20

25

30

35

40

Neural Combinatorial Optimization on Heterogeneous Graphs
An Application to the Picker Routing Problem in Mixed-shelves Warehouses

Primary Keywords: (2) Learning;

Abstract

In recent years, machine learning (ML) models capable of
solving combinatorial optimization (CO) problems have re-
ceived a surge of attention. While early approaches failed
to outperform traditional CO solvers, the gap between hand-
crafted and learned heuristics has been steadily closing. How-
ever, most work in this area has focused on simple CO prob-
lems to benchmark new models and algorithms, leaving a gap
in the development of methods specifically designed to han-
dle more involved problems. Therefore, this work considers
the problem of picker routing in the context of mixed-shelves
warehouses, which involves not only a heterogeneous graph
representation, but also a combinatorial action space result-
ing from the integrated selection and routing decisions to be
made. We propose both a novel encoder to effectively learn
representations of the heterogeneous graph and a hierarchi-
cal decoding scheme that exploits the combinatorial structure
of the action space. The efficacy of the developed methods is
demonstrated through a comprehensive comparison with es-
tablished architectures as well as exact and heuristic solvers.

Introduction

In recent years, there has been a remarkable surge in the
adoption of end-to-end ML methods for solving NP-hard
CO problems, which offers an appealing alternative to the
tedious task of manually crafting heuristics. Typically, neu-
ral combinatorial optimization (NCO) integrates deep neural
networks as feature extractors in the reinforcement learn-
ing (RL) framework to enable a neural agent to learn op-
timal decisions based on the extracted information. Signifi-
cant progress has been made in both of these domains, par-
ticularly with the Attention Model (AM) proposed by Kool,
van Hoof, and Welling (2019) and improved training algo-
rithms like POMO (Kwon et al. 2020), which led to substan-
tial performance improvements. Nevertheless, most of these
advances are designed for and applicable to only a limited
number of simple CO problems, with the Travelling Sales-
man Problem (TSP) and the Vehicle Routing Problem (VRP)
being the most frequently used problems (Mazyavkina et al.
2021). To foster its practical relevance, NCO also has to
demonstrate its effectiveness in dealing with more complex
real-world problems, which necessitates the design of novel
models and algorithms. Therefore, in this work, we will fo-
cus on the Mixed-shelves Picker Routing Problem (MSPRP)
as an example application to develop new methods within

the NCO framework that are capable of addressing more
complicated CO problems.

In a warehouse context, picker routing is concerned with
generating efficient sequences of storage locations to be vis-
ited by a picker to collect items requested by customer or-
ders and deliver them to a central packing station. Recent
research has focused on picker routing in mixed-shelves
warehouses, where items of the same stock keeping unit
(SKU) are spread across multiple shelves, allowing pickers
to choose between alternative storage locations and thus re-
duce the travel distances (Xie, Li, and Luttmann 2023). The
integration of selection and routing decisions in MSPRP re-
sults in a complex combinatorial action space when formu-
lating the problem as a sequential decision problem. Thus,
we utilize the MSPRP as an example of a more complex CO
problem to pioneer the development of neural architectures
capable of addressing a broader spectrum of CO problems
than those currently covered in existing NCO literature.

While Cals et al. (2021) are the first to apply RL to im-
prove warehouse operations, they focus on the problem of
order batching. To the best of our knowledge, no work has
yet used this framework to generate solutions for the picker
routing problem. Therefore, we first formulate the MSPRP
as a Markov Decision Process (MDP), where we represent
the state of the problem instance as a heterogeneous graph.
Further, we develop a novel encoder-decoder architecture,
where the encoder is specifically designed to effectively
learn representations over the heterogeneous graph struc-
ture. The decoder then uses these representations to select
actions from a factorized action space in a hierarchical man-
ner. To the best of our knowledge, this work is the first in
the NCO field to perform an action space factorization using
a hierarchical decoding strategy. Other work dealing with
multidimensional action spaces either flatten it by includ-
ing every possible combination of the distinct action space
dimensions or solve only parts of the decision problem us-
ing a neural agent and others by handcrafted heuristics. We
will demonstrate that both our encoder and decoder models
perform better than the other methods currently employed
in the literature. Therefore, this work not only contributes
to the field of NCO by demonstrating its effectiveness on
a novel problem class, but also by developing new models
that hopefully allow more CO problems with similar prob-
lem structure to be effectively solved using NCO.

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

Related Work

Mixed-shelves Picker Routing. The picking process is
known to be a very labor-intensive and time-consuming
task, representing an estimated 50-65% of the total operat-
ing cost for a warehouse (De Koster, Le-Duc, and Roodber-
gen 2007). Within conventional picker-to-parts warehouses,
the majority of a pickers’ working time is dedicated to trav-
eling between shelves (Tompkins 2010). Minimizing the
travel distance of order pickers has consequently been ex-
tensively studied in the operations research community and
a vast body of literature on the picker routing problem has
emerged over the years. We refer to the literature review of
De Koster, Le-Duc, and Roodbergen (2007) for a compre-
hensive overview on picker routing and related warehous-
ing decision problems. Here we focus in particular on picker
routing in mixed-shelves warehouses which can be regarded
a combined problem of selecting the storage positions to
visit and the actual picker routing. The first to treat this kind
of problem were Daniels, Rummel, and Schantz (1998) who
considered a TSP variant of the MSPRP, where the set of
orders to be collected during a tour is assumed to be de-
termined by a preceding order batching step. The authors
define a mathematical model for the problem and propose
a tabu search algorithm to solve it. Later, Weidinger (2018)
solve the same problem under the assumption of a rectangu-
lar warehouse using a more efficient heuristic based on the
dynamic programming algorithm of Ratliff and Rosenthal
(1983). More recently, Weidinger, Boysen, and Schneider
(2019) and Xie, Li, and Luttmann (2023) extend the MSPRP
by integrating the decision which orders to pick during a tour
into the problem. Their problem can be regarded a variant
of the capacitated VRP due to the construction of multiple
tours with limited capacity. While Weidinger, Boysen, and
Schneider (2019) propose different construction heuristics
and an iterative improvement procedure based on destroy
and repair operators, Xie, Li, and Luttmann (2023) develop a
Variable Neighborhood Search (VNS) to solve this problem.

Neural Combinatorial Optimization. The Ptr-Net pro-
posed by Vinyals, Fortunato, and Jaitly (2015) was the first
architecture that was specifically designed to solve CO prob-
lems. The authors used supervised learning to train the net-
work to solve the TSP using optimal solutions as training
data. Their architecture follows an encoder-decoder struc-
ture, where the encoder maps customer locations from the
feature space to learned embeddings, which in turn are used
by the decoder to iteratively select the next location to visit.
Later, Bello et al. (2017) proposed a Deep Reinforcement
Learning (DRL) approach to train Ptr-Nets without the need
for a database of optimal solutions. Network architectures
other than the Recurrent Neural Networks used in the Ptr-
Net were proposed by Nazari et al. (2018) and Kool, van
Hoof, and Welling (2019). The latter introduced the AM
which incorporates the multi-head attention mechanism of
Vaswani et al. (2017) in both encoder and decoder of the
Ptr-Net and is still the state-of-the-art NCO architecture.
Recently, Mazyavkina et al. (2021) provided a structured
literature analysis of RL for CO problems. The authors
found that the majority of the literature proposes methods

for simple CO problems, with the TSP and capacitated VRP
being covered the most. A notable exception is the work of
Kwon et al. (2021), who propose a novel encoder based on
the AM that is applicable to a wider range of CO problems
that can be expressed as bipartite graphs.

On the other hand, new decoder models for more com-
plex CO problems have hardly been investigated, as also
Hildebrandt, Thomas, and Ulmer (2022) note. They iden-
tified that most research applying RL to more complex VRP
variants uses either an action space restriction or a simplifi-
cation thereof. In the former case, the RL agent is only used
to generate solutions for a sub-problem, and everything else
is solved using established heuristics. An example is Chen,
Ulmer, and Thomas (2022), who also face a combined se-
lection and routing problem where they use a neural agent to
select a vehicle from a heterogeneous fleet, but rely on hand-
crafted heuristics for route generation. An example of action
space simplification can be found in Song et al. (2022), who
propose a heterogeneous graph attention network as a fea-
ture extractor for the job-shop scheduling problem, where
jobs and machines pose different node types to be repre-
sented by the encoder. In the end, they propose to con-
catenate the learned embeddings of jobs and machines and
consider a combinatorial actions space with all job-machine
combinations in the decoding stage. Although this flatten-
ing of the action space is straightforward to implement, an
obvious drawback is the size of the action space growing
quadratically with the number of jobs and machines.

Formal Definition of the MSPRP

This work considers an MSPRP similar to the one outlined
by Weidinger, Boysen, and Schneider (2019). However, Xie
et al. (2021) proposed the concept of split orders, which al-
lows items of an order to be picked within different tours,
resulting in significantly shorter picker routes. Inspired by
their findings, we relax the constraint that items of the same
order must be collected in one picker tour. This adjustment
is further justified by our focus on single-depot instances,
ensuring that items from a single order reach the same pack-
ing stations for consolidation and packaging, regardless of
the tour in which they were picked.!

The goal of our MSPRP is then to pick all d,, demanded
units of all requested SKUs p € P while minimizing the
travel distance of the various picker tours b € B. A tour is
defined by the storage locations visited between two succes-
sive visits to the packing station h, where picked items are
unloaded and commissioned. During a tour, no more than
k units can be picked. We assume that the demand for an
SKU must not be satisfied by a single picker tour, but can be
split over multiple tours and collected from different shelves
(split deliveries). Each SKU may be retrieved from multi-
ple shelves / racks i € VR of the warehouse. However, for
the formulation of the mathematical model, we follow the
approach of Weidinger, Boysen, and Schneider (2019) and

'The MSPRP covered here can be considered a special case
of the problem described by Weidinger, Boysen, and Schneider
(2019), where each order consists of only a single SKU. The au-
thors provide a proof for the NP-hardness of the MSPRP.

150

155

160

165

170

175

180

190

195

200

205

210

215

220

225

consider storage locations i € VS instead of shelves. Ac-
cordingly, each shelf consists of multiple storage locations
or compartments, each of which can store units of only a
single SKU. The distance D;; between storage locations of
the same shelf is zero. To collect an SKU p during a tour,
a picker can choose between the different storage locations
S Vps storing n; > 0 units of this SKU. Further, to for-
mulate the mathematical model, we need to determine the
number of tours required to fully satisfy the demand. Due
to the assumption of split orders and split deliveries, this is
simply the ceiling of the total demand divided by the picker

>p o
K

capacity: |B| = [1 Table 1 summarizes the notation

used to define the mathematical model.

Min Z = Z ZDU-xijb 1)

(i,j)€E bEB
S.t.
S mp= > xu VieVibeB)
(i,5)€€ (Jr)e€
> <1 vieV beB 3)
(i,5)€€
M- iy >y vjeVs beB)
i€V
> =1 Vbe B 5)
JEVS
SN ap<ISl-1 VbeB, Sc VbS] >2
i€S jeS
(6)
Z Yib < K Vbe BB @)
1eVS
S =4y VpeP ®)
iev; beB
> i < i VieVs ©)
beB
zijp € {0,1} V(i,j)e& beB (10)
yip > 0 VieVS, beB (11)

The objective function (1) minimizes the total distance
travelled by the picker. Every storage location that is vis-
ited during a picker tour must also be left, which is ensured
by constraints (2). Moreover, constraints (3) ensure that a
storage location is visited only once during a tour. Although
a storage location may be visited multiple times if the re-
maining capacity of the picker does not suffice to satisfy the
respective demand in one go, it does not make sense to visit
the same storage location twice within one tour.

Through the Big-M formulation in (4) we make sure that
only items are taken from a storage location if this location
is also included in the respective tour. As no more than
items may be picked in a single tour, it is sufficient to set
M = k. Since every tour must start and end at the depot,
equations (5) require that the depot is left exactly once in

P Set of SKUs for picking

VL Set of storage locations and depot (V- = VS U {h})

£ Setofedges {(i,7)|i,j € V", i # j}

V; Set of storage locations including picking item p € P

B Set of required tours {1, 2, ..., |B|}

D;; Distance between two nodes (i, j) € £

x Maximum picking capacity per tour

d, Total demand for item p € P

n; Available supply at storage location i € VS

z;j+ Binaray variable, indicating whether Node j € V-
has been visited after node i € V* in tour b € B

yi¢ Units picked up at location i € VS in tour b € B

Table 1: Notation used in the MIP-Model

every tour. In combination with the network flow constraints
(2) this also ensures that each tour goes back to the depot.
And the subtour elimination constraints (6) ensure that all
storage locations visited in between are also connected to
the tour. Constraints (7) ensure that the picker capacity is not
exceeded. Furthermore, constraints (8) make sure that cus-
tomer orders are satisfied and inequalities (9) take care that
the available stock of items in a shelf is not exceeded during
order picking. Lastly, constraints (10) and (11) delineate the
domains of the decision variables x and y.

Deep Reinforcement Learning for the MSPRP

Similar to other CO problems, a solution to the MSPRP can
be obtained via a sequence of decisions, which can naturally
be constructed using RL. In each iteration t = 0,.. ., tnax,
the RL agent decides the next location to visit and which
items to pick until the demand for all SKUs is met. We
model the solution construction as an MDP with the pol-
icy being a f-parameterized neural network my which takes
the state representation as input and outputs a probability
distribution over the action space. In this chapter, we will
first define the state, action space, transition rule and reward
function of the MSPRP. Then, our policy network based on
the encoder-decoder framework will be described in detail.

MDP for the heterogeneous Graph MSPRP

State. Typically, the state of a CO problem is represented
by a graph. For the MSPRP we found two possible graph
representations. First, one could consider each available
shelf and SKU combination as a unique storage location,
similar to our mathematical model. However, a challenge
arises in finding a size-agnostic feature representation for
storage locations, which needs to include the supply and de-
mand of the SKU contained in the storage location. Given
that an SKU can exist in multiple locations, a representation
ensuring unique identification of the stored SKU is neces-
sary. The mathematical model addresses this by defining a
subset Vps of locations containing SKU p. However, the en-
coder requires a vectorized representation, for instance, us-
ing a one-hot representation. Yet, this approach violates the
requirement of the model being agnostic to the instance size,
an important generalization property of NCO models.

230

235

240

245

250

255

260

270

275

285

290

295

300

305

310

315

320

Thus, a more natural way of representing the state of an
MSPRP instance is by using a heterogeneous graph with dif-
ferent node types, namely shelves and SKUs. Let at each de-
cision step t, the state s; € S be a graph G = (V, P, Ey, ¢t)
representing the current status of the problem. The set of lo-
cation nodes V is the union between the packing station h
and the shelves VR. We follow the common practice in the
NCO field and represent the location nodes by their Carte-
sian coordinates x; € R?. The set of SKUs P poses the
second type of nodes in the heterogeneous graph. We use
xf to denote the feature representation of an SKU p, which
consists only of its demand d,, ; at time ¢. Moreover, edges
with weights E; connect shelf and SKU nodes, specifying
the storage quantity e;;, ; of an item p in the respective shelf ¢
at time ¢. Lastly, the graph is augmented by the context node
¢¢, containing dynamic context information relevant for the
decoding stage. It consists of the current location i; of the

picker as well as the remaining picker capacity ;.

Action. An action a; € A(s;) corresponds to a feasible
shelf-SKU combination (4, p) specifying the next picking
job. Given s;, visiting shelf ¢ is a feasible action if it can
satisfy the demand of at least one SKU currently in demand.
Furthermore, given the next picking location ¢, an SKU p
may only be selected if it is available in the respective shelf.
The depot can always be visited to replenish the picker’s
capacity, but consecutive visits to the depot are prohibited.
When the picker’s capacity is exhausted, visiting the depot is
the only possible action. We introduce a dummy SKU |P|+1
that is selected when the depot is visited. Furthermore, we
assume that the picker always starts and ends the tour at the
depot, ie. ag = ar,_, = (h,|P| +1).

Transition. Once, a feasible shelf-SKU pair (i,p) has
been selected, the transition function I'e (s, a;) determinis-
tically determines the next state s;11. To this end, the pick-
ing quantity y; is determined in a first step. Here, we choose
to always pick the maximum feasible quantity, that is the
minimum of the shelf’s supply for the SKU, the SKU’s de-
mand and the remaining picker capacity. Given a; and v, the
environment deterministically transits to a new state sy 1. It
consists of the new location i; € V), the updated demand
dpt+1 = dp+ — Y, the updated supply €;p 141 = €ipt — Yt
and the remaining picker load k11 = x; — y;. When the
agent chooses to return to the depot, the picker capacity will
be set to the initial payload ~ and supply and demand remain
unchanged. The problem instance is solved once the demand
for every SKU is met and the picker has returned to the de-
pot. We use T to denote the complete solution starting and
ending at the depot, i.e. 7 = {a;, t =0, ..., tymax }-

Reward. To minimize the total travel distance of the
picker, we define the reward R(7) as the negative of the ob-
jective value defined in equation (1), i.e. the summation of
distances between locations visited in 7.

Heterogeneous Graph Neural Network

Encoder. In this work we are facing a CO problem which
is defined over a heterogeneous graph with different node
types, namely shelves and SKUs. Heterogeneous nodes have

different properties, manifested in distinct feature spaces.
This requires specialized architectures specifically designed
for handling heterogeneous inputs and relationships between
them. Several models have been proposed in the literature
for learning representations over heterogeneous graphs. The
Heterogeneous Graph Attention (HAN) architecture, intro-
duced by Wang et al. (2019), adapts the Graph Attention
Network (GAT) to handle graphs with diverse node types.
To this end, the authors propose type-specific transforma-
tions to project the different node-types from their distinct
feature spaces into a mutual embedding space of dimension-
ality dy,. The mutual embedding space is then used to calcu-
late attention scores o between the different nodes:

I
! exp(€;;) ! (1T al—1 l—l)
_ L h-1h-Y) (12
" ety 7o BT (2
qEN;
where, w! € R2? is a learnable weight vector, [-||-] de-

notes vertical concatenation, o represents a non-linear acti-
vation function, and N is the neighborhood of node 4, in-
cluding node i itself. Moreover, h! denotes the embedding
of node 7 after the /th layer, where h? is the initial embed-
ding obtained via the type-specific transformations W, for
anode of type ¢;. The attention scores are then used to com-
pute the node embeddings h! as a weighted sum over all

embeddings hé_l of nodes j in the neighborhood of 7, along

with the embedding h! ! itself. One drawback of this archi-
tecture is that no edge weights are utilized when computing
the attention score. Therefore, the HGCN proposed by Yang
et al. (2021) adapts the Graph Convolution Network (Kipf
and Welling 2017) to aggregate the node embeddings from
the neighborhood of a node using the adjacency matrix di-
rectly. HGCN then uses an attention mechanism similar to
HAN to compute a weighted sum of the target node embed-
ding and the aggregation of the neighborhood embeddings.
For CO problems formulated over homogeneous graphs
like the TSP, the AM has been shown to outperform other
graph neural networks such as the GNN proposed by Khalil
etal. (2017) by a large margin. Therefore, Kwon et al. (2021)
adapt the attention model to solve CO problems defined
over bipartite graphs with node types Z and J as well as
weights E € RIZI*I71 of the edges connecting nodes from
the two sets. The encoder of their MatNet architecture also
uses type-specific transformations to generate initial embed-
dings h? of size dj, for all nodes. Then, for each of the node
types the authors apply distinct update functions JF7z and
F 7. The update functions perform L layers of multi-head
cross-attention to calculate attention scores between a target
node ¢ and all nodes j from the respective other set. To this
end, let Z be the set of all nodes @ € ZU J, Z,, the subset

of nodes of the same type as 7 and Zqu the set of nodes of the
respective other type. Then, cross-attention is defined as:?

-
o = Gk

1] \/@)

2for succinctness we omit head and layer enumeration

Vie Z,je 28 (13)

325

330

335

340

345

350

355

360

365

370

375

380

385

390

where

q=W7hl™ k;=wfhl! (14)

and weight matrices Wf and WS € R4 being
learned by the update function corresponding to nodes of
type ¢;. After that, Kwon et al. (2021) propose to concate-

nate oz;j with the corresponding edge weight e;; and map

it through a feed-forward neural network FF : R?> — R to
a scalar score, which is then normalized using the softmax
function:

exp(€;;)

> eXP(Eiq)7

C
qEZ(bi

Q5 = €ij = FF([a;jHeij]) (15)

The resulting weights are used to compute a weighted av-
erage of the embeddings v; = WQX héfl of the nodes in Zgi.
In the end, skip connections, layer normalization (LN) and
feed-forward layers are used as in Vaswani et al. (2017):

h! = LN(hﬁ‘1 + > aijvj>, VieZ (16
jezg,
h! = LN (ﬁﬁ + FFl(ﬁg)) , Viez (17)

Although MatNet poses a viable extension of the AM, we
consider the limitation to bipartite graphs as a shortcoming.
In bipartite graphs, relations exist only between nodes of dif-
ferent types, yet many real-world problems formulated over
heterogeneous graphs also involve intra-type relationships.
For instance, in the MSPRP shelf nodes strongly influence
each other due to the potential availability of the same SKU
in multiple shelves. By exclusively focusing on inter-type
relationships through the application of cross-attention, the
MatNet encoder may not fully encompass such relationships
in the node embeddings.

Motivated by the identified weaknesses of existing ap-
proaches, we propose the Heterogeneous Attention Model
(HAM), which is an extension of the MatNet encoder for
the more general case of a heterogeneous graph. As usual,
our HAM encoder first projects the feature vectors into
a mutual embedding space using type-specific transforma-
tions. Then, multi-head self-attention (MHSA), followed by
skip-connection and layer normalization, as described by
Vaswani et al. (2017), is performed for each node type:

h! = LN(h{™" + MHSA}, ({h\"'|j € 24,}), VieZ

Using self-attention allows the network to learn relation-
ships between nodes of the same type, like the substitutabil-
ity of shelves containing the same SKUs.

Next, we apply the operations described in equations (13-
17) to capture inter-type relationships, but we replace h!~?
in equations (14) and (16) with h!. Moreover, we remove the
feed-forward layer and the concatenation in equation (15)
and simply multiply agj and e;;, which yielded better results
in our experiments while being much faster. Figure 1 depicts
the architecture of our HAM encoder.

s 4 A s 4 3
Fy Add & Norm Add & Norm Fp
Forward Forward
Add & Norm Add & Norm
Lx | Mult-Head Multi-Head |t
Attention Attention
f 1 I t i) t
Add & Norm Add & Norm
Multi-Head Multi-Head
Attention Attention
t ¢t ¢ t ¢t ¢
N
v, embedding p, embedding ET
£ o smiedding] | 07
(vix|?) pjp| embedding
v}y embedding

Figure 1: HAM Encoder Architecture

Decoder. This work uses a hierarchical decoder to sam-
ple actions specifying the next location ¢; to visit and the
SKU p; to pick. To this end, we decompose the action
space of composite actions A into the sub-action spaces
AY =V and A¥ = P, where A = AY x AP. Similar to
Sharma et al. (2017), our hierarchical decoding strategy uses
a separate policy network for each sub-action space. How-
ever, in contrast to Sharma et al. (2017), we do not sam-
ple from the shelf- and SKU-policy independently, but in
a hierarchical manner. Therefore, let T's : S x AY — &’
be a partial transition function generating an intermediate
state s; with updated location information ;. Moreover, let
7g, : S — AV be the shelf-policy and mp, : S’ — A7
the SKU-policy, then sampling a composite action a from
mo(as | s¢) is equivalent to sampling shelves and SKUs suc-
cessively from 7y, and 7y, respectively, according to the
chain rule of probability:

mo(as | s¢) = moy, (i | 5t) - Top (Pt | 57) (18)

While the sub-policies share the same encoder they have
their own decoder networks. We use the decoder architecture
from the AM for both the shelf- and the SKU-policy. The
attention decoder for sub-action space A, performs multi-
head attention by using the embeddings hiL of the respec-
tive node type from the encoder to compute keys and values.
Moreover, the context node c; is used by each decoder to
compute the query (again omitting head enumeration):

e =W, k,=WEhl v, =W)n} vie d,

where h, is the concatenation of the encoder embedding of
the current picker location hiLt and the remaining picker ca-
pacity k. Again, WdQ , WU{(and W(}/ are weight matrices
learned per head and sub-action space .4,. The MHSA op-
eration generates a glimpse, similar to Bello et al. (2017).
The glimpse is multiplied with a single-head transformation
of h¥ to obtain the logit for action i in the respective sub-
space. Lastly, softmax-normalization of the logits over all
actions in the sub-space yields their sampling probabilities.

395

400

405

410

415

420

425

435

440

445

Japoouy
AL ESEC 1
(sle)x

(a) Policy 7 on combinatorial action space

F
Jopoduy

(sld)u
>

(b) Sub-policies on factored action space

Figure 2: Comparison of policy networks in combinatorial and factored action spaces

Figure 2 illustrates our hierarchical decoder and compares it
to a policy operating on the composite action space as im-
plemented by Song et al. (2022) for instance.

Training. To learn the parameters 6 of the policy network,
we adapt the POMO training algorithm proposed by Kwon
et al. (2020). POMO is based on the well-known REIN-
FORCE gradient estimator (Williams 1992):

1

B
VoL(0) ~ 5 > (R(r:) — b(s;)) Vg logme(rilsi) , (19)

i=1

where 7y (7;|s;) = Hizz"‘ mo(ay,¢]si¢), b is a baseline func-
tion, used to reduce the variance of the estimated gradients
and B is the size of the mini-batch. In POMO, the base-
line for a training instance is computed as the average re-
ward of W sampled solutions for that instance. To generate
diverse sampled solutions, POMO employs W distinct ini-
tial actions, from which the policy network constructs tra-
jectories through Monte-Carlo rollouts. For the MSPRP this
means using W different shelf-SKU combinations for the
first picking task a;. However, unlike TSP or CVRP where
all locations need to be visited anyway, the MSPRP does
not require all shelves to be visited. Consequently, selecting
a random shelf at the start of the picker tour can drastically
deteriorate the solution quality, when this shelf is at the other
end of the warehouse. Consequently, selecting the initial ac-
tions randomly may result in a high variance of the baseline,
especially for small W. Therefore, instead of selecting W
random actions, we sample them from the policy 7y (als)
without replacement (wor). To ensure predominantly favor-
able initial moves right from the start of the training pro-
cess, we warm the policy network up for one epoch using
an exponential moving average over the mini-batch rewards
as baseline, similar to Kool, van Hoof, and Welling (2019).
Given the baseline b(s;), gradients are computed using equa-
tion (19) and we use the Adam optimizer (Kingma and Ba
2015) with a learning rate of 2e-4 to obtain the parameter
updates. Algorithm 1 summarizes this procedure which we
will refer to as Policy-aware POMO (Pa-POMO). Empiri-
cally, we found that, using the Pa-POMO training algorithm,
the variance of the baseline value is reduced by 20% com-
pared to POMO. Figure 3 shows how the variance of the
gradient updates for POMO and Pa-POMO evolve during
training, demonstrating the effectiveness of our Pa-POMO
method for the MSPRP.

Algorithm 1: Pa-POMO Training
Input: training set S, POMO size W, batch size B,
policy 7y, number of training steps 1'

1: Warm up the policy using exp. moving average baseline

2: for step =1,...,T do
iid

33 S81,...,85~ 8

4 {aj,,a?,...,a"} Y r(a;]s;) Vi=1,..,B
50 s]«+Tu(spaly) Vi=1,..B,j=1,.,W
6: Tf +— 7r9(7'l-j|s{) Vi=1,..,.B,j=1,..W

7 b= R(r) Vi=1,..B

8:

Al (R(t])—b;) Vi=1,.,B,j=1,..,W
9 VoL 5w Y YL, AlVglogmy(r!|s))

10: 0« Adam(6,VyL)

11: end for

Experiments
Experimental Setup and Instance Generation

Dataset. For training and evaluating the proposed policies,
we generate instances for three warehouse types that differ
in the number of available storage locations and shelves. In
conformity with other NCO literature, that typically tests
models on TSP and VRP instances with 20, 50 and 100
nodes, we consider instances with 20, 50 and 100 storage
locations VS referred to as PRP20, PRP50 and PRP100, re-
spectively. While the number of shelves is fixed to 10, 25
and 40 for the respective instances, we alter the number of
demanded SKUs for each warehouse type.

We follow the standard procedure in NCO literature and
sample the |VR| shelf locations uniformly at random in the
unit square and assume Euclidean distances between them.
We choose this approach over a realistic rectangular ware-
house layout with parallel racks and non-Euclidean distance
as described for example in Weidinger (2018), as this would
introduce additional complexity through the requirement of
a distance matrix. Since we are more interested in demon-
strating the ability of the proposed methods to solve CO
problems over heterogeneous graphs, we sacrifice some re-
alism here to facilitate model development.

We randomly select the |VS| storage locations from all
|P| x |VE| possible SKU-shelf combinations and sample
the supply from a discrete uniform distribution with mean
n;. Likewise, the demand for each SKU is sampled from a

450

455

460

465

470

475

480

490

495

500

505

510

515

520

PRP20 PRP50 PRP100
VR | — 10 —[— 25 — [-40 -
W | — 20 —|— 50 — |-100-
dp | — 25 —|— 25 — |-25-
Pl 3] 6 9 [12]15]18 [15]20
n; T[1s]2 [1151511
K 6 | 9|9 |12]12 |15 |12]15

Table 2: Parameter values for instance generation

discrete uniform distribution with mean d,,. Lastly, we clip
the demand of an SKU by the warehouse’s total supply for it
in order to ensure feasibility of all generated instances. Table
2 summarizes the parameters of the different instances.

Setup. We empirically validate the effectiveness of the
proposed encoder-decoder architecture for solving the
MSPREP in two steps. First, we evaluate the encoder as well
as the hierarchical decoder of our HAM by comparing them
with other approaches that we found in the literature. Then,
we compare our DRL model with the solutions obtained by
a heuristic and an exact solver.

For the first part, we use the HAN, HGCN and MatNet
encoders we introduced earlier alongside our HAM encoder.
Moreover, we use a homogeneous graph formulation of the
MSPRP, using storage locations as sole node types, to solve
it using the AM. For all encoder architectures, we are us-
ing our hierarchical decoder. One exception from this is the
homogeneous graph formulation, which naturally has a flat
action space and thus uses a single AM decoder. On the con-
trary, we validate the effectiveness of the hierarchical de-
coder by comparing it with a single AM decoder operat-
ing on the combinatorial action space similar to Song et al.
(2022) as well as a hybrid policy, combining a neural agent
and a handcrafted heuristic, like Chen, Ulmer, and Thomas
(2022). This policy uses the AM decoder only to determine
the next location to visit and, given a shelf, selects the SKU
for which the most demand can be satisfied. Each of these
decoders uses the HAM encoder as a feature extractor.

All policy networks are trained for 50 epochs on 350,000
training instances that are randomly generated on the fly,
and evaluated on 30,000 test instances for each of the six
instance types corresponding to layouts PRP20 and PRP50.
We refrain from comparing all models on the PRP100 in-
stances due to the immense computational training effort.
These instances are only used in the second part of the exper-
iments, where we compare our DRL model with a heuristic
and the solutions obtained by the Gurobi solver, for which
we set a time limit of 1 hour. For this part of the experiments
we use the same training procedure but a separate test set of
20 instances.

Model Configuration. We use L = 4 layers for all en-
coders. The embedding dimension is set to dp, = 256 for the
MatNet and HAM encoders and to d;, = 512 for the AM,
HAN and HGCN encoders. For models relying on the multi-
head attention mechanism, the number of heads is set to 8.
During training, the batch size is set to 512 for all instances

Encoder

[Pl AM HAN HGCN MatNet HAM
S 3 1.543 1.636 1.589 1.491 1.476
& 6 2425 2498 2.358 2.261 2.216
A9 2.932 2976 2.898 2,782 2.727
2 12 3980 4.044 3.968 3.654 3.538
& 15 4.129 4274 4.087 3.895 3.740
A 18 4266 4363 4.261 3959 3.860
Table 3: Comparison of different encoders
Decoder
|P| Combinatorial Hybrid Hierarchical
= 3 1.537 1.496 1.476
& 6 2.342 2.245 2.216
A~ 9 2.847 2.750 2.727
2 12 4.085 3.622 3.538
& 15 4.284 3.840 3.740
A 18 4.523 3.895 3.860

Table 4: Comparison of different decoders

of type PRP20 and PRP50 and to 256 for PRP100 instances.
Moreover, we use W = 10 POMO samples. During testing,
beam search (see e.g. Neubig (2017)) with a beam width of
100 is used. Models are trained and evaluated using a single
Nvidia A100-80GB GPU and Gurobi as well as the heuristic
are executed on an Intel Xeon E5-2690 v4 CPU. The code,
test datasets and configuration files are publicly available.?

Heuristic for comparison. In order to validate the solu-
tion quality of our DRL method on instances where Gurobi
cannot find the optimal solution within the time limit, we
include the VNS of Xie, Li, and Luttmann (2023) into the
comparison, where we can make some simplifications due
to our split-order and single-depot assumptions. The VNS
starts by constructing a solution using a greedy nearest-
neighbor algorithm, determining for each SKU in random
order the shelf and sequence-position that adds the least dis-
tance to the current tour. After that, the VNS iteratively tries
to improve the solution by using a Shaking operation, de-
stroying parts of the current solution and repairing them in
random order, followed by a local search, altering shelves to
visit and swapping items between tours. The Python imple-
mentation can be found in our GitHub codebase and a de-
tailed description is found in Xie, Li, and Luttmann (2023).

Results

The results of our experiments comparing different encoder
architectures and decoding strategies can be found in Tables
3 and 4, respectively. The HAM encoder clearly outperforms
the other tested architectures. While the performance of the
MatNet encoder comes close to that of HAM, the other mod-
els performed significantly worse with the HAN architecture
producing the most inferior results. But also the HGCN is

*https://github.com/ellelsd/rl4msprp

525

530

535

540

545

550

555

560

565

570

575

580

Gurobi Heuristic HAM + beam search
Instance |P| % opt. Z gap % runtime Z gap % runtime Z gap % run (training)
3 100 1.502 0.0 30s 1.502 0.0 3.5s 1.502 0.0 0.14s (4h)
PRP20 6 100 2.390 0.0 289s 2.397 0.3 5.3s 2.390 0.0 0.16s (6h)
9 100 2.928 0.0 36s 2.945 0.6 3.8s 2.929 0.0 0.19s (7h)
12 40 3.639 3.9 2431s 3.586 2.4 67.7s 3.503 0.0 0.33s (14h)
PRP50 15 10 4.138 10.4 3264s 3.852 2.8 33.3s 3.748 0.0 0.35s (15h)
18 0 4.030 6.2 3600s 3.848 1.4 65.2s 3.795 0.0 0.40s (17h)
PRP100 15 0 4517 24.0 3600s 3.682 1.1 237s 3.642 0.0 0.55s (21h)
20 0 5.001 223 3600s 4.154 1.6 305s 4.090 0.0 0.60s (27h)

Table 5: Comparison of our Heterogeneous Attention Model (HAM) with Gurobi and a heuristic. The gap is w.r.t. the best
objective Z across all methods and ‘% opt.” specifies the percentage of instances that were solved to optimality by Gurobi.

not able to significantly outperform the homogeneous graph
AM, despite exploiting the heterogeneous structure of the
problem. These results validate the superiority of the multi-
head attention mechanism over other neural network archi-
tectures on the one hand side, and the effectiveness of the
heterogeneous graph formulation on the other hand.

Regarding the decoder part, the hierarchical decoding ap-
proach outperforms the other methods tested. The compos-
ite decoder, sampling actions from the combinatorial action
space, performs the worst. This is in line with Song et al.
(2022), who also report large optimality gaps of up to 16%.
Furthermore, the performance discrepancy compared to the
other methods increases with problem size, suggesting that
the exponential growth of the action space leads to prob-
lems such as sample inefficiency on larger instances. While
the hybrid approach achieves much better results than the
composite policy network, the disparity with the hierarchi-
cal approach becomes as large as 2.5% for PRP50 instances
with 15 SKUs, which clearly outweighs the computational
cost of the additional neural decoder.

The comparison of HAM with Gurobi and the heuristic
can be found in Table 5. The Gurobi solver can only find op-
timal solutions for all test instances on PRP20 instances. Re-
markably, even on these instances, our HAM combined with
beam search achieves on par solution quality with Gurobi.
On the larger instances, where Gurobi could not find opti-
mal solutions within the time limit, HAM consistently out-
performs both the heuristic and Gurobi. Further, the short
inference time allows for fast adaptation of current plans to
the dynamics of the warehouse environment.

le—6
20l — POMO
) Pa-POMO
o
c
215
2
€
20 1.0
e}
o
[G]
0.5
el

10000 20000 30000

Training Step

40000 50000

Figure 3: Variance of Gradient estimates

Conclusion & Discussion

In this work we have introduced an encoder-decoder model
to solve CO problems that are defined over heterogeneous
graphs and exhibit a combinatorial action space. We be-
lieve that our proposed methods can leverage the adoption
of NCO for more complex CO problems and pose a serious
competitor for handcrafted heuristics. Not only has the hand-
crafted heuristic been beaten on the majority of instances,
but also the hybrid approach, combining a neural agent with
a heuristic, has been proven to be less effective than the end-
to-end ML model. Not only is the development of an addi-
tional heuristic an extra-burden that NCO tries to eliminate,
also is the use of heuristics limited due to the extraordinary
efficiency requirement during model training. This usually
requires the use of local and greedy search algorithms using
only local information, since more sophisticated heuristics
would introduce an unaffordable bottleneck during training.
Conversely, the neural agent is not only capable to incor-
porate local information (such as determining which SKU
of a given shelf can satisfy the most demand) but also the
broader global context (e.g. identifying alternative sources
for a particular SKU) in its decision-making. This alone mo-
tivates deeper research into DRL-based CO solvers. The no-
table achievement of our model, surpassing both exact and
heuristic solvers on the majority of tested MSPRP instances,
further underscores their substantial potential.

One limitation of our work is that the HAM encoder is
limited to heterogeneous graphs with only two node types
and a single edge type between them. In future work, we will
therefore adapt the proposed methods to CO problems with
more complex heterogeneous graph representations, e.g. by
relaxing the split-order assumption of our MSPRP, which
would add another order dimension to the problem. Another
important direction for future research is the scalability of
ML models to larger instances. Here, our hierarchical de-
coding strategy makes an important contribution, since it of-
fers the possibility to factorize the action space. Through the
factorization, the number of possible actions in our MSPRP
grows only linearly with the problem size as opposed to the
exponential growth seen in the case of the combinatorial
space. In future research we will further investigate means to
make the model generalize to larger instances, for instance
by training a foundation model on instances of different sizes
and then fine-tune it to a specific instance type.

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

680

References
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio, S.
2017. Neural Combinatorial Optimization with Reinforce-
ment Learning. arxiv:1611.09940.
Cals, B.; Zhang, Y.; Dijkman, R.; and van Dorst, C. 2021.
Solving the Online Batching Problem Using Deep Rein-
forcement Learning. Computers & Industrial Engineering,
156: 107221.
Chen, X.; Ulmer, M. W.; and Thomas, B. W. 2022. Deep Q-
learning for Same-Day Delivery with Vehicles and Drones.
European Journal of Operational Research, 298(3): 939—
952.
Daniels, R. L.; Rummel, J. L.; and Schantz, R. 1998. A
Model for Warehouse Order Picking. European Journal of
Operational Research, 105(1): 1-17.
De Koster, R.; Le-Duc, T.; and Roodbergen, K. J. 2007. De-
sign and control of warehouse order picking: A literature
review. European Journal of Operational Research, 182(2):
481-501.
Hildebrandt, F. D.; Thomas, B. W.; and Ulmer, M. W. 2022.
Opportunities for Reinforcement Learning in Stochastic Dy-
namic Vehicle Routing. Computers & operations research,
106071.
Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning Combinatorial Optimization Algorithms
over Graphs. In Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Kingma, D. P; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings of the 3rd Inter-
national Conference on Learning Representations.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! In International Confer-
ence on Learning Representations.
Kwon, Y.-D.; Choo, J.; Kim, B.; Yoon, I.; Gwon, Y.; and
Min, S. 2020. POMO: Policy Optimization with Multi-
ple Optima for Reinforcement Learning. In Larochelle, H.;
Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H., eds.,
Advances in Neural Information Processing Systems, vol-
ume 33, 21188-21198. Curran Associates, Inc.
Kwon, Y.-D.; Choo, J.; Yoon, I.; Park, M.; Park, D.; and
Gwon, Y. 2021. Matrix Encoding Networks for Neural Com-
binatorial Optimization. In Advances in Neural Information
Processing Systems, volume 34, 5138-5149. Curran Asso-
ciates, Inc.
Mazyavkina, N.; Sviridov, S.; Ivanov, S.; and Burnaev, E.
2021. Reinforcement Learning for Combinatorial Optimiza-
tion: A Survey. Computers & Operations Research, 134:
105400.
Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takac, M. 2018.
Reinforcement Learning for Solving the Vehicle Routing
Problem. In Bengio, S.; Wallach, H.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances
in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc.

Neural Machine Translation
Models: A Tutorial.

Neubig, G. 2017.
and Sequence-to-sequence
arxiv:1703.01619.

Ratliff, H. D.; and Rosenthal, A. S. 1983. Order-Picking in
a Rectangular Warehouse: A Solvable Case of the Traveling
Salesman Problem. Operations Research, 31(3): 507-521.

Sharma, S.; Suresh, A.; Ramesh, R.; and Ravindran, B.
2017. Learning to Factor Policies and Action-Value Func-
tions: Factored Action Space Representations for Deep Re-
inforcement Learning. arxiv:1705.07269.

Song, W.; Chen, X.; Li, Q.; and Cao, Z. 2022. Flexible Job-
Shop Scheduling via Graph Neural Network and Deep Re-
inforcement Learning. IEEE Transactions on Industrial In-
formatics, 19(2): 1600-1610.

Tompkins, J. A. 2010. Facilities planning. John Wiley &
Sons, 4'" edition. ISBN 0470444045.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, 1. 2017. At-
tention Is All You Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama, M.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu,
P. S. 2019. Heterogeneous Graph Attention Network. In
The World Wide Web Conference, WWW 19, 2022-2032.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450366748.

Weidinger, F. 2018. Picker Routing in Rectangular Mixed
Shelves Warehouses. Computers & Operations Research,
95: 139-150.

Weidinger, F.; Boysen, N.; and Schneider, M. 2019. Picker
Routing in the Mixed-Shelves Warehouses of e-Commerce
Retailers. European Journal of Operational Research,
274(2): 501-515.

Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning. Ma-
chine Learning, 8(3-4): 229-256.

Xie, L.; Li, H.; and Luttmann, L. 2023. Formulating and
solving integrated order batching and routing in multi-depot
AGV-assisted mixed-shelves warehouses. European Journal
of Operational Research, 307(2): 713-730.

Xie, L.; Thieme, N.; Krenzler, R.; and Li, H. 2021. Intro-
ducing split orders and optimizing operational policies in
robotic mobile fulfillment systems. European Journal of
Operational Research, 288(1): 80-97.

Yang, Y.; Guan, Z.; Li, J.; Zhao, W.; Cui, J.; and Wang, Q.
2021. Interpretable and Efficient Heterogeneous Graph Con-
volutional Network. IEEE Transactions on Knowledge and
Data Engineering, 1-1.

685

690

695

700

705

710

715

720

725

730

735

