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ABSTRACT: Life cycle assessment (LCA) is a methodology widely endorsed by the pavement 
community and increasingly adopted by transportation agencies worldwide to account for the 
environmental impacts of pavements throughout their entire life cycle. LCA studies in this context 
are prone to the effects of uncertainties due to (1) the long analysis periods that stretch across 
numerous maintenance and rehabilitation (M&R) cycles, (2) the need of different types and 
sources of data and additional models and (3) multiple methodological decisions to be made by 
the analyst. Nevertheless, LCA studies are often done deterministically and omit important 
phases and phenomena from the systems boundaries, thereby reducing the reliability and repre
sentativity of the results. To overcome this challenge and to foster the integration of LCA models 
with existing pavement management systems, this paper presents the development and application 
of a LCA framework that evaluates the environmental performance of pavement M&R treat
ments. Further, it incorporates the effects of pavement-vehicle interaction into the analysis and 
accounts for multiple types of uncertainties, namely those associated with the value of parameters, 
methodological choices and data quality. Probability distributions and value scenarios are used to 
characterize the uncertainties which are propagated into the results using Latin hypercube sam
pling and scenario analysis. A sensitivity analysis using tree-ensemble methods is adopted to 
unveil the most influential parameters on the variance of the outputs. The outcomes of this 
research work aim to advance the applicability of LCA in the context of pavement management, 
and to improve the understanding of the effects of uncertainties in the outcomes of the analysis.

1 INTRODUCTION

Road pavements are long-lived infrastructures that undergo periodic maintenance and rehabili
tation (M&R) treatments over their lifetime. The application of such treatments ensures that 
pavement condition remains above desirable levels, but it also results in significant cumulative 
environmental impacts due to the vast consumption of natural resources and energy it entails. 
In light of the rising environmental awareness, assessing the environmental impacts of road 
pavements is an important step towards the achievement of sustainability goals.

Life cycle assessment (LCA) is an approach that evaluates the environmental impacts of 
road pavements over the course of their service life that has gained significant recognition in 
the field of pavement management (PM) and has become instrumental in the context of sus
tainability transition (Miliutenko et al., 2014; Rangelov et al., 2020; Santero et al., 2011; 
Santos et al., 2015). However, the validity of LCA in this setting is often called into question, 
as most pavement LCA studies tend to exclude important phases from the system boundaries 
of the analysis, particularly the use phase (Xu et al., 2019), and ignore the effects of uncer
tainty on the results.
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LCA offers the option to calculate the impacts of pavement materials production, construc
tion, use, M&R, and end-of-life (EOL) (Santero et al., 2011). Conventionally, the focus of the 
assessment has been placed in the production, construction and EOL phases (Xu et al., 2019). 
However, as the environmental impacts of the use phase may represent a large share of total life 
cycle impacts (Harvey et al., 2016; Santos et al., 2022), recent LCA studies have begun to 
account for the effects of pavement-vehicle interaction (PVI), a use phase mechanism, in their 
assessments (Akbarian et al., 2012; Gregory et al., 2016; Noshadravan et al., 2013; Santos et al., 
2022). PVI is the relationship between pavement characteristics and vehicle fuel efficiency, deter
mined by pavement rolling resistance (RR). As RR increases, so do the fuel consumption and 
the emissions generated by the vehicles moving across the road (Bryce et al., 2014; Van Dam 
et al., 2015). Although in a comprehensive analysis it is essential to take into account every 
phase of the pavements’ life cycle to ensure representativity and accuracy, the absence of the use 
phase is not the only omission often found in multiple pavement LCA studies.

Uncertainty is unavoidable in LCA studies, and despite the fact that it directly affects the reli
ability of the results, conventional LCA analyses often consider single input values. The need for 
the consideration of uncertainties in LCA has been recognized in the past (Huijbregts, 1998; San
tero et al., 2011), but limited attention has been given to developing and including uncertainty ana
lysis approaches in LCA studies (Lo Piano and Benini, 2022), let alone in the pavement domain.

The first step of a un uncertainty analysis in LCA consists of identifying and selecting the 
main types and sources of uncertainty (Igos et al., 2019). This includes distinguishing between 
parameter and scenario uncertainty. Parameter uncertainty is primarily caused by inaccuracies 
in input data used to model processes and flows caused by data quality and variability. LCA 
studies in the pavement domain place attention on several specific sources of parameter uncer
tainty related to the different pavement life cycle phases (Azarijafari et al., 2018; Gregory 
et al., 2016; Noshadravan et al., 2013; Santos et al., 2022), including PVI and the models used 
to predict the pavement condition over time (Gregory et al., 2016; Noshadravan et al., 2013; 
Santos et al., 2022; Ziyadi et al., 2017). Among other sources, scenario uncertainty arises from 
methodological and normative choices made during the goal and scope definition, such as 
LCA software and LCI database selection (Santos et al., 2017), system boundary choices 
(Gregory et al., 2016), allocation methods (Azarijafari et al., 2018), etc.

After identifying sources and types of uncertainty, the next step is to characterize them. Char
acterization can be done qualitatively or quantitatively. In qualitative characterizations, it is 
common practice to estimate data quality levels and to construct alternative scenarios based on 
different methodological choices (Igos et al., 2019). The pedigree matrix approach implemented 
in the ecoinvent database (Weidema et al., 2013) has been employed in the pavement LCA field 
to account for the uncertainty due to data quality, rendering its further quantitative character
ization possible (Azarijafari et al., 2018; Gregory et al., 2016; Noshadravan et al., 2013). Quanti
tatively, uncertainties can be characterized by defining minimum and maximum parameter 
values and/or probability density functions (PDFs) (Igos et al., 2019). Data variability can be 
represented with PDFs when the sample size is large (Yu et al., 2018), or by minimum and max
imum values for smaller sample sizes (Gregory et al., 2016). When only single values are avail
able, predetermined uncertainty values retrieved from the ecoinvent database can be used 
(Azarijafari et al., 2018; Gregory et al., 2016; Noshadravan et al., 2013). In turn, scenarios can 
be represented by discrete choices with equal likelihood or with alternative value scenarios (e.g., 
minimum and maximum values) (Azarijafari et al., 2018; Gregory et al., 2016).

Once uncertainties have been characterized, they are propagated to the results. Two common 
methods used in pavement LCA literature are Monte Carlo sampling (MCS) and scenario analysis 
(Azarijafari et al., 2018; Gregory et al., 2016; Noshadravan et al., 2013; Santos et al., 2022; Yu 
et al., 2018). MCS is a commonly used method to propagate parameter uncertainties (Igos et al., 
2019). However, it requires large sample sizes and can be computationally expensive. To reduce 
the computational time, Latin hypercube sampling (LHS) can be used. It is an efficient modifica
tion of MCS that divides the input distribution into equal intervals from which a sample point is 
selected randomly (Groen et al., 2014; Igos et al., 2019). It guarantees that all intervals are sampled 
equally, and that no area is over- or under-sampled. Therefore, it is particularly useful for contexts 
where the sample size must be kept as small as possible. Scenario analysis entails the single or 
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simultaneous variation of parameters, methodological choices and model formulations to analyze 
uncertainties in LCA (Igos et al., 2019). Sampling and scenario analysis can be used together to 
combine parameter and scenario uncertainties (Azarijafari et al., 2018; Gregory et al., 2016).

Moreover, a comprehensive uncertainty analysis in LCA should include a sensitivity ana
lysis to investigate how changes in parameters and methodological choices affect the results 
(Harvey et al., 2016) and to identify which elements have the largest contributions to the over
all uncertainty (Igos et al., 2019). In the pavement field, one-at-a-time analyses (Godoi Bizarro 
et al., 2020) and Spearman’s rank correlation coefficients (Gregory et al., 2016) have been 
used to identify the most influential parameters and scenarios. In other fields, the calculations 
of Sobol indices (Igos et al., 2019; Jaxa-Rozen et al., 2021a), a well-known global sensitivity 
analysis (GSA) technique, has been adopted to quantify the relationship and importance of 
each input in the variance of the LCA outputs. However, this method comes at a high compu
tational cost. In turn, Extra Trees is a computational efficient method that can handle large 
number of parameters and produce reliable results at smaller sample sizes, while offering 
results comparable to those of Sobol indices (Jaxa-Rozen and Kwakkel, 2018). In LCA, Extra 
Trees has been used as a preliminary screening step to identify the most influential parameters 
on the uncertainty (Jaxa-Rozen et al., 2021a), but to the authors’ best knowledge it has never 
been applied in the pavement LCA field.

In view of the considerations and limitations mentioned above, this study aims to further 
expand the development and applicability of LCA in the context of sustainable pavement 
management by creating a framework tailored to road pavement M&R that accounts for the 
effects of PVI and includes a comprehensive uncertainty analysis methodology.

2 METHODS

2.1  LCA framework

The proposed LCA framework described in this paper focuses on the LCA of individual pave
ment M&R cycles that involve the application of asphalt overlays, although it can be 
expanded to include any other type of M&R treatments. LCA studies in the context of M&R 
often cover long analysis periods spanning multiple M&R cycles. In the current setting the 
analysis period is constrained to the time between the application of a treatment and the sub
sequent need for a new one. In addition to the analysis period, the definition of the functional 
unit considers the characteristics of the pavement system being treated, including its structure 
(surface, binder, and/or base layers and subgrade), geometrical and functional characteristics, 
materials and the traffic it is expected to carry (Harvey et al., 2016).

Moreover, the LCA framework is consistent with Dutch reference documents, specifically 
the asphalt product category rules (NL-PCR) (Van der Kruk et al., 2022) and the Determin
ation Method (Nationale Milieudatabase, 2020). The system boundaries for the analysis 
encompass all relevant life cycle processes and flows, including the production (material 
extraction, acquisition, transportation, and processing into asphalt mixtures), construction 
(on-site paving activities and equipment use), use (processes that impact the environment 
during the service life, with an emphasis on PVI) and end-of-life (EOL) phases (i.e. removal, 
recycling and transportation of waste materials) as outlined by Santero et al., (2011).

2.2  Uncertainty analysis

The uncertainty analysis starts with the identification of the different foreground-related uncer
tain parameters and methodological choices that potentially can influence the environmental 
impact calculations. Although accounting for uncertainty related to the background is to some 
extent feasible and would result in a more robust analysis, its actual realization would imply an 
extreme increase of the number of uncertain parameters and the level of complexity the analysis.

Data variability can be represented with PDFs derived from empirical data when available, 
or with the predefined values provided by the ecoinvent method in the absence of empirical data 
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(Weidema et al., 2013). These values are then aggregated with data quality uncertainty accord
ing to the criteria established by the ecoinvent method, with data quality being described using 
log-normal distributions. The procedure provided by Muller et al., (2016) is adopted to facilitate 
the numerical integration with data quality uncertainty values when data variability is repre
sented using distributions other than log-normal. Scenarios are developed based on different 
value options, such as different machinery production rates, recycled asphalt pavement (RAP) 
content in the composition of the mixture, and the type of bitumen added.

In the proposed LCA framework the propagation of uncertainties to the results involves the 
application of a combination of LHS and scenario analysis. LHS is employed to reduce computa
tional time in the evaluation of parameter uncertainty. Scenario analysis, in turn, is used to evalu
ate the effect of changing scenarios. According to Jaxa-Rozen et al., (2021), 12,000 simulations 
are sufficient for the LHS analysis when the sensitivity analysis method is adequate for a relatively 
small number of samples. As such, the Extra Trees method is adopted to identify the most influen
tial parameters in the uncertainty of the outcomes for different scenarios following the configur
ation recommended by Jaxa-Rozen and Kwakkel, (2018). It is important to note that LHS should 
be performed for each scenario considered in the analysis, allowing for its subsequent sensitivity 
analysis. Figure 1 summarizes the uncertainty methodology proposed in the framework.

3 CASE STUDY

The applicability of the proposed framework is illustrated by using the case study of a mill- 
and-fill M&R treatment for the main road pavement network in the Netherlands. The chosen 
treatment, selected from a collection of over 75 potential hot mix asphalt overlay options, 
involves the application of a 50mm-thick layer of Durable ZOAB (DZOAB), which is 
a porous asphalt mixture with enhanced durability commonly used in the Netherlands.

The functional unit for the analysis is defined as a straight and plan 1km-long carriageway 
road pavement segment section with 3 lanes, each 3.5km-wide. Traffic data, including average 
daily intensity values for passenger cars, heavy duty trucks (HDV), and HDV + trailers, were 
sourced from the INWEVA geographical information system and datasets (Rijswaterstaat, 
2022) and are presented in Table 1. The traffic growth rate, set at 1.9%, was determined based 
on information from the National Statistics Office of the Netherlands (CBS, 2022). The ana
lysis period, corresponding to the average lifespan of a DZOAB surface, is 14 years.

Figure 1.  Uncertainty analysis methodology. Black boxes represent the application steps of the method
ology, whereas the green ones depict the handling of the outcomes of the methodology.

Table 1. Traffic intensity in number of vehicles: statistics.

Vehicle type Mean Std Min Max

Passenger car 26064 17513 2276 101325
HDV 1744 1035 219 7292
HDV + trailer 2061 1477 140 8872
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The system boundaries were adapted from the NL-PCR to align them with the context of 
M&R (Figure 2), with the exception of leaching, which was excluded from the use phase due 
to the absence of primary data (Van der Kruk et al., 2022). A construction rate of 1000 ton/ 
day was used in the analysis. Additionally, the environmental benefits of recycling RAP into 
new pavement materials outside the system boundaries were not considered as RAP enters the 
system free-of-burden in mixtures with RAP content. Input data for each life cycle phase, 
except PVI, were obtained from the NL-PCR and the Ecoinvent 3.3 database.

The environmental impacts of PVI were calculated using the MIRIAM model (Hammar
ström et al., 2012). Moreover, linear models were developed for predicting the evolution of 
roughness and macrotexture over time, respectively represented by the International Roughness 
Index (IRI) and Mean Profile Depth (MPD), using real IRI and MPD measurements of the 
Dutch main road network provided by the Dutch Ministry of Infrastructure ‘Rijkswaterstaat’ 
(RWS). The values of the parameters of the performance models using pavement age as pre
dictor are presented in Table 2. The results are assumed to follow a normal distribution with 
a mean corresponding to the predicted IRI and MPD values and a standard deviation (std) 
equivalent to the mean absolute error (MAE) of the model. Vehicle speeds were determined 
based on Dutch speed limits (Rijksoverheid, 2022) and were assumed to follow a normal distri
bution with a mean corresponding to the speed limits and a coefficient of variation of 0.1. For 
facilitating the calculation and to match the size of the traffic intensity sample of the Dutch 
road pavement network, approximately 4000 MCS runs were completed to estimate the total 
additional fuel consumption due to RR over the analysis period. The results follow a normal 
distribution, and the values of the parameters are presented Table 3. The environmental impacts 
were then calculated and incorporated into the LCA model using the method described by 
Santos et al. (2022), which uses the fuel efficiency and environmental impacts of transportation 
services (excluding the upstream impacts attributed to infrastructure) to model PVI effects.

Figure 2.  System boundaries of the case study.

Table 2. IRI and MPD linear pavement performance models parameters and statistics.

Pavement performance model Year 0 Annual increase MAE

IRI (m/km) 0.9993 0.0296 0.0325
MPD (mm) 1.1063 0.0209 0.1207

Table 3. Total extra fuel consumption due to RR in the analysis period (l/km).

Vehicle type Mean Std

Passenger car 68967.84 46675.05
HDV 17729.00 10516.89
HDV + trailer 58536.78 41941.30
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The uncertainty analysis was conducted using two scenarios for RAP content: (1) a mixture with 
0% RAP and (2) a mixture with 30% RAP. The NL-PCR was used to determine the input values 
for mixture composition and energy expenditure for asphalt mixtures production, as well as diesel 
consumption for construction and removal processes, based on the amount of RAP in the mixture 
(Van der Kruk et al., 2022). All foreground input value parameters assigned to each scenario, 
including materials, transport, additional vehicle fuel consumption, and energy consumption for 
production, construction and EOL were considered in the analysis. Data quality uncertainty was 
calculated using the ecoinvent method (Weidema et al., 2013), as well as the variability of the 
parameters, with the exception of PVI, whose variability values were computed in the earlier step.

Each scenario was sampled 12,000 times with LHS and environmental impacts of each 
sample were calculated using the OpenLCA software with a Python interface adapted from 
the one developed by Jaxa-Rozen et al. (2021b). To identify the most uncertain parameters, 
an ExtraTrees regression was applied using the scikit-learn Python library (Pedregosa et al., 
2012). Finally, given that the environmental impacts of the use phase are expected to be pre
dominant and highly uncertain, two additional scenarios in which one excluded the effects of 
PVI in module B (use phase) were considered to provide more meaningful insights on the 
influence of the several parameters on the uncertainty of the outcomes.

4 RESULTS AND DISCUSSION

The environmental impact results for the scenarios including and excluding the use phase are 
illustrated with the global warming impact category and are presented in Figure 3(a) and (b), 
respectively. From the analysis of the Figures, it can be seen the use of RAP allows the reduc
tion of the environmental impacts, although this result is almost imperceptible when the use 
phase is considered. This is due to the overwhelming contribution of the environmental 
impacts associated with PVI, which outweigh the influence of the remaining phases.

The results of the sensitivity analysis indicate that in scenarios that include the use phase, 
fuel consumption has the greatest influence on the uncertainty of the outcomes. This can be 
attributed to the large variability and predominant contribution of extra fuel consumption to 
the environmental impacts. In contrast, the contribution of other parameters in the scenarios 
thereof is relatively similar and mostly below the order of 1%. In scenarios that exclude the 
use phase, there is greater variation in the contributions of different parameters to uncertainty. 
Notably, transport has a significant effect on uncertainty, particularly the transportation of 
raw materials via transoceanic ships in module A1, and freight transport to and from the con
struction site in modules A4 and C2. This can likely be credited to the large uncertainty values 
assigned to transport exchanges by the ecoinvent method. When taking a closer look at indi
vidual life cycle phases, activities related to EOL in module C1, encompassing milling, sweep
ing and cleaning, and the consumption of natural gas for mixture heating in module A3, are 

Figure 3.  Environmental impact for scenarios (a) including PVI effects and (b) excluding PVI effects.
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the major contributors to total uncertainty after transport. Finally, when examining the con
tribution of raw asphalt materials processes in module A1 to total uncertainty, bitumen and 
large size aggregates present the greatest contributions from this phase.

5 CONCLUSION AND FUTURE RESEARCH WORK

In this study, an LCA framework is proposed for evaluating the environmental impacts of 
M&R treatments under uncertainty. The key features of this framework include the consider
ation of PVI in the analysis, the incorporation of parameter and scenario uncertainties in the 
assessment, and the application of a tree-based ensemble method for sensitivity analysis to 
determine the most influential parameters in the uncertainty of the outcomes.

The environmental impact results of the case study indicate that when the use phase is con
sidered, the reduction of impacts occurring in other phases becomes imperceptible, even when 
PVI impact values are relatively low. This substantiates the importance of including the use 
phase in the analysis, and ensuring that the pavement remain in good condition during the 
analysis period to reduce extra fuel consumption due to increased RR.

The sensitivity analysis conducted in this study revealed that in scenarios that include the use 
phase, the contribution of PVI to the uncertainty in the results is overwhelming. In order to gain 
a deeper understanding of the influence of the various parameters on the uncertainty, further sen
sitivity analyses were conducted using scenarios that exclude the use phase. The results showed 
that transportation processes have a significant impact on the uncertainty of the outcomes.

In conclusion, the outcomes of this research work helped to advance the applicability of 
LCA in the context of pavement M&R, and to improve the understanding of the effects of 
uncertainties on the outcomes. Further, it offers the possibility of identifying areas with the 
highest potential for environmental performance improvements by determining the extent to 
which impacts can be reduced.

Additional research work in this domain will be performed by incorporating other M&R 
measures beyond asphalt overlays. Additionally, the incorporation of advanced GSA techniques, 
such as variance-based and distribution-based methods (e.g. Sobol and PAWN), as well as the 
development of empirical uncertainty factors to account for process variability will be pursued.
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