Can “organoclay” enhance abrasion resistance of silica-reinforced NR tread compounds?

Suppachai Sattayanurak1,2), Kannika Sahakaro2), Jacques W.M. Noordermeer1), Wisut Kaewsakul1), Wilma K. Dierkes1), Louis A.E.M. Reuvekamp3), and Anke Blume1)

1) University of Twente, Faculty of Engineering Technology, Department of Mechanics of Solids, Surfaces & Systems (MS3), Chairs of Elastomer Technology and Engineering (ETE) and Sustainable Elastomer Systems (SES), Enschede, The Netherlands

2) Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Thailand

3) Apollo Tyres Global R&D B.V., Enschede, The Netherlands
INTRODUCTION

Heavy vehicle tire treads

Typical compositions in truck tire treads
- Natural Rubber (NR) / Butadiene Rubber (BR)
- Carbon black as reinforcing filler
- Curing, processing and antidegrading packages

Why is silica replacing carbon black?
- Carbon black is produced from ‘petroleum’ – more costly and less available.
- Silica is from sand – cheap and more sustainable.
- Some key tire performance can be improved by silica.

General requirements of heavy-duty tire treads
- Wear resistance
- Rolling resistance
- Wet and ice traction
- Cut, chip and chunk resistance

INTRODUCTION

Benefits and challenges of silica/silane

- **Silica reduces tire “rolling resistance”**:
 - ~30% for passenger car tires → 3-6% fuel savings;
 - ~20% for truck tires → 6% fuel savings;
 - Less CO₂ emission

- **It provides benefits to winter tires and all-season tires**.
 - silica-based compounds are more elastic and flexible at low temperatures → better grip and braking.

- **Challenges in processing and optimizing!**

INTRODUCTION

Inferior “abrasion resistance” of silica-NR tire treads

Current problem!

Rolling resistance

Carbon black tires
Silica tires

Abrasions resistance

Wet traction

MOTIVATION

Ways to improve wear resistance of heavy vehicle treads

Factors affecting wear resistance

- Elastomers
 - Blend ratio of NR/BR
 - Rubber type
 - Secondary polymers

- Reinforcement
 - Reinforcing fillers
 - Mixture of carbon black and silica
 - Hybrid fillers / nanofillers

- Crosslinking
 - Curing systems
 - Curing packages

MOTIVATION
Using nanoclay as a wear resistance enhancer

Why nanoclay?
Attractive
- Good reinforcement performance due to high aspect ratio
- Good interaction with rubber is achievable
- Increased **tearing energy** → Improved crack-growth and abrasion resistance

Nanoclay gives enhanced polymer orientation and highly stretched ligaments

“Crack tips become blunt”

MOTIVATION

Using nanoclay as a wear resistance enhancer

Why nanoclay?

Attractive
- Good reinforcement performance due to high aspect ratio
- Good interaction with rubber is achievable
- Increased tearing energy → Improved crack-growth and abrasion resistance

Challenges
- Dispersing nanoclay in rubbers is difficult.
- Intercalation/exfoliation of clay platelets is required.

How?

Organic modification:
47 wt% of dimethyl dihydrogenated tallow ammonium chloride

A state-of-the-art solution: Clay modification

MOTIVATION
Using nanoclay as a wear resistance enhancer

Why nanoclay?
Attractive
- Good reinforcement performance due to high aspect ratio
- Good interaction with rubber is achievable
- Increased tearing energy → Improved crack-growth and abrasion resistance

Challenges
- Dispersing nanoclay in rubbers is difficult.
- Intercalation/exfoliation of clay platelets is required.

How?
Desired clay dispersion in a polymer

A.I. Khalaf, et. al., KGK, 69 (2016) 22.
EXPERIMENTAL

Formulation and compound preparation

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount (phr)</th>
<th>Reference</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR (RSS3)</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Silica (ULTRASIL 7005)</td>
<td>55.0</td>
<td>52.5</td>
<td>50.0</td>
<td>47.5</td>
<td>45.0</td>
<td>40.0</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Organoclay (OC, Dellete 67G)</td>
<td>-</td>
<td>2.5</td>
<td>5.0</td>
<td>7.5</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>TESPD</td>
<td>5.0</td>
<td>4.8</td>
<td>4.5</td>
<td>4.3</td>
<td>4.1</td>
<td>3.6</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>DPG</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Sulfur 1.5, CBS 1.5, ZnO 3.0, Stearic acid 1.0, TDAE oil 8.0, TMQ 1.0 phr

Mixing:
Internal mixer

OC = 0, 4.6, 9.1, 13.6, 18.2, 27.3, 36.4 wt% rel. to total filler content

Variable in relation to silica content

Masterbatch compound

- NR
 - ½(Silica+TESPD+DPG) + OC
 - TDAE oil, ½(Silica+TESPD)
 - ZnO, Stearic acid, TMQ

- Fill factor: 70%
- Rotor speed: 60 rpm
- Initial temperature setting of mixer: 100°C

Final compound

- Masterbatch compound
 - CBS, Sulfur, ½ DPG

- Fill factor: 70%
- Rotor speed: 30 rpm
- Initial temperature setting of mixer: 70°C
RESULTS: MIXING

Organoclay reduces compound viscosity during mixing!
Why does the organoclay change the properties?
RESULTS: FILLER-FILLER INTERACTION

➢ Organoclay can further hydrophobize the silica surface.

➢ Amine modifier of the nanoclay can boost the silanization.

➢ Reduced filler solid content does not decrease filler-filler interaction linearly.

Why?

RESULTS: SPACING DISTANCE OF CLAY PLATELETS

Optimum d-spacing at OC from 9-18 wt%
RESULTS: CURE TIMES

➢ Organoclay, to a certain amount, significantly shortens cure time.

➢ Clay modifier is an amine derivative → accelerates sulfur vulcanization.

RESULTS: MECHANICAL PROPERTIES

OC at 4.6-13.6 wt% improves abrasion resistance indicator, while maintaining tear resistance.
RESULTS: OVERALL COMPARISON

Big impact of organoclay on uncured compound properties, but not on stress-strain data

S. Sattayanurak, PhD Thesis, University of Twente, the Netherlands and Prince of Songkla University, Thailand, 2020.
RESULTS: DYNAMIC PROPERTIES FROM DMA

Optimum tire performance indicators at OC of 9 wt%
Why does “organoclay” improve both rolling resistance and wet/ice skid resistance?
RESULTS: MOLECULAR CHARACTERISTICS

![Graph showing the molecular characteristics of elastomer systems](Image)

- Black line: Without OC
- Blue dashed line: OC-9%
- Green dashed line: OC-18%
- Red dashed line: OC-36%

RESULTS: MOLECULAR CHARACTERISTICS

Organoclay significantly lowers filler-filler interaction →:
• less chain mobility at low temperatures;
• enhanced reinforcement.

The overloading of organoclay diminishes overall properties due to reagglomeration effect.
CONCLUSIONS

Silica/TESPD-filled NR

with 9 wt% of organoclay
rel. to total filler content

Role of organoclay:

Uncured compound
✓ reduces viscosity
✓ reduces filler-filler interaction
✓ shortens cure and scorch times

Vulcanizate
✓ maintains tensile and tear properties
✓ improves key tire performance
THANK YOU

Copyright permissions of the presented figures were obtained from the publishers.