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Abstract. In this paper we propose local approximation spaces for localized model order reduc-
tion procedures such as domain decomposition and multiscale methods. Those spaces are constructed
from local solutions of the partial differential equation (PDE) with random boundary conditions, yield
an approximation that converges provably at a nearly optimal rate, and can be generated at close
to optimal computational complexity. In many localized model order reduction approaches like the
generalized finite element method, static condensation procedures, and the multiscale finite element
method local approximation spaces can be constructed by approximating the range of a suitably
defined transfer operator that acts on the space of local solutions of the PDE. Optimal local ap-
proximation spaces that yield in general an exponentially convergent approximation are given by
the left singular vectors of this transfer operator [I. Babuška and R. Lipton 2011, K. Smetana and
A. T. Patera 2016]. However, the direct calculation of these singular vectors is computationally very
expensive. In this paper, we propose an adaptive randomized algorithm based on methods from
randomized linear algebra [N. Halko et al. 2011], which constructs a local reduced space approximat-
ing the range of the transfer operator and thus the optimal local approximation spaces. Moreover,
the adaptive algorithm relies on a probabilistic a posteriori error estimator for which we prove that
it is both efficient and reliable with high probability. Several numerical experiments confirm the
theoretical findings.
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1. Introduction. Over the last decades (numerical) simulations based on partial
differential equations (PDEs) have considerably gained importance in many (complex)
applications. Model reduction is an indispensable tool for the simulation of complex
problems where the use of standard methods such as finite elements (FE) and finite
volumes is prohibitive. Examples for the latter are tasks where multiple simulation
requests or real-time simulation response are desired, the (numerical) treatment of
partial differential equations with rapidly varying and strongly heterogeneous coef-
ficients, or simulations on very large or geometrically varying domains. Approaches
developed to tackle such (complex) problems are localized model order reduction (lo-
calized MOR) approaches that are based on (combinations of) domain decomposition
(DD) methods, multiscale methods, and the reduced basis method. This paper pro-
poses local approximation spaces for interfaces or subdomains for local model order
reduction procedures for linear, elliptic PDEs that yield a nearly optimally convergent
approximation, are computationally inexpensive, and easy to implement.

Recently, local approximation spaces that are optimal in the sense of Kolmogorov
[52] and thus minimize the approximation error among all spaces of the same dimen-
sion, have been introduced for subdomains Ωin in [9] and for interfaces Γin in [80].
To that end, an oversampling subdomain Ω which contains the target subdomain
Ωin or interface Γin and whose boundary ∂Ω has a certain distance to the former
is considered. Motivated by the fact that the global solution of the PDE satisfies
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2 A. BUHR AND K. SMETANA

the PDE locally, the space of harmonic functions — that means all local solutions of
the PDE with arbitrary Dirichlet boundary conditions — is considered on the over-
sampling subdomain Ω. Note that in general we expect an exponential decay of the
higher frequencies of the Dirichlet boundary conditions to Ωin or Γin. Therefore, we
anticipate that already a local ansatz space of very small size should result in a very
accurate approximation of all harmonic functions on Ω. To detect the modes that still
persist on Ωin or Γin a (compact) transfer operator is introduced that maps harmonic
functions restricted to ∂Ω to harmonic functions restricted to Ωin or Γin, respectively.
The eigenfunctions of the “transfer eigenproblem” — the eigenvalue problem for the
composition of the transfer operator and its adjoint — span the optimal space which
yields in general a superalgebraically and thus nearly exponentially convergent ap-
proximation. Recently, in [82, 81] the results in [9, 80] have been generalized from
linear differential operators whose associated bilinear form is coercive to elliptic, inf-
sup stable ones.

However, computing say an FE approximation of these (continuous) optimal
spaces by approximating the “transfer eigenproblem” requires first to solve the PDE
on Ω for each FE basis function as Dirichlet boundary conditions on ∂Ω and subse-
quently to solve a dense eigenproblem of the size of the number of degrees of freedom
(DOFs) on ∂Ω. This is prohibitively expensive for many applications, especially
for problems in three space dimensions. Applying the implicitly restarted Lanczos
method as implemented in ARPACK [54] requires O(n) local solutions of the PDE in
each iteration, where n denotes the desired size of the local approximation space.

In this paper we propose to build local approximation spaces adaptively from local
solutions of the PDE with (Gaussian) random boundary conditions. To give an intu-
ition why randomly generated local approximation spaces may perform very well, we
note that if we draw say n independent random vectors which form the coefficients of
FE basis functions on ∂Ω and apply the transfer operator, due to the extremely rapid
decay of higher frequencies from ∂Ω, the modes that still persist on Ωin or Γin will be
very close to the optimal modes. In detail, based on methods from randomized linear
algebra (randomized LA) [38, 67] we propose an adaptive algorithm which iteratively
enhances the reduced space by (local) solutions of the PDE for random boundary
conditions and terminates when a probabilistic a posteriori error estimator lies below
a given tolerance. We prove that after termination of the adaptive algorithm also the
local approximation error is smaller or equal than the given tolerance with very high
(given) probability. The respective probabilistic a posteriori estimator in this paper
is an extension of a result in [38] and we show in addition, as one contribution of
this paper, that the effectivity of the a posteriori error estimator can be bounded by
a constant with high probability. By using the matrix representation of the trans-
fer operator we exploit results from randomized LA [38] to prove that the reduced
space produced by the adaptive algorithm yields an approximation that converges at
a nearly optimal rate.1 Thanks to this excellent approximation capacity the adaptive
algorithm proposed in this paper thus only requires very few local solutions of the
PDE in addition to the minimal amount required and is therefore computationally
very efficient. As one other (minor) contribution of this paper we extend the results
for matrices in [38] to finite dimensional linear operators. We consider in this article
parameter-independent PDEs. However, the extension to parameterized PDEs can
be realized straightforward (see [80, 82]). Moreover, we assume here that the right-
hand side of the PDE is given. If one wishes to construct local spaces for arbitrary

1For a different analysis of the algorithm in [38, 67] we refer to [86].
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right-hand sides prescribing random right-hand sides in the construction of local basis
functions, as it is suggested in the context of numerical homogenization in [71, 72],
seems to be an attractive option.

Algorithms from randomized LA have got a steadily growing deal of attention in
recent years, especially for very large matrices for instance from problems in large-scale
data analysis. Two of the most important benefits of randomization are that they
can first result in faster algorithms, either in worst-case asymptotic theory and/or nu-
merical implementation, and that they allow very often for (novel) tight error bounds
[60]. Finally, algorithms in randomized LA can often be designed to exploit mod-
ern computational architectures better than classical numerical methods [60]. For
open source software in randomized LA we refer for instance to [84, 55, 30]. A very
popular algorithm in randomized LA is the randomized singular value decomposition
(SVD) (see for instance [78, 67, 76]), which yields a very accurate approximation of
the (deterministic) SVD, getting however along with only O(n) applications of the
matrix to random vectors. The randomized SVD can for instance rely on the matrix
version of the adaptive algorithm we present in this paper (see [38, 67]). Moreover,
the latter shares a close relationship with methods in randomized LA that are based
on the concept of dimension reduction, relying on a random linear map that performs
an embedding into a low-dimensional space (see e.g. [34, 73, 78, 67, 76]). Other
randomized algorithms employ element-wise sampling of the matrix — for details we
refer to the review in [25] and the references therein — or sampling of the columns
or rows of the matrix [33, 34, 22, 77, 13, 26, 24, 25]. In both cases sampling is based
on a certain probability distribution. In case of column sampling a connection to the
low-rank approximations we are interested in in this paper can be set up via leverage
scores [60, 24], where this probability distribution is based on (an approximation of)
the space spanned by the best rank-n approximation. In general this subcollection
of columns or rows can then for instance be used to construct an interpolative de-
composition or a CUR decomposition [67, 61, 23, 19, 26]. The matrix version of the
adaptive algorithm we present in this paper can also be interpreted in the context
of linear sketching: Applying the (input) matrix to a random matrix with certain
properties results in a so-called “sketch” of the input matrix, which is either a smaller
or sparser matrix but still represents the essential information of the original matrix
(see for instance [25, 87] and references therein); for instance, one can show that un-
der certain conditions on the random matrix, the latter is an approximate isometry
[83, 87]. The computations can then be performed on the sketch (see e.g. [87, 78]).
Using structured random matrices such as a subsampled random Fourier or Hadamard
transform or the fast Johnson-Lindenstrauss transform [78, 88, 57, 24, 2, 20] is partic-
ularly attractive from a computational viewpoint and yields an improved asymptotic
complexity compared to standard methods. Finally, randomization can also be ben-
eficial to obtain high-performant rank-revealing algorithms [65, 27].

Using techniques from randomized LA has already been advocated in (localized)
model order reduction approaches in other publications. In [85] Vouvakis et. al. de-
monstrated the potential of algorithms from randomized LA for domain decomposi-
tion methods by using adaptive, randomized techniques to approximate the range of
discrete localized Dirichlet-to-Neumann maps in the context of a FETI-2λ precondi-
tioner. Regarding multi-scale methods the use of local ansatz spaces spanned by local
solutions of the PDE with random boundary conditions is suggested in [17] for the
generalized multiscale finite element method (GMsFEM). Here, the reduced space is
selected via an eigenvalue problem restricted to a space consisting of local solutions
of the PDE with random boundary conditions. Based on results in [66] an a priori
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error bound is shown, however, in contrast to our approach, it depends in general
on the square root of the number of DOFs on the outer boundary ∂Ω. Moreover,
in contrast to [17] we can formulate our procedure as an approximation of the opti-
mal local approximation spaces suggested in [9, 80] and are thus able to provide a
relation to the optimal rate. Eventually, the method proposed in [17] either requires
the dimension of the reduced space to be known in advance or the use of O(n) local
solutions of the PDE in addition to the minimal amount required. Finally, we note
that in [29] the local reduced space is constructed from local solutions of the PDE
with a linear combination of discrete generalized Legendre polynomials with random
coefficients as Dirichlet boundary conditions and in [16] FE functions on ∂Ω with
random coefficients are considered as boundary conditions. However, neither of the
two articles takes advantage of the numerical analysis available for randomized LA
techniques.

The potential of applying algorithms from randomized LA in model order reduc-
tion has also already been demonstrated: In [89] a method for the construction of
preconditioners of parameter-dependent matrices is proposed, which is an interpola-
tion of the matrix inverse and is based on a projection of the identity matrix with
respect to the Frobenius norm. Methods from randomized LA are used to compute a
statistical estimator for the Frobenius norm. In [42] a randomized SVD is employed
to construct a reduced model for electromagnetic scattering problems. Finally, in [4]
the authors suggest to employ a randomized SVD to construct a reduced basis for the
approximation of systems of ordinary partial differential equations.

There are many other choices of local approximation spaces in localized MOR
approaches. In DD methods reduced spaces on the interface or in the subdomains are
for example chosen as the solutions of (local constrained) eigenvalue problems in com-
ponent mode synthesis (CMS) [46, 11, 12, 41] or (generalized) harmonic polynomials,
plane waves, or local solutions of the PDE accounting for instance for highly heteroge-
neous coefficients in the Generalized Finite Element Method (GFEM) [7, 6, 10, 9]. In
the Discontinuous Enrichment Method (DEM) [31, 32] local FE spaces are enriched
by adding analytical or numerical free-space solutions of the homogeneous constant-
coefficient counterpart of the considered PDE, while interelement continuity is weakly
enforced via Lagrange multipliers. In multiscale methods such as the multiscale FEM
(MsFEM), the variational multiscale method (VMM), or the Local Orthogonal De-
composition Method (LOD) the effect of the fine scale on the coarse scale is either
modeled analytically [45] or computed numerically by solving the fine-scale equations
on local patches with homogeneous Dirichlet boundary conditions [44, 53, 63].

The reduced basis (RB) method has been introduced to tackle parameterized
PDEs and prepares in a possibly expensive offline stage a low-dimensional reduced
space which is specifically tailored to the considered problem in order to realize sub-
sequently fast simulation responses for possibly many different parameters (for on
overview see [75, 39, 37]). Combinations of the RB method with DD methods have
been considered in [58, 59, 48, 5, 47, 29, 79, 49, 62, 64, 16]. Here, intra-element RB
approximations are for instance coupled by either polynomial Lagrange multipliers
[58, 59], generalized Legendre polynomials [47], FE basis functions [49], or empirical
modes generated from local solutions of the PDE [29, 64, 16] on the interface. In order
to address parameterized multiscale problems the local approximation spaces are for
instance spanned by eigenfunctions of an eigenvalue problem on the space of harmonic
functions in [28], generated by solving the global parameterized PDE and restricting
the solution to the respective subdomain in [70, 3], or enriched in the online stage
by local solutions of the PDE, prescribing the insufficient RB solution as Dirichlet
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Figure 2.1: Illustration of possible decompositions of Ω with respect to Γin or Ωin.

boundary conditions in [70, 3]. Apart from that the RB method has also been used
in the context of multiscale methods for example in [69, 40, 1].

The remainder of this paper is organized as follows. In section 2 we present the
problem setting and recall the main results for the optimal local approximation spaces
introduced in [9, 80]. The main contributions of this paper are developed in section 3
where we propose an adaptive algorithm that generates local approximation spaces.
Moreover, we prove a priori and a posteriori error bounds and show that the latter is
efficient. Finally, we present numerical results in section 4 for the Helmholtz equation,
stationary heat conduction with high contrast, and linear elasticity to validate the
theoretical findings and draw some conclusions in section 5.

2. Optimal local approximation spaces for localized model order reduc-
tion procedures. Let Ωgl ⊂ Rd, d = 2, 3, be a large, bounded domain with Lipschitz
boundary and assume that ∂Ωgl = ΣD ∪ΣN , where ΣD denotes the Dirichlet and ΣN
the Neumann boundary, respectively. We consider a linear, elliptic PDE on Ωgl with
solution ugl, where ugl = gD on ΣD and satisfies homogeneous Neumann boundary
conditions on ΣN . Note that we consider here homogeneous Neumann boundary con-
ditions to simplify the notation; non-homogeneous Neumann boundary conditions can
be taken into account completely analogous to non-homogeneous Dirichlet boundary
conditions. To compute an approximation of ugl we employ a domain decomposition
or multiscale method combined with model order reduction techniques, which is why
we suppose that Ωgl is decomposed into either overlapping or non-overlapping sub-
domains. Then, depending on the employed method, one may either require good
reduced spaces for the subdomains, the interfaces, or both. To fix the setting we thus
consider the task to find a good reduced space either on a subdomain Ωin ( Ω ⊂ Ωgl
with dist(Γout, ∂Ωin) ≥ ρ > 0, Γout := ∂Ω \ ∂Ωgl or an interface Γin ⊂ ∂Ω∗, where
Ω∗ ( Ω ⊂ Ωgl and dist(Γout,Γin) ≥ ρ > 0. Possible geometric configurations are
illustrated in Figure 2.1.

The challenge in constructing a good reduced space is the fact that although we
know that ugl solves the PDE locally on Ω we do in general not know the trace of ugl
on ∂Ω a priori. Therefore, we consider the following problem on Ω: For given f ∈ X ′0
find u ∈ X := {w ∈ [H1(Ω)]z : w = gD on ∂Ω ∩ ΣD} such that

(2.1) Au = f in X ′0,

for arbitrary Dirichlet boundary conditions on Γout, where A : [H1(Ω)]z → X ′0, z =
1, 2, 3 is a linear, elliptic, and continuous differential operator and X ′0 denotes the dual
space of X0 := {v ∈ [H1(Ω)]z : v|Γout = 0, v|ΣD∩∂Ω = 0}, z = 1, 2, 3. The latter is
in turn equipped with the full H1-norm.

By exploiting that the global solution ugl solves the PDE (2.1) locally, recently,
optimal local approximation spaces have been introduced for subdomains in [9] and
for interfaces in [80].2 As we aim at providing a good approximation for a whole set

2The key concepts of the construction of optimal local approximation spaces can be nicely il-
lustrated by means of separation of variables in a simple example as in [80, Remark 3.3], see the
supplementary materials section SM2.
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of functions, namely all functions that solve the PDE (2.1) locally, the concept of
optimality of Kolmogorov [52] is used:

Definition 2.1 (Optimal subspace in the sense of Kolmogorov). Let S,R be
Hilbert spaces, T : S → R a linear, continuous operator, and Rn an n-dimensional
subspace of R. Then the Kolmogorov n-width of the image of the mapping T applied
to the unit ball of S in R is given by
(2.2)

dn(T (S);R) := inf
Rn⊂R

dim(Rn)=n

sup
ψ∈S

inf
ζ∈Rn

‖T ψ − ζ‖R
‖ψ‖S

= inf
Rn⊂R

dim(Rn)=n

sup
ψ∈S
‖ψ‖S≤1

inf
ζ∈Rn

‖T ψ − ζ‖R.

A subspace Rn ⊂ R of dimension at most n for which holds

dn(T (S);R) = sup
ψ∈S

inf
ζ∈Rn

‖T ψ − ζ‖R
‖ψ‖S

is called an optimal subspace for dn(T (S);R).

Being interested in all local solutions of the PDE motivates considering the space of
A-harmonic functions on Ω

(2.3) H̃ := {w ∈ [H1(Ω)]z : Aw = 0 in X ′0, w = 0 on ΣD ∩ ∂Ω}, z = 1, 2, 3.

Note that first we restrict ourselves here to the case f = 0, gD = 0, and ∂Ωin∩ΣD = ∅;
the general case will be dealt with at the end of this subsection.

As in [9, 80] we may then introduce a transfer operator T : S → R for Hilbert
spaces S and R, where S = {w|Γout

: w ∈ H̃}. In order to define appropriate range
spaces R that ensure compactness of T and allow equipping R with an energy inner
product, we first introduce for a domain D ⊂ Ω an orthogonal projection Pker(A),D :

[H1(D)]z → ker(A) defined as Pker(A),Dv :=
∑dim(ker(A))
k=1 (v, ηk)quot ηk. Here, ηk is

an orthonormal basis of ker(A) with respect to the (·, ·)quot inner product, where the

definition of the latter has to be inferred from the quotient space H̃|D/ ker(A). To
illustrate those definitions note that for instance for the Laplacian ker(A) would be
the constant functions and (·, ·)quot would be the L2-inner product on D. In the case
of linear elasticity ker(A) would equal the six-dimensional space of the rigid body
motions and (·, ·)quot has to be chosen as the full H1-inner product on D. We may

then define the quotient space H := {v−Pker(A),Ω(v), v ∈ H̃} and specify the transfer

operator. For w ∈ H̃ we define T for interfaces or subdomains, respectively, as

(2.4) T (w|Γout
) =

(
w − Pker(A),Ω(w)

)
|Γin

or T (w|Γout
) =

(
w − Pker(A),Ωin

(w)
)
|Ωin

and set R = {w|Γin
: w ∈ H} or R = {

(
w − Pker(A),Ωin

)
|Ωin

: w ∈ H̃}.
Some remarks are in order. In contrast to the definitions in [9, 80] we do not

use a quotient space in the definition of the source space S as this would either
significantly complicate the analysis of the randomized local spaces in section 3 or
require the construction of a suitable basis in S or its discrete counterpart, which
can become computationally expensive. Thanks to the Caccioppoli inequality (see
supplementary materials section SM1), which allows us to bound the energy norm
of A-harmonic functions on Ωin or Ω∗, respectively, by their L2-norm on Ω, it can
then be proved that the operator T is compact (see [9, 8, 80] for details), where Ω∗
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has been defined in the second paragraph of this section.3 Let finally T ∗ : R → S
denote the adjoint operator of T . Then, the operator T ∗T is a compact, self-adjoint,
non-negative operator that maps S into itself, and the Hilbert-Schmidt theorem and
Theorem 2.2 in Chapter 4 of [74] yield the following result:

Theorem 2.2 (Optimal local approximation spaces [9, 80]). The optimal ap-
proximation space for dn(T (S);R) is given by

(2.5) Rn := span{φsp1 , ..., φspn }, where φspj = T ϕj , j = 1, ..., n,

and λj are the largest n eigenvalues and ϕj the corresponding eigenfunctions that
satisfy the transfer eigenvalue problem: Find (ϕj , λj) ∈ (S,R+) such that

( T ϕj , T w )R = λj(ϕj , w )S ∀w ∈ S.(2.6)

Moreover, the following holds:

(2.7) dn(T (S);R) = sup
ξ∈S

inf
ζ∈Rn

‖T ξ − ζ‖R
‖ξ‖S

=
√
λn+1

If we have ∂Ωin∩ΣD 6= ∅ we do not subtract the orthogonal projection on ker(A)
either in the definition of the transfer operator in (2.4) or the definition of the range
space for subdomains. Next, for f 6= 0 but still gD = 0 we solve the problem: Find
uf ∈ X0 such that Auf = f in X ′0, and augment the space Rn either with uf |Ωin

or uf |Γin
. To take non-homogeneous Dirichlet boundary conditions into account we

consider the problem: Find ugD ∈ {w ∈ [H1(Ω)]z : w = gD on ∂Ω ∩ ΣD, w =
0 on Γout}, z = 1, 2, 3, such that AugD = 0 in X ′0. Finally, we may then define the
optimal local approximation space for subdomains as

(2.8) Rndata,ker := span{φsp1 , ..., φspn , uf |Ωin , u
gD |Ωin , η1|Ωin , . . . , ηdim(ker(A))|Ωin}

and for interfaces as

(2.9) Rndata,ker := span{φsp1 , ..., φspn , uf |Γin , u
gD |Γin , η1|Γin , . . . , ηdim(ker(A))|Γin},

respectively, where {η1, . . . , ηdim(ker(A))} denotes a basis for ker(A). In case there
holds ∂Ωin ∩ ΣD 6= ∅ we do not augment the space Rn with a basis of ker(A).

2.1. Approximation of the transfer eigenvalue problem with Finite El-
ements; matrix form of the transfer operator. In this subsection we show how
an approximation of the continuous optimal local spaces Rndata,ker can be computed
with the FE method and introduce the notation in this discrete setting required for
the remainder of this paper.

To that end, we introduce a partition of Ω such that Γin or ∂Ωin do not intersect
any element of that partition. In addition, we introduce an associated conforming FE
space X ⊂ [H1(Ω)]z, z = 1, 2, 3 with dim(X) = N , a nodal basis {ψ1, ..., ψN} of X,
the FE source space S := {v|Γout

: v ∈ X} of dimension NS , and the FE range space
R := {(v − Pker(A),Ω(v))|Γin

: v ∈ X} or R := {(v − Pker(A),Ωin
)|Ωin

: v ∈ X} with
dim(R) = NR. Next, we define the space of discrete A-harmonic functions

(2.10) H̃ := {w ∈ X : Aw = 0 in X ′0, w = 0 on ΣD ∩ ∂Ω},

3Note in this context that compactness of T as defined in (2.4) can be easily inferred from
the compactness of the transfer operator acting on the quotient space H̃/ ker(A) as considered in
[9, 8, 80] by employing that the mapping K : H̃|Γout → (H̃/ ker(A))|Γout defined as K(v|Γout ) :=
(v − Pker(A),Ω)|Γout is continuous.
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where A : X → X ′0 is the discrete counterpart of A and X ′0 denotes the dual space of
X0 := {v ∈ X : v|Γout

= 0, v|ΣD∩∂Ω = 0}. We may then define the discrete transfer
operator T : S → R for w ∈ H̃ as4

(2.11)
T (w|Γout) =

(
w − Pker(A),Ω(w)

)
|Γin or T (w|Γout) =

(
w − Pker(A),Ωin

(w)
)
|Ωin .

In order to define a matrix form of the transfer operator we introduce DOF
mappings BS→X ∈ RN×NS and BX→R ∈ RNR×N that map the DOFs of S to the
DOFs of X and the DOFs of X to the DOFs of R, respectively. Moreover, we
introduce the stiffness matrix A associated with the discrete operator A, where we
assume that in the rows associated with the Dirichlet DOFs the non-diagonal entries
are zero and the diagonal entries equal one. Note that in order to make the distinction
between elements of the Hilbert spaces S and R and their coordinate representation
in RNS and RNR explicit, we mark all coordinate vectors and matrices with an
underline. By writing functions ζ ∈ S as ζ =

∑NS

i=1 ζiψi|Γout
and defining KΩin

as the
matrix of the orthogonal projection on ker(A) on Ωin, we obtain the following matrix
representation T ∈ RNR×NS of the transfer operator for domains

T ζ =
(
1−KΩin

)
BX→RA

−1BS→X ζ.(2.12)

For interfaces, the projection on the quotient space is done before the index mapping.
There, with KΩ as the matrix of the orthogonal projection on ker(A) on Ω, the matrix
representation of the transfer operator is given by

T ζ = BX→R (1−KΩ) A−1BS→X ζ.(2.13)

Finally, we denote by MS the inner product matrix of S and by MR the inner product
matrix of R. Then, the FE approximation of the transfer eigenvalue problem reads
as follows: Find the eigenvectors ζ

j
∈ RNS and the eigenvalues λj ∈ R+

0 such that

(2.14) T tMRT ζj = λjMS ζj .

The coefficients of the FE approximation of the basis functions {φsp1 , ..., φspn } of the
optimal local approximation space

(2.15) Rn := span{φsp1 , ..., φspn }

are then given by φsp
j

= T ζ
j
, j = 1, . . . , n. Adding the representation of the right-

hand side, the boundary conditions, and a basis of ker(A) yields the optimal space
Rndata,ker.

Note that we may also perform a singular value decomposition of the operator T ,
which reads

(2.16) Tζ =

min{NS ,NR}∑
j

σj φ̂
sp
j (χj , ζ)S for ζ ∈ S,

4Note that in the continuous setting the range space R is a subspace of the space R̂ := {(v −
Pker(A),Ω(v))|Γin

, v ∈ [H1(Ω)]z}, z = 1, 2, 3 for interfaces and R̂ := {(v−Pker(A),Ωin
(v))|Ωin

, v ∈
[H1(Ω)]z}, z = 1, 2, 3 for subdomains. It can then be easily shown for the corresponding transfer op-

erator T̂ : R̂ → S which is defined identically as in (2.4) that there holds dn(T (S);R) = dn(T̂ (S); R̂)
and that the associated optimal approximation spaces are the same. This justifies the usage of the
discrete range space as defined above.
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with orthonormal bases φ̂spj ∈ R, χj ∈ S, and singular values σj ∈ R+
0 , and define

Rn := span{φ̂sp1 , ..., φ̂spn }. Up to numerical errors this definition is equivalent to the
definition in (2.15) and there holds σj =

√
λj , j = 1, . . . ,min{NS , NR}, where λj are

the eigenvalues of the discrete transfer eigenproblem (2.14). Note however that there

holds (φspi , φ
sp
j )R = δijλj in contrast to (φ̂spi , φ̂

sp
j )R = δij .

Finally, we introduce Ritz isomorphisms DS : S → RNS and DR : R → RNR

which map elements from S or R to a vector containing their FE coefficients in RNS

or RNR , respectively. For instance, DS maps a function ξ =
∑NS

i=1 ξiψi|Γout
∈ S to

ξ ∈ RNS . As a result we have the matrix of the transfer operator as T = DRTD
−1
S .

3. Approximating the range of an operator by random sampling. In
this section we present and analyze an algorithm which constructs a reduced space
Rn that approximates the range of a finite dimensional linear operator T of rank
NT by iteratively enhancing the reduced space with applications of T to a random
function. Although having the transfer operator (2.11) in mind we consider the general
setting of a finite dimensional linear operator mapping between two finite dimensional
Hilbert spaces S and R. Note that in the context of localized MOR for inhomogeneous
problems it is necessary to enhance Rn by the representation of the right-hand side
and the boundary conditions.

The algorithm and parts of its analysis are an extension of results in randomized
LA [38] to the setting of finite dimensional linear operators. In detail we first present
an adaptive range finder algorithm in subsection 3.1 and discuss its computational
complexity. This algorithm relies on a probabilistic a posteriori bound, which is
a extension of a result in [38] and for which we prove as one new contribution its
efficiency in subsection 3.3. Starting from results in randomized LA [38] we prove in
subsection 3.2 that the reduced space Rn generated by the algorithm as presented in
subsection 3.1 yields an approximation that converges with a nearly optimal rate.

3.1. An adaptive randomized range finder algorithm. We propose an
adaptive randomized range approximation algorithm that constructs an approxima-
tion space Rn by iteratively extending its basis until a convergence criterion is satis-
fied. In each iteration, the basis is extended by the operator T applied to a random
function.

The full algorithm is given in Algorithm 1 and has four input parameters, starting
with the operator T , whose range should be approximated. This could be represented
by a matrix, but in the intended context it is usually an implicitly defined operator
which is computationally expensive to evaluate. Only the evaluation of the operator
on a vector is required. The second input parameter is the target accuracy tol

such that ‖T − PRnT‖ ≤ tol. The third input parameter is the number of test
vectors nt to be used in the a posteriori error estimator which we will discuss shortly.
A typical nt could be 5, 10, or 20. The fourth input parameter is the maximum
failure probability εalgofail and the algorithm returns a space which has the required
approximation properties with a probability greater than 1− εalgofail.

The basis B of Rn is initialized as empty in line 2, test vectors are initialized as
the operator applied to random normal vectors in line 3. Recall that TD−1

S r is the
operator T applied to a random normal vector. We use the term “random normal
vector” to denote a vector whose entries are independent and identically distributed
random variables with normal distribution. The main loop of the algorithm is termi-
nated when the following a posteriori norm estimator applied to T −PRnT is smaller
than tol.
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Algorithm 1: Adaptive Randomized Range Approximation

1 Function AdaptiveRandomizedRangeApproximation(T, tol, nt, εalgofail):
Input : Operator T ,

target accuracy tol,
number of test vectors nt,
maximum failure probability εalgofail

Output: space Rn with property P (‖T − PRnT‖ ≤ tol) > (1− εalgofail)
/* initialize basis */

2 B ← ∅
/* initialize test vectors */

3 M ← {TD−1
S r1, . . . , TD

−1
S rnt

}
/* determine error estimator factor */

4 εtestfail ← εalgofail/NT

5 cest ←
[√

2λ
MS
min erf−1

(
nt
√
εtestfail

)]−1

/* basis generation loop */

6 while (maxt∈M ‖t‖R) · cest > tol do
7 B ← B ∪ (TD−1

S r)
8 B ← orthonormalize(B)

/* orthogonalize test vectors to span(B) */

9 M ←
{
t− Pspan(B)t

∣∣∣ t ∈M}
10 return Rn = span(B)

Definition 3.1 (A probabilistic a posteriori norm estimator). To estimate the
operator norm of an operator O : S → R of rank NO, we define the a posteriori norm
estimator ∆(O,nt, εtestfail) for nt test vectors as

(3.1) ∆(O,nt, εtestfail) := cest(nt, εtestfail) max
i∈1,...,nt

∥∥O D−1
S ri

∥∥
R
.

Here, cest(nt, εtestfail) is defined as cest(nt, εtestfail) := 1/[

√
2λ

MS
min erf−1( nt

√
εtestfail)],

ri are random normal vectors, and λ
MS
min is the smallest eigenvalue of the matrix of

the inner product in S.

This error estimator ∆(O,nt, εtestfail) is analyzed in detail in subsection 3.3. The
constant cest(nt, εtestfail), which appears in the error estimator, is calculated in line
4 and 5 using NT — the rank of operator T . In practice NT is unknown and an
upper bound for NT such as min(NS , NR) can be used instead. In line 6 the algo-
rithm assesses if the convergence criterion is already satisfied. Note that the term
(maxt∈M ‖t‖R) · cest(nt, εtestfail) is the norm estimator (3.1) applied to T − PRnT .
The test vectors are reused for all iterations. The main loop of the algorithm consists
of two parts. First, the basis is extended in line 7 and 8 by applying the operator
T to a random normal vector and adding the result to the basis B. Then the basis
B is orthonormalized. The resulting basis vectors are denoted by φrndi . We empha-
size that the orthonormalization is numerically challenging, as the basis functions are
nearly linear dependent when Rn is already a good approximation of the range of
T . In the numerical experiments we use the numerically stable Gram-Schmidt with
re-iteration from [15], which always succeeded to obtain an orthogonal set of vectors.
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Instead of the Gram-Schmidt orthonormalization, one could apply an SVD to the
matrix that contains the vectors in B as columns after termination of Algorithm 1
to remove linear dependent vectors. In the case of almost linear dependent vectors,
this could lead to slightly smaller basis sizes. Note that as we suggest to only remove
the linear dependent vectors with the SVD the accuracy of the approximation is not
compromised. Finally, the test vectors are updated in line 9.

In Algorithm 1, the smallest eigenvalue of matrix of the inner product in S, λ
MS
min,

or at least a lower bound for it, is required. The orthonormalization of B in line 8
and the update of test vectors in line 9 use the inner product in R. These aspects
should be taken into account when choosing the inner products in S and R.

The presented algorithm has good performance properties for operators T which
are expensive to evaluate. To produce the space Rn of dimension n, it evaluates the
operator n times to generate the basis and nt times to generate the test vectors, so
in total n+ nt times. In contrast, direct calculation of the optimal space, solving the
eigenvalue problem (2.6), would require NS evaluations of the operator and solving
a dense eigenproblem of dimension NS × NS . Exploiting the low rank structure of
T , one could calculate the eigenvectors of T ∗T using a Lanczos type algorithm as
implemented in ARPACK [54], but this would require O(n) evaluations of T and T ∗

in every iteration, potentially summing up to much more than n + nt evaluations,
where the number of iterations is often not foreseeable.

3.2. A probabilistic a priori error bound. In this subsection we analyze the
convergence behavior of Algorithm 1. In detail, we derive a probabilistic a priori error
bound for the projection error ‖T − PRnT‖ and its expected value. Recalling that
the optimal convergence rate achieved by the optimal spaces from Theorem 2.2 is√
λn+1 = σn+1 we show that the reduced spaces constructed with Algorithm 1 yield

an approximation that converges with a nearly optimal rate:

Proposition 3.2. Let λ
MS
max, λ

MS
min, λ

MR
max, and λ

MR
min denote the largest and small-

est eigenvalues of the inner product matrices MS and MR, respectively and let Rn be
the outcome of Algorithm 1. Then, for n ≥ 4 there holds
(3.2)

E‖T − PRnT‖ ≤

√√√√λ
MR
max

λ
MR
min

λ
MS
max

λ
MS
min

min
k+p=n

k≥2,p≥2

(1 +

√
k

p− 1

)
σk+1 +

e
√
n

p

∑
j>k

σ2
j

 1
2

 .
Before addressing the proof of Proposition 3.2 we highlight that for operators with
a fast decaying spectrum such as the transfer operator the last term in (3.2) be-
haves roughly as (e

√
k + pσk+1)/p and we therefore obtain an approximation that

converges approximately as
√
nσn+1 and thus with a nearly optimal rate. Proposi-

tion 3.2 extends the results in Theorem 10.6 in [38] to the case of finite dimensional
linear operators. The terms consisting of the square root of the conditions of the
inner product matrices MS and MR in (3.2) are due to our generalization from the
spectral matrix norm as considered in [38] to inner products associated with finite
dimensional Hilbert spaces. We present a reformulation in the supplementary mate-
rials Proposition SM4.2 where the condition of MS does not appear. The occurrence
of the remaining terms in (3.2) is discussed in section SM3 where we summarize the
proof of Theorem 10.6 in [38], which read as follows:

Theorem 3.3. [38, Theorem 10.6] Let T ∈ RNR×NS and PRn,2 be the matrix

of the orthogonal projection on Rn in the euclidean inner product in RNR and ‖·‖2
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denote the spectral matrix norm. Then for n ≥ 4 it holds

E
(∥∥T − PRn,2T

∥∥
2

)
≤ min

k+p=n

k≥2,p≥2

(1 +

√
k

p− 1

)
σk+1 +

e
√
n

p

∑
j>k

σ2
j

 1
2

 .
To proceed with the proof of Proposition 3.2, we next bound ‖T − PRnT‖ by∥∥T − PRn,2T

∥∥
2

times other terms in Lemma 3.4. Then we apply Theorem 3.3 to the
matrix representation T of the operator T and finally bound the singular values σi
of the matrix T by the singular values σi of the operator T in Lemma 3.5 below to
conclude.

Lemma 3.4. There holds for some given reduced space Rn

‖T − PRnT‖ = sup
ξ∈S

inf
ζ∈Rn

‖Tξ − ζ‖R
‖ξ‖S

≤

√√√√λ
MR
max

λ
MS
min

‖T − PRn,2T‖2.

Proof.

sup
ξ∈S

inf
ζ∈Rn

‖Tξ − ζ‖R
‖ξ‖S

= sup
ξ∈S

‖Tξ − PRnTξ‖R
‖ξ‖S

= sup
ξ∈RNS

(
(Tξ − PRnTξ)TMR(Tξ − PRnTξ)

)1/2√
ξTMSξ

≤ sup
ξ∈RNS

(
(Tξ − PRn,2Tξ)

TMR(Tξ − PRn,2Tξ)
)1/2√

ξTMSξ

≤

√√√√λ
MR
max

λ
MS
min

sup
ξ∈RNS

‖Tξ − PRn,2Tξ‖2
‖ξ‖2

Lemma 3.5. Let the singular values σj of the matrix T be sorted in non-increasing
order, i.e. σ1 ≥ . . . ≥ σNR

and σj be the singular values of the operator T , also sorted

non-increasing. Then there holds σj ≤ (λ
MS
max/λ

MR
min)1/2σj for all j = 1, . . . , NT .

Proof. For notational convenience we denote within this proof the j-th eigenvalue
of a matrix A by λj(A). All singular values for j = 1, . . . , NT are different from zero.
Therefore, there holds σ2

j = λj(T
tT ) and σ2

j = λj(M
−1
S T tMRT ) . Recall that T is

the matrix representation of T and note that M−1
S T tMR is the matrix representation

of the adjoint operator T ∗. The non-zero eigenvalues of a product of matrices AB
are identical to the non-zero eigenvalues of the product BA (see e.g. [43, Theorem
1.3.22]), hence λj(M

−1
S T tMRT ) = λj(T

tMRTM
−1
S ). We may then apply the Courant

minimax principle to infer λj(T
tMRT )(λ

MS
max)−1 ≤ λj(M−1

S T tMRT ). Employing once
again cyclic permutation and the Courant minimax principle yields

(3.3) λj(T
tT ) ≤ λj(T tMRT )

1

λ
MR
min

≤ λj(M−1
S T tMRT )

λ
MS
max

λ
MR
min

and thus the claim.
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Remark 3.6. The result of Algorithm 1, when interpreted as functions and not
as coefficient vectors, is independent of the choice of the basis in R. Disregarding
numerical errors, the result would be the same if the algorithm was executed in an
orthonormal basis in R. Thus, we would expect Proposition 3.2 to hold also without

the factor (λ
MR
max/λ

MR
min)1/2.

3.3. Adaptive convergence criterion and a probabilistic a posteriori
error bound. When approximating the range of an operator, usually its singular
values are unknown. To construct a space with prescribed approximation quality,
Algorithm 1 uses the probabilistic a posteriori error estimator defined in Definition 3.1,
which is analyzed in this subsection.

Proposition 3.7 (Norm estimator failure probability). The norm estimator
∆(O,nt, εtestfail) is an upper bound of the operator norm ‖O‖ with probability greater
or equal than (1− εtestfail).

Proposition 3.8 (Norm estimator effectivity). Let the effectivity η of the norm
estimator ∆(O,nt, εtestfail) be defined as

(3.4) η(O,nt, εtestfail) :=
∆(O,nt, εtestfail)

‖O‖
.

Then, there holds

P
(
η ≤ ceff(nt, εtestfail)

)
≥ 1− εtestfail,

where the constant ceff(nt, εtestfail) is defined as

ceff(nt, εtestfail) :=

[
Q−1

(
NO
2
,
εtestfail

nt

)
λ
MS
max

λ
MS
min

(
erf−1 ( nt

√
εtestfail)

)−2

]1/2

and Q−1 is the inverse of the upper normalized incomplete gamma function; that
means Q−1(a, y) = x when Q(a, x) = y.5

The proofs of Propositions 3.7 and 3.8 follow at the end of this subsection.
In Proposition 3.7 we analyzed the probability for one estimate to fail. Based on

that, we can analyze the algorithm failure probability. To quantify this probability,
we first note that Algorithm 1 will terminate after at most NT steps. Then, the
approximation space Rn has the same dimension as range(T ) and as Rn ⊂ range(T )
we have Rn = range(T ) and thus ‖T − PRnT‖ = 0. The a posteriori error estimator
defined in Definition 3.1 is therefore executed at most NT times. Each time, the
probability for failure is given by Proposition 3.7 and with a union bound argument
we may then infer that the failure probability for the whole algorithm is εalgofail ≤
NT εtestfail.

To prove Propositions 3.7 and 3.8, it is central to analyze the distribution of the
inner product (v,D−1

S r)S for any v ∈ S with ‖v‖S = 1 and a random normal vector
r.

5 Recall that the definition of the upper normalized incomplete gamma function is

Q(a, x) =

∫∞
x ta−1e−tdt∫∞
0 ta−1e−tdt

.
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Lemma 3.9 (Distribution of inner product). The inner product of a normed vector
v in S with a random normal vector (v,D−1

S r)S is a Gaussian distributed random

variable with mean zero and variance s2, where λ
MS
min ≤ s2 ≤ λMS

max.

Proof. We use the spectral decomposition of the inner product matrix

MS =
∑NS

i=1mS,iλ
MS
i mT

S,i with eigenvalues λ
MS
i and eigenvectors mS,i. There holds

(v,D−1
S r)S =

NS∑
i=1

(DSv)TmS,iλ
MS
i mT

S,ir.(3.5)

As mS,i is normed with respect to the euclidean inner product, the term mT
S,ir is a

normal distributed random variable. Using the rules for addition and scalar multipli-
cation of Gaussian random variables, one sees that the inner product (v,D−1

S r)S is a

Gaussian random variable with variance s2 =
∑NS

i=1((DSv)TmS,iλ
MS
i )2 The variance

s2 can easily be bounded as follows:

s2 =

NS∑
i=1

(
(DSv)TmS,iλ

MS
i

)2

≤
NS∑
i=1

(
(DSv)TmS,i

)2
λ
MS
i max

i
(λ
MS
i )= λ

MS
max

s2 =

NS∑
i=1

(
(DSv)TmS,iλ

MS
i

)2

≥
NS∑
i=1

(
(DSv)TmS,i

)2
λ
MS
i min

i
(λ
MS
i )= λ

MS
min

Using this result, we can prove Propositions 3.7 and 3.8. Proof of Proposition 3.7:
Proof. We analyze the probability for the event that the norm estimator sfasdfsfd

∆(O,nt, εtestfail) is smaller than the operator norm ‖O‖:

P
(

∆(O,nt, εtestfail) < ‖O‖
)

= P
(
cest(nt, εtestfail) max

i∈1,...,nt

∥∥O D−1
S ri

∥∥
R
< ‖O‖

)
.

The probability that all test vector norms are smaller than a certain value is the the
product of the probabilities that each test vector is smaller than that value. So with
a new random normal vector r it holds

P
(

∆(O,nt, εtestfail) < ‖O‖
)

= P
(
cest(nt, εtestfail)

∥∥O D−1
S r

∥∥
R
< ‖O‖

)nt

.

Using the singular value decomposition of the operator O: Oϕ =
∑
i uiσi(vi, ϕ)S we

obtain

P
(

∆(O,nt, εtestfail) < ‖O‖
)
≤ P

(
cest(nt, εtestfail)

∥∥u1σ1

(
v1, D

−1
S r

)
S

∥∥
R
< ‖O‖

)nt

= P
(
cest(nt, εtestfail)σ1

∣∣(v1, D
−1
S r

)
S

∣∣ < ‖O‖)nt

= P
(
cest(nt, εtestfail)

∣∣(v1, D
−1
S r

)
S

∣∣ < 1
)nt

.

The inner product
∣∣(v1, D

−1
S r

)
S

∣∣ is a Gaussian distributed random variable with

variance greater λ
MS
min, so with a new normal distributed random variable r′ it holds

P
(

∆(O,nt, εtestfail) < ‖O‖
)
≤ P

(√
λ
MS
min|r

′| <
√

2λ
MS
min · erf−1 ( nt

√
εtestfail)

)nt

= erf

(√
2erf−1

(
nt
√
εtestfail

)
√

2

)nt

= εtestfail.
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Proof of Proposition 3.8:
Proof. The constant cest(nt, εtestfail) is defined as in the proof of Proposition 3.7.

To shorten notation, we write cest for cest(nt, εtestfail) and ceff for ceff(nt, εtestfail) within
this proof. Invoking the definition of ∆(O,nt, εtestfail) yields

P
(

∆(O,nt, εtestfail) > ceff‖O‖
)

= P
(
cest max

i∈1,...,nt

∥∥O D−1
S ri

∥∥
R
> ceff‖O‖

)
and by employing a new random normal vector r we obtain

P
(

∆(O,nt, εtestfail) > ceff‖O‖
)
≤ ntP

(
cest

∥∥O D−1
S r

∥∥
R
> ceff‖O‖

)
.

Using the singular value decomposition of the operator O: Oϕ =
∑
i uiσi(vi, ϕ)S

results in

P
(

∆(O,nt, εtestfail) > ceff‖O‖
)
≤ ntP

(
cest

∥∥∥∥∥∑
i

uiσ1(vi, D
−1
S r)S

∥∥∥∥∥
R

> ceff‖O‖
)
.

For a new random normal variables ri we have

P
(

∆(O,nt, εtestfail) > ceff‖O‖
)
≤ ntP

(
cestσ1

√
λ
MS
max

√∑
i

r2
i > ceff‖O‖

)

= ntP
(√∑

i

r2
i >

ceff

cest
σ−1

1

√
λ
MS
max

−1

‖O‖
)

= ntP
(√∑

i

r2
i >

ceff

cest

√
λ
MS
max

−1)

= ntP
(∑

i

r2
i >

ceff
2

cest
2

√
λ
MS
max

−2)
.

The sum of squared random normal variables is a random variable with chi-squared
distribution. Its cumulative distribution function is the incomplete, normed gamma
function. As we have a > relation, the upper incomplete normed gamma function is
used, which we denote by Q(k2 ,

x
2 ) here. Therefore, we conclude

P
(

∆(O,nt, εtestfail) > ceff(nt, εtestfail)‖O‖
)
≤ ntQ

(
NO
2
,
ceff(nt, εtestfail)

2

cest(nt, εtestfail)
2

1

2λ
MS
max

)
= εtestfail.

4. Numerical experiments. In this section we demonstrate first that the re-
duced local spaces generated by Algorithm 1 yield an approximation that converges
at a nearly optimal rate. Moreover, we validate the a priori error bound in (3.2), the
a posteriori error estimator (3.1), and the effectivity (3.4). To this end, we consider
four test cases, starting in subsection 4.1 with an example for which the singular
values of the transfer operator are known. The main focus of this subsection is a
thorough validation of the theoretical findings in section 3, including a comprehensive
testing on how the results depend on various parameters such as the basis size n, the
number of test vectors nt, and the mesh size. In addition, CPU time measurements
are given. The second numerical example in subsection 4.2 examines the behavior
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of the proposed algorithm in the more challenging case of the Helmholtz equation.
In subsection 4.3 we numerically analyze the theoretical results from section 3 for a
transfer operator whose singular values decay rather slowly and discrete spaces with
large N , NS , and NR. Furthermore, we demonstrate that Algorithm 1 is computa-
tionally efficient. Finally, we employ the GFEM to construct a global approximation
from the local reduced spaces generated by Algorithm 1 in the fourth test case in
subsection 4.4, demonstrating that the excellent local approximation capacities of the
local reduced spaces carry over to the global approximation.

For the implementation of the first test case, no FEM software library was used.
The implementation for the third test case is based on the finite element library
libMesh [51]. For the second and fourth test case we used the software library pyMOR

[68]. The complete source code for reproduction of all results shown in subsections 4.1,
4.2 and 4.4 is provided in [14].

4.1. Analytic interface problem. To analyze the behavior of the proposed
algorithm, we first apply it to an analytic problem where the singular values of the
transfer operator are known. We refer to this numerical example as Example 1. We
consider the problem A = −∆, f = 0, and assume that Ω = (−L,L) × (0,W ),
Γout = {−L,L} × (0,W ), and Γin = {0} × (0,W ). Moreover, we prescribe homoge-
neous Neumann boundary conditions on ∂Ω \ Γout and arbitrary Dirichlet boundary
conditions on Γout, see also Figure 2.1 (left). The analytic solution is further dis-
cussed in the supplementary materials section SM2. This example was introduced in
[80, Remark 3.3]. We equip S and R with the L2-inner product on the respective
interfaces. Recall that the transfer operator maps the Dirichlet data to the inner
interface, i.e. with H as the space of all discrete solutions, we define

(4.1) T (v|Γout
) := v|Γin

∀v ∈ H.
6 The singular values of the transfer operator are σi = 1/

(√
2 cosh((i− 1)πL/W )

)
.

For the experiments, we use L = W = 1, unless stated otherwise. We discretize
the problem by meshing it with a regular mesh of squares of size h · h, where 1/h
ranges from 20 to 320 in the experiments. On each square, we use bilinear Q1 ansatz
functions, which results in e.g. 51,681 DOFs, NS = 322 and NR = 161 for 1/h = 160.

In Figure 4.1b the first five basis vectors as generated by Algorithm 1 in one
particular run are shown side by side with the first five basis vectors of the optimal
space, i.e. the optimal modes in Figure 4.1a. While not identical, the basis functions
generated using the randomized approach are smooth and have strong similarity with
the optimal ones. Unless stated otherwise, we present statistics over 100,000 evalua-
tions, use a maximum failure probability of εalgofail = 10−15, and use min(NS , NR) as
an upper bound for NT .

We first quantify the approximation quality of the spaces Rn in dependence of the
basis size n, disregarding the adaptive nature of Algorithm 1. In Figure 4.2a, statistics
over the achieved projection error ‖T − PRnT‖ are shown along with the singular
values σn+1 of the transfer operator T . σn+1 is a lower bound for the projection error
and it is the projection error that is achieved using an optimal basis. It shows that
while the algorithm most of the time produces a basis nearly as good as the optimal
basis, sometimes it needs two or three basis vectors more. This is in line with the

6Thanks to the form of the A-harmonic functions (SM2.1) and the fact that Ω is symmetric with
respect to the x2-axis, we have that u− (1/|Γout|)

∫
Γout

u = u− (1/|Ω|)
∫
Ω u and therefore that the

singular vectors and singular values of (2.4) equal the ones of (4.1) apart from the constant function,
which has to be added for the former but not for the latter.
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Figure 4.1: Comparison of optimal basis functions with the basis functions generated by Algorithm
1 for Example 1. Basis functions are normalized to an L2(Γin) norm of one.
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predictions by theory, see the discussion after Proposition 3.2. The mean value of
the projection error converges with the same rate as the a priori error bound given
in Proposition 3.2 with increasing basis size. The a priori error bound is consistently
around three orders of magnitude larger than the actual error, until the actual error
hits the numerical noise between 10−14 and 10−15, see Figure 4.2b. This is mainly
due to the fact that the singular values decay very fast for the present example and
an index shift in the singular values by p ≥ 2 as required by the a priori error bound
(3.2) therefore results in a much smaller error than predicted by the a priori error

bound. Note that we have (λ
MR
max/λ

MR
min)1/2 ≈ (λ

MS
max/λ

MS
min)1/2 ≈ 2.

The adaptive behavior of Algorithm 1 is analyzed in Figure 4.3. Figure 4.3a
shows that for nt = 10 the algorithm succeeded to generate a space with the re-
quested approximation quality every single time in the 100,000 test runs and most
of the time, the approximation quality is about one or two orders of magnitude bet-
ter than required. Figure 4.3b shows the influence of the number of test vectors nt:
With a low number of test vectors like 3 or 5, the algorithm produces spaces with an
approximation quality much better than requested, which is unfavorable as the basis
sizes are larger than necessary. 10 or 20 test vectors seem to be a good compromise,
as enlarging nt to 40 or 80 results in only little improvements while increasing com-
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putational cost. This different behavior of Algorithm 1 for various numbers of test
vectors nt is due to the scaling of the effectivity of the a posteriori error estimator
η(T − PRnT, nt, εtestfail) as defined in (3.4) in the number of test vectors nt: The
median effectivity η(T − PRnT, nt, εtestfail) is 29.2 for nt = 10, 10.4 for nt = 20, and
6.1 for nt = 40. We may thus also conclude that the a posteriori error estimator (3.1)
is a sharp bound for the present test case.

Analyzing the numerical effectivity of the a posteriori error estimator η(T −
PRnT, nt, εtestfail) and comparing it to its theoretical upper bound ceff(nt, εtestfail) in
Figure 4.5a, it can be observed that the theoretical upper bound becomes a sharper
bound with increasing number of test vectors nt. The reason is the decreasing dis-
persion of the normalized maximal test vector norm

(4.2)

max
i=1,...,nt

∥∥(T − PRnT )D−1
S ri

∥∥
R

‖T − PRnT‖
,

as shown in Figure 4.5b. The normalized test vector norm is bound from above
by cest(nt, εtestfail)

−1
ceff(nt, εtestfail) and from below by cest(nt, εtestfail)

−1
with error

probability εtestfail.
The quality of the produced spaces Rn should be independent of the mesh size h.

Figure 4.4a confirms this. After a preasymptotic regime, the deviation ‖T − PRnT‖
is independent of the mesh size. In the preasymptotic regime, the finite element space
is not capable of approximating the corresponding modes. But while the deviation
‖T − PRnT‖ is independent of the mesh size, the norm of the test vectors used in the
a posteriori error estimator in Algorithm 1 is not (see Figure 4.4b). The maximum
norm of test vectors scales with the deviation and with

√
h. In the adaptive algorithm,

the scaling with
√
h is compensated by the factor (λ

MS
min)−1/2 in cest(nt, εtestfail). To

analyze the behavior in h, the geometry parameters were chosen as L = 0.5 and
W = 1 to have a slower decay of the singular values of the transfer operator.

To examine CPU times we use Example 1 in a larger configuration with L = 1,
W = 8 and 1/h = 200. This results in 638.799 unknowns, NS = 3202, and NR =
1601. The measured CPU times for a simple, single threaded implementation are
given in Table 4.1. The transfer operator is implemented implicitly. Its matrix is
not assembled. Instead, the corresponding problem is solved using the sparse direct
solver SuperLU [56, 21] each time the operator is applied. For Algorithm 1, a target
accuracy tol of 10−4, the number of testvectors nt = 20, and a maximum failure
probability εalgofail = 10−15 is used. In one test run, it resulted in an approximation
space Rn of dimension 39. It only evaluated the operator n + nt = 59 times. Each
operator evaluation was measured to take 0.301 seconds, so a runtime of approximately
(n+nt)∗0.301s ≈ 17.8s is expected. The measured runtime of 20.4 seconds is slightly
higher, due to the orthonormalization of the basis vectors and the projection of the
test vectors.

CPU times for the calculation of the optimal space of same size are given for
comparison. The “eigs” function in “scipy.sparse.linalg”, which is based on ARPACK,
is used to find the eigensystem of TT ∗. However, the calculation using ARPACK is
not adaptive. To employ ARPACK, the required number of vectors has to be known
in advance, which is why we expect that in general, the comparison would be even
more in favor of the adaptive randomized algorithm.

4.2. Helmholtz equation. In this subsection we analyze the behavior of the
proposed algorithm in a numerical test case approximating the solution of the Helm-
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Properties of transfer operator
unknowns of corresponding problem 638,799

LU factorization time in s 14.1
operator evaluation time in s 0.301

adjoint operator evaluation time in s 0.301

Properties of basis generation
Algorithm 1 Scipy/ARPACK

(resulting) basis size n 39 39
operator evaluations 59 79

adjoint operator evaluations 0 79
execution time in s (w/o factorization) 20.4 47.9

Table 4.1: CPU times for Example 1 with L = 1, W = 8 and 1/h = 200. Single
threaded performance.
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Figure 4.5: Numerical efficiency for Example 1.
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Figure 4.6: Singular value decay for Example 2. The red line at i = κ/π in the right plot marks
the observed length of the plateau.

holtz equation. The domain Ω, the boundaries Γin and Γout and the boundary con-
ditions are the same as in subsection 4.1, only the operator A differs and is defined
as A = −∆− κ2 in this subsection. As for Example 1, it has 51,681 DOFs, NS = 322
and NR = 161 for 1/h = 160. We refer to this numerical example as Example 2. We
assume the problem to be inf-sup stable and thus uniquely solvable, which is the case
as long as it is not in a resonant configuration. A treatment of the resonant case is
beyond the scope of this publication.

For κ = 0 we obtain Example 1. We observe that the singular values of the
transfer operator first have a plateau and then decay exponentially, see Figure 4.6.
The longer the plateau, the faster is the exponential decay. The length of the plateau
is observed to be very close to the length of the inner interface divided by a half
wavelength, i.e. 1/(λ/2) = κ/π. Comparing this with the analysis of Finite Element
methods for the Helmholtz equation (cf. [50]), one finds this similar to the “minimal
resolution condition” 1/h ≥

√
12/κ.

Algorithm 1 succeeds to generate reduced spaces Rn which achieve a projection
error ‖T − PRn‖ which is close the the optimal projection error given by the singular
values of the transfer operator. We show results for κ = 30 in Figure 4.7. Also in
the adaptive case, we observe the expected behavior, see Figure 4.8a and Figure 4.8b.
The plateaus which can be observed in Figure 4.8a are due to the very fast decay of
the singular values. E.g. the first plateau is at an error of about 10−3, which is the
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error usually achieved at a basis size of 10 (cf. Figure 4.7a). The next plateau at an
error of about 10−7 corresponds to a basis size of 11.

4.3. A transfer operator with slowly decaying singular values; appli-
cation to linear elasticity. In this subsection we numerically analyze Algorithm 1
and the theoretical findings of section 3 for a numerical test case Example 3 where
the singular values of the transfer operator exhibit a relatively slow decay and N ,
NS , and NR are relatively large. Moreover, we shortly illustrate that Algorithm 1 is
attractive from a computational viewpoint and with respect to memory requirement.

To that end let Ωin = (−0.5, 0.5)× (−0.5, 0.5)× (−0.5, 0.5) be the subdomain on
which we aim to construct a local approximation space, Ω = (−2, 2) × (−0.5, 0.5) ×
(−2, 2) the (oversampling) domain, and Γout = {−2, 2} × (−0.5, 0.5) × (−2, 2) ∪
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and p = 2 for the oversampling domains Ω (a) and Ω̂ (b).

(−2, 2) × (−0.5, 0.5) × {−2, 2} the outer boundary. On ∂Ω \ Γout we prescribe ho-
mogeneous Neumann boundary conditions and we suppose that Ω does not border
the Dirichlet boundary of Ωgl. We assume that Ω represents an isotropic homoge-
neous material and we consider the equations of linear elasticity. Therefore, we choose
X = [H1(Ω)]3, X0 = {v ∈ [H1(Ω)]3 : v|Γout = 0}, A : X → X ′0, Au = −∇C : ε(u) for
u ∈ X and consider the following boundary value problem: Find u ∈ X such that

(4.3) Au = 0 in X ′0

with arbitrary Dirichlet boundary conditions on Γout. Here, we set Young’s modulus
equal to one, C is the fourth-order stiffness tensor

Cijkl =
ν

(1 + ν)(1− 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 3,

where δij denotes the Kronecker delta, and we choose Poisson’s ratio ν = 0.3. More-
over, ε(u) = 0.5(∇u+(∇u)T ) is the infinitesimal strain tensor and the colon operator

: is defined as C : ε(u) =
∑3
k,l=1 Cijklεkl(u).

For the FE discretization we use a regular mesh with hexahedral elements and a
mesh size h = 0.1 in each space direction and a corresponding FE space X with linear
FE resulting in dim(X) = N = 55473, dim(R) = NR = 3987, and dim(S) = NS =
5280. Note that although in theory we should subtract the orthogonal projection on
the six rigid body motions from the FE basis functions, in actual practice we avoid
that by subtracting the orthogonal projection from the A-harmonic extensions only.
Finally, we equip the source space S with the L2-inner product and the range space
R with the energy inner product

(w, v)R :=

∫
Ωin

∂wi

∂xj
Cijkl

∂vk

∂xl
dx.

Analyzing the convergence behavior of E(‖T − PRk+pT‖) for a growing number
of randomly generated basis functions k and a (fixed) oversampling parameter p = 2
in Figure 4.9a we observe that the local approximation spaces generated as proposed
in section 3 yield an approximation that converges nearly with the optimal rate σk+1.
Moreover, we see in Figure 4.9a that the a priori error bound as proposed in (3.2)
reproduces the convergence behavior of E(‖T −PRk+pT‖) quite well, where the mean
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of the deviation converges slightly faster than the a priori error bound. Furthermore,
for the present test case the a priori error bound seems to behave like

√
kσk+1, arguing

that the latter might be the dominating factor. Finally, we observe that the a priori
bound is rather pessimistic as it overestimates E(‖T − PRk+pT‖) by a factor of more
than 100. This is mainly due to the square root of the conditions of the inner product

matrices which amount to (λ
MR
max/λ

MR
min)1/2 ≈ 17.3197 and (λ

MS
max/λ

MS
min)1/2 ≈ 3.4404.

If we consider a flatter domain Ω̂ = (−2, 2) × (−0.25, 0.25) × (−2, 2) and a flat-

ter subdomain Ω̂in = (−0.5, 0.5) × (−0.25, 0.25) × (−0.5, 0.5) instead, where Γ̂out =
{−2, 2} × (−0.25, 0.25)× (−2, 2) ∪ (−2, 2)× (−0.25, 0.25)× {−2, 2} and we still con-
sider the same PDE and the same inner products as above, we observe in Fig-
ure 4.9b that until k ≈ 75 the a priori bound reproduces the convergence behavior of
E(‖T − PRk+pT‖) perfectly. We may thus conclude that the a priori bound in (3.2)
seems to be sharp regarding the convergence behavior of E(‖T − PRk+pT‖) in the
basis size k. The a priori estimates could be improved slightly by finding the optimal
oversampling size p, which was fixed to its mimimum value of 2 in this experiment.
Expecially on the domain Ω, where the singular values of the transfer operator show
a slower decay, a larger oversampling would be beneficial. For the computations on
Ω̂ we employed again a regular hexaedral mesh with h = 0.1 and linear FE with
N = 30258, NR = 2172, and NS = 2880. Finally, for all results in this subsection we
computed the statistics over 1000 samples. From now on all results are computed on
Ω.

Regarding the performance of Algorithm 1 we first observe in Figure 4.10a that
the actual error ‖T−PRnT‖ lies below the target tolerance tol for all 1000 samples for
nt = 10; which holds also true for all other considered values of nt. Here, we prescribe
εalgofail = 10−10 and use 3993 as an upper bound for NT throughout this subsection.
Compared with the performance of Algorithm 1 for Example 1 in Figure 4.3a the
dispersion in Figure 4.10a is much smaller. This may be explained by the much faster
decay of the singular values of T and therefore ‖T−PRnT‖ in subsection 4.1 compared
with the present test case.

Similarly to Figure 4.3b and Figure 4.8b in subsection 4.1 and subsection 4.2 we
see in Figure 4.10a that increasing the number of test vectors nt from 5 to 10 or from
10 to 20 increases the ratio between the median of the actual error ‖T − PRnT‖ and
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the target accuracy tol significantly — for the former by more than one magnitude
— while an increase from nt = 40 to nt = 80 has hardly any influence. This can
be explained by the scaling of the effectivity of the employed a posteriori error esti-
mator defined in (3.4) which we will elaborate on shortly. Regarding the choice of
nt it seems that for the present test case a value of about 20 is in the sweet spot.
We summarize and emphasize that also in the present test case, where we have a
rather slow convergence of the singular values of T and thus the error ‖T − PRnT‖,
we need only very few local solutions in addition to the optimal amount required,
demonstrating that Algorithm 1 performs nearly optimally in terms of computational
complexity for the current problem. This is due both to the nearly optimal conver-
gence behavior as discussed above and the good effectivity of the a posteriori error
estimator ∆(T −PRnT, nt, εtestfail) also for few numbers of test vectors nt, which will
be addressed next.

Analyzing the effectivity η(T − PRnT, nt, 10−10) as defined in (3.4) for εtestfail =
10−10 and growing n we see in Figure 4.10b that for nt ≥ 20 the effectivity is in
the order of 10 and the a posteriori error estimator ∆(T −PRnT, nt, εtestfail) therefore
provides a sharp bound also for this test case. Moreover, the decrease of the effectivity
for growing nt as can be observed in Figure 4.10b explains the increase of the ratio
between the median of the actual error ‖T − PRnT‖ and the target accuracy tol in
Figure 4.10a. Finally, the effectivity varies only very slightly if n changes and we may
thus confirm that, as expected, the effectivity does not seem to depend on the basis
size n.

4.4. Building a global approximation with the GFEM. In order to suc-
cessfully apply the proposed algorithm in the context of a method, it has to be possible
to define a transfer operator with quickly decaying spectrum. Moreover, allowing to
bound the local approximation error in terms of ‖T − PRnT‖, and bound the global
approximation error in terms of the local error contributions, is sufficient (but not
necessary) to yield a global error decaying as

√
nσn+1 or better. All of this is possible

for the GFEM, which is why we employ this method in this subsection to build a
global approximation from the local reduced spaces generated by Algorithm 1. We
refer to this numerical example as Example 4. The convergence theory for the GFEM
with randomized basis generation is given in the supplementary materials subsection
SM5.2.

On Ωgl = (0, 1)2 we consider the following PDE: Find ugl ∈ Xgl = {v ∈ H1(Ωgl) :
v = 0 on ΣD}, such that

(4.4) − div(k∇ugl) = f in X ′gl,

where k ∈ L∞(Ωgl), 0 < k0 ≤ k ≤ k1 <∞ and f(ϕ) :=
∫

Ωgl
f̂ϕ dx for a source term

f̂ ∈ L2(Ωgl). We use the GFEM to compute an approximation of ugl. To this end
let {ωi}mi=1 be an open cover of Ωgl such that Ωgl = ∪mi=1ωi. For each domain, we
define a local space Xi :=

{
v|ωi

∣∣ v ∈ Xgl

}
. We will construct local reduced spaces

Rni ⊂ Xi and the global GFEM space XGFEM :=
⊕

i=1,...,m

{
%ivi

∣∣ vi ∈ Rni }, where
%i is a suitably defined partition of unity (see the supplementary materials subsection
SM5.2). The GFEM solution uGFEM ∈ XGFEM is then defined as the solution of
−div(k∇uGFEM) = f in X ′GFEM.

We construct reduced spaces Rni , each approximating the solution ugl on ωi. To
this end, we introduce ω∗i , satisfying ωi ( ω∗i ⊂ Ωgl with dist(∂ω∗i \∂Ωgl, ∂ωi) ≥ ρ > 0,
which denotes the oversampling domain used to construct the reduced space and thus
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Figure 4.11: Coeffi-
cient field for GFEM Ex-
ample 2; white equates to
1 and black to 105.
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Figure 4.12: The slowest SVD decay (svd), the maximum relative
local error (local), and the relative global error (global) for the two
GFEM examples (Example 4). Median values over 100 realizations.

corresponds to Ω in the remainder of this article. We denote its inner boundary
∂ω∗i \ ∂Ωgl by Γout,i. Denoting the space of A-harmonic functions on ω∗i as H̃i, the

transfer operator is defined as T (w|Γout,i
) := (w − Pker(A),ωi

(w))|ωi
for all w ∈ H̃i.

The spaces Si := {w|Γout,i
: w ∈ H̃i} are equipped with the L2-inner product. In the

range spaces Ri := {(w−Pker(A),ωi
)|ωi

: w ∈ H̃i} we use the energy inner product. We
apply Algorithm 1 to these transfer operators using nt = 20 test vectors throughout
this subsection and a global maximum failure probability of εfail = 10−15. For the full
GFEM algorithm with all details, see the supplementary materials subsection SM5.1.

We demonstrate the GFEM with randomized basis generation on two examples.
The first example (Example 4.1 in the following) is the Poisson problem −∆u = 1,

i.e. k ≡ 1 and f̂ ≡ 1. We consider this problem because the singular values and
singular vectors of all transfer operators associated with subdomains ω∗i that do not
lie on the boundary of Ωgl are the same and thus only the boundary has a (slight)
influence. Therefore, we would expect that for this test case the convergence rate
of the global error is similar to the convergence rate of ‖T − PRnT‖. The second
example (Example 4.2 in the following) is more complex and features small details,
high contrast, and high conductivity channels. In particular the solution of this ex-
ample is non-smooth. For Example 4.2, we define a high conductivity region Ωhc :=
[(0.02, 0.1)× (0.02, 0.98)] ∪ [(0.9, 0.98)× (0.02, 0.98)] ∪ [(0.11, 0.89)× (0.475, 0.485)] ∪
[(0.1, 0.9)× (0.495, 0.505)] ∪ [(0.11, 0.89)× (0.515, 0.525)] and define k(x) := 105 for
x ∈ Ωhc and k(x) := 1 else. For the right hand side, we define a heating region
Ωheat := (0.9, 0.98)×(0.02, 0.98) and a cooling region Ωcool := (0.02, 0.1)×(0.02, 0.98)

and define the right hand side as f̂(x) := 1 for x ∈ Ωheat, f̂(x) := −1 for x ∈ Ωcool,

and f̂(x) := 0 else. For both examples, the domain is discretized using a regular mesh
where the domain is partitioned into 200×200 squares of size 0.0052, each of which is
divided into four triangles. On this mesh, standard P1 basis functions are used, span-
ning the FEM space. It has 80401 degrees of freedom, of which 800 are constrained
due to the Dirichlet boundary. As local domains ωi we use patches of size 0.2 × 0.2
with an overlap of size 0.1. This accounts for 9 × 9 = 81 subdomains ωi. For the
oversampling size we also use 0.1, so the domains ω∗i in the interior have size 0.4×0.4
while the domains ω∗i at one boundary have size 0.4×0.3 or 0.3×0.4 and the domains
ω∗i in the corners have size 0.3×0.3. The dimension of the source spaces NSi

and NRi

differ for domains in the interior, at the boundary and in the corners. For domains in
the interior, it holds NSi = 320 and NRi = 1681. All 81 transfer operators in the two
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Figure 4.13: Relative local error minvi∈Rn
i
‖k1/2∇(ugl − vi)‖L2(ωi)

/‖k1/2∇ugl‖L2(ω∗i ) versus

target local error ε for Example 4. Reduced spaces Rni generated with adaptive algorithm 1. Statistics
over 1000 samples and over all 81 local spaces.

examples have an exponentially decaying spectrum. The slowest decaying spectrum
is shown in Figure 4.12 along with the maximum local relative approximation error
and the global relative approximation error. The maximum relative local approxima-
tion error follows the spectrum of the transfer operator closely for Example 4.1. For
Example 4.2, the behavior is similar. As anticipated, this error decay propagates to
the relative global approximation error, which flattens out due to numerical effects at
about 10−13 for Example 4.1 and 10−10 for Example 4.2. To compute the spectrum of
the transfer operators, the numerically more accurate eigenvalue problem presented
in the supplementary materials section SM6 is used. To further examine the behavior
of the local error minvi∈Rn

i
‖k1/2∇(ugl − vi)‖L2(ωi)/‖k1/2∇ugl‖L2(ω∗i ) when using the

adaptive algorithm, we construct local approximation spaces Rni with the proposed
adaptive range recovery and measure the relative local error. Statistics over 1,000
different realizations and all 81 local spaces show that results are more accurate than
required by about 2.5 orders of magnitude for Example 4.1 and about 3.5 orders of
magnitude for Example 4.2, see Figure 4.13. This discrepancy is in part caused by the
fact that the adaptive range approximation generates spaces which are better than re-
quired, as was already discussed in subsections 4.1 and 4.3. This accounts for about 1
to 1.5 orders of magnitude. The other part is the pessimistic estimate for the local er-
ror given in the supplementary materials, Lemma SM5.2. The error decay propagates
to the global relative error

(
‖k1/2∇(ugl − uGFEM)‖L2(Ωgl)

)/(
‖k1/2∇ugl‖L2(Ωgl)

)
. It is

possible to choose a target error tolGFEM and choose all tolerances accordingly, so
the resulting approximation will have at most this relative error: From tolGFEM as a
target maximum for the global relative error, we calculate the maximum local relative
error using Proposition SM5.1. Using this maximum local relative error, we calculate
a limit for the operator norm

∥∥Ti − PRn
i
Ti
∥∥ using Lemma SM5.2. This limit for the

operator norm is then used to steer the adaptive range finder algorithm, Algorithm
1. There are no unknown constants. For details, see the supplementary materials
subsection SM5.2. The global relative error, shown in Figure 4.14, confirms this and
is more accurate than required by about 4.5 orders of magnitude for Example 4.1 and
about 6.5 orders of magnitude for Example 4.2. From the local error to the global
error, we loose about 2 orders of magnitude for Example 4.1 and about 3 orders of
magnitude for Example 4.2. This is due to the pessimistic estimate in Proposition
SM5.1.
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Figure 4.14: Relative global error ‖k1/2∇(ugl−uGFEM)‖L2(Ωgl)
/‖k1/2∇ugl‖L2(Ωgl)

versus target

global error tolGFEM for Example 4. GFEM solution uGFEM generated with Algorithm 1 in the
supplementary materials, reduced spaces Rni generated with adaptive Algorithm 1. Statistics over
1,000 samples.

5. Conclusions. Recently, optimal local reduced spaces for localized MOR pro-
cedures have been proposed in [9, 80]. However, a straightforward FE approximation
of those optimal local spaces is very expensive. In this article we have proposed an
adaptive randomized range finder algorithm based on methods from randomized LA
[38] that adaptively builds local reduced spaces for localized MOR procedures from
local solutions of the PDE with random boundary conditions. Starting from results
in randomized LA [38, 35, 36, 18] we have shown that the randomly generated local
reduced spaces produce an approximation with a convergence rate that is only slightly
worse than the optimal rate; the rate is deteriorated by about the square root of the
basis size. Finally, the adaptive randomized range finder algorithm is steered by a
probabilistic a posteriori error estimator for which we have demonstrated its efficiency.

The numerical experiments show that the local spaces constructed by the adaptive
randomized range finder algorithm indeed converge with a nearly optimal rate. It can
also be seen that the a priori error bound seems to be sharp in the sense that for
some numerical experiments the projection error converges exactly as predicted by
the a priori error bound. Moreover, we observed that after a preasymptotic regime
the convergence behavior of the projection error is independent of the mesh size,
indicating that it might be possible to generalize the results of the present paper to the
continuous setting. This is the subject of future work. For the GFEM we exemplarily
demonstrated in the numerical experiments that the excellent local approximation
behavior of the randomly generated spaces carries over to the global level for an
example with high conductivity channels. Regarding the probabilistic a posteriori
error estimator the numerical experiments have showed also for a transfer operator
with slowly decaying singular values and discrete source and range spaces of rather
large dimensions that we only need 10 to 20 test vectors in order to obtain a sharp
bound. Thanks to both the nearly optimal approximation capacities of the randomly
generated local reduced spaces and the good effectivity of the probabilistic a posteriori
error estimator also for few numbers of test vectors the adaptive randomized range
finder algorithm requires only very few local solutions of the PDE in addition and
therefore has a close to optimal computational complexity and is faster than the
calculation of the optimal spaces using ARPACK on the corresponding eigenvalue
problem.

The extension of the proposed method to transient and nonlinear problems is
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the subject of future work. We note that although prescribing random boundary
conditions and using the solution of the nonlinear PDE evaluated either on an interface
or a subdomain might actually yield a reduced space with decent approximation
properties, we believe that the corresponding numerical analysis might however be
quite involved.
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