cluster 
centers were calculated (Table table 5.3). Objects classified with the cluster 
center value of 0.22612 could delineate all dark areas of the NDVI image. 
Therefore, 0.22612 was selected as the threshold for landslide candidates 
(Figure 5.4d).  
 
Table 5.3: NDVI (scale 13), and brightness and hillshade (scale 23) cluster center 
values used for the thresholding of landslide candidates and shadow, respectively, in 
Okhimath. 

Parameter No. of clusters Cluster centers  No. of objects Total objects 

NDVI 4 0.22612 598 2505 

0.09487 177 

0.39549 755 

0.30880 957 

Brightness 2 40.18288 74 194 

55.63685 120 

Hillshade 3 223.82503 121 194 

169.47967 50 

57.92239 23 

 
Shadow is another common false positive present in all hilly areas. As 
opposed to the single parameter threshold used for landslide candidates, they 
were eliminated by simultaneous thresholding of two spectral parameters 
(brightness and hillshade), also derived using K-means clustering. Use of 
these two parameters was necessary as they complement each other, i.e. 
landslides originating from mafic or ultramafic rocks generally have low 
brightness and thus similarity with shadow. However, they have high 
hillshade values (if they are in shadow free area), based on which they can 
be differentiated from shadow. Table 5.3 shows the brightness and hillshade 
clusters and cluster centers obtained from the two-step K-means clustering 
analysis. 
 
To find out whether the clusters are sufficiently different to represent the 
shadow class and to establish the reliability of the combination of brightness 
and hillshade thresholds to detect shadows consistently, a t-statistic was 
performed for both parameters, which showed them to be significant and 
above the critical values (Figures 5.5a and 5.5b). The box plot also showed 
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that 99% of the cases could be assigned to one of the clusters (Figures 5.5c 
and 5.5d). These tests showed that the brightness and hillshade clusters are 
significant, and that K-means cluster analysis can effectively be used to 
derive thresholds for the identification of false positives even if multiple 
diagnostic parameters are used together. 
 

 
Figure 5.5: Statistical evaluation of clusters of brightness and hillshade derived from 
object level 23 for detection of shadow in Okhimath. (a) and (b) shows Student’s t for 
brightness and hillshade, respectively. All clusters are significantly higher than the 
critical values. (c) and (d) shows box plots of the brightness and hillshade clusters, 
respectively, indicating a good allocation of the objects to one of the clusters. 
 
Majority of the thresholds were determined objectively, however, those that 
are not scene specific but knowledge- or process-driven, were determined 
interactively (Table 5.2). It is important to classify rocky and non-rocky areas 
accurately, since they are used for the classification of landslides based on 
material type. These features were classified using texture, brightness 
difference to the surrounding objects, and slope. The sub-module 2 of Martha 
et al. (2010b) was modified, and made more generic and data-driven, by 
removing the necessity of a threshold, and inserting a contextual information 
requirement, the maximum mean difference in the red band between an 



Chapter 5 

 87

object and its neighbours for the detection of built-up areas, and the 
minimum mean difference to detect agricultural lands. 
 
Finally, after removal of all false positives, landslides were classified based on 
their material and movement using shape and contextual diagnostic features 
as listed in table 5.2. A total of five landslide types were identified in the 
Okhimath area (Figure 5.6). Figure 5.4 illustrates the major stages of the 
analysis, from optimal segmentation and identification false positives to 
classification of landslides. 
 

 
Figure 5.6: In total 22 landslides of five different types were correctly recognised 
using OOA in the Okhimath area. The dotted lines in insets (a) and (b) show the 
reference landslide inventory. 
 
The major improvements of the approach demonstrated in this chapter in 
comparison to our previous work (Martha et al., 2010b) are: 1) multi-scale 
(13, 16 and 23) treatment of false positives, which helped in their improved 
identification in comparison to single scale (10) treatment used previously, 
and also eliminated the subjectivity in the selection scale factor for detection 
of landslides. For example, part of the landslides in the Okhimath area was 
incorrectly classified as barren land with single scale (10) approach, thereby 
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reducing its effective area (Figure 5.7); 2) thresholding using K-means, 
which eliminated the subjectivity in threshold selection for identification of 
landslide candidates and false positives; and 3) use of relative criteria in 
comparison to the absolute criteria, which rendered sub-module 3 more 
generic.  
 

 
Figure 5.7: Effect of multi-scale classification of false positives on accurate landslide 
detection. (a) part of the landslide was misclassified as barren land since a low scale 
factor, ideal for classification of landslide, was also used for the classification of barren 
land. (b) the landslide was completely detected due to multi-scale delineation and 
classification. The location of the landslide is shown in figure 5.6. 

5.4.2 Testing area (Darjeeling) result 
The procedure developed using satellite data and a DEM for Okhimath was 
tested in the Darjeeling area without any changes to its structure. The 
optimal scales obtained from the plateau objective function (12, 14, 19 and 
22, Figure 3.3b) were used for the segmentation. The analysis began by 
segmenting the LISS-IV image with the lowest optimal scale i.e. 12. Using K-
means clustering, the NDVI threshold (0.2455) for the classification of 
landslide candidates was obtained. Similar to Okhimath, a small scale factor 
was able to delineate the boundary of all landslides completely, with the 
resulting oversegmentation subsequently being reduced by object merging 
based on NDVI thresholds (Figure 5.8). 
 



Chapter 5 

 89

 
Figure 5.8: Effect of segment optimisation on a large landslide in the Darjeeling area. 
(a) objects created with scale factors 19. (b) objects created with scale factor 12 and 
classified using NDVI threshold (outlined in red) were able to  outline the landslide. (c) 
merging of segments of the large landslide into a single object, and classification into 
translational rock slide based on morphometry and context. 
 
Optimal scales were linked to false positives using onscreen image 
reconnaissance as described for Okhimath, the only subjective part left in the 
entire procedure. Roads and rivers were identified with scale factors 12 and 
14, respectively. Scale factors 19 and 22 were used to identify river sands, 
shadows and barren rocky lands, respectively. All the three types of 
landslides present in the Darjeeling area could be detected by this procedure 
and are shown in figure 5.9. 

5.5 Accuracy assessment 
The overall recognition accuracies (includes correctly and incorrectly 
classified landslides) for total extent of landslides in Okhimath and Darjeeling 
was 76.9% and 77.7%, respectively (Tables 5.4 and 5.5). The accuracy in 
the Okhimath area is higher than that achieved (69.9%) with our previous 
method (refer to table 4 of Martha et al. (2010b)), where only one scale 
factor selected by trial-and-error was used (Figure 5.10a). The overall 
classification accuracy for extent of landslides in Okhimath and Darjeeling 
was 74.4% and 77.7%, respectively (Tables 5.4 and 5.5). The higher 
accuracy of the landslide extent assessment, a critical parameter in landslide 
susceptibility analysis, resulted from better outlining of landslides and 
identification false positives as per their corresponding size, using multi-scale 
optimisation. 
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Figure 5.9: In total 11 landslides of three different types were correctly recognised 
using OOA in the Darjeeling area. Dotted lines in insets (a) and (b) show the reference 
landslide inventory. 
 
The overall recognition accuracy for total number of landslides in the 
Okhimath and Darjeeling areas was 73.3% and 68.7%, respectively. 
Although the accuracy in Okhimath is lower than the overall recognition 
accuracy (76.4%) achieved in our previous work (refer to table 3 of Martha 
et al. (2010b)), it greatly reduced the percentage of incorrectly recognised 
landslides, i.e. error of commission (16.6%), compared to 56.4% achieved 
before (Figure 5.10b). The lower overall recognition accuracy of shallow 
translational rock slides (60% in both areas) mostly contributed to the 26.6% 
and 31.2% errors of omission of the total number of landslides in Okhimath 
and Darjeeling, respectively, in comparison to the contribution from other 
landslide types (Tables 5.4 and 5.5), a trend similar to what we observed in 
our previous study in the Okhimath area. This is due to the fact that they are 
small and narrow, and commonly occur in barren rocky lands, thereby 
offering limited local contrast that is essential for segment delineation. 



Chapter 5 

 91

So far we obtained higher accuracies from the multi-scale optimisation 
procedure in comparison to the single scale method used previously. 
However, to rule out any possibility of poor results due to a wrong manual 
selection of an optimal scale, and also to verify whether the higher accuracy 
of the present approach is actually due to the use of multiple optimal scales, 
we repeated the entire analysis for both areas with segments created using a 
single scale selected objectively. The scales corresponding to the highest 
objective function, i.e. 16 for Okhimath and 22 for Darjeeling were selected 
for the repeat analysis. Thresholds were recalculated using K-means cluster 
analysis for the new object levels, and landslides were recognised and 
classified using the same approach. The result showed that, although the 
overall recognition accuracy has not changed much for both areas (Tables 5.4 
and 5.5), the error of commission has significantly increased for both the 
total number and the extent of landslides (Figures 5.10c and 5.10d). This 
happened mainly due to the incorrect identification of some of the false 
positives as landslides. 
 

 
Figure 5.10: Comparison of the accuracies obtained using segments derived from 
three different methods. (a) and (b) show the total area and number of landslides, 
respectively, recognised in Okhimath, (c) and (d) in Darjeeling. 
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Table 5. 4: Accuracy assessment for total number and extent (km2) of landslides detected in the Okhimath area using multiscale (ms) and single scale (ss) optimisation procedures. 
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Table 5. 5:Accuracy assessment for total number and extent (km2) of landslides detected in the darjeeling area using multiscale (ms) and single scale (ss) optimisation procedures. 
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5.6 Conclusion 
Optimisation of segments and thresholding of diagnostic features are the 
major challenges in the development of a robust object-based method for 
fast detection of landslides. In our previous work (Martha et al., 2010b) we 
showed how manually guided multi-level segmentation, as well as 
interactively identified thresholds for the dozens of analysis steps needed in 
the subsequent removal of false positives and the determination of landslide 
types, led to an overall recognition accuracy of 69.9%. However, a ready 
application of such a procedure hinges on a higher level of automation and 
more objective value selection, a problem that is just starting to get 
addressed in OOA research. In this study we created a plateau objective 
function using Moran’s I index and intrasegment variance that allowed an 
objective selection of the optimal scales required for identification of false 
positives. Dynamic parameter thresholds estimated by K-means cluster 
analysis were used in several classification steps of the OOA. This work 
showed that multi-scale based identification of false positives helped in 
achieving a higher overall recognition accuracy (76.9%) of landslides 
compared to a single scale, and significantly reduced the error of commission 
affecting out earlier results. Segment optimisation using the result of an 
intermediate classification was able to delineate small landslides and flanks of 
large landslides, and outline landslides as individual objects, thereby allowing 
the application of process-specific criteria to classify them based on material 
and movement characteristics. Apart from multi-resolution segmentation, 
chessboard segmentation was used to remove landslide impurities, and refine 
landslide boundaries. To summarise, the segmentation techniques that were 
applied to optimise segments for landslide recognition and classification, and 
that in combination constitute the novelty of this research, include: 1) multi-
scale segment optimisation with a plateau objective function; 2) chessboard 
segmentation to remove landslide impurities such as vegetation within large 
landslides; and 3) multi-resolution segmentation with terrain curvature to 
classify landslides based on failure mechanism. K-means clustering proved to 
be effective in estimating thresholds for landslide diagnostic parameters that 
were used either individually or simultaneously.  
 
The segment optimisation procedure was conceived with four sub-modules, 
created using eCognition software, and which proved effective and robust in 
delineating segments for both small and large landslides embedded in 
different land cover units. The advantage of the methodology demonstrated 
in this chapter is that optimal scales and thresholds were selected in an 
unsupervised manner. The approach could detect five and three types of 
landslides in Okhimath and Darjeeling areas, respectively. While the structure 
of sub-modules 1, 2 and 4 of the rule set was kept unchanged for landslide 
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detection in both the areas, a semi-supervised approach was adopted for 
sub-module 3, i.e. to link the optimal scales interactively to false positives by 
analysing a sample area in the image. This remains a limitation of our 
method, although it was substantially improved from our previous approach 
by incorporating relative identification criteria and automatic thresholds. 
 
The low recognition accuracy of total number of shallow translational rock 
slides (60% in both areas) is another limitation of our approach. These slides 
are generally small and narrow (width < 3 pixels) and could not be 
delineated as a segment. We address this in a separate study by further 
refining the objects with more shape control than colour, although insufficient 
resolution of the satellite image could be one of the reasons for their limited 
detection. Good overall recognition accuracy of the method indicates that it 
can be of potential use for the preparation of event-based landslide inventory 
maps, vital for the planning of short and long term disaster management 
strategies in mountainous areas. More illustrations and the rule set will be 
available on our website (www.itc.nl/OOA-group). 
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Chapter 6: Historical landslide inventories 
from panchromatic images* 
In chapters 4 and 5, we have shown how landslides can be detected from 
multispectral images using OOA. However, frequently panchromatic images 
are the only data available after a landslide event. Furthermore, preparation 
of historical inventories, an essential requirement for landslide susceptibility 
and hazard analysis, relies on the analysis of satellite images and aerial 
photographs acquired over past few decades that are also mostly available in 
black and white. In such cases the methodology developed in previous 
chapters cannot be used directly due to lack of spectral information. In this 
chapter, we present a new methodology that addresses some of these issues. 

6.1 Introduction 
Fast detection of landslides is vital for rapid damage assessment and 
supporting disaster management activities. Segmentation-based object-
oriented analysis (OOA) provides an alternative to detect landslides 
automatically from remote sensing images in comparison to traditional pixel-
based approaches that are largely limited to spectral information (Blaschke 
and Strobl, 2001; Townshend et al., 2000; Yan et al., 2006). OOA mimics the 
human interpretation process and has the potential to identify meaningful 
geomorphic processes, such as landsliding, using criteria based on shape, 
colour, texture and context, and produces results that are verifiable and can 
easily be converted to GIS data (Blaschke, 2010; Navulur, 2007a). Although 
rapid inventorisation of new landslide occurrences is crucial for planning of 
immediate disaster response, historical landslide inventories play an 
important role for the preparation of landslide susceptibility and hazard maps 
required for setting up long term landslide management strategies (Devoli et 
al., 2007; Guzzetti et al., 2005).  
 
Previous workers (Barlow et al., 2006; Barlow et al., 2003; Lu et al., 2011; 
Martha et al., 2010b; Moine et al., 2009) have shown how to detect 
landslides from multispectral images by OOA. However, in several cases 
panchromatic images are the only data available after an event (van Westen 
et al., 2008; van Westen and Lulie Getahun, 2003), where these 
methodologies cannot be used directly, since they rely on thresholds derived 
from spectral information during the detection process. Also, satellites such 
as from SPOT, LANDSAT and IRS-1C/1D, all useful sources of EO data for 
preparation historical landslide inventory databases, have a panchromatic 

                                          
* This chapter is based on the article: Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V.G. and 
Kumar, K.V. (2011) Object-oriented analysis of multi-temporal panchromatic images for creation of 
historical landslide inventories. Remote Sensing of Environment (In revision). 
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camera which has higher resolution than the multispectral counterpart. For 
example, both IRS-1C and 1D carry a multispectral LISS-III (23.5 m) 
camera, the data from which if used for preparation of historical landslide 
inventory will miss smaller landslides. Those, however, can be detected if 
data from the panchromatic (5.8 m) camera onboard the same satellite were 
used. Although pan-sharpening can help, availability of both (panchromatic 
and multispectral) data on the same day of acquisition, preferable for data 
merging, is often limited. Therefore, a knowledge-based object-oriented 
landslide detection method is required for preparation of historical landslide 
inventory from panchromatic images.  
 
Panchromatic images have previously been used for land use / land cover 
classification using the tonal variation, i.e. texture, in the high resolution 
imagery. Grey level co-occurrence matrix (GLCM) is by far the most 
commonly used approach in remote sensing to derive second order texture 
measures (Haralick et al., 1973). For example, Rao et al. (2002) used GLCM 
textures in addition to tone for land cover classification from IRS-1D Pan 
data. Similarly, Zhang et al. (2003) identified the spatial pattern of an urban 
area using GLCM texture features derived from SPOT Pan data. Change 
detection using time-series panchromatic images is another method that has 
been applied successfully for target identification (Negi et al., 2002; Smits 
and Annoni, 2000), and can effectively be used for preparation of historical 
landslide inventories from multi-temporal satellite images. Image 
differencing, principal component analysis, and post-classification comparison 
are the most common methods of change detection (Lu et al., 2004). Precise 
geometric registration and normalisation between time-series images are the 
key requirement for deriving accurate results by change detection (Lu et al., 
2004). Negi et al. (2002) used Pan-Pan change detection for the identification 
of buildings and aircrafts, whereas Nichol and Wong (2005a) used change 
detection to prepare landslide inventory from grey level images. However, 
these workers essentially used panchromatic images in pixel-based 
classification, which has inherent inability to address feature characteristics 
and context during image analysis. 
 
Object-based land cover classification using panchromatic images has been 
attempted by previous workers (e.g. Elmqvist et al., 2008). However, object-
based change detection technique using panchromatic images has so far not 
been used to its full potential. Only recently, Dissanska et al. (2009) used 
object-based post classification change detection technique and classified 
peat lands from recent high resolution black and white Quickbird images and 
old aerial photographs. They used GLCM textures to characterise and classify 
the peat lands and monitored the changes. One of the important properties 
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observed in the post-landslide panchromatic images is the increase in 
brightness of the area affected by landsliding due to loss of vegetation and 
exposure of fresh rock and soil (Martha et al., 2010b). This effect can be 
captured in an object-based environment to detect landslides by change 
analysis of pre- and post-landslide images. However, the increase in 
brightness due to land cover changes such as mining, forest fire and other 
anthropogenic causes have to be eliminated successfully. 
 
In this study we extend our previous approach by applying more texture 
measures, the main property offered by high resolution panchromatic 
images, along with tone and context-based criteria to detect landslides. The 
methodology is developed using eCognition software. Multiresolution 
segmentation is used to derive image primitives with optimal segmentation 
parameters, determined by a plateau objective function (POF), which is a 
combination of intrasegment variance and spatial autocorrelation. Texture 
measures based on GLCM are used to identify false positives, such as roads, 
agricultural terraces and built-up areas. While an IRS-1D panchromatic image 
(5.8 m) is used for the segmentation and extraction of GLCM textures, a 
digital elevation model derived from along-track stereoscopic Cartosat-1 data 
(2.5 m) is used to extract morphometric features of landslides. A combination 
of these diagnostic features is used in an object-based environment with a 
knowledge-based approach to detect landslides. The methodology is 
demonstrated in the Okhimath area in the Himalayas that is severely affected 
by landslides (Figure 1.3). Only the preparation of a historical landslide 
inventory for the Okhimath area based on panchromatic images from 1998 – 
2006 (except for 2004) is discussed in this chapter. From the year 2007 
onwards multispectral Resourcesat-1 LISS-IV Mx data have been used, and a 
landslide inventory for the recent past was prepared using the methodology 
discussed in chapters 4 and 5. 

6.2 Materials and method 

6.2.1 Data sources 
To prepare an annual historical landslide inventory by OOA, and taking the 
landslide super event of August 1998 as a starting point, cloud free 
panchromatic data (one scene per year) from 1998 to 2006 were procured 
from archives (Table 6.1). High sensor tilt angles during data acquisition 
create geometric distortion in mountainous areas and are generally 
problematic for change detection using time series images. Therefore, only 
images acquired with <5° tilt angle, which are generally available in archives, 
were procured and used in this study. A 10 m digital surface model (DSM) 
derived from Cartosat-1 stereoscopic images, having a vertical and 
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planimetric RMSE of 2.31 m and < 1 m, respectively (Martha et al., 2010c), 
was converted to a digital terrain model (DTM) by applying vegetation height 
correction (Martha et al., 2010b). The DTM was used to extract 
morphometric layers such as slope, flow direction and relief. The DTM created 
using 2006 image forms an input to OOA with the time-series panchromatic 
images. 
 

Table 6.1: Details of high resolution panchromatic satellite data used in this study. 
Satellite data Resolution (m) Date of acquisition 

IRS–1D PAN 5.8 14 April 1998 
02 November 1998 
21 September 1999 
28 May 2000 
24 March 2001 
14 November 2002 
13 April 2003 
13 Mar 2005 

Cartosat–1 Stereo PAN-Aft 2.5 06 April 2006 

6.2.2  Pre-processing of satellite data 

6.2.2.1 Image geometric correction 
Accurate geometric registration of satellite data to a common spatial 
framework is a principal requirement for image analysis involving multiple 
satellite images (Prenzel and Treitz, 2004). In this study, first the Cartosat-1 
PAN-Aft image was orthorectified using the 10 m DTM, and subsequently 
used as reference for the geometric correction of IRS-1D PAN time-series 
images, using a projective transform model. During geometric correction, 
uniform projection (UTM) and datum (WGS84) were maintained. The 
maximum RMS error after the transformation was less than 3 pixels, and can 
be considered satisfactory given the problems of image registration in 
mountainous areas (Xu et al., 2010). 

6.2.2.2 TOA reflectance calculation 
Quantitative comparison of multi-temporal images requires conversion of DN 
values to reflectance (Lu et al., 2008). The conversion is essential for two 
reasons: i) to compensate for the brightness difference due to image 
acquisition under different sun illumination conditions; and ii) to adjust for 
the difference in DN values due to the seasonal adjustment of sensor 
parameters by the data provider. We calculated the top of atmosphere 

reflectance ( toaρ
) to address these issues.  
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Where, 
Lλ  = Spectral radiance (W sr-1 m-2 μm-1)  
d  =  Earth – Sun distance in astronomical units 
E0 =  Bandpass exoatmospheric spectral irradiance (W m-2 μm-1) 
θs = Solar zenith angle  
DN = Digital number of the pixel 
MaxGray  = 255 (for 8-bit data) 

Lmaxλ and Lminλ are maximum and minimum spectral radiance of the scene, 

respectively. 

Finally, toaρ
images for all the years (Table 6.1) were calculated and then 

used for change detection after image normalisation. 

6.2.2.3 Image Normalisation   
Multi-temporal images listed in table 6.1 were acquired in different seasons. 
The histograms for each image are different due to the difference in 
atmospheric conditions during image acquisition. Therefore, histogram peaks 
have to be matched between the images before any quantitative comparison, 
especially change detection (Cheng et al., 2004). Bi-temporal relative 
normalisation using a histogram matching technique was applied to normalise 

the toaρ
 images. Since the landslide super event was in August 1998, the 

image acquired on 14 April 1998 was the only pre-landslide image out of all 
the images listed in table 6.1. To carry out image normalisation, first the 
reflectance of a post-landslide image was calculated, and then the histogram 
of the pre-landslide image was normalised accordingly. For example, to 
prepare the landslide inventory of the August 1998 super event by change 
detection, reflectance of the 14 April 1998 was normalised by matching with 
the histogram of the 02 November 1998 image. Similarly, to prepare the 
landslide inventory for the remaining years, i.e. 1999 to 2006, the reflectance 
of the post-landslide image was calculated and matched with the histogram 
of the 14 April 1998 image. Change detection was carried out using an image 
differencing method in a bi-temporal image pair mode to find out the 
brightness anomalies, which were later attributed to landsliding during a 
knowledge-based classification with OOA. 
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6.2.3 Detection approach   
We first prepared the landslide inventory for the year 1998 by selecting the 
image acquired after the landslide super event, i.e. the IRS-1D image of 02 
November 1998 that showed the maximum number of landslides. 
Multiresolution segmentation of this image was carried out, and multiple 
optimal scales were determined using POF for object-based classification of 
landslides (Martha et al., In Press). The method to calculate POF is explained 
in section 5.3.2. The scale parameter corresponding to the first peak of the 
POF creates smaller segments than the scale parameter of subsequent peaks, 
and hence, has the maximum chance of capturing small landslides having 
good brightness contrast with surrounding pixels. Therefore, the first peak 
scale parameter was used to create segment for the extraction of landslide 
candidates. 

6.2.3.1 Identification of landslide candidates 
In the previous chapter, we showed how a global NDVI threshold was used to 
identify landslide candidates from multispectral images.  Since an increase in 
brightness after landsliding is a universal property, we used it as a NDVI 
substitute for the thresholding of panchromatic images. However, instead of 
applying brightness as a global threshold, we adopted a two-fold strategy to 
identify landslide candidates; i) change detection using the difference in 
object brightness of pre- and post-landslide images, which can be expressed 
by the following equation: 

       ρρ )()( landslidepretoalandslideposttoaChange −− −=  (6.3) 

and ii) local brightness threshold of the post-landslide image using a 
contextual criterion. Specifically, we used the high brightness contrast to 
darker neighbours to detect brightness anomalies, i.e. relative tonal variation 
between a landslide and its neighbours caused due to the landsliding process. 
While the first strategy was useful in the identification of large landslide 
candidates, the second strategy was useful to identify smaller ones. The 
second method of thresholding also has the potential to identify landslides in 
partial shadow areas or within barren lands, due to good local contrast, even 
where brightness is below the global threshold value. It also reduces 
overprediction of uncultivated agricultural and barren lands as landslide 
candidates, thereby reducing the total number of false positive objects to be 
eliminated in subsequent stages.  
 
Performing change analysis in an object-based environment poses significant 
challenges in assessing changes and updating thematic maps, due to 
generation of small size unwanted objects (McDermid et al., 2008). In 
landslide change detection, the brightness of objects obtained through 
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segmentation of post-landslide image is compared with the brightness of the 
corresponding area in the pre-landslide image. Therefore, identification of 
large new landslides (e.g. object ‘A’ in figure 6.1b) in this approach is 
relatively easy. However, existing landslides that have expanded in 
subsequent years may create problem during object-based change detection. 
For example, the presence of bright pixels in objects ‘B’ and ‘C’ (Figure 6.1b) 
increases the average reflectance of objects for the pre-landslide image, and 
therefore may not have sufficient brightness difference to be identified as a 
landslide candidate using a threshold value. Therefore, we created a sub-
object level below the main object level by applying multiresolution 
segmentation to the pre-landslide image (Figure 6.1c). This supports a better 
comparison of stable and landslide area of the bi-temporal image pair. For 
example, objects ‘B3’, ‘C1’, ‘C3’ and ‘C5’ in the sub-object level can be easily 
identified now as landslide candidates due to a large brightness difference 
between pre- and post-landslide images (Figure 6.1d). Later these landslide 
candidate objects in the sub-object level were used as seeds and allowed to 
grow using a combination of contextual criteria such as ‘border to’ the 
landslide candidates and high brightness of the  post-landslide image. This 
process was executed in a loop until the remaining sub-objects of objects ‘C’ 
and ‘D’ were identified as landslide candidates. In this process, all object 
constituents of a large landslide in the post-landslide image were identified. 
 
Once all landslide candidates were identified from the post-landslide image, 
they were merged to minimise the oversegmentation that resulted from the 
resegmentation using pre-landslide image. 

 
Figure 6.1: Top and bottom rows correspond to post-and pre-landslide images, 
respectively. (a) panchromatic images, (b) main level created by segmenting the post-
landslide image, (c) sub-level created below the main level by segmenting the pre-
landslide image, (d) sub-level objects (shown with numbers) used for change detection 
(area outlined in (c)). 
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6.2.3.2 Identification landslide false positives 
Since high brightness is used as a criterion for identification of landslide 
candidates, shadow areas are no more part of the false positives, as was the 
case in the previous chapters. Therefore, the use of hillshade image was 
avoided. Other false positives, such as barren rocky land, agricultural 
terraces, built-up areas and river sands, were identified in a similar manner 
as explained in previous chapters. More texture measures were used as a 
replacement for spectral information. eCognition calculates textures 
measures after Haralik (Haralick et al., 1973), such as GLCM homogeneity, 
GLCM dissimilarity, GLCM contrast, GLCM standard deviation, GLCM entropy, 
GLCM second angular momentum, GLCM correlation and GLCM mean. These 
GLCM textures are calculated for each object in eCognition, in contrast to 
those computed for a selected window size in pixel-based analysis. Border 
effects are reduced by considering pixels that surround the objects 
(eCognition, 2009). Studies by previous workers (Dissanska et al., 2009; Rao 
et al., 2002) have shown that these texture measures, when used along with 
tone, increase the classification accuracy significantly. Therefore, we 
selectively used these features along with morphometric parameters such as 
slope, relief and flow direction derived from the 10 m DTM to identify false 
positives. As discussed in chapter 5, features in a landscape are represented 
on different scales. Therefore, multiple optimal scales determined from POF 
were used to segment the landslide candidate objects of the post-landslide 
image during the identification of landslide false positives. 

6.2.3.3 Classification of landslide types 
The creation of landslide inventories includes two aspects: i) recognition, and 
ii) classification based on failure mechanism and material type (Mantovani et 
al., 1996). Once all landslide false positives were eliminated, the remaining 
landslide candidate objects corresponded to landslides only. These objects 
were merged into individual single objects to apply landslide process 
knowledge for their classification based on movement type and material, 
using morphometric, shape and contextual criteria. The procedure for 
classification of landslide type is explained in section 4.4.3. 

6.2.3.4 Detection from time-series images 
Preparation of historical inventories from EO data requires analysis of time 
series images. So far we have explained the preparation of the landslide 
inventory for the year 1998 using the image acquired on 02 November 1998, 
shortly after the super event, and by comparing the brightness with the pre-
super event image (14 April 1998). For preparing inventories for the 
remaining years, we selected one image per year and repeated the procedure 
as explained before. For example, to prepare the landslide inventory for the 
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year 1999, we analysed another pre- and post-landslide image pair, i.e. 
images of 14 April 1998 and 21 September 1999. The 21 September 1999 
image was segmented using the scale corresponding to the first peak of the 
POF, and landslide candidates were identified using the procedure explained 
in section 6.2.3.1. The methodology is summarised in a flow chart in figure 
6.2.  
 
For the creation of a landslide inventory from the 14 April 1998 image, the 
methodology was modified slightly, since extraction of landslide candidates 
by change detection was not possible due to the unavailability of image data 
prior to this date. Therefore, only the second strategy as explained in section 
6.2.3.1 was used to extract landslide candidates.  
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Figure 6.2: Methodology flowchart for detection of landslides from multi-temporal 
panchromatic images. 

6.3 Results and discussion 

6.3.1 Landslide candidates 
Optimisation of segments is essential to apply criteria based on shape, 
texture and context for successful identification of landslide false positives 
since they are represented on different scales in a landscape. All the images 
as listed in table 6.1 were processed, and optimal scales were determined by 
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POF (Figure 6.3). From the POF shown in figures 6.3 and 5.3 it is clear that 
the pattern of the curve above the plateau line is conspicuous irrespective of 
the data type (panchromatic or multispectral) and spatial resolution. It 
indicates POF is able to bring out the inherent scales in the images, and can 
be used as a generic indicator for realising multiple optimal scales. Table 6.2 
lists all the multiple optimal scales used for analysis of panchromatic images. 
The main object level was created using the first optimal scale of the post-
landslide image, e.g. 21 for 02 November 1998 image, and the sub-object 
level was created using the first optimal scale of the pre-landslide image, e.g. 
15 for 14 April 1998. Figure 6.4 shows all potential landslide areas, including 
small and large landslides, as part of the landslide candidates using the two 
fold strategy.  
 
Table 6.2: Optimal scales derived using POF used for extraction of landslide 
candidates. 
Panchromatic images Optimal scales 

14 April 1998 15, 18, 26, 40 

02 November 1998 21, 34 

21 September 1999 21, 42, 46 

28 May 2000 15, 28, 32, 35 

24 March 2001 17, 23, 26, 32 

14 November 2002 25, 45, 50 

13 April 2003 26, 33, 38, 47 

13 Mar 2005 14, 19, 21, 29, 31, 36 

06 April 2006 27, 29 

6.3.2 Detection of landslides 
For the detection of landslides, identification of all landslide false positives, 
such as river sand, built-up area, road, agriculture land and barren land, is 
necessary. We first identified rivers using the stream network (Martha et al., 
2010b). Identification of rivers, although not part of landslide candidates, 
was required since it helps in classification of river sands using an adjacency 
condition to the river water bodies. 
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Figure 6.3: Objective function curves for multi-temporal panchromatic images. The 
dotted line corresponds to the POF value and the peaks above the dotted line were 
used for identification of landslide candidates, and classification of landslides. Although 
the plateau is almost flat for the IRS-1C (Nov, 1998) image corresponding to the 
landslide super event, conspicuous peaks (21 and 34) were identifiable using the POF. 
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Figure 6.4: Extraction of landslide candidates from panchromatic images. (a) pre-
landslide image (April 1998), (b) post-landslide image (September 2000), (c) landslide 
candidates extracted using first strategy, i.e. change detection. Note that small bright 
features (yellow circles), mostly translational rock slides could not be identified as 
landslide candidate, and (d) landslide candidates extracted using second strategy, i.e. 
contextual criteria. All small bright features are now part of the landslide candidates. 
 
To assign multiple optimal scale factors (Table 6.2) to individual false positive 
classes, we first listed all false positives present in the study area. Then 
segmentation using all the optimal scales was carried out, and for a small 
area in the image, individual false positives were linked to that scale factor 
which not only generated less number of segments (i.e. internal homogeneity 
is maintained) but also completely outlined the false positive (i.e. 
heterogeneous from the surrounding). The relationship between the scale 
factor and false positive obtained for the small area was used for object-
based classification of the whole image. For example, from the landslide 
candidates obtained from 28 May 2000 image, scale 15 was used for the 
identification of river sands, scale 28 was used for the identification of built-
up areas and roads, scale 35 was used for the identification of agricultural 
and barren lands. 
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The major contribution of this study is the use of texture in absence of 
spectral information to identify landslide false positives. The texture 
measures used are listed in table 6.3. Selection of textures for the 
identification of false positives was done interactively by carefully analysing 
the object properties. Only the texture features whose values do not overlap 
between the false positive classes were used. These texture features were 
used in conjunction with tone and morphometric parameters such as slope to 
identify the false positives. For example agricultural terraces, although similar 
in tone to landslides, could be identified as a separate class using additional 
criteria such as GLCM dissimilarity, GLCM homogeneity, GLCM standard 
deviation and slope (Figure 6.5). Roads were identified using shape 
properties, such as high asymmetry, orthogonal relationship between flow 
direction and main direction, and very low standard deviation of the DTM. 
 
Table 6.3: Texture measures used for identification of false positives. The following 
combination of textures could identify maximum false positives. 
False positives GLCM textures 

Built-up area GLCM correlation 
GLCM homogeneity 

Agricultural land GLCM dissimilarity 
GLCM homogeneity 
GLCM standard deviation 

Barren land GLCM contrast 
GLCM dissimilarity 
GLCM standard deviation 

 

 
Figure 6.5: Usefulness of texture for identification of false positives. (a) post-landslide 
panchromatic image (13 April 2003), (b) agricultural terraces and barren lands, 
although having similar tone to that of landslides, could be identified separately using 
GLCM textures. 
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After all the false positives are eliminated, the remaining landslide candidates 
represented mostly landslides. The objects were then merged and 
classification of landslides was performed using shape and morphometric 
criteria. One DTM (year 2006) and the morphometric parameters such as 
flow direction and curvature derived from it were used in the analysis of all 
multi-temporal images. As long as there are no significant changes in the 
terrain topography, this DTM can be used for landslide detection in the 
Okhimath area. However, in case of occurrence of new large landslides, such 
as the one shown in figure 6.4, which has the potential to change the values 
of morphometric parameters, a new DTM has to be used. For rapid detection 
of landslides this causes problem, but if the focus is on inventorisation for 
earlier years as done in this chapter, one can afford creation of a new DTM. 
 
A total of five types of landslides was identified in this area. Nine landslide 
inventories, one corresponding to each panchromatic image, were prepared 
(Figure 6.6). Some of the large landslides may show their presence in 
multiple years, but their extent will vary depending upon whether they have 
contracted due to vegetation growth or expanded due to reactivation. Time 
series analysis helps to identify those landslides that have undergone such 
changes, since all the objects are referenced to a common spatial framework. 
Figure 6.7 shows one such change wherein an active landslide is stabilised 
and becomes active again in subsequent years. 

6.3.4 Accuracy assessment 
Accuracy assessment was carried out by comparing the landslide inventories 
created by OOA with the reference inventories, which were created manually 
using visual interpretation technique. Stereoscopic image interpretation of 
Cartosat-1 image and cross-reference to high resolution GoogleEarth image 
were used for the preparation of one reference inventory for each year. Since 
most of the landslides, e.g. landslides triggered after the super event of 
August 1998, were stabilised through revegetation, it was difficult to check 
them now in the field. However, landslide inventories and reports prepared 
by previous workers (Naithani, 2002; Rawat and Rawat, 1998) were referred 
to during the creation of reference landslide extent and type. Detection of 
landslides and correct identification of their extent are important for disaster 
damage assessment and landslide hazard analysis. Therefore, accuracy 
assessment was carried out for the total number and extent of landslide 
detected by the semi-automatic method at five levels: I) correctly classified; 
II) incorrectly classified and III) correctly recognised (I+II).  
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Figure 6.6: Independent annual inventory of landslides of five different types 
prepared from historical panchromatic images (1998 – 2006) in the Okhimath area by 
OOA. 
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Figure 6.7: Monitoring of an active landslide. The location of this landslide is shown in 
figure 6.6. There is a decrease in the landslide-affected area from April to November, 
1998, which is showing no activity in 1999. The reactivation has started again in 2000. 
 
Accuracy figures for all five types of landslides for the years 1998 to 2006 are 
provided in figure 6.8. From the figure 6.6, it is evident that shallow 
translational rock slides are the dominant landslide types in terms of total 
number in all the years. In this semi-automatic method, 86.9% of the total 
number of shallow translational landslides that occurred after the super event 
of August 1998 could be recognised correctly from the 02 November 1998 
image, which is the maximum in comparison to other years. The accuracy of 
the total extent of the correctly recognised shallow translational rock slide 
from the same image is 95.7%, which indicates that the inventory will be 
very useful for preparing landslide susceptibility map by data driven models. 
Accuracy of the extent of the shallow translational rock slide recognised 
correctly is reasonably good for all the years except for the year 2000 (60%) 
(Figure 6.8). Also the percentage of shallow translational rock slides 
incorrectly recognised is particularly high in 2006. This is due to the incorrect 
identification of some of the shallow translational rock slides as agricultural 
lands.  
 
Translational rock slides are the second most dominant type of landslide in 
this area (figure 6.6). The accuracy of the total extent of translational rock 
slide correctly recognised from the 02 November 1998 image, i.e. those 
corresponding to the super event, is 64.7%. Although the accuracy of the 
number of translational rock slide correctly recognised is reasonably good in 
all the years, the accuracy of extent varies from 48% (for 2001) to 82.2% 
(for 2003). This is mainly due to incomplete identification of large landslides, 
although they occurred after the super event. The incomplete identification of 
large landslides can be attributed to; i) part of them being completely under 
shadow due to low sun position during data acquisition, and ii) large part of 



Multi-temporal inventory  

 114 

the left flank of some landslides not being illuminated sufficiently. Therefore, 
they were wrongly identified as agriculture and barren land (Figure 6.9b). 
However, this large landslide was better identified from the 28 May 2000 
image due to proper illumination of the landslide under high sun position.  
 
The performance of the methodology to correctly recognise debris flow, 
debris slide and rotational rock slide is moderately good. The total number 
and extent of these landslides incorrectly recognised, i.e. error of 
commission, is significantly high in comparison to those incorrectly 
recognised from multi-spectral images. Among all landslide types, the extent 
of debris slides over detected from the 28 May 2000 image is very high 
(827%). This is mainly due to incorrect identification of channel deposits as 
debris slides. 

 
Figure 6.8: Accuracy assessment for number and extent of landslides of different 
types having correctly classified (I), incorrectly classified (II), correctly recognised 
(III), not recognised (IV) and incorrectly recognised (V). STRS - shallow translational 
rock slide; DF - debris flow; DS - debris slide; RRS - rotational rock slide and TRS - 
translational rock slide. 
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Figure 6.9: Detection of translational rock slide from panchromatic images. (a) post-
landslide image (02 November 1998), (b) parts of translational rock slide, although 
correctly recognised, wrongly classified into multiple debris slides and debris flows, (c) 
post-landslide image (28 May 2000), and (d) translational rock slide that was better 
identified due to proper illumination. 

6.3.4.1 Comparing landslide density 
Another means of assessing accuracy of multi-temporal landslide inventory is 
by comparing the density of slope failures in inventories (Galli et al., 2008). 
For this purpose the study area was divided into terrain units having similar 
slope conditions. Terrain units or slope facets, which have consistent slope 
direction and inclination, and are generally delimited by ridges, spurs and 
gullies (Anbalagan, 1992), were prepared manually with the help of hillshade, 
slope and aspect derived from the DTM. A total of 1982 slope facets was 
prepared and landslide density was calculated by intersecting the landslide 
polygons of the historical landslide inventories identified by manual and semi-
automatic methods with the slope facet map. The spatial distribution of 
landslide density classes shown in figure 6.10 is well correlated. Slope facets 
with a landslide area < 3% were considered as stable (Galli et al., 2008). An 
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error matrix was created for comparing the two sets of landslide inventories 
(Table 6.4). The overall accuracy of the semi-automatically prepared 
landslide inventory in terms of landslide density is 93.4% with a Kappa co-
efficient of 0.842. It indicates that, although the individual semi-
automatically prepared landslide inventories independently show accuracies 
in the range of 37 – 100% (Figure 6.8), collectively they showed a high 
degree of accuracy due to which the overall accuracy of the landslide density 
is very high. 
 

 
Figure 6.10: Comparison of landslide density (a) with semi-automatically identified 
landslides, and (b) with manually identified landslides. 
 
 
Table 6.4: Comparison of stable and unstable slope facets based on semi-automatic 
and manual landslide inventories. 

 

Density map obtained from manual 
inventory 

Stable Unstable Total 

Density map 
obtained from 
semi-automatic 
inventory 

Stable 1335 75 1410 

Unstable 55 517 572 

Total 1390 592 1982 
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6.4 Conclusion 
A historical landslide inventory is a primary requirement for the preparation 
of a landslide hazard map by statistical methods, for which multi-temporal 
satellite images or aerial photographs are mainly used. These images are 
often only available in greyscale. In this chapter we presented an object-
oriented method to prepare historical inventories from archived panchromatic 
images (1998 – 2006) in the Himalayas. Recognition and classification of 
landslides were attempted using a knowledge-based method as discussed in 
the previous chapters. GLCM texture measures were extensively used to 
identify false positives using multiple optimal scales derived from POF. 
However, the number of false positive types in panchromatic images is less in 
comparison to what had to be eliminated during landslide detection from 
multi-spectral images (Table 5.2). Object-based change detection for the 
identification of landslides from grey scale imagery was presented for the first 
time in this dissertation and was found to be very useful for the identification 
of large landslides. Small size landslides were also recognised by change 
detection technique due to accurate geometric registration (< 3 pixel RMS 
error) of the multi-temporal images, which was mainly achieved due to the 
use of low sensor tilt angle images. The use of a local instead of global 
brightness threshold was also very effective, particularly for the detection of 
smaller translational rock slides, and can be considered as a significant 
achievement of this study. The maximum (86.9%) recognition accuracy for 
the total number of shallow translational rock slides can be attributed to this 
factor.  
 
The recognition accuracies of shallow translational rock slides and 
translational rock slides are reasonably good and comparable to the accuracy 
figure obtained from the multispectral image. However, the percentage of 
wrong detection is also high in comparison to the accuracy figures obtained in 
the previous chapters, i.e. more features, such as agricultural and barren 
lands, were incorrectly identified as landslides from panchromatic images. 
Therefore, one level of external quality checking for the identification of 
agricultural lands, which are relatively easy to identify by onscreen visual 
interpretation, is required before the landslide inventories prepared from grey 
scale images are used as an input for landslide susceptibility and hazard 
mapping. This step is reasonable, since historical inventory need not be done 
very quickly, compared to the preparation of current or new inventory. The 
landslide density map prepared from semi-automatically prepared landslide 
inventories showed a good spatial fit with the density map generated using 
manually prepared landslide inventories. Also, the overall accuracy of the 
stable and unstable areas derived using manually and semi-automatically 
prepared landslide inventories was 93.4%, which indicates a significant level 
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of matching between the two sets of inventories, when the multi-temporal 
inventories were analysed collectively.  
 
In this approach, a knowledge about the number of false positive classes 
present in the study area and the assignment of scale factors to them based 
on a sample area analysis has worked well for identification of most of the 
false positives in this as well as in the previous chapter. However, this 
subjectivity in assignment of scale factor to a false positive can be solved by 
creating a standard spectral-spatial land cover database vis-a-vis scale factor 
for landslide susceptible areas. Once the database is created, it can be used 
for detection of landslides in future unless there is a major change in the land 
use / land cover. The main limitation of this study is the interactive selection 
of GLCM textures. This was required to identify and eliminate some of the 
false positives from landslide candidates. Another limitation is that the 
threshold values of the textures were also selected interactively, unlike done 
statistically using K-means clustering method. 
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Chapter 7: Use of semi-automatically derived 
landslide inventories in hazard and risk 
assessment * 
One of the primary uses of landslide inventories is the preparation of 
landslide susceptibility and hazard maps. In this chapter we show how 
landslide inventories prepared by semi-automatic methods from post-event 
satellite images can be used in the assessment of landslide susceptibility, 
hazard and risk.  

7.1 Introduction 
The availability of landslide hazard and risk maps is essential to identify the 
potential areas of landslide losses and to minimise its societal impact. One of 
the first steps in this direction is the preparation of a landslide susceptibility 
map, indicating the relative susceptibility of the terrain for the occurrence of 
landslides. When combined with temporal information this can be converted 
into a landslide hazard map, which can be used in combination with elements 
at risk information for estimating potential losses to landslides in future, and 
will aid long term landslide risk management in mountainous areas. 
 
A landslide inventory is the basis for any landslide hazard and risk 
assessment (Brardinoni et al., 2003; Carrara and Merenda, 1976; Guzzetti et 
al., 2000). A typical landslide inventory map gives information about the 
type, volume, magnitude, date and place of occurrence. Landslide inventories 
can be used for the calculation of weights of the pre-disposing factor maps 
during landslide susceptibility mapping, as well as for performance and 
reliability analysis in prediction modelling (Carrara and Merenda, 1976; 
Guzzetti et al., 2000) and in magnitude and frequency analysis for the hazard 
mapping. However, preparation of landslide inventory by manual methods is 
a substantial challenge as it requires time and a team of experienced people. 
According to an estimate by Galli et al. (2008), preparation of a inventory 
took an average one month per interpreter to cover 100 km2 area in the 
Umbria region of Italy. Alternatively, landslide inventories can be prepared by 
automatic methods by incorporating expert knowledge in the image analysis 
(Barlow et al., 2006; Martha et al., 2010b; Moine et al., 2009). 
 
Preparation of automatic landslide inventories can be comparatively fast, 
unbiased and data driven, particularly with object-oriented analysis (OOA) 

                                          
* This chapter is based on the article: Martha, T.R., van Westen, C.J., Kerle, N., Jetten, V.G. and 
Kumar, K.V. (2011) Landslide hazard and risk assessment using landslide inventories created semi-
automatically by object-oriented analysis. Journal of the Geological Society of India (In revision). 
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methods, the outputs are also visually consistent. Recently, Martha et al. 
(2010b) updated landslide diagnostic features using high resolution satellite 
data and a digital elevation model (DEM), and synthesised them using OOA 
for mass failure detection. They not only detected landslides accurately but 
also classified them into translational rock slide, rotational rock slide, shallow 
translational rock slide, debris flow and debris slide using a semi-automatic 
method. The recent literature shows that many attempts have been made 
around the globe to prepare landslide hazard maps using manually identified 
landslides (Guzzetti et al., 2005; Pradhan, 2010; van Westen et al., 2003). 
Several attempts were made for automatic detection of landslides (Barlow et 
al., 2006; Borghuis et al., 2007; Martha et al., 2010b; Nichol and Wong, 
2005b; Rosin and Hervas, 2005). However, to the best of our knowledge, no 
attempt has been made to validate the effect of such inventory on landslide 
hazard and risk assessment. This will also demonstrate the potential of semi-
automatically detected landslides for preparation of landslide susceptibility 
and hazard map using statistical methods, which could not be achieved so far 
in many developing countries due to lack of systematic landslide inventory. 
Although it is implicit that the automatic detection of landslides has great 
potential for short term goals such as damage assessment after a disaster, 
evaluation of such outputs to achieve long term goals, such as hazard and 
risk assessment, is worth doing.  
 
The objective of this chapter is to use the multi-temporal landslide 
inventories, created using OOA, in assessing landslide susceptibility, hazard 
and risk. In chapter 6, time-series images from high-resolution Cartosat-1 
(2.5 m), Resourcesat-1 LISS IV Mx (5.8 m) and IRS-1D panchromatic (5.8 
m) were used to map active landslide areas in the study area (Figure 1.3). 
One image per year from these satellites was procured from the data 
archives, and processed by OOA using the methods shown in chapters 5 and 
6 to prepare a landslide inventory from 1997 to 2009 period. These multi-
temporal inventories in combination with historical rainfall data were used to 
estimate the spatial and temporal probabilities for hazard assessment. The 
hazard map was then integrated with elements at risk map prepared from 
the satellite image to assess the landslide risk. 

7.2 Methodology and data 
The methodology adopted in this chapter for landslide susceptibility, hazard 
and risk assessment is briefly explained in figure 7.1. The data used and 
details of methodology are explained in the following sub-sections. 
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7.2.1 Preparation of multi-temporal landslide inventory  
The knowledge-based semi-automatic method as explained in detail in 
chapters 4, 5 and 6 was used for preparation of multi-temporal landslide 
inventory map. So far, we have shown landslide inventory maps for the years 
2004 and 2007 in chapters 4 and 5 respectively, and for the years from 1998 
until 2006 (except 2004) in chapter 6. In order to prepare the landslide 
inventory for the years 2008 and 2009, we additionally processed two 
Resourcesat-1 LISS-IV multispectral images corresponding to those years, 
using the method explained in chapter 5.  
 
We used two images corresponding to the year 1998 (Table 6.1). The results 
obtained from the image dated 14 April 1998 can be assumed as the 
inventory corresponding to show the landslides triggered during the monsoon 
of 1997, since July and August are the wettest months in this area, where 
rainfall is the major triggering event (Figure 7.2). Thus we have a continuous 
landslide inventory with annual landslide inventories for 13 years (from 1997 
to 2009). However, the landslide inventories prepared by semi-automatic 
methods, particularly those prepared from panchromatic images, sometimes 
have a high error of commission, i.e. non-landslide areas were falsely 
identified as landslides (Table 6.4). Therefore, such polygons were removed 
through an onscreen visual inspection by superimposing landslide inventory 
layers on respective images.  
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Figure 7.1: Procedure for landslide hazard and risk assessment using semi-
automatically prepared landslide inventory maps. 
 

 
Figure 7.2: Mean monthly rainfall pattern in the study area for 34 years (1976 – 
2009). Source: Central water commission, Dehradun, India. 
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7.2.2 Generation of landslide susceptibility map 
One of the first and most important steps involved in landslide hazard 
mapping is the assessment of landslide susceptibility, which indicates the 
spatial distribution of localities that are favourable for future occurrence of 
landslides. The susceptibility map shows the proneness of an area to 
landslides. The susceptibility map can be prepared in a GIS using statistical, 
heuristic or physically-based methods. With heuristic methods weights are 
assigned to the predisposing factors also known as causative factors or 
evidence layers, based on the experience of the experts, whereas in data 
driven statistical techniques weights are obtained by correlating landslide 
occurrences and evidence layers, using both univariate and multivariate 
methods. Commonly used bivariate methods are information value and 
weights-of-evidence modelling in which weights for each parameter are 
derived from the landslide inventory (Mathew et al., 2007). Since the 
objective of this chapter is to verify the effectiveness of semi-automatically 
prepared landslide inventory in deriving weights for evidence layers, which 
has an implicit bivariate relationship with landslide occurrence, the proven 
weights-of-evidence method was preferred over other bivariate and 
multivariate methods. 

7.2.2.1 Input data 
Data sources used for the preparation of evidence layers, which are the most 
important contributing factors for the occurrence of landslides in the 
Himalayas, are provided in table 7.1. The available geological map was used 
to refine the boundary between the rock types, particularly the boundary 
between quartz sericite schist and quartz mica schist, gneiss and amphibolite, 
and between the later and streaky banded augen gneiss using the break-in-
slope criteria (Figure 7.3a). The area is traversed by two major thrusts, 
namely the Main Central Thrust (MCT-II) that passes just south of Okhimath, 
and the Vaikrita Thrust (also known as MCT-I) that passes north of Okhimath 
(Figure 7.3a). Geologically it is a disturbed area. The MCT is a nearly 10 km 
wide shear zone, inclined at 20° to 45° northward. Foliations dip at moderate 
angles in NE to NNW directions (Naithani, 2002; Naithani et al., 2002). While 
thrusts and faults were derived from available geological map, lineaments 
were interpreted from LISS-IV Mx and hillshade images (Figure 7.3a). Finally, 
geological structure (lineaments, faults and thrusts), which is a line layer, 
was converted to a polygon layer using a variable buffer criterion, since the 
lineament has very narrow zone of influence on the strength of the rock in 
comparison to a thrust, which has larger zone of influence. Slope facets were 
used as zones to derive relative relief using elevation information from the 
DEM (Figure 7.3b). Land use and land cover in this area is not dynamic. 
There were also no reports of forest fire, urbanisation or major change in 
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agricultural practices that can have a potential impact on the change of land 
cover. The landslides in this area are due to excessive rainfall and not due to 
the change in land use / land cover (Naithani, 2002). Therefore, we selected 
the first multispectral image in the observation period, i.e. a LISS-IV Mx 
image of 2004, to prepare the land use / land cover map of this area. The soil 
in this area is transported and composed of sub-angular rock fragments with 
a high proportion of sandy to sandy-silty matrix (Naithani, 2002; Naithani et 
al., 2002). Soil depth, which is an important parameter for the creation of 
landslide susceptibility map, was prepared using an available soil map. These 
evidence layers were verified during the field work. The slope angle was 
derived from the DEM and was classified into 10 classes using a quantile 
classification system. Slope aspects have a significant role for the occurrence 
of landslides in the Himalayas. It is observed that south facing slopes are 
preferable among locals for development of settlement and agriculture since 
they are sun lit for maximum duration in a day. This results in an increase in 
anthropogenic activities in such areas, and sometimes results in the 
destabilisation of slopes. Therefore, slope aspects derived from DEM were 
used for the creation of susceptibility map. Relative relief is another 
important parameter for the initiation of landslides. It was derived from the 
DEM using the zonal statistics tool of ArcGIS, wherein slope facets are used 
as zones. Slope facets or terrain units, which have more or less similar 
characters of slope showing consistent slope direction and inclination, and are 
generally delimited by ridges, spurs and gullies (Anbalagan, 1992), were 
prepared manually with the help of hillshade, slope and aspect. 
 
Table 7.1: List of evidence layers and their sources used to derive landslide 
susceptibility. 
Evidence layers Number of 

classes 
Data sources 

Lithology 4 Updated using Resourcesat–1 
LISS–IV Mx and DEM 

Geological structure 2 Resourcesat–1 LISS–IV Mx 
and Hillshade 

Soil depth 4 Available soil map 
Land use / Land cover 8 Resourcesat–1 LISS–IV Mx 
Slope angle 10 DEM 
Slope aspect 9 DEM 
Relative relief 5 DEM and slope facet 
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Figure 7.3: Some of the important evidence layers used for preparation of landslide 
susceptibility map. (a) lithology and structure (updated using quadrangle geological 
map published by GSI), (b) relative relief, (c) land use / land cover and (d) soil depth. 

7.2.2.2 Weights of evidence (wofe) method 
The method ‘weights-of-evidence’, or wofe, was initially developed for the 
identification and exploration of mineral deposits using borehole or 
geochemical data (Bonham-Carter et al., 1989; Carranza and Hale, 2003). 
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Many researchers, such as Mathew et al. (2007), Neuhäuser and Terhorst 
(2007), Poli and Sterlacchini (2007), Thiery et al. (2007) and Ghosh et al. 
(2009), have used it also for landslide susceptibility assessment. In this 
method, historical landslides are used to calculate weights of evidence layers 
to demarcate future areas of landslides under the assumption that similar 
factors will prevail in future also (Neuhäuser and Terhorst, 2007). The main 
assumption of wofe is that the evidence layers are independent of each 
other. Although it may not be true in all cases, wofe nevertheless provides 
relatively easy and understandable results, and is therefore often used as an 
exploratory tool in susceptibility assessment. wofe is based on the concept of 
prior and posterior probability. The probability determined empirically with 
knowledge about the occurrence of an event (e.g. landslide) in the past 
under equal condition is known as prior probability. When evidences such as  
lithology, land use, slope are integrated into calculation of probability, it is 
known as posterior probability (Neuhäuser and Terhorst, 2007). By 
overlaying landslide locations with each evidence layer, the statistical 
relationship can be measured between them. This will help in assessing the 
significance of an evidence layer for the occurrence of past landslides. A pair 
of weights, i.e. W+ and W-, is calculated for each layer, which are dependent 
on the spatial relationship between the landslides and evidences. This 
calculation is done by applying likelihood ratios, which describe the 
probability of occurrence of landslides in the presence and absence of 
evidences.  The end product of this analysis is a map showing the relative 
proneness of the terrain to produce landslides i.e. landslide susceptibility, 
based on certain evidences. 
 
In this study, we used ArcSDM software, a geoprocessing tool of ArcGIS 
9.3.1 for wofe analysis (Sawatzky et al., 2009). This software automatically 
calculates positive and negative weights (W+ and W-) depending on the 
association between the response variable (landslides) and each class of 
predictor variables (evidence layers). The contrast (C) and studentised 
contrast (sC) calculated by the software are useful to understand the spatial 
association of each class of predictor variables and response variable (Poli 
and Sterlacchini, 2007). Since the software accepts response variable as 
points, the landslide inventory created as polygons were converted to grids 
(50 m x 50 m) using the method applied by Poli and Sterlacchini (2007). 
Subsequently, the inventory grids were converted to points, resulting in 
representation of one landslide by a number of points depending on its size. 
One of the common and frequently used practices in landslide modelling is to 
develop a model using one time period inventory and validate it with the 
inventory of the next time period. Therefore, a temporal sub-setting of the 
landslide inventory database was made to create the training and testing 
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data for wofe analysis. Landslide inventories up to the year 2004 were 
treated as training data, whereas those from 2005 until 2009 were treated as 
testing data. While the training points were used to calculate the weights of 
the evidence layers, testing points were used to validate the usefulness of 
wofe model in predicting future landslides.  

7.2.3 Landslide hazard assessment 
After the susceptibility map was prepared, the next step was to assess the 
landslide hazard. This was done by calculating the temporal probability of 
landslide occurrence within the spatially favourable landslide areas. To 
estimate the spatial and temporal probabilities, annual landslide inventories 
prepared by the semi-automatic method and historical rainfall data were 
used. 

7.2.3.1 Estimation of spatial probability 
Firstly, the landslide susceptibility map was classified into high, moderate and 
low susceptibility categories using the success rate curve of the wofe model. 
Then, the spatial probability corresponding to each inventory year and for all 
the three susceptibility class was calculated separately by ratioing the areas 
using the following equation: 

 
classlitysusceptibi
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A
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probabilty Spatial =  (7.1) 

7.2.3.2 Estimation of temporal probability 
Landslides in the Himalayas are mostly triggered by extreme events such as 
rainfall, and the frequency of such extreme events is inversely related to its 
return period. We used the annual maximum rainfall amount over 34 years 
(1978 - 2009) for an extreme events frequency analysis using the method 
described by Gumbel (1958), which is used frequently in hydrological 
applications (Jaiswal et al., 2011). The Gumbel extreme model can be applied 
to model the probability of occurrence of the number of landslides (NL) equal 
to or less than some value n. The model can be expressed as: 
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where α and c are two parameters of the Gumbel distribution. By the method 
of moments, the parameters are evaluated as (Chow et al., 1988)  

 cc -γα =  (7.3) 
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where γ=0.57721 is a Euler's constant, μ is the mean, and σ is the standard 
deviation. For a specified time interval in a year, equation 7.2 can be 
rewritten for the value (NL) equal to or greater than some value n as: 
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 (7.5) 
where T is the return period. Two methods are commonly used for fitting 
distributions to the Gumbel model for frequency analysis; i) the plotting 
position method, and ii) the frequency factor method. The former is a simple 
plotting method to obtain the distribution function by the use of certain 
"plotting position" formula (Chow et al., 1988). The technique used is to 
arrange the data in increasing or decreasing order of magnitude and to 
assign order number R to the ranked values. The Wiebull formula is 
commonly used to obtain the plotting position, which for P(NL≥n) can be 
expressed as: 

 1+
=

m
RP

  (7.6) 
where R is the rank and m is the total number of observations. When R is 
ranked from lowest to highest, P is an estimate of P(NL≤n); when the rank is 
from highest to lowest, P is P(NL≥n). Equation 7.6 can be plotted on a 
probability paper to represent the cumulative probability distribution. The 
graph is designed in such a way that it gives the return period for a 
magnitude of event. In this study, m=34. The rainfall values were ranked 
from low to high, with lowest rank (1) assigned to the lowest rainfall value 
and highest rank (34) assigned to the highest rainfall value. Using the 
plotting position method, the data were plotted on a probability paper and a 
curve was fitted to the plotted points. Then the return period of the rainfall 
event related to the landslide inventory period (1997 - 2009) was measured 
from the fitted curve. 

7.2.4 Landslide risk assessment 
Landslide risk can be defined as the expected number of lives lost, persons 
injured, damage to properties and disruption of economic activities due to 
landslides for a given area and reference period (Varnes, 1984). The concept 
of risk that has been applied to landslide studies can be expressed by the 
following generic equation (van Westen et al., 2006; Zêzere et al., 2008). 
 
     Landslide risk = Landslide hazard x Vulnerability x Elements at risk (7.7) 

 
In the previous section we have explained how landslide hazard can be 
estimated quantitatively. Elements at risk in equation 7.7 refer to the people, 
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buildings, civil engineering works, economic activities, public services, utilities 
and infrastructure that are at risk in a given area from landslides. However, 
elements at risk considered in this chapter include only buildings and roads, 
which were mapped through visual interpretation of high resolution images. 
Other types of damage (e.g. indirect damage, damage to population and 
vehicles) are very difficult to estimate, and are not considered in this study 
due to lack of data.  
 
Most of the houses in the study area are confined to two localities i.e. 
Okhimath and Guptakashi. The houses in these two localities are reinforced 
with concrete and well constructed due to local business opportunities. Other 
parts of the study area are in a rural environment with small isolated patches 
of houses, which are not very well constructed. It is not possible to map the 
daily movement of population or the no. of people living in each house for 
such a large area. Therefore, the risk assessment was carried out for houses 
and not for population. Vulnerability is possibly the most difficult term to 
represent quantitatively within landslide risk analysis (van Westen et al., 
2008; Zêzere et al., 2008). Vulnerability depends on landslide type, 
magnitude and type of risk element exposed, and its estimation requires data 
of past damage. It varies from 0 to 1, with 1 representing total damage. 
Reliable estimate of vulnerability for a specific element at risk is rare and 
literature recommends some vulnerability for a particular condition (Bell and 
Glade, 2004; Glade, 2003). Considering the landslide type in this area and 
consulting the literature, vulnerability values between 0.3 to 1 were assigned 
to the different types of building (Castellanos Abella, 2008). The cost of the 
building and the vulnerability were assigned to each house and they were 
multiplied on cell by cell basis with spatial probability to estimate the risk to 
the building for a given return period.  
 
This area has a good road network. The national highway (NH-109) passing 
through this area have maximum vehicular movement. District roads connect 
the highway to the settlements in the valley. All roads are tar covered. 
Vulnerability values of 0.5 and 0.8 were assigned to the highway and district 
road, respectively, based on the literature and by adapting to the study area 
(Castellanos Abella, 2008). Vulnerability was multiplied with the spatial 
probability on a cell by cell basis, the sum of which for a given return period 
was further multiplied with the cost to estimate the risk to the road. 
 
Total risk for a given return period was calculated by summing up the risk to 
the building and road. In this manner landslide risk for the complete 
observation period was estimated separately. Finally, a risk curve was plotted 
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between the temporal probability and consequences to estimate any loss in 
future for a given return period. 

7.3 Results and discussion 

7.3.1 Landslide susceptibility assessment 
Using ArcSDM software, wofe analysis was performed. A total of seven 
evidence layers and 2137 response variables, i.e. landslide points in a 50 x 
50 grid corresponding to the inventory from 1997 to 2004, were used to 
calculate the weights. The evidence layers were converted to a 10 x 10 grid 
for wofe analysis, since a 10 m DEM was used in this study for derivation of 
the topographic layers.  
 
Weights and contrast values represents a measure of correlation. W+ > 0 and 
W- < 0 indicates landslide locations are positively correlated with evidence 
layers, where as  W+ < 0 and W- > 0 indicates negative spatial association 
between evidence layer and landslide location (Neuhäuser and Terhorst, 
2007). Figure 7.4 shows a comparison of contrast values (W+ − W-) of all 
evidence classes. This is an important measure of correlation between the 
landslide locations and evidence layers. Table 7.2 summarises only the 
evidence classes that are positively correlated and are important indicator of 
landslide occurrence.  Although the slope classes from 13° to 89° have a 
consistent contrast, the sC values of the slope from 21.5° to 41° are relatively 
high compared to other classes, which show that these slopes are the most 
significant for the occurrence of landslides. Among the lithological units, 
streaky banded and augen gneiss has the highest sC value. This unit, which 
is mainly exposed in the Madhyamaheswar valley along with the MCT, is 
responsible for high occurrence of landslides. Non-rocky barren land has both 
the highest contrast (Figure 7.4) and sC (Table 7.2), which indicates that it is 
the most critical land use class for the occurrence of landslides. South facing 
slopes are known for their landslide proneness in the Himalayas. This was 
brought out clearly by the wofe model since it has only shown positive 
correlation among all other aspect classes. Areas with high relative relief in 
the Himalayas are mostly exposed as rocky escarpment consisting of hard 
rock and are mostly stable. Therefore, only low relative relief areas have 
shown positive correlation with landslides. 
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Figure 7.4: Contrast values for all classes of the seven evidence layers. Lithology 
(Mar: Marble, SBAG: streaky banded and augen gneiss, QSS: quartz sericite schist, 
QMSGA: quartz mica schist, gneiss, amphibolite), Landuse (AT: agricultural terraces, 
BL (NR): barren land (non-rocky), BL (R): barren land (rocky), BA: built-up area, HDV: 
high dense vegetation, LDV: low dense vegetation, RS: river sand and W: water). 
 
Finally, the overlay of all weighted factors and the calculation of the total 
posterior probability were carried out. The cumulative percentage of landslide 
location was plotted against the cumulative percentage of the area to create 
a success rate curve in order to classify the study area for landslide 
susceptibility. Figure 7.5 shows the success rate curve in which two inflection 
points were identified for classifying the area into three classes. The first 
inflection point is at 67.6 cumulative percentage of all landslides,   
corresponding to 14.7 cumulative percentage of the total study area. The 
posterior probability value corresponding to this inflection point is 0.007984 
and was used as threshold for classification of the study area into high 
susceptible category. The second inflection point is at 96.9 cumulative 
percentage of all landslides, corresponding to 49.5 cumulative percentage of 
the total study area. The posterior probability value corresponding to the 
second inflection point is 0.000227. The grids having posterior probability 
values between 0.000227 and 0.007984 were classified into moderate 
susceptibility category. It means 67.6% and 29.3% of all landslides and 
14.7% and 34.8% of the total study area are in the high and moderate 
susceptibility class category. Remaining part of the study area is in the low 
susceptibility category (Figure 7.6).  
 



Event-based hazard and risk mapping  

 132 

Table 7.2: List of evidence classes  showing positive correlation. Studentised contrast 
(sC) is a measure of the significance of the correlation. 
Evidence layer Class W+ W- sC 

Slope 47°-89° 0.3868 -0.0505 6.9791 
41°-47° 0.3641 -0.1099 9.7745 
36°-41° 0.3324 -0.1784 11.5885 
32°-36° 0.3064 -0.2598 13.0476 
28.5°-32° 0.2684 -0.3503 13.7068 
25°-28.5° 0.2068 -0.4170 12.7178 
21.5°-25° 0.1429 -0.4337 10.5914 
18°-21.5° 0.0758 -0.3708 7.1558 
13°-18° 0.0226 -0.2377 3.1994 

Structure Close to fault, thrust 
and lineament 

0.5169 -0.6858 25.2137 

Lithology Marble 1.8394 -0.0405 18.2082 
Streaky banded and 
augen gneiss 

0.9380 -0.9215 38.8269 

Landuse barren land (non-
rocky) 

1.2728 -0.6658 44.2759 

barren land (rocky) 0.5721 -0.0525 9.0118 
built-up area 0.1967 -0.0024 1.0450 
river sand 0.7478 -0.0113 5.0240 

Soil depth shallow 0.9930 -0.4508 33.2545 

Aspect southeast 0.8352 -0.2190 22.3148 
south 0.9127 -0.2087 23.1966 
southwest 0.2123 -0.0188 3.0571 

Relative relief 0-130 m 0.1677 -0.0460 4.1723 
130 -202 m 0.0890 -0.0624 3.4611 
202 -288 m 0.0424 -0.0672 2.4466 
288 -408 m 0.0147 -0.0627 1.3851 

 
The prediction rate curve was created using 713 testing landslide points 
(corresponding to landslide inventory for the period 2005 to 2009). The 
prediction rate curve shows a good match with the success rate curve, which 
indicates that the wofe model and the seven selected evidence layers are 
able to predict correctly the spatial occurrence of landslides (Figure 7.5).  
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Figure 7.5: Analysis of wofe model for landslide susceptibility mapping showing the 
success and prediction rates. 
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Figure 7.6: Landslide susceptibility map of the Okhimath area prepared by wofe 
model. 
 
The receiver operating characteristic (ROC) curve provides a useful means to 
evaluate the performance of any classification scheme, and, therefore, was 
used to validate the wofe model. The ROC curve is the plot between the 
probability of true positive identified landslides versus that of false positive 
identified landslides, as the cut-off probability varies (Mathew et al., 2007). It 
is also a representation of the cut-off between sensitivity and specificity. The 
area under the ROC curve as shown in figure 7.7 is 0.651, which is relatively 
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high and shows the high accuracy of the wofe model for landslide 
susceptibility analysis.  
 

 
Figure 7.7: ROC curve of the wofe model developed for landslide susceptibility 
mapping. Green line is the reference line. 

7.3.2 Landslide hazard assessment 
The spatial probability of landslide occurrence for each observation year was 
estimated for the three susceptibility classes using equation 7.1. For 
estimating temporal probability, daily maximum rainfall for 34 years was 
analysed using Gumbel analysis. The result of the Gumbel plot is shown in 
figure 7.8. The trend line in this plot was used to estimate the temporal 
probability of the landslides for each observation year from 1997 to 2009. 

7.3.3 Risk assessment 
Risk assessment for buildings and roads was carried out separately and then 
both were added to estimate the total risk due to landslide in the Okhimath 
area. A total of 2211 building foot prints were mapped from the high 
resolution satellite data. The buildings were categorised during the field work 
into nine classes depending upon their utilisation. Further, each building 
category was classified into good, regular and bad class based on some 
representative building sample survey during the fieldwork. Table 7.3 lists all 
the category of buildings and their corresponding vulnerability values. The 
vulnerability values available in literature were assigned to each building 
category (Castellanos Abella, 2008). The average cost of the building in the 
hilly terrain available with border road organisation (BRO) was multiplied with 
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spatial probability and vulnerability for each observation year to estimate the 
total consequences due to the building. 
 

 
Figure 7.8: Gumbel plot for estimating the return period. 

 
For the estimation of risk to the roads, interpretation of satellite data was 
performed, and a total road length of 105 km consisting of national highway 
and district road was prepared. The cost of maintenance for one km of 
damaged road available in the records of BRO is rupees 0.7 million Indian 
Rupees (Nayak, 2010). The vulnerability of each road type was multiplied on 
a cell by cell basis with spatial probability for the entire road length, the sum 
of which was subsequently multiplied with per km cost of the road, and the 
total risk due to landslides for each observation year from 1997 to 2009 was 
estimated. 
 
Table 7.3: Building categories in the Okhimath area and their assigned vulnerability 
values. 

Building category Number Good Regular Bad 

Educational Institution 6 0.3 - - 

Guest House / Hotel 11 0.4 - - 

Hospital 2 0.4 - - 

Market Complex 50 0.4 0.6 0.8 

Petrol filling station 1 0.3 - - 

Place of Worship 3 0.3 0.6 - 

Police Station 1 0.3 - - 

Post Office 1 0.4 - - 

Residential 2135 0.5 0.8 1 

Telephone Exchange 1 0.4 - - 
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Finally, year-wise total loss due to landslides was calculated by summing up 
the building and road losses. This was then plotted against the temporal 
probability of occurrence of landslides, and a risk curve was prepared (Figure 
7.9). The risk curve does not follow the ideal concave shape. This is due to 
the uncertainty in vulnerability quantification and non-consideration of all the 
elements at risk during the analysis. However, the graph will be useful to 
estimate landslide risk in the Okhimath area for any given return period.  
 

 
Figure 7.9: Total risk due to landslide in the Okhimath area. 

7.4 Conclusion 
In this chapter the use of a semi-automatically prepared landslide inventory 
from high resolution images in landslide hazard and risk assessment was 
demonstrated. The landslide susceptibility map was prepared using the 
established wofe model. The matching of prediction rate curve with the 
success rate curve, and the high value (0.651) of the area under ROC curve, 
indicates that semi-automatically prepared landslide inventory were 
successful in deriving weights for the evidence layers essential for preparing 
the landslide susceptibility map. This was mainly possible since the multi-
temporal outputs from the semi-automatic methods were georeferenced to a 
common spatial framework and were available in a GIS ready format for 
further statistical analysis such as done by wofe model. The seven evidence 
layers for landslide susceptibility assessment used in this chapter were 
selected based on their high contribution to landsliding, which was also 
highlighted in previous studies. The present study validates the importance of 
these evidence layers for susceptibility assessment. Temporal probability was 
estimated by frequency analysis of historical rainfall data using Gumbel 
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distribution model. The landslide susceptibility map was transformed to a 
hazard map by integrating it with the spatial probability determined for each 
observation year using the annual landslide inventory. The risk curve, 
although, not perfectly concave, was able to depict the risk scenario in the 
Okhimath area. Although two elements at risk are considered in this study, 
the analysis allowed us to know the most landslide risk areas in Okhimath. 
The vulnerability values available in the literature were mainly used in risk 
assessment. This was done due to lack of damage assessment details. With a 
realistic assessment of vulnerability, the landslide risk curve for Okhimath 
area can be improved. 
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Chapter 8: Synthesis 
This chapter provides a summary of the object-based methods developed in 
this research for semi-automatic detection of landslides, their advantages 
and limitations for a landslide rapid response system, accuracy of the 
generated landslide inventory maps, and how these maps are useful for 
landslide hazard and risk assessment. Finally, it gives an insight into a 
proposal towards landslide inventory mapping for hazard and risk assessment 
in India. 

8.1 Introduction 
The availability of a new generation of high resolution satellite imagery offers 
a huge potential to develop rapid response systems for several types of 
natural disasters. Gradually disaster response and damage mapping have 
become increasingly dependent on space-based inputs (Arciniegas et al., 
2007; Gamba et al., 2007; Joyce et al., 2009; Rau et al., 2007), as both the 
spatial and temporal resolution of available platforms have increased. Fast 
and robust products based on space-based inputs are being generated by 
many international agencies, including the International Charter “Space and 
Major Disasters”. Recently, Voigt et al. (2007) showed how such support 
provided during disaster crisis management was useful for humanitarian 
causes. Given the requirement of a rapid response system, identification of 
the areas affected by natural disasters and the quantification of the damaging 
effects is of paramount importance for planning immediate relief operations. 
Landslides are one of principal natural disaster types that affect life and 
property in mountainous areas. Previously, identification of landslides was 
done either by visual image interpretation using post-landslide satellite 
images or in the field, which requires a considerable amount of time, 
especially if large areas have to be covered (Ray et al., 2009; Vinod Kumar et 
al., 2006; Wang et al., 2009). The main objective of this research was to 
develop an image analysis technique for the rapid detection of landslides in 
the aftermath of a triggering event (e.g. extreme rainfall or earthquake). The 
technique is not only intended to help post-disaster response but also 
capable of creating event-based landslide inventories, which are considered 
crucial for hazard and risk assessment. To achieve this, we used data from 
new generation sensors, the high spatial resolution stereoscopic Cartosat-1 
(2.5 m) and Resourcesat-1 LISS-IV Mx (5.8 m), which were shown to have 
the potential to identify landslides with a minimum area of 774 m2. With the 
increase in spatial resolution of satellite data, the context becomes more 
important than the absolute DN values of the pixels for the accurate 
detection of any target feature. Therefore, a knowledge-based spectral-
spatial-morphometric technique using object-based image analysis was 
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developed for the rapid detection of landslides. The method was modelled on 
the cognitive approach an expert uses during visual image interpretation for 
the identification of landslides. In the following sections, we discuss the main 
achievements and limitations of this research. 

8.2 The role of DEM for detection of landslides 
Mass movements are geomorphic processes, and topographic information is 
extremely important for their identification. Morphometric parameters such 
as slope, flow direction, terrain curvature and relief derived from digital 
elevation model (DEM) contribute to the successful identification of 
landslides. High resolution DEMs were traditionally mainly generated from 
overlapping aerial photographs, but nowadays LiDAR is increasingly being 
considered as the best source for DEMs in landslide studies (Guzzetti et al., 
1999; van Den Eeckhaut et al., 2007; van Westen et al., 2008). In the 
absence of these, new dedicated satellite missions, such as Cartosat-1 and 
ALOS-PRISM, have immense potential for fast and accurate generation of 
DSMs over large areas. While the term DEM was used for generic discussion 
in this research, digital surface model (DSM) refers to the elevation model 
extracted from satellite data by digital photogrammetric method and digital 
terrain model (DTM) refers to vegetation height corrected DSM. 
 
In chapter 2, we presented the results on the extraction of a DSM from high 
resolution along-track stereoscopic data from Cartosat-1 and discussed the 
effects of sun elevation angle and valley orientation on the accuracy of DSMs. 
Along-track stereoscopy reduces the radiometric variation between the image 
pairs and helps in better extraction of a DEM than across-track stereoscopy. 
Using SAT-PP photogrammetric software and low (38°) and high (62°) sun 
elevation angle Cartosat-1 images, we generated a 10 m resolution DSM, 
which showed an absence of spikes and sinks that characterised the DSM 
generated using LPS software, due to its improved image matching 
technique. However, manual editing of the DSM was unavoidable, even 
though digital photogrammetry with computationally efficient software was 
attempted. This was mainly due to the steep slopes of the rugged Himalayan 
terrain that produce occlusion and shadow effects. Nevertheless, generation 
of a new DSM using post-landslide stereoscopic image is not a prerequisite 
for the detection of landslides by the method developed in this research, and 
high resolution DEMs prepared beforehand for steep and rugged mountainous 
areas can be used. Therefore, in order to be able to carry out rapid mapping 
of landslides in any susceptible areas, generation of accurate DEMs is 
essential. 
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Vertical RMSEs of high and low sun elevation angle DSMs calculated by 
comparing with check points obtained from a DGPS survey, were 2.31 and 
2.51 m, respectively, which is considered the optimal given the spatial 
resolution (2.5 m) of the Cartosat-1 data. Spatial accuracy, which has a 
significant influence on the DEM derivatives, was measured by comparing the 
location of drainage lines. It was found that valleys oriented in the N-S 
direction offered less problems for image matching resulting in a better 
spatial accuracy, in comparison to E-W oriented valleys. Therefore, less effort 
in manual editing was required for such areas. For valleys perpendicular to 
the satellite track, the DSM extracted from a low sun elevation angle data 
showed a 45% higher spatial accuracy than the DSM extracted from high sun 
elevation angle data. The results indicate that the sun elevation angle and 
valley orientation affect the spatial accuracy of the DSM, though metric 
accuracy remains comparable. 
 
The measurement of landslide volume was addressed in chapter 3. DSMs 
derived from Cartosat-1 data were converted to DTMs by applying vegetation 
height correction. The landslide volume was estimated by elevation change 
analysis using pre- and post-landslide DTMs. For the example used, the loss 
(0.55 x 106 m3) and gain volumes (1.43 x 106 m3) calculated with ground 
control points are comparable with the loss (0.54 x 106 m3) and gain volumes 
(1.41 x 106 m3) volume without ground control points, indicating that RPCs 
alone were sufficient for estimation of volume, thus freeing rapid volume 
assessment entirely from field data requirement. However, the volume values 
calculated showed deviations of about +18% and -12% for the volume loss 
and gain areas, respectively, when compared with the corresponding 
reference volumes. Although estimation of volume from Cartosat-1 data for 
large landslides was shown in chapter 3 to be effective, calculation of 
landslide volume for small landslides from Cartosat-1 data, ideal for a DEM of 
10 m grid size, needs to be examined. 

8.3 Knowledge-based object-oriented method 
In addition to the DN values used in pixel-based image analysis methods, 
objects (which are groups of homogeneous pixels) allow the incorporation of 
shape, size and context into the image analysis. This helped in the 
application of landslide process knowledge to image analysis using satellite 
images and satellite derived DEMs. The results of the object-oriented image 
analysis are verifiable on the ground and ready for further GIS analysis. 

8.3.1 Detection of landslides using multispectral images 
The characterisation of landslides, which forms the first step towards the 
detection of landslides, was addressed in chapter 4. Objects were derived by 
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multi-resolution segmentation of LISS-IV (5.8 m) multispectral image. 
Landslide candidate objects were identified using a NDVI threshold. Features, 
such as river sands, built-up areas, shadows, rivers, barren rocky and 
agricultural lands and roads having similar or lower NDVI values than the 
threshold, were subsequently identified and removed. Once all these false 
positives were removed, the remaining objects represented mostly 
landslides. They were further classified based on material type and failure 
mechanism using the criteria defined by Varnes (1984) and Working Party on 
the World Landslide Inventory (UNESCO-WP/WLI, 1993b). While some 
previous researchers (e.g. Barlow et al., 2006) used a nearest neighbourhood 
classification in object-based environment to detect landslides, others (e.g. 
Moine et al., 2009) partly characterised landslides for their detection using 
object-oriented analysis (OOA). However, we, for the first time, 
comprehensively characterised five different types of landslides using the 
visual image interpretation keys. Segmentation using a terrain curvature 
layer helped to classify the landslide failure mechanism. Classification based 
on material type was achieved using adjacency conditions to the land cover 
units. A generic procedure was developed using eCognition software for the 
identification and classification of landslides. The method was able to detect 
five types of landslides: shallow translational rock slides, rotational rock 
slides, translational rock slides, debris slides and debris flows, with their 
extent (m2) showing 69.9 and 69.5% recognition and classification 
accuracies, respectively, and a 9.2% error of commission. Detection of 
landslides in a terrain having several identical features was another major 
achievement of this research. However, the procedure of hard coding in 
many stages and selection of scale factors for deriving objects requires a 
substantial user interaction and is not directly applicable in other areas. 
 
In chapter 5, we focused on further generalisation of the automatic landslide 
detection procedure. We developed a new plateau objective function (POF) by 
combining spatial autocorrelation and intra-segment variance of objects, 
which eliminated a large part of the subjectivity in the selection of scale 
factors during the multiresolution segmentation for the derivation of objects 
that were used for identification and classification of landslides. False 
positives were identified at multiple levels using multiple optimum scale 
factors determined by the POF, unlike a single factor as used in chapter 4. 
This led to a better accuracy of the extent of landslides (76.9 and 74.4 %, 
recognition and classification accuracies, respectively) and a low error of 
commission (4.3%). The assignment of the scale factor to a false positive 
identification was done interactively, which remained a limitation of the 
study. However, knowledge of existing false positive classes in an area, and 
their spectral and spatial relationship vis-a-vis scale factor for a sample area 
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of the image may help in linking the optimal scales to false positives. 
Nevertheless, the user-driven thresholds applied at various stages of the 
routine developed in chapter 4 were avoided by the use of data-driven 
thresholds determined by a K-means clustering algorithm. Finally, when the 
routine developed in the western Himalayas was tested in another area in the 
eastern Himalayas without any change to its structure, it produced results 
having similar accuracy (77.7%) for the extent of landslides. This indicates 
that the procedure developed in chapter 5 is generic and transferable. 
However, the reference landslide inventory of the eastern Himalayas was 
prepared with extensive field work and contains additional landslides found in 
the image shadow areas. Those landslides could not be detected by OOA. 
Unsupervised selection of optimal scales and threshold values for detection of 
landslides are significant achievements of this chapter.  

8.3.2 Detection of landslides using panchromatic images 
In many areas around the world, systematic landslide inventory data are not 
available. Satellite images are available for several parts of the world in the 
archives of many data providers, although those high resolution images are 
mostly panchromatic in nature, which poses a challenge, particularly due to 
the limitation that NDVI as used in chapters 4 and 5 cannot be generated 
from those images. 
 
In chapter 6, we presented a method for generating historical landslide 
inventories for a period of 9 years from 1997 to 2006 except 2004, using a 
time-series of IRS-1D panchromatic images (5.8 m). The methodology 
developed in chapters 4 and 5 was slightly modified to address some of the 
specific issues related to panchromatic images. Object-based change 
detection using multi-temporal images was attempted for the first time in this 
chapter. While panchromatic images were used to derive objects through 
multiresolution segmentation, brightness was used as a NDVI replacement 
for the extraction of landslide candidates. However, instead of using global 
threshold values for brightness, we used an adaptive local brightness 
threshold for the extraction of landslide candidates. DN values from pre- and 
post-landslide images were converted to top of the atmosphere (TOA) 
reflectance values to compensate for seasonal setting in data acquisition and 
illumination effects. Subsequently, a change detection procedure with 
normalised TOA reflectance images was used to identify some landslide 
candidates that could not be detected by the local thresholding procedure. 
Use of brightness threshold had a positive effect in terms of the number of 
false positives to be eliminated, since rivers and shadow areas were excluded 
from the false positives. Grey level co-occurrence matrix (GLCM) texture 
measures were used extensively for the identification of false positives. 
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Finally, landslides were classified based on material type and failure 
mechanism, using the same knowledge-based method as discussed in 
chapter 4. Year-wise accuracy assessment of each landslide type was carried 
out separately. 95.7% recognition accuracy for the extent of shallow 
translational landslide, the dominant landslide types, after the August 1998 
super event could be achieved in this study, with an 10.4% error of 
commission. Debris slides, although a minor proportion of all landslides, 
showed a recognition accuracy of the landslide extent in the range of 55.7 to 
98.5%. However, parts of the channel deposits were incorrectly classified as 
debris slides leading to a high error of commission is high, which indicates 
that without spectral information, creation of a multi-temporal inventory is 
quite challenging. 

8.4 Use of the semi-automated landslide detection 
technique 

8.4.1 Rapid event-based mapping 
In this research we developed a set of generic procedures for the semi-
automatic detection of landslides. Although the methodology was developed 
using satellite data in parts of the Indian Himalayas, no field data specific to 
this area were used in the procedure, and therefore it has the potential to be 
applied in any other landslide prone area of the world for landslide detection. 
The model is also less data demanding, since it uses only high resolution 
post-landslide satellite image and a DTM (existing or new). Although a post-
landslide DEM is not mandatory, we suggest using it if available, particularly 
for the identification of large landslides as the morphology has likely changed 
due to landsliding. Similarly, pre-landslide high resolution satellite image, if 
available, would also improve the accuracy of landslide detection. The type of 
satellite data (i.e. spectral channels and spatial resolution) used in this model 
are commonly available and the number of satellites providing such data is 
growing every year (van Westen et al., 2008). Therefore, the developed 
method has immense potential to be used in supporting crisis management 
by providing specific information about landslide occurrences. 
 
One disadvantage of the procedure is that the segment optimisation 
procedure discussed in chapter 5 requires knowledge of broad land cover 
types of the local area, so that the false positives can be assigned to a 
corresponding scale factor. Although it is not difficult, particularly through a 
rapid reconnaissance of high resolution images, to overcome this it is 
suggested to divide the area (if it is large) into tiles and optimise the rule set 
tile-wise by understanding the scale dependency of land cover units. Once 
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the optimisation is done it can be used to routinely identify landslides. This 
will be very effective in areas where the recurrence of landslides is frequent. 

8.4.2 Hazard and risk assessment 
A landslide inventory containing landslide events over a substantial period of 
time is a fundamental requirement for hazard and risk assessment. Using the 
methodology explained in chapters 4 to 6, landslide inventories for a 13 year 
period (1997-2009) were prepared.   
 
In chapter 7, we have shown the use of landslide inventories prepared by the 
semi-automatic method for landslide hazard and risk assessment. A 
susceptibility map was made using the Weights-of-Evidence method, which is 
a data-driven bivariate method, wherein weights were derived using the 
semi-automatically prepared historical landslide inventories combined with a 
series of pre-disposing factor maps. Seven evidence layers were used for the 
calculation of weights, selected in such a way that the majority could be 
derived from satellite data. Validation done using the test data created 
through a temporal subsetting of the inventories showed a good prediction 
result that is evident from the high value (0.651) of area under the ROC 
curve. This was mainly possible since the historical inventories prepared by 
the semi-automatic method were georeferenced to a common spatial 
framework and were available in a GIS ready format for further statistical 
analysis. While temporal probability was calculated using rainfall data of 
previous 34 years (1978-2009) through Gumbel frequency distribution 
analysis, spatial probability was determined by calculating landslide density 
for the inventories per susceptibility class that represent a given return 
period. Elements at risk, such as building footprints and roads, were 
interpreted from high resolution satellite image. Due to the lack of landslide 
damage details of the study area, vulnerability values (0.3 to 1) for buildings 
and roads, available in the literature, were used in the risk assessment. 
Finally, the costs of the buildings and roads were multiplied with their 
respective vulnerabilities and landslide spatial probability to derive the total 
loss for different return period scenarios corresponding to the landslide 
inventory period. Subsequently, a risk curve between the loss and temporal 
probability was created. The risk curve, although without an ideal concave 
shape due to uncertainty involved in vulnerability assumptions, can be used 
to estimate loss due to any future rainfall event in the Okhimath area. This 
study showed that the inventory prepared by OOA is not only useful for a 
landslide rapid response system, but also can be used for landslide hazard 
and risk assessment. 
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8.5 Future work 
Several new methods were applied to high resolution satellite images and 
DEMs for the detection of landslides and the creation of historical landslide 
inventories. The methodology uses a knowledge-based procedure through 
cognitive reasoning and  was tested in two geomorphologically distinct areas 
in the Himalayas in India. Recently, Tumuhairwe (2011) has evaluated the 
transferability of this methodology to detect landslides triggered due to the 
2010 Haiti earthquake, and obtained reasonably good results. However, it will 
be interesting to further test it in additional areas, particularly in a post-
disaster scenario, to verify the flexibility, transferability and robustness of the 
landslide detection procedure. The methodology identified five types of 
commonly occurring landslides. Identification of other landslide types, such 
as rock falls or topples, still need to be tested. The method can only identify 
landslides that disrupt the vegetation (low NDVI) or create objects that are 
identifiable by their high reflectance. Identification of landslides that retain 
(part of) the land cover is difficult using the developed method. 
 
Identification of some of the land cover units, such as agricultural areas or 
barren land, as landslide false positives was done in a crisp manner, although 
they are sometimes fuzzy in nature. Since the methodology uses adjacency 
conditions to land use/land cover units for the classification of landslides 
based on material type, it is worth to address landslide classification with a 
fuzzy concept and test the outcome of the semi-automatic procedure. 
Erroneous identification of those land cover units will also classify the 
landslides wrongly. Therefore, evaluation of uncertainty and error 
propagation of landslide classification might be useful. 
 
Finally, the methodology presented in the dissertation uses satellite data in 
the visible region of the electromagnetic spectrum (EMR). In tropical regions, 
where landslides are triggered by rainfall, such post-landslide satellite data 
are often cloudy. Therefore, data providers have to wait until the conditions 
become cloud free, an unavoidable yet unfortunate scenario during the 
critical post-disaster period. Satellites operating in the microwave region can 
provide data in such conditions since radar signal can penetrate through 
clouds. Nevertheless, microwave satellite data have some other inherent 
problems, such as topographic distortions through foreshortening and layover 
effects. Removal of these effects and characterisation of microwave data for 
landslide detection is quite challenging, but can greatly benefit any rapid 
response system by providing landslide specific information, particularly in 
cloudy conditions.  However, using the Permanent Scatterer (PS) method this 
can be overcome also rather easily. But then there are other problems, as 
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these methods are best for slow moving landslides and are not very 
applicable in vegetated area, as well as areas with limited corner reflectors.  

8.5.1 Towards an operational method in India 
The results presented in this research are the outcome of the GSI-NRSC-ITC 
joint collaboration on landslide studies. While scientific innovation through 
this research is critical, it is implicit that the new methodology should also 
contribute towards the operational requirement of landslide hazard and risk 
mapping of India, where 15 % of the geographical area is prone to 
landslides. However, the landslide inventory available is spatially 
discontinuous and temporally sporadic. The National Remote Sensing Centre 
(NRSC), a unit of Indian Space Research Organisation (ISRO), is the satellite 
data provider for the country and has a vast amount of data available in the 
archives collected from ISRO’s own satellites and also from foreign satellites. 
Baseline satellite imagery and DEM data pertaining to landslide prone areas 
of India need to be created that can be handled in tiles. For each tile the 
semi-automatic landslide detection procedure has to be optimised that can 
subsequently be used to identify landslides in prospective and retrospective 
manner. This effort will lead to an operational method towards the creation of 
a centralised systematic landslide inventory database for India. 
 
The Geological Survey of India (GSI), which is a partner in this collaboration, 
has a vast amount of geological data and field observations. These data form 
an input for the landslide hazard assessment. Also under this collaborative 
programme, new innovative methods were developed for landslide 
susceptibility, hazard and risk assessment using field data and a landslide 
inventory made through visual interpretation of satellite data. However, now 
with the availability of a semi-automatic detection method, historical 
landslide inventory in a GIS database can be prepared faster, which will aid 
effective and faster landslide hazard and risk mapping for the vast 
mountainous areas of India. Altogether, although it sounds very optimistic 
now, an operational method for medium scale landslide hazard and risk 
mapping using the findings of these studies is quite achievable.  
 
More importantly, the outcome of this study will give an impetus to the 
landslide research and unfold the potential of object-based research for 
future disaster support and management activities not only in India but also 
elsewhere. 
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Summary 
A comprehensive landslide inventory is a prerequisite for planning immediate 
landslide disaster response, and for quantitative landslide hazard and risk 
assessment. Interpretation of remote sensing data (aerial photographs and 
satellite images) and field mapping have traditionally been the most widely 
used techniques for generating landslide inventories. Several research 
attempts have been made to automate this process in order to save time. 
Since pixel-based methods have not produced sufficiently accurate results for 
detection and classification of landslides, object-oriented analysis (OOA) 
which imitates the human interpretation process in identification of 
landslides, has emerged as a good alternative recently due to the inherent 
ability of OOA to incorporate additional information layers such as digital 
terrain models (DTMs) and thematic maps in the analysis. Furthermore, as 
landslides are geomorphic processes, their characterisation in different types, 
following a classification such as the one by Varnes (1984) mostly relies on 
contextual criteria, which can best be described by objects obtained from 
segmenting the digital image into spatially cohesive regions / objects rather 
than pixel values. 
 
This research outlines the development of semi-automatic image analysis 
algorithms that combine spectral, shape, texture, morphometric and 
contextual information derived from high resolution satellite data and DTMs 
for the preparation of new as well as historical landslide inventories. The 
main innovative aspect of the research lies in the selection of landslide 
diagnostic parameters and their use in the comprehensive characterisation of 
different types of landslides, a concept which is addressed for the first time 
for detection of landslides in an object-based environment.  
 
DTM accuracy is an important factor since its morphometric derivatives, such 
as terrain curvature, slope, and flow direction, contribute to the successful 
detection and classification of landslides. New generation Cartosat-1 along-
track stereoscopic data, which are provided with RPCs for block triangulation, 
were used to create a digital surface model (DSM) with 10 m grid size. Along-
track satellite data have advantages for DSM generation, due to improved 
correlation between image pairs and high B/H ratio. However, difficulties 
arise in very steep areas, particularly in valleys oriented across the satellite 
track direction. Use of control points obtained from DGPS survey improved 
the absolute accuracy and resulted in vertical and planimetric RMS errors of 
2.31 and <1 m, respectively, which are acceptable given the spatial 
resolution of Cartosat-1 only 2.5 m. However, for deriving accurate 
morphometric information, spatial accuracy is more important than the 
absolute accuracy. Therefore, drainage lines were used as a proxy to 
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measure the spatial accuracy of the DSM, which showed that for valleys 
perpendicular to the satellite track, the DSM extracted from a low sun 
elevation angle data had 45 % higher spatial accuracy than the DSM 
extracted from high sun elevation angle data. However, in other areas these 
data proved to be a good source for elevation information. The research 
showed that sun elevation angle and local valley orientation can have a 
pronounced effect on the accuracy of a DSM. Conversion of a DSM to a DTM 
is necessary for calculating landslide volume and terrain morphometric 
parameters. This was done by subtracting vegetation height from the DSM. 
The landslide volume extracted from pre- and post-landslide DTMs without 
control points matched well with volume extracted from the DTMs with 
control points, indicating that a field survey for control points is not a strict 
requirement. It also showed that landslide volume information can be derived 
only with RPCs, if both pre- and post-image pairs can be brought into the 
same relative reference framework.  
 
A set of approaches was developed that exploit the object properties 
extracted using a region growing segmentation of multispectral Resourcesat-
1 LISS-IV Mx (5.8 m) image. Okhimath town, an area in the rugged Indian 
Himalayas frequently affected by landslides, was selected for developing the 
methodology. Landslides were characterised from an object-based detection 
perspective, and an algorithm comprising 45 individual routines, such as 
controlled segmentation, merging and classification was developed using 
eCognition software, which detected 42 major and minor landslides in an 80 
km2 area. The algorithm, consisting of three sub-modules, initially extracts 
landslide candidates using an NDVI threshold, and subsequently false 
positives were eliminated from the landslide candidates using spectral, 
texture, shape and contextual criteria. Landslide classification was done using 
terrain curvature and contextual criteria, and five different types of landslides 
were identified. The object-based classification when compared with a 
landslide inventory map prepared by stereoscopic photo-interpretation and 
detailed field check resulted in a detection accuracy of 76.4%, while 69.1% 
of the landslides were correctly classified in different landslide types. The 
results are considered to be good, since landslides are detected in an area 
dominated by false positives such as rocky barren land, uncultivated 
agricultural terraces and river sands. The minimum landslide size detected by 
the method was 774 m2, which indicates that the algorithm is not sensitive to 
sizes. 
 
The algorithm developed required user defined segmentation criteria to 
control the object size, which was considered a drawback in applying a fast 
and generic method for landslide detection and classification. Therefore, an 
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objective method to optimise segments was developed subsequently. Using 
spatial autocorrelation and intrasegment variance, a new plateau objective 
function (POF) was developed, which was used to determine the 
segmentation criteria for multi-scale analysis, essential for the detection of 
landslides and elimination of false positives. Another drawback of the 
originally developed algorithm was the use of manual thresholds for the 
elimination of false positives from landslide candidates. This was adjusted 
using a K-means clustering method. The improved algorithm, comprising of 
four sub-modules, resulted in a detection accuracy of 76.9% for the training 
area and 77.7% accuracy for a geomorphologically distinct validation area. It 
not only increased the accuracy of detection but also reduced the overall 
error of commission. The objective determination of the scale factor and 
unsupervised selection of thresholds for landslide diagnostic parameters 
made an important contribution for making this method transferable to other 
areas. 
 
In the previous algorithm, NDVI derived from multispectral satellite data was 
used in landslide detection. However, in several cases, particularly while 
preparing a historical landslide inventory from archived high resolution 
images, only panchromatic data are available. To use these data, a third 
algorithm, which is a modified version of the second one, was developed 
using a brightness threshold instead of NDVI to extract landslide candidates. 
Local thresholds using contextual criteria show better results than global 
thresholds, and allowed to identify small translational landslides within barren 
rocky land that are generally bright. To eliminate false positives, more 
texture measures, such as GLCM homogeneity and standard deviation, were 
used along with shape and contextual criteria. Finally, a multi-temporal 
annual landslide inventory for 13 years was prepared and used for the 
generation of a landslide susceptibility map with the help of a bivariate model 
(weights of evidence). The spatial probability was determined from the 
density of landslide for each observation period within each susceptibility 
class, and the temporal probability was calculated using a Gumbel frequency 
distribution analysis. These data were used together with the susceptibility 
map and a road and building map to produce a risk curve for the Okhimath 
area, which indicates the likely loss due to future landslide occurrences.  
 
The final algorithm for the detection of landslides, developed in this study is 
generic and requires two primary inputs (a satellite image and a DTM), while 
a priori knowledge about the terrain is not mandatory. The semi-automatic 
approach is flexible enough to address the spatial and spectral variability of 
landslides and false positives. The knowledge-based method shows 
considerable improvement over previous pixel- and object-based methods of 
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landslide detection in terms of the location, size and type of landslide. The 
method has increased the potential to rapidly generate event-based landslide 
inventories after major triggering events, within a short period of time, and 
without fieldwork. The method developed in this research has proven its 
value in several areas in the Indian Himalayas and could potentially 
contribute to the rapid detection of landslides in other susceptible areas. 
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Samenvatting 
Een inventarisatie van locaties waar aardverschuivingen zijn opgetreden is 
een eerste vereiste voor een adequate rampenbestrijding na een 
aardverschuivingramp, alsmede voor de kwantitatieve analyse van het 
gevaar en risico. Deze gegevens worden traditioneel verkregen door middel 
van een visuele interpretatie van remote sensing beelden (luchtfoto's en 
satellietbeelden) en veldwerk. Dit is echter een zeer tijdrovende activiteit, en 
het is dan ook moeilijk om snel na een ramp met veel massabewegingen in 
een groot bergachtig gebied een goed overzicht te krijgen van de 
probleemgebieden. Vandaar dat er verscheidene onderzoekspogingen zijn 
gedaan om dit proces te automatiseren en daardoor te versnellen. Aangezien 
de pixel-gebaseerde methodes niet tot voldoende nauwkeurige resultaten 
voor de detectie en classificatie van massabewegingen hebben geleid, wordt 
de nadruk steeds meer gelegd op Object-Oriented Analysis (OOA) als 
alternatief. OOA is een methode die het menselijke interpretatieproces voor 
de identificatie van massabewegingen kan imiteren, en maakt gebruik van 
aanvullende informatie zoals digitale terreinmodellen (DTM’s) en thematische 
kaarten in de analyse. Massabewegingen zijn geomorfologische processen, en 
hun karakterisering in verschillende types, volgens een classificatie zoals 
Varnes (1984), is onder meer gebaseerd op contextuele criteria, die het beste 
verkregen kunnen worden door middel van het segmenteren van digitale 
beelden in ruimtelijk homogene objecten, in plaats van individuele pixels. 
 
Dit onderzoek schetst de ontwikkeling van semi-automatische algoritmen 
voor beeldanalyse, die spectrale informatie combineren met vorm, textuur, 
morfometrische en contextuele informatie vanuit hoge resolutie 
satellietbeelden en DTM’s voor de kartering van aardverschuivingen in 
berggebieden. Het belangrijkste innovatieve aspect van het onderzoek ligt in 
de selectie van typerende parameters voor massabewegingen en hun gebruik 
in de karakterisering van verschillende types van aardverschuivingen, met 
behulp van Object-Oriented Analysis. 
 
De nauwkeurigheid van DTM’s is binnen de analyse een belangrijke factor, 
aangezien de morfometrische afgeleide kaarten, zoals terreinkromming, 
helling, en stroomrichting, bijdragen aan het succesvol detecteren en 
classificeren van aardverschuivingen. Along-track stereoscopische data van 
de nieuwe Indiase Cartosat-1 satelliet, in combinatie met Rational Polynomial 
Coefficients (RPC’s) voor bloktriangulering, werden gebruikt voor het maken 
van een digitaal oppervlaktemodel (DSM) met een resolutie van 10 meter. 
Deze along-track satellietgegevens hebben voordelen voor de generatie van 
een DSM, vanwege een betere correlatie tussen beeldparen en een hoge B/H 
verhouding. Er deden zich helaas wel moeilijkheden voor in zeer steile 
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gebieden, in het bijzonder in valleien die loodrecht op de satelliet 
bewegingsrichting waren georiënteerd. Het gebruik van controlepunten die 
met DGPS waren gemeten verbeterde de absolute nauwkeurigheid en 
resulteerde in RMS fouten van 2.31 in verticale en <1 m in planimetrische 
zin, welke acceptabel zijn gezien de ruimtelijke resolutie van 2.5 m voor 
Cartosat-1. Voor het afleiden van nauwkeurige morfometrische informatie, is 
de ruimtelijke nauwkeurigheid echter belangrijker dan de absolute 
nauwkeurigheid. Daarom werden de drainagelijnen gebruikt om de 
ruimtelijke nauwkeurigheid van het DSM te meten. Het onderzoek toonde aan 
dat de hoek van de zon waaronder de satelliet beelden genomen waren en de 
oriëntatie van valleien een uitgesproken effect op de nauwkeurigheid van een 
DSM kunnen hebben. Het DSM dat werd vervaardigd uit Cartosat-1 beelden 
die genomen waren onder een lage hoek van de zon resulteerde in 45% 
hogere nauwkeurigheid voor valleien die loodrecht georiënteerd zijn op de 
bewegingsrichting van de satelliet, in vergelijking met beelden die met een 
hoge zonnehoek gemaakt waren. Maar in andere gebieden bleken deze 
gegevens een goede bron voor hoogte informatie te zijn. 
 
De omzetting van een digitaal oppervlakte model (DSM) naar een digitaal 
terreinmodel (DTM) is noodzakelijk voor het berekenen van het volume van 
massabewegingen en voor het bepalen van morfometrische parameters. Dit 
werd gedaan door de vegetatiehoogte van het DSM af te trekken. Het gebruik 
van controlepunten bij het maken van DTM’s voor en na een 
aardverschuiving bleek geen grote verschillen op te leveren in de berekening 
van het volume.  Hieruit kan worden geconcludeerd dat voor dergelijk 
onderzoek het gebruik van controlepunten geen strikte vereiste is, en dat de 
volume informatie slechts met het gebruik van RPC’s kan worden bepaald, als 
beide beelden in hetzelfde relatieve referentiekader worden gebracht. 
 
Een reeks benaderingen werd ontwikkeld die de eigenschappen bepaald van 
objecten die geëxtraheerd zijn uit een multi-spectraal beeld van Resourcesat-
1 LISS-IV Mx (5.8 m resolutie) door middel van een region-growing 
algoritme. Als testgebied voor het ontwikkelen van de methodologie werd het 
gebied rondom Okhimath geselecteerd, in de deelstaat Uttarakhand in het 
Himalayagebergte. De aardverschuivingen werden gedetecteerd met OOA, en 
een algoritme dat uit 45 individuele routines bestaat, waaronder een 
gecontroleerde segmentatie, het samenvoegen van objecten en de 
classificatie in verschillende types. Voor deze analyse werd de eCognition 
software gebruikt, en de analyse resulteerde in de detectie en classificatie 
van 42 aardverschuivingen van verschillende grootte in een gebied van 80 
km2. Het algoritme, dat uit drie submodules bestaat, extraheert eerst 
mogelijke aardverschuivingen door middel van een NDVI drempelwaarde, 
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waarna de fout-positieven geëlimineerd worden op basis van spectrale, 
textuur, vorm en contextuele criteria. Classificatie van de objecten in 5 types 
van massabewegingen werd vervolgens uitgevoerd d.m.v. morfometrische en 
contextuele criteria. De OOA-gebaseerde classificatie werd vervolgens 
vergeleken met een kartering gebaseerd op stereoscopische luchtfoto-
interpretatie en veldwerk. Daaruit bleek dat de opsporingsnauwkeurigheid 
76.4% was, terwijl de classificatie in 69.1% van de gevallen correct was. 
Deze relatief goede resultaten konden worden behaald, ondanks het feit dat 
in het gebied veel fout-positieven aanwezig zijn, zoals niet begroeid 
rotsachtig terrein, landbouwterrassen, and rivierafzettingen. De minimum 
grootte van aardverschuivingen die door deze methode kon worden 
gedetecteerd was 774 m2, wat erop wijst dat het algoritme niet gevoelig voor 
grootte is. Het ontwikkelde algoritme vereist nog wel een zekere mate van 
gebruikersinteractie voor het bepalen van segmentatiecriteria voor de 
objectgrootte, wat een nadeel is in de toepassing als een snelle en generieke 
methode. Daarom werd vervolgens een meer objectieve methode om 
segmenten te optimaliseren ontwikkeld. Een nieuwe Plateau Objective 
Function (POF) werd ontwikkeld m.b.v. ruimtelijke autocorrelatie en 
intrasegment variantie, die werd gebruikt om de segmentatiecriteria voor 
multi-schaal analyse te bepalen, welke essentieel zijn voor de opsporing van 
aardverschuivingen en de verwijdering van fout-positieven. Een ander nadeel 
van het oorspronkelijk ontwikkelde algoritme was het gebruik van subjectieve 
drempelwaardes voor de verwijdering van fout- positieven. Dit werd 
aangepast met behulp van een K-means clustermethode. Het verbeterde 
algoritme, bestaande uit vier submodules, resulteerde in een 
opsporingsnauwkeurigheid van 76.9% voor het testgebied en 77.7% voor 
een geomorfologisch verschillend validatiegebied in Darjeeling. Het nieuwe 
algoritme verhoogde de nauwkeurigheid van detectie, maar verminderde ook 
het aantal onterecht geclassificeerde aardverschuivingsobjecten. Het 
vernieuwde algoritme is sneller te gebruiken en is beter in te zetten in andere 
gebieden, vanwege de objectieve bepaling van de schaalfactor en de 
automatische selectie van drempelwaardes voor relevant parameters. 
 
De bovengenoemde algoritmes maken gebruik van NDVI waardes die uit 
multi-spectrale satellietbeelden worden berekend. Echter in veel gevallen zijn 
deze multi-spectrale beelden niet beschikbaar, bijvoorbeeld wanneer 
historische beelden gebruikt worden voor het maken van een multi-temporele 
database van massabewegingen. In veel van dit soort gevallen zijn alleen 
gearchiveerde panchromatische beelden beschikbaar. Om ook deze gegevens 
te kunnen gebruiken, werd een derde algoritme ontwikkeld, waarbij een 
drempelwaarde voor de reflectie werd gebruikt in plaats van NDVI voor de 
detectie van mogelijke aardverschuivingen. 
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De bepaling van lokale drempelwaardes die contextuele criteria gebruiken 
tonen betere resultaten dan globale drempels, en maken het mogelijk om 
kleine oppervlakkige afglijdingen te detecteren zelfs binnen onbegroeid 
rotsachtig gebied. Voor het elimineren van fout-positieven werden een aantal 
textuur gerelateerde criteria gebruikt, zoals Grey Level Co-occurrence Matrix 
(GLCM) homogeniteit en standaardafwijking, samen met informatie over 
vorm en contextuele criteria. Met behulp van deze methode werden jaarlijkse 
inventarisatiekaarten van massabewegingen geproduceerd voor een periode 
van 13 jaar. Deze werden gebruikt voor het genereren van een 
gevoeligheidskaart voor aardverschuivingen met behulp van de zogenaamde 
Weights-of-Evidence methode. De ruimtelijke waarschijnlijkheid werd bepaald 
aan de hand van de dichtheid van massabewegingen per gevoeligheidsklasse 
voor elke observatieperiode. De temporele waarschijnlijkheid voor 
massabewegingen werd bepaald met behulp van een Gumbel analyse. Deze 
gegevens werden gebruikt samen met de gevoeligheidskaart en informatie 
over wegen en gebouwen voor het produceren van een risico curve voor het 
gebied, waarin de jaarlijkse kans op schade bepaald wordt voor toekomstige 
massabewegingen. 
 
Het uiteindelijke algoritme voor de detectie en classificatie van 
aardverschuivingen dat in deze studie werd ontwikkeld is generiek en vereist 
twee primaire invoergegevens (een satellietbeeld en een DTM), en vereist 
geen a priori kennis over het terrein. De halfautomatische benadering is 
flexibel genoeg om de ruimtelijke en spectrale variabiliteit van 
aardverschuivingen te analyseren en het aantal fout-positieven beperkt te 
houden. Deze methode is een aanzienlijke verbetering vergeleken met eerder 
ontwikkelde op pixels gebaseerde classificatiemethodes. Het stelt de 
gebruiker in staat om in korte tijd een inventarisatie te maken van 
aardverschuivingen die veroorzaakt zijn door extreme regenval of 
aardbevingen, en levert informatie over de locatie, types en de grootte van 
massabewegingen. De methode die in dit onderzoek werd ontwikkeld heeft 
zijn waarde bewezen in verscheidene gebieden in het Indiase 
Himalayagebergte en biedt de mogelijkheid tot een snelle inventarisatie van 
massabewegingen in andere gebieden op de wereld. 
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