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Quick Detection of Nodes with
Large Degrees
Konstantin Avrachenkov, Nelly Litvak, Marina Sokol, and Don Towsley

Abstract. Our goal is to find top-k lists of nodes with the largest degrees in large
complex networks quickly. If the adjacency list of the network is known (not often the
case in complex networks), a deterministic algorithm to find the top-k list of nodes with
the largest degrees requires an average complexity of O(n), where n is the number of
nodes in the network. Even this modest complexity can be very high for large complex
networks. We propose to use a random-walk-based method. We show theoretically
and by numerical experiments that for large networks, the random-walk method finds
good-quality top lists of nodes with high probability and with computational savings
of orders of magnitude. We also propose stopping criteria for the random-walk method
that requires very little knowledge about the structure of the network.

1. Introduction

We are interested in quickly detecting nodes with large degrees in very large net-
works. Firstly, node degree is one of the centrality measures used for the analysis
of complex networks. Secondly, large-degree nodes can serve as proxies for central
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nodes corresponding to other centrality measures such as betweenness centrality
and closeness centrality [Lim et al. 11, Maiya and Berger-Wolf 10]. In the present
work, we restrict ourselves to undirected networks or symmetrized versions of di-
rected networks. In particular, this assumption is well justified in social networks.
Typically, friendship or acquaintance is a symmetric relation. If the adjacency
list of the network is known (not often the case in complex networks), a deter-
ministic algorithm to find the top k nodes with the largest degrees requires an
average complexity of O(n), where n is the number of nodes in the network. For
instance, if HeapSort is used to find the top k nodes with the largest degrees,
the complexity estimate can be specified as O(n + k log(n)). We assume that the
degree is available when a node is accessed (if this is not the case, the complex-
ity should be counted in terms of links). However, even linear complexity can be
very high for very large, possibly varying, complex networks. Furthermore, when
crawling some online social networks such as Facebook and Twitter, a crawler
is constrained by a certain limit on the speed of crawling. For example, Twitter
has a limit of one access per minute for the rate of crawling for one standard
account. Thus, to crawl the entire network with more than 500 million users, we
would need more than 950 years. Certainly, we would like to discover nodes with
largest degrees well before the entire network has been crawled.

In the present work, we suggest using random-walk-based methods for detect-
ing a small number of nodes with the largest degrees. The main idea is that the
random walk very quickly comes across large-degree nodes. Thus, the analysis
of our approach is equivalent to the analysis of hitting times of a random walk.
In our numerical experiments, random walks outperform the standard determin-
istic algorithms by orders of magnitude in terms of computational complexity.
For instance, in our experiments with the Web graph of the UK domain (about
18 500 000 nodes), the random-walk method spends on average only about 5 400
steps to detect the largest-degree node. Potential memory savings are also signifi-
cant, since the method does not require knowledge of the entire network. In many
practical applications, we do not need a complete ordering of the nodes and even
can tolerate some errors in the top list of nodes. We observe that the random-
walk method obtains many nodes in the top list correctly, and even those nodes
that are erroneously placed in the top list have large degrees. Therefore, as typ-
ically happens in randomized algorithms [Mitzenmacher and Upfal 05, Motwani
and Raghavan 95], we trade off exact results for very good approximate results
or for exact results with high probability and gain significantly in computational
efficiency.

The paper is organized as follows: In the next section, we introduce our basic
random walk with uniform jumps and demonstrate that it is able to find large-
degree nodes quickly. Then, in Section 3, using a configuration model, we provide
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an estimate for the necessary number of steps for the random walk. In Section 4,
we propose stopping criteria that use very little information about the network.
In Section 5, we show the benefits of allowing few erroneous elements in the top-k
list. Finally, we conclude the paper in Section 6.

2. Random Walk with Uniform Jumps

Let us consider a random walk with uniform jumps that serves as a basic al-
gorithm for quick detection of large-degree nodes. The random walk with uni-
form jumps is described by the following transition probabilities [Avrachenkov
et al. 10a]:

pij =

⎧⎪⎪⎨
⎪⎪⎩

α/n + 1
di + α

, if i has a link to j,

α/n

di + α
, if i does not have a link to j,

(2.1)

where di is the degree of node i. The random walk with uniform jumps can be
regarded as a random walk on a modified graph all of whose nodes are connected
by artificial edges with weight α/n. The parameter α controls the rate of jumps.
Introduction of jumps helps in a number of ways. As was shown in [Avrachenkov
et al. 10a], it reduces the mixing time to stationarity. It also solves a problem
encountered by a random walk on a graph consisting of two or more compo-
nents, namely the inability to visit all nodes. The random walk with jumps also
reduces the variance of the network function estimator [Avrachenkov et al. 10a].
This random walk resembles the PageRank random walk. However, unlike the
PageRank random walk, the introduced random walk is reversible. One impor-
tant consequence of the reversibility of the random walk is that its stationary
distribution is given by a simple formula:

πi(α) =
di + α

2|E| + nα
∀i ∈ V, (2.2)

from which the stationary distribution of the unperturbed random walk can eas-
ily be retrieved. We observe that the modification preserves the monotonicity of
the stationary distribution with respect to the node degree, which is particularly
important for our application.

We illustrate on several network examples how the random walk helps us
quickly detect large-degree nodes. We consider as examples one synthetic net-
work generated by the preferential attachment rule and two natural large net-
works. The preferential attachment (PA) network combines 100 000 nodes. It
was generated according to the generalized preferential attachment mechanism
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Figure 1. Histograms of hitting times in the PA network.

[Dorogovtsev et al. 00]. The average degree of the PA network is 2, and the power
law exponent is 2.5. The first natural example is the symmetrized Web graph of
the whole UK domain crawled in 2002 [Boldi and Vigna 04]. The UK network
has 18 520 486 nodes, and its average degree is 28.6. The second natural example
is the network of coauthorships of DBLP [Boldi et al. 11]. Each node represents
an author, and each link represents a coauthorship of at least one article. The
DBLP network has 986 324 nodes, and its average degree is 6.8.

We carry out the following experiment: we initialize the random walk (2.1) at
a node chosen according to the uniform distribution and continue the random
walk until we hit the largest-degree node. The largest degrees for the PA, UK,
and DBLP networks are 138, 194 955, and 979, respectively. For the PA network,
we made 10 000 experiments, and for the UK and DBLP networks, we performed
1 000 experiments (these networks were too large to perform more).

In Figure 1, we plot histograms of hitting times for the PA network. The first
remarkable observation is that when α = 0 (no restart), the average hitting time,
which is equal to 123 000 steps, is nearly three orders of magnitude larger than
3 720, the hitting time when α = 2. The second remarkable observation is that
3 720 is of the same order of magnitude as the value

1/πmax(α) =
2|E| + nα

dmax + α
= 2857,

which corresponds to the average return time to the largest-degree node in the
random walk with jumps.

We were not able to collect a representative number of experiments for the UK
and DBLP networks when α = 0. The reason for this is that the random walk gets
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stuck either in disconnected or weakly connected components of the networks.
For the UK network, we were able to make 1 000 experiments with α = 0.001
and obtain the average hitting time 30 750, whereas if we take α = 28.6 for the
UK network, we obtain the average hitting time 5 800. Note that the expected
return time to the largest-degree node in the UK network is given by

1
πmax(α)

=
2|E| + nα

dmax + α
= 5432.

For the DBLP graph, we conducted 1 000 experiments with α = 0.00001 and
obtained an average hitting time of 41 131, whereas if we take α = 6.8, we obtain
an average hitting time of 14 200. The expected return time to the largest-degree
node in the DBLP network is given by

1
πmax(α)

=
2|E| + nα

dmax + α
= 13 607.

The two natural-network examples confirm our guess that the average hitting
time for the largest-degree node is fairly close to the average return time to the
largest-degree node, which is reciprocal to the value of the stationary distribution
at the largest-degree node. Next, using asymptotic analysis, we show that if α is
sufficiently large, the principal term in the asymptotic expansion for the expected
hitting time is close to the expected return time. Denote by Hj the hitting time
to node j.

Theorem 2.1. Without loss of generality, index the nodes such that node 1 is a
node under consideration, (1, i) ∈ E, i = 2, . . . , s, s = d1 + 1, and let ν denote
the initial distribution of the random walk with jumps. Then for sufficiently large
α and small α/n, the expected hitting time to node 1 starting from an arbitrary
initial distribution ν is given by

Eν [H1 ] =
∑n

i=2 di + (n − 1)α
d1 + 2α(1 − 1/n)

+ O(1). (2.3)

Proof. The expected hitting time from distribution ν to node 1 is given by the
formula

Eν [H1 ] = ν[I − P−1 ]−11, (2.4)

where P−1 is a taboo probability matrix (i.e., a matrix P with the first row
and first column removed). The matrix P−1 is substochastic but is very close to
stochastic. Let us represent it as a stochastic matrix minus some perturbation
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term:

P−1 = P̃ − εQ = P̃ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+2α/n
d2 +α 0 0

0
. . .

1+2α/n
ds +α

2α/n
ds + 1 +α

. . . 0
0 0 2α/n

dn +α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We add missing probability mass to the diagonal of P̃ , which corresponds to
an increase in the weights for self-loops. The matrix P̃ represents a reversible
Markov chain with the stationary distribution

π̃j =
dj + α∑n

i=2 di + (n − 1)α
.

Now we can use the following result from perturbation theory (see [Avrachenkov
et al. 10b, Lemma 1]):

[I − P̃ + εQ]−1 =
1π̃

π̃(εQ)1
+ X0 + εX1 + · · · , (2.5)

where π̃ is the stationary distribution of the stochastic matrix P̃ . In our case, the
quantity maxi=2,...,s{1/(di + α), 1/n} will play the role of ε. We apply the series
(2.5) to approximate the expected hitting time. Toward this goal, we calculate

π̃(εQ)1 =
n∑

j=2

π̃j εqjj

=
s∑

j=2

dj + α∑n
i=2 di + (n − 1)α

1 + 2α/n

dj + α
+

n∑
j=s+1

dj + α∑n
i=2 di + (n − 1)α

2α/n

dj + α

=
d1(1 + 2α/n) + (n − d1 − 1)(2α/n)∑n

i=2 di + (n − 1)α
=

d1 + 2α(1 − 1/n)∑n
i=2 di + (n − 1)α

.

Observing that ν1π̃1 = 1, we obtain (2.3).

Indeed, the asymptotic expression (2.3) is very close to (2|E| + nα)/(d1 + α),
which is the expected return time to node 1.

Based on the notion of the hitting time, we propose an efficient method for
quick detection of the top k largest-degree nodes. The algorithm maintains a
top-k candidate list. Note that once one of the k nodes with the largest de-
grees appears in this candidate list, it remains there subsequently. Thus, we are
interested in hitting events. We propose Algorithm 1 for detecting the top k

largest-degree nodes.
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Algorithm 1. Random walk with jumps and candidate list.
1. Set k, α, and m.

2. Execute a random-walk step according to (2.1). If it is the first step, pick
the initial node arbitrarily (in particular, the initial node can be chosen
by the uniform distribution).

3. Check whether the current node has a larger degree than one of the
nodes in the current top-k candidate list. If that is the case, insert the
new node in the top-k candidate list and remove the worst node from
the list.

4. If the number of random-walk steps is less than m, return to step 2 of
the algorithm; otherwise, stop.

The value of the parameter α is not crucial. In our experiments, we have
observed that as long as the value of α is neither too small nor too big, the
algorithm performs well. According to our observations, a good option for the
choice of α is a value around the average node degree. Let us explain this choice.

Consider a random walk {Wt}∞t=0 with transition probabilities (2.1). We denote
by Pν (·) the probability distribution of this Markov chain with initial distribution
ν. Now assume that the Markov chain is in a stationary regime (the stationary
regime is achieved quickly when the parameter α is not too small [Avrachenkov
et al. 10a]). Then by Bayes’s formula, we derive two remarkable equations:

Pπ [Wt = i|jump] =
Pπ [Wt = i, jump]

Pπ [jump]
=

Pπ [Wt = i]Pπ [jump|Wt = i]∑n
j=1 Pπ [Wt = j]Pπ [jump|Wt = j]

=
di + α

2|E| + nα

α

di + α

/ n∑
j=1

dj + α

2|E| + nα

α

dj + α
=

1
n

, (2.6)

and

Pπ [Wt = i|no jump] =
Pπ [Wt = i,no jump]

Pπ [no jump]
(2.7)

=
Pπ [Wt = i]Pπ [no jump|Wt = i]∑n

j=1 Pπ [Wt = j]Pπ [no jump|Wt = j]

=
di + α

2|E| + nα

di

di + α

/ n∑
j=1

dj + α

2|E| + nα

dj

dj + α

=
di

2|E| = πi(0), i = 1, 2, . . . , n.
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Thus, in a stationary distribution, given that no jump occurred, the probability
that [Wt = i] is exactly πi(0)!

Next observe that Wt is a regenerative process, where regeneration points are
the jumps to the uniform distribution, and the regenerating cycles are indepen-
dent. Concerning the choice of α, there is a clear tradeoff: if α is too small, then
regenerating cycles are long, and a random walk can get entangled in some part
of the network; but if α is too large, then the cycle will often consist of only one
step, corresponding to a jump. Thus, we would like to maximize the long-run
fraction of independent observations from π(0). To this end, we note that given
m′ cycles, the mean total number of steps is

m′E[cycle length] = m′(Pπ [jump])−1 .

Out of the random walk run with m′ cycles, m′ independent observations from
π are generated, from which on average, m′Pπ [jump] observations coincide with
a jump. As will be discussed in Section 4, we need to maximize the long-run
fraction of independent observations in a sample that are not a jump compared
to the number of steps of a random walk:

m′ − m′Pπ [ jump]
m′(Pπ [ jump])−1 = Pπ [ jump](1 − Pπ [ jump]) → max .

Obviously, the maximum is achieved when

Pπ [jump] =
1
2
.

It remains to rewrite Pπ [jump] in terms of the algorithm parameters:

Pπ [jump] =
n∑

j=1

Pπ [Wt = j]Pπ [jump|Wt = j] (2.8)

=
n∑

j=1

dj + α

2|E| + nα

α

dj + α
=

nα

2|E| + nα
=

α

d̄ + α
, (2.9)

where d̄ := 2|E|/n is the average degree. For maximal efficiency, the last fraction
above must be equal to 1/2, which gives the optimal value for the parameter α:

α∗ = d̄.

With this choice of α, the random walk contains the greatest possible fraction
of independent observations from the distribution πi(0).

The average degree is not necessarily known in advance. However, we may
choose α based on our knowledge of samples of similar nature and then estimate
the average degree using (2.8) and the observed cycle length. Specifically, we can
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use the equation

Eu [T ] =
1

Pπ [jump]
=

2|E|/n + α

α
. (2.10)

Then we can adjust α to its optimal value.
Theorem 2.1 demonstrates that the expected hitting time to a large-degree

node is approximately equal to the reciprocal of the stationary probability. Next,
under technical but natural assumptions, we show that in fact, the reciprocal
of the stationary probability is an upper bound on the expected hitting time.
Without loss of generality, let us consider node k from the top-k list (d1 ≥ · · · ≥
dk ≥ dk+1 ≥ · · · ). Assume also that the initial node is chosen according to the
uniform distribution. Let Hk be the hitting time to node k, and let T be the
time of the first jump (to the uniform distribution). Then, using Wald’s identity,
we can write

Eu [Hk ] = Eu [#jumps on [0,Hk ]]Eu [min{T,Hk}], (2.11)

where Eu [·] is the expectation given that the random walk starts from the uniform
distribution. We note that

Eu [min{T,Hk}] ≤ Eu [T ]. (2.12)

We also note that

Eu [#jumps on [0,Hk ]] =
1

Pu [Hk ≤ T ]
. (2.13)

Next, we provide a lower bound for the probability Pu [Hk ≤ T ]. This lower bound
gives a good approximation, if we assume that node k is usually found within
the first two steps of a cycle. This is a natural assumption, if α is not too small
and, consequently, the cycles are not too large. In particular, this is the case if
we choose the value of α as the average degree. Then we have

Pu [Hk ≤ T ] ≥ Pu [Hk ≤ min{T, 2}] =
1
n

+
1
n

∑
i:(i,k)∈E

α/n + 1
di + α

>
dk

n
· 1
dk

∑
i:(i,k)∈E

α/n + 1
di + α

≥ dk

n
· α/n + 1
d−1

k

∑
i:(i,k)∈E di + α

. (2.14)

Combining the above equation with (2.10)–(2.13), we obtain

Eu [Hk ] ≤ n

dk
· d̄ + α

α
· d−1

k

∑
i:(i,k)∈E di + α

α/n + 1
. (2.15)
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In particular, choosing α = d̄ in (2.15) yields

Eu [Hk ] ≤ 2n

dk
· d−1

k

∑
i:(i,k)∈E di + d̄

d̄/n + 1
. (2.16)

The number m of random-walk steps is a crucial parameter. Our experiments
indicate that we obtain a top-k list with many correct elements with high prob-
ability if we take the number of random-walk steps to be two or three times as
large as the expected hitting time of the nodes in the top-k list. This observation
can be made rigorous thanks to a result from [Bollobás 98, p. 333], which we can
adapt for our situation as follows.

Proposition 2.2. Let H1 , . . . , Hk denote the hitting times to the top k nodes with
the largest degrees (d1 ≥ · · · ≥ dk ≥ dk+1 ≥ · · · ). Then the expected time Eu [H̃]
for the random walk with transition probabilities (2.1) starting from the uniform
distribution to detect a fraction β of top-k nodes is bounded by

Eu [H̃] ≤ 1
1 − β

Eu [Hk ]. (2.17)

From Theorem 2.1 or bound (2.16), we know that the expected hitting time
of a large-degree node is related to the value of the node’s degree. Thus, the
problem of choosing m reduces to the problem of estimating the values of the
largest degrees. We address this problem in the following section.

3. Estimating the Largest Degrees in the Configuration Network Model

The estimates of the values of the largest degrees can be derived in the configura-
tion network model [van der Hofstad 09] with a power-law degree distribution. In
some applications, the knowledge of the power-law parameters might be avail-
able to us. For instance, it is known that Web graphs have power-law degree
distribution, and we know typical ranges for the power-law parameters (see, e.g.,
[Barabási and Albert 99]).

We assume that the node degrees D1 , . . . , Dn are i.i.d. random variables with
a power-law distribution F and finite expectation E[D]. Let us determine the
number of links contained in the top k nodes. Define

F (x) = P [D ≤ x], F̄ (x) = 1 − F (x), x ≥ 0.

Further, let D(1) ≥ · · · ≥ D(n) be the order statistics of D1 , . . . , Dn . Under the
assumption that the Dj obey a power law, we use the results from the extreme
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value theory as presented in [Matthys and Beirlant 03] to state that there exist
sequences of constants (an ) and (bn ) and a constant δ such that

lim
n→∞nF̄ (anx + bn ) = (1 + δx)−1/δ . (3.1)

This implies the following approximation for high quantiles of F , with exceedance
probability close to zero [Matthys and Beirlant 03]:

xp ≈ an
(pn)−δ − 1

δ
+ bn .

For the jth-largest degree, where j = 2, . . . , k, the estimated exceedance proba-
bility equals (j − 1)/n, and thus we can use the quantile x(j−1)/n to approximate
the degree D(j ) of this node:

D(j ) ≈ an
(j − 1)−δ − 1

δ
+ bn . (3.2)

The sequences (an ) and (bn ) are easy to find for a given shape of the tail of F .
Below, we derive the corresponding results for the commonly accepted Pareto
tail distribution of D, that is,

F̄ (x) = Cx−γ for x > x′, (3.3)

where γ > 1 and x′ is a fixed sufficiently large number, so that the power-law
degree distribution is observed for nodes with degree larger than x′. In that case,
we have

lim
n→∞nF̄ (anx + bn ) = lim

n→∞nC(anx + bn )−γ

= lim
n→∞(C−1/γ n−1/γ anx + C−1/γ n−1/γ bn )−γ ,

which directly gives (3.1) with

δ = 1/γ, an = δCδnδ , bn = Cδnδ . (3.4)

Substituting (3.4) into (3.2), we obtain the following prediction for D(j ) , j =
2, . . . , k, in the case of the Pareto tail of the degree distribution:

D(j ) ≈ C1/γ (j − 1)−1/γ n1/γ . (3.5)

It remains to find an approximation for D(1) , the maximal degree in the graph.
From the extreme value theory, it is well known that if D1 , . . . , Dn obey a power
law, then

lim
n→∞P

(
D(1) − bn

an
≤ x

)
= Hδ (x) = exp

(
− (1 + δx)−1/δ

)
,

where for the Pareto tail, an , bn , and δ are defined in (3.4). Thus, as an approx-
imation for the maximal node degree, we can choose anx + bn , where x can be
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chosen as either a mean, a median, or a mode of Hδ (x). If we choose the mode(
(1 + δ)−δ − 1

)
/δ, then we obtain an approximation that is smaller than that for

the second-largest degree. Further, the mean (Γ(1 − δ) − 1)/δ is very sensitive
to the value of δ = 1/γ, especially when γ is close to 1, which is often the case
in complex networks. Besides, the parameter γ is hard to estimate with high
precision. Thus, we suggest choosing the median (log(2))−δ − 1)/δ, which is less
sensitive to the value of δ. This yields

D(1) ≈ an
(log(2))−δ − 1

δ
+ bn = C1/γ (log(2))−1/γ n1/γ . (3.6)

For instance, in the PA network, γ = 2.5 and C = 3.7, which gives, according
to (3.6), D(1) ≈ 195. (This is a reasonably good prediction, even though the PA
network is not generated according to the configuration model. We also note that
even though the extremum distribution in the preferential attachment model is
different from that of the configuration model, their ranges seem to be quite close
[Moreira et al. 02].) This, in turn, suggests that for the PA network, m should
be chosen in the range 6 000–18 000 if α = 2. As we can see from Figure 2, this is
indeed a good range for the number of random-walk steps. In the UK network,
γ = 1.7 and C = 90, which gives D(1) ≈ 329 820 and suggests a range of 20 000–
30 000 for m if α = 28.6. Figure 3 confirms that this is a good choice. The degree
distribution of the DBLP network does not follow a power law, so we cannot
apply the above reasoning to it.

We conclude this section with a remark that follows from equation (3.5), bound
(2.16), and Proposition 2.2. It then follows that we can find a β fraction of top-k
largest-degree nodes in sublinear expected time in the configuration model. That
is, we have

Eu [H̃] ≤ 2
1 − β

· d−1
k

∑
i:(i,k)∈E di + d̄

d̄/n + 1
· n

C1/γ (k − 1)−1/γ n1/γ
.

In particular, the last fraction above is of the order C̃n
γ −1

γ . If γ is close to
one (which is often the case in complex networks), the computational savings
compared to the deterministic approach can be very significant. For instance, for
the UK network with k = 10 and β = 0.8, the bound (2.17) gives

Eu [H̃] ≤ 214150,

which means at least 86-fold computational savings.
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4. Stopping Criteria

Suppose now that we do not have any information about the range for the k

largest degrees. In this section, we design stopping criteria that do not require
knowledge about the structure of the network. As we shall see, knowledge of the
order of magnitude of the average degree might help, but this knowledge is not
imperative for a practical implementation of the algorithm.

Let us now assume that node j can be sampled independently with proba-
bility πj (α) as in (2.2). There are at least two ways to achieve this practically.
The first approach is to run the random walk for a significant number of steps
until it reaches the stationary distribution. If one chooses α reasonably large,
say the same order of magnitude as the average degree, then the mixing time
becomes quite small [Avrachenkov et al. 10a], and we can be sure to reach the
stationary distribution in a small number of steps. Then, the last step of a run of
the random walk will produce an i.i.d. sample from a distribution very close to
(2.2). The second approach is to run the random walk uninterruptedly, also with
a significant value of α, and then perform Bernoulli sampling with probability
q after a small initial transient phase. If q is not too large, we shall have nearly
independent samples following the stationary distribution (2.2). In our experi-
ment, q ∈ [0.2, 0.5] gives good results when α has the same order of magnitude
as the average degree.

We now estimate the probability of detecting correctly the top k nodes af-
ter m i.i.d. samples from (2.2). Denote by Xi the number of hits at node i

after m i.i.d. samples. We note that if we use the second approach to gener-
ate i.i.d. samples, we spend approximately m/q steps of the random walk. We
correctly detect the top-k list with the probability given by the multinomial
distribution

P [X1 ≥ 1, . . . , Xk ≥ 1]

=
∑

i1 ≥1,...,ik ≥1

m!
i1 ! · · · ik !(m − i1 − · · · − ik )!

πi1
1 · · ·πik

k

(
1 −

k∑
i=1

πi

)m−i1 −···−ik

,

but it is infeasible for any realistic computations. Therefore, we propose to use
the Poisson approximation. Let Yj , j = 1, . . . , n, be independent Poisson random
variables with means πjm. That is, the random variable Yj has the following
probability mass function: P [Yj = r] = e−mπj (mπj )r /r!. It is convenient to work
with the complementary event of not detecting correctly the top-k list. Then we
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have

P [{X1 = 0} ∪ · · · ∪ {Xk = 0}] ≤ 2P [{Y1 = 0} ∪ · · · ∪ {Yk = 0}]
= 2(1 − P [{Y1 ≥ 1} ∩ · · · ∩ {Yk ≥ 1}])

= 2

⎛
⎝1 −

k∏
j=1

P [{Yj ≥ 1}]
⎞
⎠

= 2

⎛
⎝1 −

k∏
j=1

(1 − P [{Yj = 0}])
⎞
⎠ = 2

⎛
⎝1 −

k∏
j=1

(1 − e−mπj )

⎞
⎠ =: a,

where the first inequality follows from [Mitzenmacher and Upfal 05, Theo-
rem 5.10]. In fact, in our numerical experiments, we observed that the factor
2 in the first inequality is very conservative. For large values of m, the Poisson
bound without 2 works very well as a proper approximation.

For example, if we would like to obtain the top-10 list with at most 10%
probability of error, we need to have on average 4.5 hits for each top element.
This can be used to design the stopping criteria for our random-walk algorithm.
Let ā ∈ (0, 1) be the admissible probability of an error in the top-k list. The idea
now is to stop the algorithm after m steps when the estimated value of a for the
first time is lower than the critical number ā. Clearly,

âm = 2
(

1 −
k∏

j=1

(
1 − e−Xj

))

is the maximum likelihood estimator for a, so we would like to choose m such
that âm ≤ ā. The problem, however, is that we do not know which Xj ’s are the
realizations of the number of visits to the top k nodes. Then let Xj1 , . . . , Xjk

be the number of hits to the current elements in the top-k candidate list and
consider the estimator

âm ,0 = 2
(

1 −
k∏

i=1

(
1 − e−Xj i

) )
,

which is the maximum likelihood estimator of the quantity

2
(

1 −
k∏

i=1

(
1 − e−mπj i

)) ≥ a.

(Here πji
is a stationary probability of the node with the score Xji

, i = 1, . . . , k.)
The estimator âm ,0 is computed without knowledge of the top k nodes or their
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degrees, and it is an estimator of an upper bound of the estimated probabil-
ity that there are errors in the top-k list. This leads to the following stopping
rule.

Stopping Rule 4.1. Stop at m = m0, where

m0 = arg min{m : âm,0 ≤ ā}.

The above stopping criterion can be simplified even further to avoid compu-
tation of âm ,0 . Since

âm ,1 := 2
(
1 − (

1 − e−Xj k

)k
)
≥ âm ,0 ≥ â,

where Xjk
is the number of hits of the worst element in the candidate list, the

inequality âm ≤ ā is guaranteed if âm ,1 ≤ ā. This leads to the following stopping
rule for the random-walk algorithm.

Stopping Rule 4.2. Compute x0 = arg min{x ∈ N : (1 − e−x)k ≥ 1 − ā/2}. Stop
at

m1 = arg min{m : Xjk
= x0}.

We have observed in our numerical experiments that we obtain the best trade-
off between the number of steps of the random walk and the accuracy if we take
α around the average degree and the sampling probability q around 0.5. Specifi-
cally, if we take ā/2 = 0.15 (x0 = 4) in Stopping Rule 4.2 for the top-10 list, we
obtain 87% accuracy for an average of 47 000 random-walk steps for the PA net-
work, 92% accuracy for an average of 174 468 random-walk steps for the DBLP
network, and 94% accuracy for an average of 247 166 random-walk steps for the
UK network. We have averaged over 1000 experiments to obtain tight confidence
intervals.

5. Relaxation of Top-k Lists

In the stopping criteria of the previous section, we attempted to detect all nodes
in the top-k list. This costs us a considerable numbers of steps of the random
walk. We can significantly gain in performance by relaxing this strict require-
ment. For instance, we could just ask for list of k nodes that contains 80% of
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the top k nodes [Avrachenkov et al. 11]. In this way, we can take advantage of
a generic 80/20 rule that 80% of the result can be achieved with 20% of the
effort.

Let us calculate the expected number of the top k elements observed in the
candidate list up to trial m. Define by Xj the number of times we have observed
node j after m trials and

Hj =

{
1, if node j has been observed at least once,

0, if node j has not been observed.

Assuming that we sample in i.i.d. fashion from the distribution (2.2), we can
write

E

⎡
⎣ k∑

j=1

Hj

⎤
⎦ =

k∑
j=1

E[Hj ] =
k∑

j=1

P [Xj ≥ 1] =
k∑

j=1

(1 − P [Xj = 0])

=
k∑

j=1

(1 − (1 − πj )m ) . (5.1)

In Figure 2, we plot E[
∑k

j=1 Hj ] (the curve “I.I.D. sample”) as a function of
m for k = 10 for the PA network with α = 0 and α = 2. In Figure 3, we plot
E[

∑k
j=1 Hj ] as a function of m for k = 10 for the UK network with α = 0.001

and α = 28.6. The results for the UK and DBLP networks are similar in spirit.
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Figure 2. Average number of correctly detected elements in top 10 for PA.
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Figure 3. Average number of correctly detected elements in top 10 for UK.

Here again we can use the Poisson approximation

E

⎡
⎣ k∑

j=1

Hj

⎤
⎦ ≈

k∑
j=1

(
1 − e−mπj

)
.

In fact, the Poisson approximation is so good that if we plot it in Figures 2 and
3, it nearly covers exactly the curves labeled “I.I.D. sample,” which correspond
to the exact formula (5.1). Similarly to the previous section, we can propose
stopping criteria based on the Poisson approximation. Set

bm =
k∑

i=1

(
1 − e−Xj i

)
.

Stopping Rule 5.1. Stop at m = m2, where

m2 = arg min
{
m : bm ≥ b̄

}
.

Now if we take b̄ = 7 in Stopping Rule 5.1 for the top-10 list, we obtain, on
average, 8.89 correct elements for an average of 16 725 random-walk steps for
the PA network; we obtain, on average, 9.28 correct elements for an average of
66 860 random-walk steps for the DBLP network; and we obtain, on average, 9.22
correct elements for an average of 65 802 random-walk steps for the UK network.
(We have averaged over 1000 experiments for each network.) This represents for
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the UK network a gain of more than two orders of magnitude in computational
complexity with respect to the deterministic algorithm.

6. Conclusions and Future Research

We have proposed the random-walk method with the candidate list for quick
detection of largest-degree nodes and analyzed the complexity of the method by
means of random-walk hitting times. We have also supplied stopping criteria that
do not require knowledge of the graph structure. In the case of large networks,
our algorithm finds the top-k list of largest-degree nodes with few mistakes with
running time orders of magnitude faster than deterministic algorithms. In fu-
ture research, we plan to obtain estimates of the required number of steps for
various types of complex networks and to design methods for directed networks.
In particular, it would be of interest to analyze in greater detail how assortativity
and clustering of networks affect the performance of the method.

Acknowledgments. We would like to thank Ali Eshragh for helpful remarks that we received
during the preparation of the manuscript.

Funding. This research was sponsored by INRIA Alcatel-Lucent Joint Lab, by the Eu-
ropean Commission within the framework of the CONGAS project FP7-ICT-2011-8-
317672, by EU-FET Open Grant NADINE (288956), by the NSF under CNS-1065133,
and the U.S. Army Research Laboratory under Cooperative Agreement W911NF-09-
2-0053.

References

[Avrachenkov et al. 10a] K. Avrachenkov, B. Ribeiro, and D. Towsley. “Improving Ran-
dom Walk Estimation Accuracy with Uniform Restarts.” In Proceedings of WAW
2010, LNCS 6516, pp. 98–109. Springer, 2010.

[Avrachenkov et al. 10b] K. Avrachenkov, V. Borkar, and D. Nemirovsky. “Quasi-
stationary Distributions as Centrality Measures for the Giant Strongly Connected
Component of a Reducible Graph.” Journal of Comp. and Appl. Mathematics 234
(2010), 3075–3090.

[Avrachenkov et al. 11] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and
M. Sokol. “Quick Detection of Top-k Personalized PageRank Lists.” In Proceedings
of WAW 2011, pp. 50–61, 2011.

[Barabási and Albert 99] A. L. Barabási and R. Albert. “Emergence of Scaling in Ran-
dom Networks.” Science 286 (1999), 509–512.

[Boldi and Vigna 04] P. Boldi and S. Vigna. “The WebGraph Framework I: Compres-
sion Techniques.” in Proceedings of WWW 2004, pp. 595–602, 2004.



Avrachenkov et al.: Quick Detection of Nodes with Large Degrees 19

[Boldi et al. 11] P. Boldi, M. Rosa, M. Santini, and S. Vigna. “Layered Label Propaga-
tion: A Multiresolution Coordinate-Free Ordering for Compressing Social Networks.”
In Proceedings of WWW 2011, pp. 587–596, 2011.

[Bollobás 98] B. Bollobás. Modern Graph Theory. Springer, 1998.

[Dorogovtsev et al. 00] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin.
“Structure of Growing Networks: Exact Solution Of The Barabási–Albert Model.”
Phys. Rev. Lett. 85 (2000), 4633–4636.

[van der Hofstad 09] R. van der Hofstad. “Random Graphs and Complex Networks.”
Available online http://www.win.tue.nl/rhofstad/NotesRGCN.pdf, 2009.

[Lim et al. 11] Y. Lim, D. S. Menasche, B. Ribeiro, D. Towsley, and P. Basu. “Online
Estimating the k Central Nodes of a Network.” In Proceedings of IEEE NSW 2011,
pp. 118–122, 2011.

[Maiya and Berger-Wolf 10] A. S. Maiya and T. Y. Berger-Wolf. “Online Sampling of
High Centrality Individuals in Social Networks.” In Proceedings of PAKDD 2010,
pp. 91–98, 2010.

[Matthys and Beirlant 03] G. Matthys and J. Beirlant. “Estimating the Extreme Value
Index and High Quantiles with Exponential Regression Models.” Statistica Sinica 13
(2003), 853–880.

[Mitzenmacher and Upfal 05] M. Mitzenmacher and E. Upfal. Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[Moreira et al. 02] A. A. Moreira, J. S. Andrade Jr., and L. A. N. Amaral. “Extremum
Statistics in Scale-Free Network Models.” Phys. Rev. Lett. 89 (2002), 268703.

[Motwani and Raghavan 95] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

Konstantin Avrachenkov, Inria Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia
Antipolis, France (k.avrachenkov@sophia.inria.fr)

Nelly Litvak, University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Sciences, Stochastic Operational Research Department, P.O. Box 217, 7500
AE Enschede, The Netherlands (n.litvak@utwente.nl)

Marina Sokol, Inria Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia Antipolis,
France (marina.sokol@sophia.inria.fr)

Don Towsley, University of Massachusetts, Department of Computer Science, Amherst,
MA 01003, USA (towsley@cs.umass.edu)


