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We study Saks spaces of functions with values in a normed space and the associated 
mixed topologies. We are interested in properties of such Saks spaces and mixed 
topologies which are relevant for applications in the theory of bi-continuous 
semigroups. In particular, we are interested if such Saks spaces are complete, 
semi-Montel, C-sequential or a (strong) Mackey space with respect to the mixed 
topology. Further, we consider the question whether the mixed and the submixed 
topology coincide on such Saks spaces and seek for explicit systems of seminorms 
that generate the mixed topology.
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1. Introduction

This paper is dedicated to Saks spaces of vector-valued functions and their properties. A Saks space is a 
triple (X, ‖ · ‖, τ) consisting of a normed space (X, ‖ · ‖) and a coarser locally convex Hausdorff topology τ
on X such that the norm ‖ · ‖ is the supremum taken over some directed system of continuous seminorms 
that generates the τ -topology, see [13]. Associated to a Saks space is the mixed topology γ := γ(‖ · ‖, τ), 
which was introduced in [60] and is the finest locally convex Hausdorff, even linear, topology between the 
‖ · ‖-topology and τ . Sequentially complete Saks spaces, i.e. (X, γ) is sequentially complete, are needed in 
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the theory of bi-continuous semigroups, which were introduced in [47,48], to treat semigroups on Banach 
spaces (X, ‖ · ‖) which are usually not strongly continuous w.r.t. the norm ‖ · ‖ but only strongly continuous 
w.r.t. the coarser topology τ , e.g. dual semigroups, implemented semigroups or transition semigroups like 
the Ornstein–Uhlenbeck semigroup on the space of bounded continuous functions on a Polish space.

Besides sequential completeness there are several other properties of Saks spaces that are of impor-
tance in applications. The Lumer–Phillips generation theorems for bi-continuous semigroups from [45] need 
knowledge of explicit systems of seminorms that generate the mixed topology γ because the concept of 
dissipativity depends on the choice of the system of seminorms. There is another locally convex Hausdorff 
topology associated to a Saks space, namely the submixed topology γs := γs(‖ · ‖, τ), which is defined by 
an explicit system of seminorms and is in general coarser than γ but has the same convergent sequences 
as γ, see Definition 2.1. Therefore one is interested in the question when γ and γs coincide. Moreover, the 
generation theorems like [45, Theorems 3.10, 3.17, Corollary 3.15] need the completeness of the Saks space, 
i.e. that (X, γ) is complete. A sufficient condition for γ = γs is that (X, γ) is a semi-Montel space, which 
also implies that (X, γ) is a complete semi-reflexive space and semi-reflexivity is needed for [45, Theorems 
3.17] as well. On the other hand, the Lumer–Phillips generation theorem [11, Theorem 3.15, p. 75] for 
bi-continuous semigroups needs that (X, γs) is complete (see [45, Theorem 3.11, Remark 3.12 (b)]).

The question whether γ and γs coincide is also important for perturbation results of bi-continuous semi-
groups. If γ = γs and the Saks space is sequentially complete and C-sequential, i.e. every convex sequentially 
open subset of (X, γ) is already open, then a bi-continuous semigroup on the corresponding Saks space is 
already locally, even quasi-, equitight by [42, Theorem 3.17 (b), p. 13]. Locally equitight bi-continuous 
semigroups are sometimes just called “tight” or “local” (see [19,21]) and local equitightness is needed for 
perturbation theorems like [19, Theorem 1.2, p. 669], [22, Theorems 2.4, 3.2, p. 92, 94–95], [22, Remark 4.1, 
p. 101], [9, Theorem 5, p. 8] and [10, Theorem 3.3, p. 582]. Equitightness is relevant in ergodic theory for 
bi-continuous semigroups, see [2, Remark 3.5 (ii), p. 147, Proposition 3.8, p. 150].

Apart from its relation to local equitightness its is also known that every bi-continuous semigroup on a 
sequentially complete C-sequential Saks space is locally, even quasi-, γ-equicontinuous by [35, Theorem 7.4, 
p. 180] and [42, Theorem 3.17 (a), p. 13]. Equicontinuity and local equicontinuity are needed for perturba-
tion results like dissipative perturbations or Desch–Schappacher perturbations [1,26] and the infinitesimal 
description of Markov processes [25]. Sequentially complete C-sequential Saks spaces also play a role in the 
duality between cost-uniform approximate null-controllability and final state observability, see [44, Theorem 
5.18, p. 441]. A sufficient condition for (X, γ) being C-sequential is that (X, γ) is a Mackey–Mazur space 
by [58, Corollary 7.6, p. 52]. Here, (X, γ) being a Mackey space means that γ is the Mackey topology of 
a dual pairing 〈X, Y 〉 where Y is a Banach space topologically isomorphic to the strong dual (X, γ)′b, and 
being a Mazur space means that all sequentially γ-continuous linear functionals are already γ-continuous. 
The question whether (X, γ) is a Mackey space or even a strong Mackey space, i.e. a Mackey space such 
that σ(Y, X)-compact subsets of Y are γ-equicontinuous, is interesting in itself, see e.g. [49, p. 553] and 
[35, Propositions 3.4, 4.9, p. 161, 166]. The condition that (X, γ) is a sequentially complete Mackey–Mazur 
space is also sufficient for the existence of a dual bi-continuous semigroup of a bi-continuous semigroup in 
the sun dual theory for bi-continuous semigroups, see [43, 3.8 Theorem (b), p. 9–10].

We are interested in all of the properties listed above in the case of Saks spaces of vector-valued functions. 
Let us give an outline of our paper. In Section 2 we briefly recall some notions and results from the theory 
of Saks spaces and give a characterisation of the approximation property of (X, γ) in the case that (X, γ)
is a semi-Montel space in Proposition 2.6.

In Section 3 we start with a Saks space (F(Ω), ‖ · ‖, τ) of real- or complex-valued functions on a non-
empty set Ω such that (F(Ω), ‖ · ‖) is a Banach space and γ = γs. We construct a weak E-valued version 
(F(Ω, E)σ, ‖ · ‖Eσ , τEσ ) of this space in a canonical way, where E is a normed space (or more general a 
locally convex Hausdorff space), and show in Theorem 3.3 that this triple is a complete Saks space and 
even complete when equipped with the submixed topology if (F(Ω), ‖ · ‖, τ) is semi-Montel w.r.t. γ, τ finer 
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than the topology of pointwise convergence and E a Banach space. The proof of this result is based on 
linearisation via Schwartz’ ε-product and as a byproduct we also get a characterisation of (F(Ω), γ) having 
the approximation property in Corollary 3.4. We apply this result to weak E-valued versions of the Hardy 
space, the weighted Bergman space and the Dirichlet space, whose properties we collect in Corollary 3.5

In Section 4 we consider a different way of defining an E-valued version of (F(Ω), ‖ ·‖, τ) in Definition 4.2
which is available for some spaces and often stronger in the sense that is a subspace of F(Ω, E)σ and 
sometimes even a strict subspace, see Proposition 4.4. In Theorem 4.3 we collect some of the properties 
we are interested in of such strong E-valued Saks function spaces. Then we turn to specific examples. 
Among them are weighted spaces of continuous functions in Corollary 4.5, weighted space of holomorphic 
functions in Corollary 4.6, weighted kernels of hypoelliptic linear partial differential operators in spaces 
of smooth functions in Corollary 4.8, in particular weighted spaces of harmonic functions, weighted Bloch 
spaces in Corollary 4.10, spaces of Lipschitz continuous functions in Corollary 4.11 and spaces of k-times 
continuously partially differentiable functions on some open bounded set Ω ⊂ Rd whose partial derivatives 
extend continuously to the boundary of Ω and whose partial derivatives of order k are α-Hölder continuous 
for some 0 < α ≤ 1 in Corollary 4.12.

We close our paper with Section 5 where we characterise the dual of the spaces from the preceding 
section with respect to a certain submixed topology which sometimes coincides with the mixed topology, 
see Theorem 5.1. The interest in such a characterisation may also be motivated by the Lumer–Phillips 
generation theorem [45, Corollary 3.15] which involves the dual w.r.t. the mixed topology.

2. Notions and preliminaries

In this short section we recall some basic notions from the theory of locally convex spaces, Saks spaces 
and mixed topologies. For a locally convex Hausdorff space X over the field K := R or C we denote by X ′ the 
topological linear dual space of X. If we want to emphasize the dependency on the locally convex Hausdorff 
topology τ of X, we write (X, τ) and (X, τ)′ instead of just X and X ′, respectively. We write (X, τ)′t
for the space (X, τ)′ equipped with the locally convex topology of uniform convergence on the bounded 
subsets of (X, τ) if t = b, and on the absolutely convex compact subsets of (X, τ) if t = κ. For two locally 
convex Hausdorff spaces (X, τ) and (E, τE) we denote by L((X, τ), (E, τE)) the space of continuous linear 
maps from (X, τ) to (E, τE). By [54, Chap. I, §1, Définition, p. 18] the ε-product of Schwartz of (X, τ) and 
(E, τE) is defined by XεE := Le((X, τ)′κ, (E, τE)) where Le((X, τ)′κ, (E, τE)) is the space L((X, τ)′κ, (E, τE))
equipped with the topology of uniform convergence on the equicontinuous subsets of (X, τ)′. We identify the 
tensor product X⊗E with the linear finite rank operators in XεE and recap that X has the approximation 
property of Schwartz if and only if X ⊗E is dense in XεE for all Banach spaces E (see e.g. [30, Satz 10.17, 
p. 250]). Moreover, for two locally convex Hausdorff topologies τ0 and τ1 on X we write τ0 ≤ τ1 if τ0 is 
coarser than τ1. We write τEco for the compact-open topology, i.e. the topology of uniform convergence on 
compact subsets of Ω, on the space C(Ω, E) of continuous functions on a topological Hausdorff space Ω with 
values in a locally convex Hausdorff space E. If E = K, we just write τco := τKco. In addition, we write τp for 
the topology of pointwise convergence on the space KΩ of K-valued functions on a set Ω. By a slight abuse of 
notation we also use the symbols τEco and τp for the relative compact-open topology and the relative topology 
of pointwise convergence on topological subspaces of C(Ω, E) and KΩ, respectively (cf. [40,41, Section 2]).

Let us recall the definition of the mixed topology, [60, Section 2.1], and the notion of a Saks space, [13, 
I.3.2 Definition, p. 27–28], which will be important for the rest of the paper.

2.1 Definition ([42, Definition 2.2, p. 3]). Let (X, ‖ · ‖) be a normed space and τ a locally convex Hausdorff 
topology on X such that τ ≤ τ‖·‖ where τ‖·‖ denotes the topology induced by ‖ · ‖. Then
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(a) the mixed topology γ := γ(‖ ·‖, τ) is the finest linear topology on X that coincides with τ on ‖ ·‖-bounded 
sets and such that τ ≤ γ ≤ τ‖·‖,

(b) the triple (X, ‖ · ‖, τ) is called a Saks space if there exists a directed system of continuous seminorms 
Γτ that generates the topology τ such that

‖x‖ = sup
q∈Γτ

q(x), x ∈ X. (1)

In comparison to [42, Definition 2.2, p. 3] we dropped the assumption that the space (X, ‖ · ‖) should 
be complete. The mixed topology γ is actually Hausdorff locally convex and the definition given above is 
equivalent to the one introduced by Wiweger [60, Section 2.1] due to [60, Lemmas 2.2.1, 2.2.2, p. 51].

It is often useful to have a characterisation of the mixed topology by generating systems of continuous 
seminorms, e.g. the definition of dissipativity in Lumer–Phillips generation theorems for bi-continuous semi-
groups from [45] mentioned in the introduction depends on the choice of the generating system of seminorms 
of the mixed topology. For that purpose we introduce the following auxiliary topology.

2.2 Definition ([42, Definition 3.9, p. 9]). Let (X, ‖ · ‖, τ) be a Saks space and Γτ a directed system of 
continuous seminorms that generates the topology τ and fulfils (1). We set

N := {(qn, an)n∈N | (qn)n∈N ⊂ Γτ , (an)n∈N ∈ c+0 }

where c+0 is the family of all real non-negative null-sequences. For (qn, an)n∈N ∈ N we define the seminorm

‖|x‖|(qn,an)n∈N
:= sup

n∈N
qn(x)an, x ∈ X.

We denote by γs := γs(‖ · ‖, τ) the locally convex Hausdorff topology that is generated by the system of 
seminorms (‖| · ‖|(qn,an)n∈N

)(qn,an)n∈N∈N and call it the submixed topology.

We note that the submixed topology γs does not depend on the choice of Γτ that fulfils (1). By [13, 
I.1.10 Proposition, p. 9], [13, I.4.5 Proposition, p. 41–42] and [21, Lemma A.1.2, p. 72] we have the following 
relation between the mixed and the submixed topology.

2.3 Remark ([42, Remark 3.10, p. 9]). Let (X, ‖ · ‖, τ) be a Saks space, Γτ a directed system of continuous 
seminorms that generates the topology τ and fulfils (1), γ := γ(‖ · ‖, τ) the mixed and γs := γs(‖ · ‖, τ) the 
submixed topology.

(a) We have τ ≤ γs ≤ γ and γs has the same convergent sequences as γ.
(b) If

(i) for every x ∈ X, ε > 0 and q ∈ Γτ there are y, z ∈ X such that x = y+z, q(z) = 0 and ‖y‖ ≤ q(x) +ε, 
or

(ii) the ‖ · ‖-closed unit ball B‖·‖ := {x ∈ X | ‖x‖ ≤ 1} is τ -compact,
then it holds γ = γs.

The submixed topology γs was originally introduced in [60, Theorem 3.1.1, p. 62] where a proof of 
Remark 2.3 (b) can be found, too. The following notions will also be needed, which were introduced in [13, 
I.3.2 Definition, p. 27–28], [41, 3.3 Definition, p. 7] and [45, Definition 2.2].

2.4 Definition. Let (X, ‖ · ‖, τ) be a Saks space.



K. Kruse / Topology and its Applications 345 (2024) 108843 5
(a) We call (X, ‖ · ‖, τ) complete if (X, γ) is complete.
(b) We call (X, ‖ · ‖, τ) semi-Montel if (X, γ) is a semi-Montel space.
(c) We call (X, ‖ · ‖, τ) C-sequential if (X, γ) is a C-sequential space, i.e. every convex sequentially open 

subset of (X, γ) is already open (see [56, p. 273]).

2.5 Remark. Let (X, ‖ · ‖) be a normed space and τ a locally convex Hausdorff topology on X. Set X∗ :=
(X, ‖ · ‖)′ and denote by ‖ · ‖X∗ the dual norm on X∗.

(a) (X, ‖ · ‖, τ) is a semi-Montel Saks space if and only if B‖·‖ is τ -compact by [13, I.1.13 Proposition, p. 11]
and [41, 3.6 Remark (c), p. 8].

(b) If (X, ‖ ·‖, τ) is a semi-Montel Saks space, then (X, ‖ ·‖, τ) and (X, ‖ ·‖) are complete by [41, 3.6 Remark 
(a), (b), p. 8].

(c) If (X, ‖ · ‖, τ) is a semi-Montel Saks space and τ0 a locally convex Hausdorff topology on X such that 
τ0 ≤ τ , then (X, ‖ ·‖, τ0) is a semi-Montel Saks space and γs(‖ ·‖, τ) = γ(‖ ·‖, τ) = γ(‖ ·‖, τ0) = γs(‖ ·‖, τ0)
by part (a), condition (ii) of Remark 2.3 (b) and [41, 3.6 Remark (c), p. 8].

(d) Let (X, ‖ · ‖, τ) be a Saks space, set X ′
γ := (X, γ)′ and denote by ‖ · ‖X′

γ
the restriction of ‖ · ‖X∗ to X ′

γ . 
Then (X, γ)′b = (X ′

γ , ‖ · ‖X′
γ
) and (X ′

γ , ‖ · ‖X′
γ
) is a Banach space by [13, I.1.18 Proposition, p. 15].

We close this section with the following observation concerning the approximation property of (X, γ)
in the semi-Montel case, whose proof is an adaptation of [29, Theorem 4.6 (i)⇔(ii), p. 651–652] where 
X = Lip0(Ω) is the space of K-valued Lipschitz continuous functions on a metric space Ω that vanish at 
the origin (see Corollary 4.11).

2.6 Proposition. Let (X, ‖ · ‖, τ) be a semi-Montel Saks space. Then the following assertions are equivalent.

(a) (X, γ) has the approximation property.
(b) (X ′

γ , ‖ · ‖X′
γ
) has the approximation property.

Proof. (a)⇒(b): Due to Remark 2.5 (a) and [13, I.4.1 Proposition, p. 38] (or [13, I.4.2 Corollary (d), p. 38]
in combination with [51, Theorem 4.1, p. 43]) we have (X, γ) = (X ′

γ , ‖ · ‖X′
γ
)′κ. Hence E := (X ′

γ , ‖ · ‖X′
γ
)

has the approximation property by [16, Corollary 1.3, p. 144] because (X, γ) = E′
κ has the approximation 

property.
(b)⇒(a): We note that (X ′

γ , ‖ · ‖X′
γ
) = (X, γ)′b = (X, γ)′κ by Remark 2.5 (d) and the semi-Montel 

property of (X, γ). Thus E := (X, γ) has the approximation property by [16, Corollary 1.3, p. 144] because 
(X ′

γ , ‖ · ‖X′
γ
) = E′

κ has the approximation property. �
In particular, the preceding proof shows that (X, γ) = (X ′

γ , ‖ · ‖X′
γ
)′κ = ((X, γ)′b)′κ, i.e. (X, γ) is a DFC-

space by [51, Theorem 4.1, p. 43], if (X, ‖ · ‖, τ) is a semi-Montel Saks space. Sufficient conditions that 
guarantee that (X, γ) has the approximation property may be found in [13, I.4.20 Proposition, p. 53] and 
[13, I.4.21, I.4.22 Corollaries, p. 54].

3. Saks spaces of weak vector-valued functions

In this section we introduce Saks spaces of weak vector-valued functions. We use a linearisation based 
on the ε-product to show that they are complete w.r.t. the mixed and the submixed topology if their 
scalar-valued version is semi-Montel, τp ≤ τ and they have values in a Banach space.

Let (F(Ω), ‖ · ‖) be a Banach space of K-valued functions on a non-empty set Ω such that τp ≤ τ‖·‖. We 
recall from [40, p. 31] a canonical construction of a weak vector-valued version of such a space. For a locally 
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convex Hausdorff space E over K with directed system of seminorms ΓE generating its topology we define 
the space of weak E-valued F-functions by

F(Ω, E)σ := {f : Ω → E | ∀ e′ ∈ E′ : e′ ◦ f ∈ F(Ω)}.

For p ∈ ΓE we set Up := {x ∈ E | p(x) < 1} and denote by U◦
p the polar of Up. Since (F(Ω), ‖ · ‖) is 

a Banach space, thus webbed, the supremum ‖f‖σ,p := supe′∈U◦
p
‖e′ ◦ f‖ is finite for every f ∈ F(Ω, E)σ

and p ∈ ΓE by [40, 5.1 Remark, p. 31]. Hence the space F(Ω, E)σ equipped with the system of seminorms 
(‖ · ‖σ,p)p∈ΓE

is a locally convex Hausdorff space. If (E, ‖ · ‖E) is a normed space with ΓE := {‖ · ‖E}, then 
(F(Ω, E)σ, ‖ · ‖Eσ ) is a normed space where ‖ · ‖Eσ := ‖ · ‖σ,‖·‖E

.
Now, let τ be an additional locally convex Hausdorff topology on F(Ω) such that (F(Ω), ‖ · ‖, τ) is a 

Saks space and γ := γ(‖ · ‖, τ) = γs(‖ · ‖, τ). Then, by Definition 2.2, a directed system of seminorms that 
generates γ is given by

‖|f‖|(qn,an)n∈N
:= sup

n∈N
qn(f)an, f ∈ F(Ω),

for (qn)n∈N ⊂ Γτ , where Γτ is a directed system of continuous seminorms that generates the topology τ
and fulfils (1), and (an)n∈N ∈ c+0 . We set

‖|f‖|σ,(qn,an)n∈N ,p := sup
e′∈U◦

p

‖|e′ ◦ f‖|(qn,an)n∈N
= sup

e′∈U◦
p

sup
n∈N

qn(e′ ◦ f)an, f ∈ F(Ω, E)σ, (2)

for p ∈ ΓE , (qn)n∈N ⊂ Γτ and (an)n∈N ∈ c+0 . Then for p ∈ ΓE , (qn)n∈N ⊂ Γτ and (an)n∈N ∈ c+0 it holds

‖|f‖|σ,(qn,an)n∈N ,p ≤ sup
n∈N

|an|‖f‖σ,p < ∞, f ∈ F(Ω, E)σ.

So the system of seminorms (‖|f‖|σ,(qn,an)n∈N ,p)(qn,an)n∈N∈N ,p∈ΓE
induces a locally convex Hausdorff topol-

ogy on F(Ω, E)σ which we denote by γE
σ,s.

3.1 Remark. Let (F(Ω), ‖ · ‖, τ) be a Saks space of K-valued functions on a non-empty set Ω such that 
(F(Ω), ‖ · ‖) is a Banach space, τp ≤ τ‖·‖ and γ(‖ · ‖, τ) = γs(‖ · ‖, τ), and E a locally convex Hausdorff space 
over K with directed system of seminorms ΓE generating its topology. Then the topology γE

σ,s does not 
depend on the choice of the system of seminorms that generates γ := γ(‖ · ‖, τ). Indeed, let Γγ be another 
system of seminorms that generates γ. Then for every (qn)n∈N ⊂ Γτ , Γτ as above, and (an)n∈N ∈ c+0 there 
are C0 ≥ 0 and r0 ∈ Γγ such that ‖|f‖|σ,(qn,an)n∈N

≤ C0r0(f) for all f ∈ F(Ω). On the other hand, for every 
and r1 ∈ Γγ there are C1 ≥ 0, (q̃n)n∈N ⊂ Γτ and (ãn)n∈N ∈ c+0 such that r1(f) ≤ C1‖|f‖|σ,(q̃n,ãn)n∈N

for all 
f ∈ F(Ω). This implies that

‖|f‖|σ,(qn,an)n∈N ,p ≤ C0 sup
e′∈U◦

p

r0(e′ ◦ f)

and

sup
e′∈U◦

p

r1(e′ ◦ f) ≤ C1‖|f‖|σ,(q̃n,ãn)n∈N ,p

for all f ∈ F(Ω, E)σ and p ∈ ΓE . Thus the system of seminorms given by

|f |σ,r,p := sup
e′∈U◦

p

r(e′ ◦ f), f ∈ F(Ω, E)σ,

for r ∈ Γγ and p ∈ ΓE also generates γE
σ,s. Similarly, γE

σ,s does not depend on the choice of ΓE.
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3.2 Remark. Let (F(Ω), ‖ · ‖, τ) be a Saks space of K-valued functions on a non-empty set Ω such that 
(F(Ω), ‖ · ‖) is a Banach space, τp ≤ τ‖·‖ and γ(‖ · ‖, τ) = γs(‖ · ‖, τ), and (E, ‖ · ‖E) a normed space over K. 
Then (F(Ω, E)σ, ‖ · ‖Eσ , τEσ ) is a Saks space where τEσ is the locally convex Hausdorff topology on F(Ω, E)σ
generated by the system of seminorms given by

qEσ (f) := sup
e′∈U◦

‖·‖E

q(e′ ◦ f) = sup
e∗∈B‖·‖E∗

q(e∗ ◦ f), f ∈ F(Ω, E)σ,

for q ∈ Γτ and Γτ as above. Indeed, this follows from Definition 2.1 and the observation

sup
q∈Γτ

qEσ (f) = sup
q∈Γτ

sup
e∗∈B‖·‖E∗

q(e∗ ◦ f) = sup
e∗∈B‖·‖E∗

sup
q∈Γτ

q(e∗ ◦ f) = sup
e∗∈B‖·‖E∗

‖e∗ ◦ f‖

= ‖f‖Eσ .

Further, γE
σ,s = γs(‖ · ‖Eσ , τEσ ) by Definition 2.2 and the definitions of τEσ and γE

σ,s.

For a linear space F(Ω) of K-valued functions on a non-empty set Ω and x ∈ Ω we define the linear 
functional Δ(x) : F(Ω) → K, Δ(x)(f) := f(x).

3.3 Theorem. Let (F(Ω), ‖ · ‖, τ) be a semi-Montel Saks space of K-valued functions on a non-empty set Ω
such that τp ≤ τ , E a complete locally convex Hausdorff space over K and set F(Ω)γ := (F(Ω), γ). Then 
the map

χ : F(Ω)γεE → (F(Ω, E)σ, γE
s,σ), χ(u) := u ◦ Δ = [x �→ u(Δ(x))],

is a topological isomorphism. In particular, (F(Ω, E)σ, γE
σ,s) is complete. If E is a Banach space, then 

(F(Ω, E)σ, ‖ · ‖Eσ , τEσ ) is a complete Saks space.

Proof. First, we show that χ is well-defined and linear. Since τp ≤ τ ≤ γ, it holds Δ(x) ∈ F(Ω)′γ for all 
x ∈ Ω (cf. [41, 4.2 Remark, p. 12]). We note that (F(Ω)γ)′κ = (F(Ω)γ)′b because F(Ω)γ is a semi-Montel 
space. Hence F(Ω)γεE = Le((F(Ω)γ)′b, (E, τE)) where τE denotes the locally convex Hausdorff topology of 
E. Let u ∈ F(Ω)γεE and e′ ∈ E′. Using that e′◦u ∈ ((F(Ω)γ)′b)′ and the semi-reflexivity of the semi-Montel 
space F(Ω)γ , we note that there is fe′◦u ∈ F(Ω) such that (e′ ◦ u)(f ′) = f ′(fe′◦u) for all f ′ ∈ F(Ω)′γ . This 
implies with f ′ = Δ(x) that (e′ ◦ u) ◦ Δ = fe′◦u. Thus the map χ is well-defined and it is easily seen to be 
linear as well.

Second, we show that χ is injective and continuous. Let Γτ be a directed system of continuous seminorms 
that generates the topology τ and fulfils (1). For (qn)n∈N ⊂ Γτ and (an)n∈N ∈ c+0 we define Uqnan

:= {f ∈
F(Ω) | qn(f)an < 1} and note that the sets

V(qn,an)n∈N
:=

⋂
n∈N

Uqnan

form a base of γ-neighbourhoods of zero by Definition 2.2 since γ = γs by condition (ii) of Remark 2.3 (b) 
and Remark 2.5. By the bipolar theorem we have

V ◦
(qn,an)n∈N

= acx
( ⋃
n∈N

U◦
qnan

)
=: acx(W(qn,an)n∈N

)

where acx(W(qn,an)n∈N
) denotes the closure in (F(Ω), γ)′κ of the absolutely convex hull acx(W(qn,an)n∈N

) of 
W(qn,an)n∈N

:=
⋃

n∈N U◦
qnan

(see [28, 8.2.4 Corollary, p. 149]). Due to [28, 8.4, p. 152, 8.5, p. 156–157] the 
topology of F(Ω)γεE is generated by the seminorms
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|u|(qn,an)n∈N ,p := sup
y∈V ◦

(qn,an)n∈N

p(u(y)) = sup
y∈acx(W(qn,an)n∈N

)
p(u(y)), u ∈ F(Ω)γεE,

for (qn)n∈N ⊂ Γτ , (an)n∈N ∈ c+0 and p ∈ ΓE where ΓE denotes a system of seminorms that generates τE. 
By the continuity of u ∈ F(Ω)γεE we have

|u|(qn,an)n∈N ,p = sup
y∈acx(W(qn,an)n∈N

)
p(u(y)) ≥ sup

y∈W(qn,an)n∈N

p(u(y)).

On the other hand, for y ∈ acx(W(qn,an)n∈N
) there are m ∈ N, λk ∈ K, f ′

k ∈ U◦
qkak

, 1 ≤ k ≤ m, with ∑m
k=1 |λk| = 1 such that y =

∑m
k=1 λkf

′
k. It follows that for all u ∈ F(Ω)γεE

p(u(y)) ≤
m∑

k=1

|λk|p(u(f ′
k)) ≤ sup

1≤k≤m
p(u(f ′

k)) ≤ sup
z∈W(qn,an)n∈N

p(u(z))

and we deduce

|u|(qn,an)n∈N ,p = sup
y∈W(qn,an)n∈N

p(u(y)) = sup
n∈N

sup
f ′∈U◦

qnan

p(u(f ′)). (3)

By the first part of the proof there is fe′◦u ∈ F(Ω) such that (e′ ◦ u)(f ′) = f ′(fe′◦u) and (e′ ◦ u) ◦Δ = fe′◦u
for all u ∈ F(Ω)γεE, f ′ ∈ F(Ω)′γ and e′ ∈ E′. We conclude that

‖|χ(u)‖|σ,(qn,an)n∈N ,p = sup
e′∈U◦

p

sup
n∈N

qn(e′ ◦ (u ◦ Δ))an = sup
e′∈U◦

p

sup
n∈N

sup
f ′∈U◦

qnan

|f ′(fe′◦u)|

= sup
e′∈U◦

p

sup
n∈N

sup
f ′∈U◦

qnan

|(e′ ◦ u)(f ′)| = sup
n∈N

sup
f ′∈U◦

qnan

p(u(f ′))

=
(3)

|u|(qn,an)n∈N ,p (4)

for all u ∈ F(Ω)γεE. Hence χ is injective and continuous.
Third, we show that χ is surjective and note that (4) implies that the inverse of χ is continuous. Due to 

Remark 2.5 (d) we have

F(Ω)γεE = Le((F(Ω)γ)′b, (E, τE)) = Le((F(Ω)′γ , ‖ · ‖F(Ω)′γ ), (E, τE)).

Hence the surjectivity of χ is a consequence of [40, 5.5 Theorem, p. 33], and [41, 4.1 Corollary, p. 12].
Fourth, since F(Ω)γ and E are complete, F(Ω)γεE is also complete by [30, Satz 10.3, p. 234], implying 

the completeness of (F(Ω, E)σ, γE
σ,s). Let E be a Banach space. Due to Remark 3.2 and Remark 2.3 (a) 

(F(Ω, E)σ, ‖ ·‖Eσ , τEσ ) is a Saks space and γE
σ,s = γs(‖ ·‖Eσ , τEσ ) ≤ γ(‖ ·‖Eσ , τEσ ), which implies the completeness 

of the Saks space. �
The proof of the continuity of χ and its inverse in Theorem 3.3 is similar to the proof of [37, Lemma 7, 

p. 1517]. Moreover, Theorem 3.3 in combination with Remark 3.2, Proposition 4.4 (b) and Corollary 4.11
(a) and (d) generalises [29, Theorem 4.4, p. 648] where F(Ω, E) = Lip0(Ω, E), E is a Banach space and 
γE
s,σ = γs(‖ · ‖Lip0(Ω,E), τENΩwd

) = γτγ . Due to Proposition 4.4 (d) in combination with Corollary 4.5 (b), 
Corollary 4.6 (d) and (e), Corollary 4.8 (b) and (c), the result of Theorem 3.3 is already contained in 
[5, 3.1 Bemerkung, p. 141] (cf. [39, 5.2.10 Proposition, p. 77], [39, 5.2.17 Corollary, p. 80] and [52, 4.8 
Theorem, p. 878]) for the weighted space F(Ω, E) = Cv(Ω, E) of continuous functions from Corollary 4.5 if 
Ω is discrete, the weighted space F(Ω, E) = Hv(Ω, E) of holomorphic functions from Corollary 4.6 and the 
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weighted kernel F(Ω, E) = CP v(Ω, E) of a hypoelliptic linear partial differential operator from Corollary 4.8
even for quasi-complete locally convex Hausdorff spaces E. However, the proof is different. Theorem 3.3 also 
allows us to characterise (F(Ω), γ) having the approximation property by approximation in (F(Ω, E)σ, γE

σ,s).

3.4 Corollary. Let (F(Ω), ‖ · ‖, τ) be a semi-Montel Saks space of K-valued functions on a non-empty set Ω
such that τp ≤ τ . Then the following assertions are equivalent.

(a) (F(Ω), γ) has the approximation property.
(b) (F(Ω)′γ , ‖ · ‖F(Ω)′γ ) has the approximation property.
(c) F(Ω) ⊗E is dense in (F(Ω, E)σ, γE

σ,s) for every Banach space E over K.
(d) F(Ω) ⊗ E is dense in (F(Ω, E)σ, γE

σ,s) for every complete locally convex Hausdorff space E over K.

Proof. The equivalence (a)⇔(b) follows from Proposition 2.6. The remaining equivalences are a consequence 
of Theorem 3.3 and [30, Satz 10.17, p. 250]. �

[29, Theorem 4.6, p. 651–652] is a special case of Corollary 3.4 for F(Ω) = Lip0(Ω). For the space F(Ω) =
H∞(Ω) = Hv(Ω), v(z) := 1 for z ∈ Ω, of bounded holomorphic C-valued functions on a balanced bounded 
open subset Ω of a complex Banach space from Corollary 4.6 the statement of Corollary 3.4 is contained 
in [52, 5.4 Theorem, p. 883]. Further, it is known that the spaces (H∞(Ω), γ) and (H∞(Ω)′γ , ‖ · ‖H∞(Ω)′γ )
with γ = γ(‖ · ‖, τco) have the approximation property by [5, Satz 3.9, p. 145] for simply connected open 
Ω ⊂ C (cf. [13, V.2.4 Proposition, p. 233] for Ω = D := {z ∈ C | |z| < 1}). The same is true for (Cv(Ω), γ)
and (Cv(Ω)′γ , ‖ · ‖Cv(Ω)′γ ) by [4, 5.5 Theorem (3), (4), p. 205] if Ω is discrete.

We close this section with an application of Theorem 3.3 to some spaces of integrable holomorphic 
functions. We denote by H(D) the space of C-valued holomorphic functions on D. For 1 ≤ p < ∞ the Hardy 
space is defined by

Hp :=
{
f ∈ H(D) | ‖f‖pp := sup

0<r<1

1
2π

2π∫
0

|f(reiθ)|pdθ < ∞
}

and the weighted Bergman space for α > −1 by

Ap
α :=

{
f ∈ H(D) | ‖f‖pα,p := α + 1

π

∫
D

|f(z)|p(1 − |z|2)αdz < ∞
}
.

The Dirichlet space is defined by

D :=
{
f ∈ H(D) | ‖f‖2

D := |f(0)|2 + 1
π

∫
D

|f ′(z)|2dz < ∞
}
.

3.5 Corollary. Let (E, ‖ · ‖E) be a normed space over C and (F(D), ‖ · ‖) be one of the spaces (Hp, ‖ · ‖p), 
(Ap

α, ‖ · ‖α,p) for 1 ≤ p < ∞ and α > −1, or (D, ‖ · ‖D).

(a) (F(D, E)σ, ‖ · ‖Eσ , τEco,σ) is a C-sequential Saks space where τEco,σ := (τco)Eσ .
(b) If E is a Banach space, then (F(D, E)σ, ‖ · ‖Eσ , τEco,σ) is complete.
(c) If E = C, then (F(D), ‖ · ‖, τco) is semi-Montel and γ(‖ · ‖, τco) = γs(‖ · ‖, τco).
(d) If F(D) = Hp, then τco on Hp is generated by the directed system of continuous seminorms (| ·|p,s)0<s<1

given by
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|f |pp,s := sup
0<r<s

1
2π

2π∫
0

|f(reiθ)|pdθ, f ∈ Hp,

for 0 < s < 1, which fulfils ‖f‖p = sup0<s<1 |f |p,s for all f ∈ Hp.
(e) If F(D) = Ap

α, then τco on Ap
α is generated by the directed system of continuous seminorms (| ·|α,p,r)0<r<1

given by

|f |pα,p,r := α + 1
π

∫
Dr

|f(z)|p(1 − |z|2)αdz, f ∈ Ap
α,

for 0 < r < 1, which fulfils ‖f‖α,p = sup0<r<1 |f |α,p,r for all f ∈ Ap
α, where Dr := {z ∈ C | |z| < r}.

(f) If F(D) = D, then τco on D is generated by the directed system of continuous seminorms (| · |D,r)0<r<1
given by

|f |2D,r := |f(0)|2 + 1
π

∫
Dr

|f ′(z)|2dz, f ∈ D,

for 0 < r < 1, which fulfils ‖f‖D = sup0<r<1 |f |D,r for all f ∈ D.

Proof. (c) In all the cases we note that the τco-compactness of B‖·‖ is obtained from [17, p. 4–5] (which 
uses that B‖·‖ is compact in the Montel space (H(D), τco) since B‖·‖ is relatively compact there and its 
closedness is a consequence of Fatou’s lemma). It follows that (F(D), ‖ · ‖, τco) is a semi-Montel Saks space 
by Remark 2.5 (a). Further, condition (ii) of Remark 2.3 (b) yields that γ(‖ · ‖, τco) = γs(‖ · ‖, τco).

(a)+(b) Due to part (c) and τp ≤ τco we have that (F(D, E)σ, ‖ · ‖Eσ , τEco,σ) is a Saks space, which is 
complete if E is a Banach space, by Remark 3.2 and Theorem 3.3. Since the countable system of seminorms

|f |En := sup
e∗∈B‖·‖E∗

sup
z∈D1−(1/n)

|e∗(f(z))|, f ∈ F(D, E)σ,

for n ∈ N, n ≥ 2, generates τEco,σ on F(D, E)σ, we get that τEco,σ is metrisable on F(D, E)σ. Hence 
(F(D, E)σ, ‖ · ‖Eσ , τEco,σ) is C-sequential by [46, Proposition 5.7, p. 2681–2682].

(d) For 0 < s < 1 we have

|f |pp,s = sup
0<r<s

1
2π

2π∫
0

|f(reiθ)|pdθ ≤ sup
0≤r<s

sup
θ∈[0,2π]

|f(reiθ)|p =
(

sup
z∈Ds

|f(z)|
)p

as well as ‖f‖p = sup0<s<1 |f |p,s for all f ∈ Hp. Furthermore, for 0 < s < r < 1 we remark that

|f(z)|p =
∣∣∣f(r z

r

)∣∣∣p ≤ 1
2π

2π∫
0

|f(reiθ)|pdθ 1
1 − |z|2

r2

≤ 1
2π

(
1 − s2

r2

)
2π∫
0

|f(reiθ)|pdθ ≤ 1
2π

(
1 − s2

r2

) |f |pp,r
for all z ∈ Ds and f ∈ Hp by the proof of [61, Theorem 9.1, p. 253]. It follows that τco on Hp is generated 
by the directed system of continuous seminorms (| · |p,s)0<s<1.
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(e) We have ‖f‖α,p = sup0<r<1 |f |α,p,r and

|f |pα,p,r ≤ α + 1
π

max
z∈Dr

(1 − |z|2)α
(

sup
z∈Dr

|f(z)|
)p

for all f ∈ Ap
α and 0 < r < 1. Now, for 0 < r < 1 we choose 0 < s < 1 − r. We deduce from the mean value 

equality for holomorphic functions and Hölder’s inequality that

|f(z)| = 1
πs2

∣∣∣ ∫
Ds(z)

f(w)dw
∣∣∣ ≤ (πs2)

1
q

πs2

( ∫
Ds(z)

|f(w)|pdw
) 1

p

≤ (πs2)
1
q−1

( ∫
Dr+s

|f(w)|p (1 − |w|2)α
(1 − |w|2)α dw

) 1
p

≤ π(πs2)
1
q−1

α + 1 max
w∈Dr+s

(1 − |w|2)−α
p |f |α,p,r+s

for all z ∈ Dr and f ∈ Ap
α with Ds(z) := {w ∈ C | |w − z| < s} and 1 < q ≤ ∞ such that 1

p + 1
q = 1. Thus 

τco on Ap
α is generated by the directed system of continuous seminorms (| · |α,p,r)0<r<1.

(f) We observe that ‖f‖D = sup0<r<1 |f |D,r for all f ∈ D. Moreover, we obtain by Hölder’s inequality 
that

|f(z)| ≤ |f(0)| +
∣∣ z∫
0

f ′(w)dw
∣∣ ≤ |f(0)| +

∫
Dr

|f ′(w)|dw

≤ |f(0)| + (πr2) 1
2

(∫
Dr

|f ′(w)|2dw
) 1

2 ≤ 2 1
2

(
|f(0)|2 + πr2

∫
Dr

|f ′(w)|2dw
) 1

2

≤ 2 1
2πr|f |D,r

for all z ∈ Dr and f ∈ D. Now, for 0 < r < 1 we choose 0 < s < 1 − r. From Cauchy’s inequality we deduce 
the estimate

|f |2D,r ≤ |f(0)|2 + 1
π

∫
Dr

|f ′(z)|2dz ≤ |f(0)|2 + r2
(

sup
z∈Dr

|f ′(z)|
)2

≤ |f(0)|2 + r2

s2

(
sup
z∈Dr

max
w∈C, |w−z|=s

|f(w)|
)2

≤
(
1 + r2

s2

)(
sup

z∈Dr+s

|f(z)|
)2

for all f ∈ D, which implies that τco on D is generated by the directed system of continuous seminorms 
(| · |D,r)0<r<1. �
4. Saks spaces of vector-valued functions

This section is dedicated to Saks spaces F(Ω, E) of vector-valued functions which are often stronger than 
the spaces F(Ω, E)σ of weak vector-valued functions from the preceding section (see Proposition 4.4). In 
order to derive certain systems of seminorms on such spaces which generate the mixed topology we need to 
recall some results for completely regular Hausdorff spaces Ω (see [27, Definition 11.1, p. 180]). Examples 
of completely regular Hausdorff spaces are metrisable spaces by [27, Proposition 11.5, p. 181] and locally 
convex Hausdorff spaces by [20, Proposition 3.27, p. 95]. Further, every subspace of a completely regular 
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Hausdorff space is completely regular and Hausdorff as well. For a completely regular Hausdorff space Ω
we denote by W+

b,0(Ω) the family of all bounded functions w : Ω → [0, ∞) that vanish at infinity, i.e. for 
every ε > 0 the set {x ∈ Ω | w(x) ≥ ε} is compact. Further, we denote by W+

usc,0(Ω) resp. C+
0 (Ω) the 

family of all upper semicontinuous resp. continuous functions w : Ω → [0, ∞) that vanish at infinity. We 
note that C+

0 (Ω) ⊂ W+
usc,0(Ω) ⊂ W+

b,0(Ω) because upper semicontinuous functions are bounded on compact 
sets. By the proofs of [13, II.1.11 Proposition, p. 82–83] and [12, Proposition 3, p. 590] we have the following 
proposition.

4.1 Proposition. Let Ω be a completely regular Hausdorff space, (Kn)n∈N a strictly increasing sequence of 
compact subsets of Ω and (an)n∈N a strictly decreasing positive null-sequence. Then there is w ∈ W+

usc,0(Ω)
such that suppw ⊂

⋃
n∈N Kn and w(x) = a1 for x ∈ K1 and an+1 ≤ w(x) ≤ an for x ∈ Kn+1 \ Kn and 

n ∈ N. If Ω is locally compact and Kn ⊂ K̊n+1 for every n ∈ N, then we may choose w ∈ C+
0 (Ω).

Here, suppw denotes the support of w and K̊n+1 the set of inner points of Kn+1.

4.2 Definition. Let Ω and Λ be non-empty sets, v : Λ → (0, ∞), (E, ‖ · ‖E) a normed space over K, G(Ω, E)
a linear subspace of EΩ, qE : G(Ω, E) → [0, ∞) a seminorm and TE : G(Ω, E) → EΛ a linear map where EΛ

denotes the space of functions from Λ to E. We define the space

Fv(Ω, E) := {f ∈ G(Ω, E) | ‖f‖E := qE(f) + sup
x∈Λ

‖TE(f)(x)‖Ev(x) < ∞}.

If E = K, we write G(Ω) := G(Ω, K), Fv(Ω) := Fv(Ω, K), q := qK, T := TK and ‖ · ‖ := ‖ · ‖K. If we want 
to emphasize dependencies, we write ‖f‖Fv(Ω,E) instead of ‖f‖E .

For a non-empty set Λ we denote by NΛ the family of finite subsets of Λ. If Λ is a topological space, we 
denote by KΛ the family of compact subsets of Λ.

4.3 Theorem. Let Ω and Λ be non-empty sets, v : Λ → (0, ∞), (E, ‖ · ‖E) a normed space over K, G(Ω, E)
a linear subspace of EΩ, qE : G(Ω, E) → [0, ∞) a seminorm, TE : G(Ω, E) → EΛ a linear map and suppose 
that (Fv(Ω, E), ‖ · ‖E) is normed. Let S be a family of subsets of Λ such that S is closed under finite unions, 
Λ =

⋃
S∈S S and denote by τES the locally convex Hausdorff topology generated by the directed system of 

seminorms

qES (f) := qE(f) + sup
x∈S

‖TE(f)(x)‖Ev(x), f ∈ Fv(Ω, E),

for S ∈ S. Then the following assertions hold.

(a) (Fv(Ω, E), ‖ · ‖E , τES ) is a Saks space.
(b) If there is a sequence (Sn)n∈N in S such that for every S ∈ S there is N ∈ N with S ⊂ SN , then 

(Fv(Ω, E), ‖ · ‖E , τES ) is C-sequential.
(c) The submixed topology γs(‖ · ‖E , τES ) is generated by the system of seminorms

‖|f‖|E(Sn,an)n∈N
:= sup

n∈N
sup
x∈Sn

(qE(f) + ‖TE(f)(x)‖Ev(x))an, f ∈ Fv(Ω, E),

where (Sn)n∈N is a sequence in S and (an)n∈N ∈ c+0 .
(d) If S = NΛ, then γs(‖ · ‖E , τENΛ

) is generated by the system of seminorms

‖|f‖|E(xn,an)n∈N
:= sup(qE(f) + ‖TE(f)(xn)‖Ev(xn))an, f ∈ Fv(Ω, E),
n∈N
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where (xn)n∈N is a sequence in Λ and (an)n∈N ∈ c+0 .
(e) Let Λ be a completely regular Hausdorff space and set W0 := W+

b,0(Λ) or W+
usc,0(Λ). If S = KΛ and 

γ(‖ · ‖E , τEKΛ
) = γs(‖ · ‖E , τEKΛ

), then the mixed topology γ(‖ · ‖E , τEKΛ
) is generated by the system of 

seminorms

|f |Ew := sup
x∈Λ

(qE(f) + ‖TE(f)(x)‖Ev(x))w(x), f ∈ Fv(Ω, E),

for w ∈ W0. If Λ is locally compact, we may replace W0 by C+
0 (Λ).

Proof. (a) First, we note that the system of seminorms (qES )S∈S is directed and Hausdorff since S is closed 
under finite unions, ‖ · ‖E a norm by assumption and

‖f‖E = qE(f) + sup
S∈S

qES (f)

for all f ∈ Fv(Ω, E) because Λ =
⋃

S∈S S. Hence τES is a locally convex Hausdorff topology with τES ≤ τ‖·‖E

and (Fv(Ω, E), ‖ · ‖E , τES ) a Saks space.
(b) The countable system of seminorms (qSn

)n∈N generates τES by our assumption on S. Hence τES is 
metrisable and so (Fv(Ω, E), γ(‖ · ‖E , τES )) C-sequential by [46, Proposition 5.7, p. 2681–2682].

(c) This follows from part (a) and the definition of γs(‖ · ‖E , τES ).
(d) Let (an)n∈N ∈ c+0 and (Sn)n∈N be a sequence of finite subsets of Λ with cardinality mn := |Sn|

for n ∈ N. Then every Sn, n ∈ N, is of the form Sn = {sn1 , . . . , snmn
} with distinct elements sni ∈ Λ for 

1 ≤ i ≤ mn. We set xi := s1
i for 1 ≤ i ≤ m1. Further, for n ∈ N we set jn :=

∑n
l=1 ml and xjn+i := sn+1

i for 
1 ≤ i ≤ mn+1. Moreover, we set bi := a1 for 1 ≤ i ≤ m1. For n ∈ N we set bjn+i := an+1 for 1 ≤ i ≤ mn+1. 
Then we have (bn)n∈N ∈ c+0 and ‖|f‖|E(Sn,an)n∈N

= ‖|f‖|E(xn,bn)n∈N
for all f ∈ Fv(Ω, E). On the other hand, 

‖|f‖|E({zn},an)n∈N
= ‖|f‖|E(zn,an)n∈N

for all f ∈ Fv(Ω, E) and every sequence (zn)n∈N in Λ. Thus statement 
(d) follows from part (c).

(e) We denote by ωE
b and ωE

usc the locally convex Hausdorff topologies generated by (| · |Ew)w∈W+
b,0(Λ)

and (| · |Ew)w∈W+
usc,0(Λ), respectively. First, we prove that the identity map id : (Fv(Ω, E), γ(‖ · ‖E , τEKΛ

)) →
(Fv(Ω, E), ωE

b ) is continuous. Due to [13, I.1.7 Corollary, p. 8] and [13, I.1.8 Lemma, p. 8] we only need to 
prove that its restriction to B‖·‖E is τEKΛ

-continuous at zero. Let ε > 0, w ∈ W+
b,0(Λ) and set V := {f ∈

Fv(Ω, E) | |f |Ew ≤ ε}. Then there is a compact set K ⊂ Λ such that w(x) < ε
2 for x ∈ Λ \ K. We define 

U := {f ∈ Fv(Ω, E) | qEK(f) ≤ ε
2(1+‖w‖∞)} where ‖w‖∞ := supx∈Λ w(x) and note that for all f ∈ U ∩B‖·‖E

it holds that

|f |Ew ≤ sup
x∈Λ\K

(qE(f) + ‖TE(f)(x)‖Ev(x))w(x)

+ sup
x∈K

(qE(f) + ‖TE(f)(x)‖Ev(x))w(x)

≤ ε

2‖f‖
E + ‖w‖∞qEK(f) ≤ ε

2 + ‖w‖∞
ε

2(1 + ‖w‖∞) ≤ ε,

yielding (U ∩B‖·‖E ) ⊂ V and so the continuity of id.
Second, we prove that id : (Fv(Ω, E), ωE

usc) → (Fv(Ω, E), γ(‖ · ‖E , τEKΛ
)) is continuous. Let (Kn)n∈N be 

a sequence of compact subsets of Λ and (an)n∈N ∈ c+0 . W.l.o.g. Kn ⊂ Kn+1 and 0 < an+1 < an for 
all n ∈ N. Then there is w ∈ W+

usc,0(Λ) with suppw ⊂
⋃

n∈N Kn such that w(x) = a1 for x ∈ K1 and 
an+1 ≤ w(x) ≤ an for x ∈ Kn+1 \Kn by Proposition 4.1. It follows that

‖|f‖|E(Kn,an)n∈N
≤ sup(qE(f) + ‖TE(f)(x)‖Ev(x))w(x) = |f |Ew
x∈Λ
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for all f ∈ Fv(Ω, E), which yields the continuity of id by part (c) and the assumption γ(‖ · ‖E , τEKΛ
) =

γs(‖ · ‖E , τEKΛ
). Due to C+

0 (Λ) ⊂ W+
usc,0(Λ) ⊂ W+

b,0(Λ) and Proposition 4.1 this proves statement (e). �
The proof of Theorem 4.3 (e) is just an adaptation of the proofs of [12, Proposition 3, p. 590] and [13, 

II.1.11 Proposition, p. 82]. In the next proposition we show that the space Fv(Ω, E) from Definition 4.2
is a linear subspace of Fv(Ω, E)σ under some mild assumptions and we use the topology τES defined in 
Theorem 4.3.

4.4 Proposition. Let Ω and Λ be non-empty sets, v : Λ → (0, ∞), (E, ‖ · ‖E) a normed space over K, G(Ω)
a linear subspace of KΩ, G(Ω, E) a linear subspace of EΩ, q : G(Ω) → [0, ∞) and qE : G(Ω, E) → [0, ∞)
seminorms, T : G(Ω) → KΛ and TE : G(Ω, E) → EΛ linear maps and (Fv(Ω), ‖ · ‖) a normed space such 
that

(i) e∗ ◦ f ∈ Fv(Ω) and (e∗ ◦ TE)(f) = T (e∗ ◦ f) for all e∗ ∈ E∗ and f ∈ Fv(Ω, E),
(ii) qE(f) = supe∗∈B‖·‖E∗

q(e∗ ◦ f) for all f ∈ Fv(Ω, E).

Then the following assertions hold.

(a) Fv(Ω, E) is a linear subspace of Fv(Ω, E)σ and ‖ · ‖Eσ ≤ ‖ · ‖E ≤ 2‖ · ‖Eσ on Fv(Ω, E). In particular, 
‖ · ‖E is a norm on Fv(Ω, E). If q = 0, then ‖ · ‖Eσ = ‖ · ‖E on Fv(Ω, E).

Suppose for (b)–(d) that S is a family of subsets of Λ such that S is closed under finite unions and Λ =⋃
S∈S S, and (Fv(Ω), ‖ · ‖, τS) is semi-Montel where τS := τKS .

(b) Then γs(‖ · ‖E , τES ) = γs(‖ · ‖Eσ , τES,σ) on Fv(Ω, E) where τES,σ := (τS)Eσ .
(c) If τp ≤ τS , Fv(Ω, E) = Fv(Ω, E)σ (as linear spaces) and E is a Banach space, then the spaces 

(Fv(Ω, E), γs(‖ · ‖E , τES )) and (Fv(Ω, E), ‖ · ‖E , τES ) are complete.
(d) If Λ is a completely regular Hausdorff space, S = KΛ and W0 := W+

b,0(Λ) or W+
usc,0(Λ), then the topology 

γs(‖ · ‖E , τEKΛ
) is generated by the system of seminorms (| · |Ew)w∈W0 . If Λ is locally compact, we may 

replace W0 by C+
0 (Λ).

Proof. (a) Due to the first part of condition (i) we obtain that Fv(Ω, E) is a linear subspace of Fv(Ω, E)σ. 
The second part of condition (i) implies that

sup
x∈Λ

‖TE(f)(x)‖Ev(x) = sup
x∈Λ

sup
e∗∈B‖·‖E∗

|(e∗ ◦ TE)(f)(x)|v(x)

= sup
e∗∈B‖·‖E∗

sup
x∈Λ

|T (e∗ ◦ f)(x)|v(x)

for all f ∈ Fv(Ω, E). Together with condition (ii) this yields that ‖ · ‖Eσ ≤ ‖ · ‖E ≤ 2‖ · ‖Eσ on Fv(Ω, E), and 
‖ · ‖Eσ = ‖ · ‖E on Fv(Ω, E) if additionally q = 0. Since ‖ · ‖Eσ is a norm on Fv(Ω, E)σ, we get that ‖ · ‖E is 
a norm on Fv(Ω, E).

(b) Let (Sn)n∈N be a sequence in S and (an)n∈N ∈ c+0 . We have by part (a)

‖|f‖|σ,(Sn,an)n∈N ,‖·‖E
=
(2)

sup
e∗∈B‖·‖E∗

‖|e∗ ◦ f‖|K(Sn,an)n∈N
= sup

n∈N
sup

e∗∈B‖·‖E∗

qKSn
(e∗ ◦ f)an

for all f ∈ Fv(Ω, E). Using the second part of condition (i) we get as in part (a) that
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sup
x∈Sn

‖TE(f)(x)‖Ev(x) = sup
e∗∈B‖·‖E∗

sup
x∈Sn

|T (e∗ ◦ f)(x)|v(x)

for all f ∈ Fv(Ω, E). In combination with condition (ii) we obtain the estimates ‖| · ‖|σ,(Sn,an)n∈N ,‖·‖E
≤

‖| · ‖|E(Sn,an)n∈N
≤ 2‖| · ‖|σ,(Sn,an)n∈N ,‖·‖E

on Fv(Ω, E), which imply γs(‖ · ‖E , τES ) = γs(‖ · ‖Eσ , τES,σ) on 
Fv(Ω, E) by Remark 3.2 and Theorem 4.3 (b).

(c) The completeness of (Fv(Ω, E), γs(‖ · ‖E , τES )) follows from part (b), Remark 3.2 and Theorem 3.3. 
The completeness of (Fv(Ω, E), ‖ · ‖E , τES ) then follows from γs(‖ · ‖E , τES ) ≤ γ(‖ · ‖E , τES ) by Remark 2.3
(a).

(d) As (Fv(Ω), ‖ · ‖, τKΛ) is semi-Montel, we know that γ(‖ · ‖, τKΛ) = γs(‖ · ‖, τKΛ) by Remark 2.5 (a) 
and condition (ii) of Remark 2.3 (b). Due to Theorem 4.3 (d) γ(‖ · ‖, τKΛ) is generated by the system of 
seminorms

|f |Kw = sup
x∈Λ

(q(f) + |T (f)(x)|v(x))w(x), f ∈ Fv(Ω),

for w ∈ W0. We deduce that the system of seminorms given by

|f |σ,w,‖·‖E
:= sup

e∗∈B‖·‖E∗

sup
x∈Λ

(q(e∗ ◦ f) + |T (e∗ ◦ f)(x)|v(x))w(x), f ∈ Fv(Ω, E)σ,

for w ∈ W0 generates the topology γs(‖ · ‖Eσ , τEKΛ,σ) on Fv(Ω, E)σ by Remark 3.1 and Remark 3.2. Similar 
to the proofs of parts (a) and (b) we obtain that | · |σ,w,‖·‖E

≤ | · |Ew ≤ 2| · |σ,w,‖·‖E
on Fv(Ω, E) for every 

w ∈ W0, yielding that γs(‖ · ‖E , τEKΛ
) is generated by the system of seminorms (| · |Ew)w∈W0 by part (b). �

Condition (i) of Proposition 4.4 means that the tuple (TE , T ) is strong for (Fv, E) in the sense of 
[38, Definition 2.2 (b), p. 4]. In our first example of this section we consider weighted Saks spaces of 
continuous vector-valued functions on a completely regular Hausdorff space and a sufficient condition for 
their completeness involves the notion of a kR-space. A completely regular space Ω is called a kR-space if 
for any completely regular space Y and any map f : Ω → Y , whose restriction to each compact K ⊂ Ω is 
continuous, the map is already continuous on Ω (see [8, (2.3.7) Proposition, p. 22]). Moreover, a topological 
space Ω is called a k-space if it fulfils the following condition: A ⊂ Ω is closed if and only if A ∩ K is 
closed in K for every compact K ⊂ Ω. Examples of Hausdorff kR-spaces are completely regular Hausdorff 
k-spaces by [18, 3.3.21 Theorem, p. 152]. In particular, metrisable spaces and DFM-spaces, i.e. strong duals 
of Fréchet–Montel spaces, are completely regular Hausdorff k-spaces by [18, 3.3.20 Theorem, p. 152] and [36, 
4.11 Theorem (5), p. 39], respectively. For a non-empty completely regular Hausdorff space Ω, a continuous 
function v : Ω → (0, ∞) and a normed space (E, ‖ · ‖E) over K we set

Cv(Ω, E) := {f ∈ C(Ω, E) | ‖f‖E := sup
x∈Ω

‖f(x)‖Ev(x) < ∞}

where C(Ω, E) is the space of E-valued continuous functions on Ω. Further, we define Cv(Ω) := Cv(Ω, K)
and ‖ · ‖ := ‖ · ‖K. Setting Λ := Ω, G(Ω, E) := C(Ω, E), qE := 0 and TE(f) := f for f ∈ C(Ω, E), we note 
that Fv(Ω, E) = Cv(Ω, E), τEKΩ

= τEco on Cv(Ω, E) and conditions (i) and (ii) of Proposition 4.4 are fulfilled.

4.5 Corollary. Let Ω be a non-empty completely regular Hausdorff space, v : Ω → (0, ∞) continuous and 
(E, ‖ · ‖E) a normed space over K. Then the following assertions hold.

(a) (Cv(Ω, E), ‖ · ‖E , τEco) is a Saks space, γ(‖ · ‖E , τEco) = γs(‖ · ‖E , τEco) and the mixed topology γ(‖ · ‖E , τEco)
is generated by the system of seminorms
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‖|f‖|E(Kn,an)n∈N
:= sup

n∈N
sup
x∈Kn

‖f(x)‖Ev(x)an, f ∈ Cv(Ω, E),

where (Kn)n∈N is a sequence of compact subsets of Ω and (an)n∈N ∈ c+0 .
(b) If Ω is discrete, then Cv(Ω, E) = Cv(Ω, E)σ, γ(‖ · ‖E , τEco) = γs(‖ · ‖E , τENΩ

) and γ(‖ · ‖E , τEco) is also 
generated by the system of seminorms

‖|f‖|E(xn,an)n∈N
:= sup

n∈N
‖f(xn)‖Ev(xn)an, f ∈ Cv(Ω, E),

where (xn)n∈N is a sequence in Ω and (an)n∈N ∈ c+0 .
(c) If Ω is a kR-space and E a Banach space, then (Cv(Ω, E), ‖ · ‖E , τEco) is complete.
(d) If Ω is hemicompact, i.e. there is a sequence (Kn)n∈N in KΩ such that for every K ∈ KΩ there is 

N ∈ N with K ⊂ KN , then (Cv(Ω, E), ‖ · ‖E , τEco) is C-sequential.
(e) If Ω is a hemicompact kR-space, or a completely metrisable space, then (Cv(Ω, E), γ(‖ · ‖E , τEco)) is a 

Mackey space. If E is in addition a Banach space, then (Cv(Ω, E), γ(‖ · ‖E , τEco)) is a strong Mackey 
space.

(f) Let W0 := W+
b,0(Ω) or W+

usc,0(Ω). Then γ(‖ · ‖E , τEco) is also generated by the system of seminorms

|f |Ew := sup
x∈Ω

‖f(x)‖Ev(x)w(x), f ∈ Cv(Ω, E),

for w ∈ W0. If Ω is locally compact, we may replace W0 by C+
0 (Ω).

Proof. Due Theorem 4.3 and our observations above we only need to prove that γ(‖ ·‖E, τEco) = γs(‖ ·‖E , τEco)
from part (a), and parts (b), (c) and (e).

(a) We show that condition (i) of Remark 2.3 (b) is fulfilled. We only need to adjust the proof of [60, 
Example D), p. 65–66] to the weighted vector-valued case, which we do for the sake of the reader. Let 
f ∈ Cv(Ω, E), ε > 0 and K ⊂ Ω be compact. Since ‖f(·)‖Ev is continuous on Ω, there is an open set G ⊂ Ω
with K ⊂ G such that

sup
x∈G

‖f(x)‖Ev(x) ≤ sup
x∈K

‖f(x)‖Ev(x) + ε = qEK(f) + ε. (5)

The set Ω \ G is closed and disjoint with the compact set K ⊂ Ω. By [8, (2.1.5) Proposition, p. 17] the 
complete regularity of Ω implies that there is a continuous function u : Ω → [0, 1] such that u|K = 0 and 
u|Ω\G = 1. Now, we set g := (1 − u)f and h := uf and note that f = g + h and g, h ∈ Cv(Ω, E). Due to the 
properties of u we have qEK(h) = 0 and

‖g‖E = sup
x∈Ω

(1 − u(x))‖f(x)‖Ev(x) = sup
x∈G

(1 − u(x))‖f(x)‖Ev(x)

≤ sup
x∈G

‖f(x)‖Ev(x) ≤
(5)

qEK(f) + ε.

Thus condition (i) of Remark 2.3 (b) is fulfilled, yielding γ(‖ · ‖E , τEco) = γs(‖ · ‖E , τEco).
(b) Since Ω is discrete, every subset of Ω is open, and a subset of Ω is compact if and only if it is finite. 

Thus τEco = τEKΩ
= τENΩ

and statement (b) follows from part (a), Theorem 4.3 (d) and Mackey’s theorem.
(c) Let Cb(Ω, E) := Cṽ(Ω, E) for ṽ(x) := 1, x ∈ Ω, and set ‖ · ‖E∞ := ‖ · ‖Cṽ(Ω,E). By part (f) the 

multiplication operator

ME
v : Cv(Ω, E) → Cb(Ω, E), ME

v (f) := fv,
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is a topological isomorphism w.r.t. γ(‖ · ‖E , τEco) and γ(‖ · ‖E∞, τEco). The space (Cb(Ω, E), γ(‖ · ‖E∞, τEco)) is 
complete by [13, II.4.2 Proposition 2), p. 113] because Ω is a kR-space (see [13, p. 112] and note that 
kR-spaces are exactly the K-complete spaces by [13, p. 80]) and (E, ‖ · ‖E , τ‖·‖E

) a complete Saks space as 
γ(‖ · ‖E , τ‖·‖E

) = τ‖·‖E
. This implies that (Cv(Ω, E), γ(‖ · ‖E , τEco)) is also complete since ME

v is a topological 
isomorphism.

(e) Let Ω be a hemicompact kR-space. Then Ω is a k-space by [50, Lemma 5.1, p. 884] and we have that 
(Cb(Ω, E), γ(‖ · ‖E∞, τEco)) is a Mackey space, which is strong if E is a Banach space, by part (f) and [33, 
Theorem 3.4, p. 165]. Let Ω be a completely metrisable space. Then (Cb(Ω, E), γ(‖ · ‖E∞, τEco)) is a Mackey 
space, which is strong if E is a Banach space, by part (f), [32, Theorem 2, p. 35] and [31, Theorem 3.7, 
p. 202]. Using the topological isomorphism ME

v from part (c), we note that both statements remain valid if 
we replace Cb(Ω, E) by Cv(Ω, E) and ‖ · ‖E∞ by ‖ · ‖E . �

We remark that (Cv(Ω), ‖ ·‖, τco) is semi-Montel by [41, 3.9 Example (i), p. 10] if Ω is discrete. In the case 
Cb(Ω, E) the statement from Corollary 4.5 (a) that (Cb(Ω, E), ‖ · ‖E∞, τEco) is a Saks space and Corollary 4.5
(f) for W0 = W+

usc,0(Ω) (see [13, p. 81–82]) are contained in [13, II.4.1 Definition, p. 113] and [13, II.4.2 
Proposition 2), 6), p. 113] (see also [23, 1.1 Remark, p. 844]).1 In the case Cb(Ω) Corollary 4.5 (f) is contained 
in [12, Proposition 3, p. 590] for locally compact Ω and W0 = C+

0 (Ω). In the case Cv(Ω) the statement from 
Corollary 4.5 (a) that γ(‖ ·‖, τco) = γs(‖ ·‖, τco), the inverse of the topological isomorphism MK

v from the proof 
of part (c) and Corollary 4.5 (c) are contained in [25, Lemmas A.1, A.4, p. 44] and [25, Theorem A.5, p. 44]. 
Moreover, we note that Corollary 4.5 (b) does not hold for general Ω by [30, Beispiel, p. 232]. Furthermore, 
we remark that (Cv(Ω, E), γ(‖ · ‖E , τEco)) is C-sequential by [42, Remark 3.19 (a), p. 14] combined with the 
topological isomorphism ME

v if E = K and Ω a Polish space, i.e. separably completely metrisable. It is an 
open question whether this remains valid if E is a Banach space. Due to Corollary 4.5 (e) and [58, Corollary 
7.6, p. 52] it would be sufficient to prove that (Cv(Ω, E), γ(‖ · ‖E, τEco)) is a Mazur space if Ω is Polish and E
a Banach space, i.e. that every sequentially γ(‖ · ‖E , τEco)-continuous linear functional on Cv(Ω, E) is already 
γ(‖ · ‖E , τEco)-continuous.

Next, we consider subspaces of Cv(Ω, E). Let (E, ‖ ·‖E) be a normed space over C. For a non-empty open 
subset Ω of a complex locally convex Hausdorff space let H(Ω, E) be the space of holomorphic functions 
f : Ω → E, i.e. the space of Gâteaux-holomorphic and continuous functions f : Ω → E (see [15, Definition 
3.6, p. 152]), and for a continuous function v : Ω → (0, ∞) we set

Hv(Ω, E) := {f ∈ H(Ω, E) | ‖f‖E := sup
z∈Ω

‖f(z)‖Ev(z) < ∞}.

Further, we define Hv(Ω) := Hv(Ω, C) and ‖ · ‖ := ‖ · ‖C. Setting Λ := Ω, G(Ω, E) := H(Ω, E), qE := 0 and 
TE(f) := f for f ∈ H(Ω, E), we observe that Fv(Ω, E) = Hv(Ω, E), τEKΩ

= τEco on Hv(Ω, E) and conditions 
(i) and (ii) of Proposition 4.4 are fulfilled.

4.6 Corollary. Let Ω be a non-empty open subset of a locally convex Hausdorff space X over C, v : Ω → (0, ∞)
continuous and (E, ‖ · ‖E) a normed space over C. Then the following assertions hold.

(a) (Hv(Ω, E), ‖ · ‖E , τEco) is a Saks space.
(b) If X is a kR-space and E a Banach space, then (Hv(Ω, E), ‖ · ‖E , τEco) is complete.
(c) If Ω is hemicompact, then (Hv(Ω, E), ‖ · ‖E , τEco) is C-sequential.
(d) If X is a k-space and E = C, then (Hv(Ω), ‖ · ‖, τco) is semi-Montel and γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for 

S ∈ {NΩ, KΩ}.

1 The condition of upper semicontinuity or boundedness for the weights w is missing in [23] (and [31–33]) even though it is 
contained in its reference [55, Theorem 2.4, p. 316] for the proof.
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(e) If X is metrisable or a DFM-space, and E a Banach space, then it holds Hv(Ω, E) = Hv(Ω, E)σ.

Proof. (a) and (c) follow from Theorem 4.3 and our observations above.
(b) We set γCv(Ω,E) := γ(‖ ·‖Cv(Ω,E), τEco|Cv(Ω,E)) and note γCv(Ω,E)|Hv(Ω,E) ≤ γ(‖ ·‖Hv(Ω,E), τEco|Hv(Ω,E)) by 

[13, p. 39]. The space (Cv(Ω, E), γCv(Ω,E)) is complete by Corollary 4.5 (c) and Hv(Ω, E) a closed subspace. 
This implies statement (b).

(d) By [41, 3.9 Example (iii), p. 10–11] (Hv(Ω), ‖ · ‖, τco) is semi-Montel. Furthermore, the observations 
τKΩ = τco and τNΩ ≤ τco on Hv(Ω) imply that γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for S ∈ {NΩ, KΩ} by Remark 2.5
(c).

(e) This follows from [15, Example 3.8 (g), p. 159]. �
Regarding Corollary 4.6 (c), we remark that Ω is hemicompact by [14, Example 2.47, p. 79–81] if X

is a DFM-space. Theorem 4.3 (e) and Corollary 4.6 (d) imply [6, Proposition 3.1, p. 77] where X = Cd. 
Theorem 4.3 (d) and Corollary 4.6 (d) imply [52, 4.5 Theorem, p. 875] where X is a Banach space and 
v(z) := 1 for all z ∈ Ω. Further, we remark that (H∞(D), γ(‖ · ‖∞, τco)) is not a Mackey space by [13, V.2.7 
Corollary, p. 235].

4.7 Remark. Let (E, ‖ · ‖) be a Banach space over C and 1 ≤ p < ∞. We may also define a strong E-valued 
version of the Hardy Hp from Corollary 3.5. Let

Hp(E) :=
{
f ∈ H(D, E) | (‖f‖Ep )p := sup

0<r<1

1
2π

2π∫
0

‖f(reiθ)‖pEdθ < ∞
}
.

However, in contrast to the case p = ∞, we only have the strict inclusion Hp(E) � Hp(E)σ for 1 ≤ p < ∞
by [24, Corollary 12, p. 359] if E is infinite-dimensional.

Let us turn to another subspace of Cv(Ω, E). For a non-empty open set Ω ⊂ Rd and a normed space 
(E, ‖ · ‖E) over K we denote by C∞(Ω, E) the space of infinitely continuously partially differentiable E-
valued functions on Ω and by (∂β)Ef the β-th partial derivative of f ∈ C∞(Ω, E) for a multi-index β ∈ Nd

0 . 
If E = K, we set C∞(Ω) := C∞(Ω, K) and ∂βf := (∂β)Kf for f ∈ C∞(Ω) and β ∈ Nd

0 . For K = C and 
a polynomial P on Rd with constant complex coefficients we define the linear partial differential operator 
P (∂)E := P ((∂)E) on C∞(Ω, E) in the usual way and its kernel

CP (Ω, E) := {f ∈ C∞(Ω, E) | f ∈ kerP (∂)E}.

For a continuous function v : Ω → (0, ∞) we define the weighted kernel

CP v(Ω, E) := {f ∈ CP (Ω, E) | ‖f‖E := sup
x∈Ω

‖f(x)‖Ev(x) < ∞}.

Further, we define CP v(Ω) := CP v(Ω, C) and ‖ · ‖ := ‖ · ‖C. Setting Λ := Ω, G(Ω, E) := CP (Ω, E), qE := 0
and TE(f) := f for f ∈ CP (Ω, E), we observe that Fv(Ω, E) = CP v(Ω, E), τEKΩ

= τEco on CP v(Ω, E) and 
conditions (i) and (ii) of Proposition 4.4 are fulfilled.

4.8 Corollary. Let Ω ⊂ Rd be non-empty and open, v : Ω → (0, ∞) continuous, (E, ‖ · ‖E) a normed space 
over C and P (∂)E a linear partial differential operator such that P (∂)C is hypoelliptic. Then the following 
assertions hold.

(a) (CP v(Ω, E), ‖ · ‖E , τEco) is a C-sequential Saks space.
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(b) If E = C, then (CP v(Ω), ‖ · ‖, τco) is semi-Montel and γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for S ∈ {NΩ, KΩ}.
(c) If E is a Banach space, then CP v(Ω, E) = CP v(Ω, E)σ and the Saks space (CP v(Ω, E), ‖ · ‖E , τEco) is 

complete.

Proof. (a) This follows from Theorem 4.3, our observations above and the fact that open subsets of Rd are 
hemicompact.

(b) By [41, 3.9 Example (ii), p. 10] (CP v(Ω), ‖ · ‖, τco) is semi-Montel. The rest of the proof is analogous 
to the proof of Corollary 4.6 (d).

(c) It holds CP v(Ω, E) = CP v(Ω, E)σ by the weak-strong principle [7, Theorem 9, p. 232] and Mack-
ey’s theorem. Due to part (b), τp ≤ τKΩ , τEKΩ

= τEco and Proposition 4.4 (c) we get that the Saks space 
(CP v(Ω, E), ‖ · ‖E , τEco) is complete. �
4.9 Remark. Let (X, ‖ · ‖, τ) be a Saks space, Y a linear subspace of X. Then the subtriple (Y, ‖ · ‖|Y , τ|Y ) is 
also a Saks space and γ(‖ ·‖, τ)|Y ≤ γ(‖ ·‖|Y , τ|Y ) by [13, p. 39]. In general, γ(‖ ·‖, τ)|Y = γ(‖ ·‖|Y , τ|Y ) does not 
hold by [3, p. 133]. However, suppose that (Y, ‖ ·‖|Y , τ|Y ) fulfils condition (i) or (ii) of Remark 2.3 (b) so that 
γ(‖ ·‖|Y , τ|Y ) = γs(‖ ·‖|Y , τ|Y ). Then it follows from [13, I.4.6 Lemma, p. 44] that γ(‖ ·‖, τ)|Y = γ(‖ ·‖|Y , τ|Y ). 
This observation is an alternative way to derive γ(‖ · ‖, τco) = γs(‖ · ‖, τKΩ) in Corollary 4.6 (d) and 
Corollary 4.8 (b) since condition (ii) of Remark 2.3 (b) is fulfilled for the subtriple.2

For a normed space (E, ‖ ·‖E) over C and a continuous function v : D → (0, ∞) with D = {z ∈ C | |z| < 1}
we define the Bloch type space

Bv(D, E) := {f ∈ H(D, E) | ‖f‖E := ‖f(0)‖E + sup
z∈D

‖∂E
Cf(z)‖Ev(z) < ∞}

where

∂E
Cf(z) := lim

h→0
h∈C,h
=0

f(z + h) − f(z)
h

, z ∈ D,

Further, we define Bv(D) := Bv(D, C) and ‖ · ‖ := ‖ · ‖C. Setting Λ := D, G(D, E) := H(D, E), qE(f) :=
‖f(0)‖E and TE(f) := ∂E

Cf(z) for f ∈ H(D, E), we observe that Fv(Ω, E) = Bv(D, E) and conditions (i) 
and (ii) of Proposition 4.4 are fulfilled.

4.10 Corollary. Let v : D → (0, ∞) be continuous and (E, ‖ · ‖E) a normed space over C. Then the following 
assertions hold.

(a) (Bv(D, E), ‖ · ‖E , τEco) is a C-sequential Saks space and τEco = τEKD
on Bv(D, E).

(b) If E = C, then (Bv(D), ‖ · ‖, τco) is semi-Montel and γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for S ∈ {ND, KD}.
(c) If E is a Banach space, then Bv(D, E) = Bv(D, E)σ and the Saks space (Bv(D, E), ‖ ·‖E, τEco) is complete.

2 Since [13, I.4.6 Lemma, p. 44] needs that condition (i) or (ii) of Remark 2.3 (b) is fulfilled for the subtriple (Y, ‖ · ‖|Y , τ|Y )
and not for the triple (X, ‖ · ‖, τ), the proof of [53, 5. Proposition, p. 291] seems to be doubtful where X = Cb(U), U an open 
connected subset of a complex Banach space, ‖ · ‖ = ‖ · ‖∞, τ = τb is the topology of uniform convergence on U-bounded subsets 
of U and Y = H∞(U). With the definition of the strict topology β on Cb(U) in [53, p.290] it is shown that β = γ(‖ · ‖∞, τb) in [53, 
3. Theorem, p. 291]. Then [53, 5. Proposition, p. 291] says that β|H∞(U) = γ(‖ · ‖|H∞(U), τb|H∞(U)). However, in its proof it is only 
shown that the triple (Cb(U), ‖ · ‖∞, τb) fulfils condition (i) of Remark 2.3 (b), not the subtriple (H∞(U), ‖ · ‖|H∞(U), τb|H∞(U)). 
At least if U is a subset of a finite-dimensional complex Banach space, then one can use τb = τco which gives that condition (ii) 
of Remark 2.3 (b) is fulfilled for the subtriple in this case.
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Proof. (a) For every 0 < r < 1 we have

max
|z|≤r

‖f(z)‖E ≤ ‖f(0)‖E + max
|z|≤r

‖
z∫

0

∂E
Cf(ζ)dζ‖E

≤
(
1 + r

min|ζ|≤r v(ζ)

)(
‖f(0)‖E + sup

|ζ|≤r

‖∂E
C (ζ)‖Ev(ζ)

)

for all f ∈ Bv(D, E) where the integral in the estimate above is a Bochner integral (cf. [38, Corollary 3.8, 
p. 9–10] for the case E = C), and for every 0 < s < r < 1

‖f(0)‖E + max
|z|≤s

‖∂E
Cf(z)‖Ev(z) ≤ ‖f(0)‖E + 1

r
max
|z|≤s

v(z) max
|ζ|≤r

‖f(ζ)‖E

≤
(
1 + 1

r
max
|z|≤s

v(z)
)

max
|ζ|≤r

‖f(ζ)‖E

for all f ∈ Bv(D, E) by Cauchy’s inequality, which proves τEco = τEKD
on Bv(D, E). The rest of part (a) 

follows from Theorem 4.3, our observations above and the fact that D is hemicompact.
(b) By [41, 3.9 Example (iv), p. 11] (Bv(D), ‖ · ‖, τco) is semi-Montel. The rest of the proof is analogous 

to the proof of Corollary 4.6 (d).
(c) It holds Bv(D, E) = Bv(D, E)σ by the weak-strong principle [7, Theorem 9, p. 232] and Mackey’s 

theorem. Due to part (b), τp ≤ τKD
, τEKD

= τEco and Proposition 4.4 (c) we get that the Saks space 
(Bv(D, E), ‖ · ‖E , τEco) is complete. �

For a normed space (E, ‖ · ‖E) over K and a metric space (Ω, d) with a base point denoted by 0, i.e. a 
pointed metric space in the sense of [57, p. 1], we define the space of E-valued Lipschitz continuous on (Ω, d)
that vanish at 0 by

Lip0(Ω, E) :=
{
f : Ω → E | f(0) = 0 and ‖f‖E := sup

x,y∈Ω
x
=y

‖f(x) − f(y)‖E
d(x, y) < ∞

}
.

Further, we define Lip0(Ω) := Lip0(Ω, K) and ‖ · ‖ := ‖ · ‖K. Setting Λ := Ωwd := {(x, y) ∈ Ω2 | x �= y}, 
v : Λ → (0, ∞), v(x, y) := 1

d(x,y) , G(Ω, E) := {f : Ω → E | f(0) = 0}, qE := 0 and TE(f)(x, y) := f(x) −f(y)
for (x, y) ∈ Λ and f ∈ G(Ω, E), we observe that Fv(Ω, E) = Lip0(Ω, E) and conditions (i) and (ii) of 
Proposition 4.4 are fulfilled.

4.11 Corollary. Let (Ω, d) be a pointed metric space and (E, ‖ ·‖E) a normed space over K. Then the following 
assertions hold.

(a) (Lip0(Ω, E), ‖ ·‖E , τEco) is a Saks space, τEco = τEKΩwd
on ‖ ·‖E-bounded sets, γ(‖ ·‖E, τEco) = γ(‖ ·‖E , τEKΩwd

)
and Lip0(Ω, E) = Lip0(Ω, E)σ.

(b) If E is a Banach space, then (Lip0(Ω, E), ‖ · ‖E , τEco) is complete.
(c) If Ω is hemicompact, then (Lip0(Ω, E), ‖ · ‖E , τEco) is C-sequential.
(d) If E = K, then (Lip0(Ω), ‖ · ‖, τco) is semi-Montel and γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for S ∈ {NΩwd , KΩwd}.

Proof. (a) First, we note that for compact K ⊂ Ωwd the projections π1(K) and π2(K) on the first and 
second component, respectively, are compact in Ω and

qEK(f) = sup ‖f(x) − f(y)‖E
d(x, y) ≤ 2 max

(x,y)∈K

1
d(x, y) sup ‖f(x)‖E
(x,y)∈K x∈(π1(K)∪π2(K))
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for all f ∈ Lip0(Ω, E), which implies τEKΩwd
≤ τEco on Lip0(Ω, E). On the other hand, for every ε > 0 and 

compact K ⊂ Ω we have with Bε := {x ∈ Ω | d(x, 0) < ε} that

sup
x∈K

‖f(x)‖E = sup
x∈K,x 
=0

‖f(x) − f(0)‖E
d(x,0) d(x,0)

≤ max
x∈K

d(x,0) sup
x∈K\Bε

‖f(x) − f(0)‖E
d(x,0) + ε sup

x∈Bε,x 
=0

‖f(x) − f(0)‖E
d(x,0)

≤ max
x∈K

d(x,0)qE(K\Bε)×{0}(f) + ε‖f‖E

for all f ∈ Lip0(Ω, E). Thus the topologies τEKΩwd
and τEco coincide on ‖ · ‖E-bounded sets. Due to [13, I.3.1 

Lemma, p. 27] and Theorem 4.3 (a) this yields that (Lip0(Ω, E), ‖ · ‖E , τEco) is a Saks space. In addition, we 
deduce that γ(‖ · ‖E , τEco) = γ(‖ · ‖E , τEKΩwd

) by the definition of the mixed topology. Moreover, it holds that 
Lip0(Ω, E) = Lip0(Ω, E)σ by Mackey’s theorem.

(b) This follows from parts (a) and (d), τp ≤ τKΩwd
and Proposition 4.4 (c).

(c) If Ω is hemicompact, then τEco is metrisable and so (Lip0(Ω, E), ‖ · ‖E , τEco) C-sequential by [46, Propo-
sition 5.7, p. 2681–2682].

(d) By [41, 3.9 Example (v), p. 11] (Lip0(Ω), ‖ · ‖, τco) is semi-Montel. Furthermore, the observations 
τNΩwd

≤ τKΩwd
≤ τco on Lip0(Ω) imply that γ(‖ · ‖, τco) = γs(‖ · ‖, τS) for S ∈ {NΩwd , KΩwd} by Remark 2.5

(c). �
Regarding Corollary 4.11 (c), we remark that a metric space is hemicompact if and only if it is separable 

and locally compact by [18, Exercises 3.4.E (a), (c), p. 165], [18, Exercises 3.8.C (b), p. 194–195] and [59, 
16.11 Theorem, p. 112]. The statement that (Lip0(Ω), ‖ · ‖, τco) is a complete semi-Montel Saks space from 
Corollary 4.11 (b) and (d) for E = K is already contained in [29, Theorem 2.1 (7), p. 642]. Corollary 4.11
(c) and Theorem 4.3 (d) imply [29, Theorem 3.4, p. 647]. Further, Corollary 4.11 (c) and Theorem 4.3 (e) 
imply [29, Theorem 3.3, p. 645] where Ω is compact and W0 = C+

0 (Ωwd).
For a normed space (E, ‖ ·‖E) over K and k ∈ N0 we denote by Ck(Ω, E) the space of k-times continuously 

partially differentiable E-valued functions on a non-empty open bounded set Ω ⊂ Rd. We define the space of 
k-times continuously partially differentiable E-valued functions on Ω whose partial derivatives up to order 
k are continuously extendable to the boundary of Ω by

Ck(Ω, E) := {f ∈ Ck(Ω, E) | (∂β)Ef cont. extendable on Ω for all β ∈ Nd
0 , |β| ≤ k}

which we equip with the norm given by

|f |ECk(Ω) := sup
x∈Ω

β∈Nd
0 ,|β|≤k

‖(∂β)Ef(x)‖E = sup
x∈Ω

β∈Nd
0 ,|β|≤k

‖(∂β)Ef(x)‖E , f ∈ Ck(Ω, E),

where we use the same symbol for the unique continuous extension of (∂β)Ef to Ω. The space of functions 
in Ck(Ω, E) such that all its k-th partial derivatives are α-Hölder continuous with 0 < α ≤ 1 is given by

Ck,α(Ω, E) :=
{
f ∈ Ck(Ω, E) | ‖f‖E < ∞

}
where

‖f‖E := |f |ECk(Ω) + sup
β∈Nd

0 ,|β|=k

sup
x,y∈Ω

‖(∂β)Ef(x) − (∂β)Ef(y)‖E
|x− y|α .
x
=y
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Further, we define Ck(Ω) := Ck(Ω, K), Ck,α(Ω) := Ck,α(Ω, K) and | · |Ck(Ω) := | · |KCk(Ω) as well as ‖ · ‖ := ‖ · ‖K.
Let E be a Banach space. Then for every β ∈ Nd

0 with |β| = k and f ∈ Ck,α(Ω, E) the unique continuous 
extension of the partial derivative (∂β)Ef to Ω is α-Hölder continuous and the extension has the same 
Hölder constant by [57, Proposition 1.6, p. 5] and [57, Proposition 2.50, p. 66], i.e.

sup
x,y∈Ω
x
=y

‖(∂β)Ef(x) − (∂β)Ef(y)‖E
|x− y|α = sup

x,y∈Ω
x
=y

‖(∂β)Ef(x) − (∂β)Ef(y)‖E
|x− y|α .

Setting Ωwd := {(x, y) ∈ Ω2 | x �= y}, Λ := {β ∈ Nd
0 | |β| = k} × Ωwd, v : Λ → (0, ∞), v(β, x, y) := 1

|x−y|α , 
G(Ω, E) := Ck,α(Ω, E), qE := | · |ECk(Ω) and TE(f)(β, x, y) := (∂β)Ef(x) − (∂β)Ef(y) for (β, x, y) ∈ Λ and 

f ∈ G(Ω, E), we remark that Fv(Ω, E) = Ck,α(Ω, E) and conditions (i) and (ii) of Proposition 4.4 are 
fulfilled. Furthermore, we denote by Nk,Ωwd

the family of subsets of Λ of the form {β ∈ Nd
0 | |β| = k} ×N

for N ∈ NΩwd
. Similarly, we denote by Kk,Ωwd

the family of subsets of Λ of the form {β ∈ Nd
0 | |β| = k} ×K

for K ∈ KΩwd
. Since {β ∈ Nd

0 | |β| = k} is a finite set, we have τENΛ
= τENk,Ωwd

and τEKΛ
= τEKk,Ωwd

.

4.12 Corollary. Let Ω ⊂ Rd be a non-empty open bounded set, k ∈ N0, 0 < α ≤ 1 and (E, ‖ · ‖E) a Banach 
space over K. Then the following assertions hold.

(a) (Ck,α(Ω, E), ‖ · ‖E , τ|·|ECk(Ω)
) is a C-sequential Saks space, τ|·|ECk(Ω)

= τEKk,Ωwd
on ‖ · ‖E-bounded sets and 

γ(‖ · ‖E , τ|·|ECk(Ω)
) = γ(‖ · ‖E , τEKk,Ωwd

).

Suppose for (b)–(c) that Ω has Lipschitz boundary if k ≥ 1.

(b) If E = K, then (Ck,α(Ω), ‖ · ‖, τ|·|Ck(Ω)
) is semi-Montel and γ(‖ · ‖, τ|·|Ck(Ω)

) = γs(‖ · ‖, τS) for S ∈
{Nk,Ωwd

, Kk,Ωwd
}.

(c) Ck,α(Ω, E) = Ck,α(Ω, E)σ and (Ck,α(Ω, E), ‖ · ‖E , τ|·|ECk(Ω)
) is complete.

Proof. (a) We set M := {β ∈ Nd
0 | |β| = k} and note that for compact K ⊂ Ωwd the projections π1(K) and 

π2(K) on the first and second component, respectively, are compact in Ω and

qEM×K(f) = sup
(x,y)∈K

β∈Nd
0 ,|β|=k

|f |ECk(Ω) + ‖(∂β)Ef(x) − (∂β)Ef(y)‖E
|x− y|α

≤ |f |ECk(Ω) + 2 max
(x,y)∈K

1
|x− y|α sup

x∈(π1(K)∪π2(K))
β∈Nd

0 ,|β|=k

‖(∂β)Ef(x)‖E

≤
(
1 + 2 max

(x,y)∈K

1
|x− y|α

)
|f |ECk(Ω)

for all f ∈ Ck,α(Ω), which implies τEKk,Ωwd
≤ τ|·|ECk(Ω)

. On the other hand, fix some y0 ∈ Ω. For every ε > 0
we have with Bε := {x ∈ Ω | |x − y0|α < ε} that

|f |ECk(Ω) ≤ |f |ECk(Ω) + sup
x∈Ω,x 
=y0

β∈Nd
0 ,|β|=k

‖(∂β)Ef(x) − (∂β)Ef(y0)‖E

≤ |f |ECk(Ω) + sup
x∈Ω,x 
=y0

d

‖(∂β)Ef(x) − (∂β)Ef(y0)‖E
|x− y0|α

|x− y0|α
β∈N0 ,|β|=k
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≤ |f |ECk(Ω) + max
x∈Ω

|x− y0|α sup
x∈Ω\Bε

β∈Nd
0 ,|β|=k

‖(∂β)Ef(x) − (∂β)Ef(y0)‖E
|x− y0|α

+ ε sup
x∈Bε,x 
=y0
β∈Nd

0 ,|β|=k

‖(∂β)Ef(x) − (∂β)Ef(y0)‖E
|x− y0|α

≤
(
1 + max

x∈Ω
|x− y0|α

)
qE
M×((Ω\Bε)×{y0})(f) + ε‖f‖E

for all f ∈ Ck,α(Ω, E). Thus the topologies τEKk,Ωwd
and τ|·|ECk(Ω)

coincide on ‖ · ‖E-bounded sets. Due to 

[13, I.3.1 Lemma, p. 27] and Theorem 4.3 (a) this yields that (Ck,α(Ω, E), ‖ · ‖E , τ|·|ECk(Ω)
) is a Saks space. 

Furthermore, we deduce that γ(‖ · ‖E , τ|·|ECk(Ω)
) = γ(‖ · ‖E , τEKk,Ωwd

) by the definition of the mixed topology. 
Since τ|·|ECk(Ω)

is metrisable, (Ck,α(Ω, E), ‖ ·‖E , τ|·|ECk(Ω)
) is C-sequential by [46, Proposition 5.7, p. 2681–2682].

(b) By [41, 3.9 Example (vi), p. 11] (Ck,α(Ω), ‖ · ‖, τ|·|Ck(Ω)
) is semi-Montel. Moreover, the observations 

τNk,Ωwd
≤ τKk,Ωwd

≤ τ|·|Ck(Ω)
on Ck,α(Ω) imply that γ(‖ · ‖, τ|·|Ck(Ω)

) = γs(‖ · ‖, τS) for S ∈ {Nk,Ωwd
, Kk,Ωwd

}
by Remark 2.5 (c).

(c) We have Ck,α(Ω, E) = Ck,α(Ω, E)σ by [39, 5.3.3 Corollary, p. 106]. From parts (a) and (b), τp ≤ τKk,Ωwd

and Proposition 4.4 (c) we deduce that the Saks space (Ck,α(Ω, E), ‖ · ‖E , τ|·|ECk(Ω)
) is complete. �

4.13 Remark. Let the assumptions of Corollary 4.12 (b) be fulfilled. Since the set {β ∈ Nd
0 | |β| = k} is 

finite and τNΛ = τNk,Ωwd
, we obtain analogously to the proof of Theorem 4.3 (d) that γ(‖ · ‖, τ|·|Ck(Ω)

) =
γ(‖ · ‖, τNk,Ωwd

) is generated by the system of seminorms

‖|f‖|(xn,yn,an)n∈N
:= sup

n∈N
β∈Nd

0 ,|β|=k

(
|f |Ck(Ω) + |(∂β)f(xn) − (∂β)f(yn)|

|xn − yn|α
)
an, f ∈ Ck,α(Ω),

where (xn, yn)n∈N is a sequence in Ωwd and (an)n∈N ∈ c+0 .
Let W0 := W+

b,0(Ωwd) or W+
usc,0(Ωwd) or C+

0 (Ωwd). Since {β ∈ Nd
0 | |β| = k} is a finite set, τKΛ = τKk,Ωwd

and Ωwd locally compact, we may also modify the system of seminorms in Theorem 4.3 (e) and obtain that 
γ(‖ · ‖, τ|·|Ck(Ω)

) = γ(‖ · ‖, τKk,Ωwd
) is generated by the system of seminorms

|f |∼w := sup
x,y∈Ω
x
=y

sup
β∈Nd

0 ,|β|=k

(
|f |Ck(Ω) + |∂βf(x) − ∂βf(y)|

|x− y|α
)
w(x, y), f ∈ Ck,α(Ω),

for w ∈ W0 (without the modification the weights w depend on β as well).

5. The dual space of (Fv(Ω, E), γs(‖ · ‖E, τE
NΛ

))

In our closing section we give a characterisation of the dual space of the space Fv(Ω, E) from Definition 4.2
w.r.t. the submixed topology γs(‖ ·‖E , τENΛ

). We know from the preceding section that this submixed topology 
often coincides with the mixed topology, at least if Ω is discrete or E = K. Our proof is an adaptation of 
the proof of the corresponding result [29, Theorem 5.1, p. 652] for the case Fv(Ω, E) = Lip0(Ω, E). For a 
normed space (E, ‖ · ‖E) we denote by E ⊕1 E the space E ×E equipped with the norm ‖ · ‖E⊕1E given by 
‖(x, y)‖E⊕1E := ‖x‖E + ‖y‖E for x, y ∈ E. By �1(N, (E ⊕1 E)∗) we denote the space of (E ⊕1 E)∗-valued 
sequences y = (yn)n∈N such that ‖y‖1 :=

∑∞ ‖yn‖(E⊕1E)∗ < ∞.
n=1
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5.1 Theorem. Let Ω and Λ be non-empty sets, v : Λ → (0, ∞), (E, ‖ · ‖E) a normed space over K, G(Ω, E) a 
linear subspace of EΩ, qE : G(Ω, E) → [0, ∞) a seminorm, TE : G(Ω, E) → EΛ a linear map. Suppose that 
(Fv(Ω, E), ‖ ·‖E) is normed, qE = ‖TE

0 (·)‖E for some linear map TE
0 : G(Ω, E) → E and f ′ : Fv(Ω, E) → K. 

Then f ′ ∈ (Fv(Ω, E), γs(‖ · ‖E , τENΛ
))′ if and only if there are (λn)n∈N ∈ �1(N, (E ⊕1 E)∗) and (xn)n∈N in 

Λ such that

f ′(f) =
∞∑

n=1
λn

(
TE

0 (f), TE(f)(xn)v(xn)
)
, f ∈ Fv(Ω, E).

Proof. ⇐ Let there be sequences (λn)n∈N ∈ �1(N, (E ⊕1 E)∗) and (xn)n∈N in Λ such that

f ′(f) =
∞∑

n=1
λn

(
TE

0 (f), TE(f)(xn)v(xn)
)

for all Fv(Ω, E). So f ′ is linear. Since 
∑∞

n=1 ‖λn‖(E⊕1E)∗ < ∞, there is a positive sequence (μn)n∈N such 
that limn→∞ μn = ∞ and C :=

∑∞
n=1 μn‖λn‖(E⊕1E)∗ < ∞ by [34, Chap. IX, §39, Theorem of Dini, p. 293]. 

It follows that

|f ′(f)| ≤
∞∑

n=1
‖λn‖(E⊕1E)∗(‖TE

0 (f)‖E + ‖TE(f)(xn)‖Ev(xn))

≤ C sup
n∈N

(‖TE
0 (f)‖E + ‖TE(f)(xn)‖Ev(xn))μ−1

n = C‖f‖E(xn,μ
−1
n )n∈N

for all f ∈ Fv(Ω, E), implying f ′ ∈ (Fv(Ω, E), γs(‖ · ‖E , τENΛ
))′ by Theorem 4.3 (d).

⇒ Let f ′ ∈ (Fv(Ω, E), γs(‖ · ‖E , τENΛ
))′. Then there are a sequence (xn)n∈N in Λ, (an)n∈N ∈ c+0 and 

C ≥ 0 such that

|f ′(f)| ≤ C‖f‖E(xn,an)n∈N
= sup

n∈N
(‖TE

0 (f)‖E + ‖TE(f)(xn)‖Ev(xn))ãn (6)

for all f ∈ Fv(Ω, E) by Theorem 4.3 (d) where ãn := Can for all n ∈ N. Let c0(N, E ⊕1 E) denote the 
space of (E ⊕1 E)-valued null-sequences on N. We define the linear subspace

X := {(TE
0 (f)ãn, TE(f)(xn)v(xn)ãn)n∈N | f ∈ Fv(Ω, E)}

of c0(N, E ⊕1 E) and the functional g∗ : X → K given by

g∗
(
(TE

0 (f)ãn, TE(f)(xn)v(xn)ãn)n∈N
)

:= f ′(f).

The functional g∗ is well-defined and linear by (6) combined with the linearity of TE
0 and TE . The estimate

∣∣g∗((TE
0 (f)ãn, TE(f)(xn)v(xn)ãn)n∈N

)∣∣
= |f ′(f)| ≤

(6)
sup
n∈N

(‖TE
0 (f)‖E + ‖TE(f)(xn)‖Ev(xn))ãn

= sup
n∈N

‖(TE
0 (f)ãn, TE(f)(xn)v(xn)ãn)‖E⊕1E

= ‖(TE
0 (f)ãn, TE(f)(xn)v(xn)ãn)n∈N‖∞

for all f ∈ Fv(Ω, E) implies that g∗ is continuous on (X, ‖ · ‖∞|X) where ‖ ·‖∞ denotes the supremum norm 
on c0(N, E⊕1 E). Due to the Hahn–Banach theorem there exists an extension ĝ ∗ ∈ (c0(N, E⊕1 E), ‖ · ‖∞)′
of g∗. Since the map
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Θ: (�1(N, (E ⊕1 E)∗), ‖ · ‖1) → (c0(N, E ⊕1 E), ‖ · ‖∞)′, Θ(y)(z) :=
∞∑

n=1
yn(zn),

is an isometric isomorphism, there is (κn)n∈N ∈ �1(N, (E ⊕1 E)∗) such that ĝ ∗(z) =
∑∞

n=1 κn(zn) for all 
z ∈ c0(N, E ⊕1 E). We set λn := κnãn for all n ∈ N and note that

∞∑
n=1

‖λn‖(E⊕1E)∗ ≤ ‖(κn)n∈N‖1( sup
m∈N

|ãm|) < ∞,

implying (λn)n∈N ∈ �1(N, (E ⊕1 E)∗). Finally, we conclude that

f ′(f) = ĝ ∗((TE
0 (f)ãn, TE(f)(xn)v(xn)ãn)n∈N

)
=

∞∑
n=1

λn

(
TE

0 (f), TE(f)(xn)v(xn)
)

for all f ∈ Fv(Ω, E). �
5.2 Remark. If qE = 0, then we may take (λn)n∈N ∈ �1(N, ({0} ⊕1 E)∗) = �1(N, E∗) in Theorem 5.1.

We observe that Theorem 5.1 is applicable to the spaces Fv(Ω, E) = Cv(Ω, E), Hv(Ω, E), CP v(Ω, E) and 
Lip0(Ω, E) with TE

0 (f) := 0 for f ∈ Fv(Ω, E), implying qE = 0, and to the space Fv(Ω, E) = Bv(D, E)
with TE

0 (f) := f(0) for f ∈ Bv(D, E).
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