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Indexing climatic 
and environmental exposure 
of refugee camps with a case study 
in East Africa
Michael Owen 1*, Andrew Kruczkiewicz 2,3,4,6 & Jamon Van Den Hoek 5,6

This study presents a novel approach to systematically measure climatic and environmental exposure 
in refugee camps using remote sensing and geospatial data. Using a case study of seventeen refugee 
camps across five countries in East Africa, we develop a climatic and environmental exposure index to 
quantify each camp’s exposure relative to a population of simulated camp locations within the hosting 
country. Our results show that seven of seventeen refugee camps are within the upper two quartiles 
of exposure relative to a simulated population, suggesting that more than six-hundred thousand 
refugees living in these camps face elevated exposure compared to other potential camp locations. 
This method stands to improve the process of gathering and analyzing climatic and environmental 
data on geographically remote humanitarian spaces in a reliable, low-cost, and standardized 
manner. Automation and refinement of this index could enable real-time updates on climatic and 
environmental exposure to support decision-making related to disaster risk reduction in refugee camp 
management.

Climate change research has long aimed to quantify the vulnerability of human populations to natural hazards 
by considering the intersection of a population’s social characteristics and environmental  context1. Seminal lit-
erature has modeled natural hazard vulnerability quantitatively and qualitatively based on various factors (e.g., 
environmental quality, economic activity, health/sanitation outcomes, educational attainment, demographics), 
but such assessments are often carried out at a regional or sub-national scale without consideration of a popula-
tion’s socioeconomic or geographic marginalization, or localized climatic and environmental extremes such as 
heat waves or precipitation  variability2,3. As a result, such assessments may misrepresent the magnitude, timing, 
and manner of a population’s vulnerability, thus concealing the effects of climate  change4 and potentially lead to 
maladaptive approaches to mitigate actual population- or place-specific  vulnerability5,6. Even when vulnerability 
modeling is localized, the variation in geospatial inputs or assumptions across models may challenge comparison 
over time or between populations, thereby impeding systematic awareness of  vulnerabilities7. Vulnerability assess-
ment has advanced in recent years, particularly at local and community levels as increased availability of high 
spatial and temporal resolution in situ data becomes easier to collect and  access8–10. Further, regional and global 
scale approaches have been developed, such as the MultiRISK Modeling and the Visualization  Tool11; however, 
limitations exist particularly in consistency in data quality across a given study area (such as with  landslides11,12).

The need for tailored, systematic vulnerability assessments is arguably the most acute for refugee camp set-
tings, which are broadly characterized by data scarcity or outright  absence13,14. In planning refugee camps or 
evaluating potential hazards, refugee camp managers and humanitarian organizations make prioritization and 
logistic decisions on local to regional scales, often with a lack of high quality, high spatial resolution data. As of 
mid-2022, there are approximately 26 million refugees under UNHCR mandate across 120 countries, with the 
majority of refugees living in regions that have witnessed relatively large changes in temperature or precipita-
tion regimes across the Middle East, Sub-Saharan Africa, and South  Asia15. Refugees are commonly settled in 
environmentally marginal  borderlands16, excluded from socioeconomic opportunities and  livelihoods17, and 
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may remain encamped for  generations18.  While refugees are one of the most studied at-risk populations from a 
social vulnerability  perspective18–20, refugee camps have only been comprehensively studied in terms of climate 
vulnerability and environmental change studies in a few cases. For example, the rapid and widespread landscape 
changes (e.g., deforestation, terracing) and related hazards (e.g., landslides, flooding) in Cox’s Bazar, Bangladesh, 
home to the world’s largest refugee population of one million Rohingya has received extensive  attention21–23. In 
other refugee settings, land cover change assessments have found a greater amount of land degradation on the 
periphery of and within refugee camps in  Sudan24, South  Sudan25,  Uganda26, and broader East  Africa27. Maystadt 
et al.28 found a pattern of agricultural deforestation in refugee-hosting regions across continental Africa, while 
 Solemi29 found that encamped refugee populations do not disproportionately contribute to regional deforesta-
tion. Considering climatic conditions, Van Den  Hoek30 modeled future climate projections for temperature and 
precipitation change under RCP 8.5 in the year 2041–2060 and found that current refugee camps are projected 
to see comparable changes in surface temperature and much higher changes in precipitation compared to nearby 
reference locations. By comparison, there are relatively few refugee camp-level vulnerability studies that analyze 
the risk of climate- or weather-related hazards to refugee  populations31 (with  exceptions22,32,33).

While the need to minimize the exposure of camps to extreme climate conditions and mitigate climate and 
environmental  risks34 is recognized, climate risks are only briefly mentioned in UNHCR’s Camp Site Plan-
ning Minimum Standards  documentation35, and minimum standards for climatic and environmental exposure 
assessments have yet to be adopted by UNHCR. UNHCR and refugee hosting countries make limited use of 
environmental assessments in planning refugee  camps6, gauging potential impacts of climate  change36 or the 
frequency of natural hazards in refugee  camps37. At the camp-level, refugee camp managers rarely incorporate 
structured approaches to climate-informed decision-making6,38, this is not necessarily due to resource constraints 
or a lack of expertise but instead often results from an oversaturation of climate and geophysical  products39 
and an absence of a framework that integrates relevant environmental and climatic datasets to inform spatially 
explicit and timely  decisions40.

As global refugee populations and the impacts of climate change continue to rise, there is a critical need 
to make better use of available environmental and climate data to mitigate future risk for encamped refugee 
 populations15. In this paper, we present a novel climate and environmental exposure index for refugee camps in 
East Africa that considers primary, regional natural hazards including floods (both riverine and intense rainfall 
induced), drought, extreme heat, and landslides (including mudflows)41. This index is based on eleven satel-
lite remote sensing-based products and tailored to support refugee camp planning, siting, and management 
decisions, including those related to disaster risk reduction and anticipatory action. The index calculation is 
informed by exposure and vulnerability mapping  methodologies42, climate migration modeling  approaches43, 
and considerations in refugee camp siting and  management44, and it is intended to be extended to a variety of 
geographic contexts. We evaluate the index at seventeen refugee camps in five countries in East Africa, and 
compare exposure to a sample of sites in surrounding national border regions, which commonly host refugee 
camps. Next, we present the exposure index calculation, quantify the exposure of refugee camps relative to sam-
pled non-refugee locations, rank and identify the most prominently exposed refugee camps relative to regional 
conditions, and offer policy recommendations for improved uptake of climate and environmental datasets in 
refugee camp-specific planning and management.

Results
We found that most study refugee camps are clustered around the median exposure of sample border sites within 
their respective country (Table 1). Kakuma refugee camp (Kenya) is the only camp near the top quartile (70%) 
of national exposure and is also home to the fourth largest encamped refugee population in the world. Six other 
refugee camps are in the second highest quartile of national exposure, with Pamir (South Sudan) having the 
highest exposure at 67%, and five other camps clustered from 57 to 51% (Ajuong Thok, Yida, Ifo, Hagadera, 
and Nyarugusu). These seven camps in the third quartile are home to approximately 677,820 (41%) of the total 
population across study refugee camps. Seven refugee camps are in the second lowest quartile of exposure, 
comprising 735,165 refugees (44% of the study population). The remaining three refugee camps occupy the 
lowest exposure quartile, comprising 228,565 refugees (13% of the study population). For refugee camps across 
the five study countries, South Sudan and Kenya had the highest relative exposure (both average and median), 
while Tanzania and Uganda had the lowest relative exposure.

We also identified patterns of exposure in national border regions that have a bearing on refugee camps 
and sampled border sites. As each exposure index is normalized at the country level, in-country and in-region 
exposure hotspots can be identified by using the sample data as the basis for binned heatmaps. For example, the 
border region (Fig. 1a) between northeast Uganda, northern Kenya, and southwest Ethiopia has the highest mean 
exposure of 0.46 (standard deviation: 0.04; median percentile: 75th relative to each country) of any border region 
in the study area. The heightened overall exposure is further evidenced by the country-level percentile for each 
sample site (n = 1305) within this border region. The country-sample median (Fig. 1a) ranges from the 73rd to 
88th percentile (country-level mean exposure range from 0.45 in Kenya to 0.48 in Ethiopia), indicating that this 
region between Uganda, Kenya, and Ethiopia is the most exposed border region for each of the three countries.

Beyond the refugee camps that are enveloped in a region of comparable exposure, such as Kakuma (Kenya); 
others are located in transitional regions, such as the three moderately exposed refugee camps Bidi Bidi, Nyu-
manzi, and Palorinya (Uganda) 200 km west of the high exposure region that includes Kakuma (Fig. 1b). Simi-
larly, the Melkadida refugee camp (Ethiopia) (Fig. 1c) is located in a moderately high-exposure region just 50 km 
east of a pocket of relatively low exposure in Kenya.

We also identified the key variables that drive exposure as variables that satisfy the two following conditions: 
(1) have one of the three highest normalized values at a given camp, and (2) fall within the top quartile of the 
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Table 1.  Ranked refugee camp exposure and main drivers. The Percentile of National Exposure is the 
measured exposure for each camp, the confidence interval is derived from the empirical bootstrap sample in 
Fig. 8 PDSI, Palmer drought severity index;  PMAX, Precipitation maximum monthly anomaly in MAM (March–
April–May) season; Q, Specific humidity; SSM, Surface soil moisture (driven by low SSM); TXx, Annual 
daytime maximum surface temperature; ΔT, Long-term temperature anomaly.

Refugee camp Country Population (2020) Year established
Percentile of national exposure 
(CI) Key drivers of exposure

Kakuma Kenya 185,000 1992 69.8 (62.6–72.1) TXx, PDSI, SSM

Pamir South Sudan 27,489 2018 67.5 (63.1–71.7) PDSI, SSM

Ajuong Thok South Sudan 55,000 2013 57.7 (52.5–61.7) PDSI, SSM, TXx

Yida South Sudan 70,331 2012 55.3 (49.5–59.1) PDSI, TXx, SSM

Ifo Kenya 84,000 1992 52.8 (44.9–56.8) SSM, TXx

Hagadera Kenya 106,000 1992 51.4 (42.9–55.6) TXx

Nyarugusu Tanzania 150,000 1996 50.9 (44.3–53.3) ΔT, TXx

Melkadida Ethiopia 34,762 2010 44.7 (37.7–49.7) Q, TXx, SSM

Dagahaley Kenya 87,000 1992 36.6 (28.5–40.9) SSM, TXx

Pugnido Ethiopia 62,000 1993 35.5 (31.3–39.9) Q

Palorinya Uganda 166,025 2016 34.7 (29.7–39.1) Q, SSM

Nyumanzi Uganda 52,894 2014 32.5 (28.3–36.9) Q

Bidi Bidi Uganda 287,087 2016 28.5 (24.4–32.5) Q, TXx

Kule Ethiopia 45,397 2014 25.9 (21.6–29.5) Q, TXx

Nguenyyiel Ethiopia 83,658 2016 24.4 (20.2–27.9) Q

Nduta Tanzania 104,784 2015 23.6 (19.2–27.7) ΔT,  PMAX

Mtendeli Tanzania 40,123 2016 15.2 (12.0–18.6) ΔT

Figure 1.  Geographic distribution of exposure across border regions. Exposure is measured as the mean 
exposure of quarter-degree grid cells (approx. 28  km2 at the equator) at refugee camps or sampled border 
sites. Inset Map A includes Kakuma refugee camp in Kenya, and spans northeast Uganda, northern Kenya, 
and southwest Ethiopia. Inset Map B includes Bidi Bidi, Nyumanzi, and Palorinya refugee camps in northwest 
Uganda, and spans eastern Democratic Republic of Congo, southern South Sudan, and northwest Uganda. 
Inset Map C includes Melkadida refugee camp in Ethiopia, and spans northeast Kenya, southeast Ethiopia, and 
southern Somalia. Map created in R Studio 4.2.2.
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national distribution of values at sampled border sites. Considering the variation in key drivers across study 
camps, we show that the exposure of a given refugee camp is representative of localized environmental and 
climatic conditions, rather than simply the exposure in the surrounding border region. For example, the per-
centile of national exposure at two of the three camps that make up the Dadaab refugee complex in Kenya—Ifo 
and Hagadera—was at least 10 percentile points higher than the exposure at the third Dadaab camp, Dagahaley, 
despite being located only 4.4 km away; the key drivers of exposure (SSM and TXx) were shared between Ifo 
and Dagahaley, with TXx as the sole key driver for Hagadera.

We found three key drivers of exposure in approximately half of the study camps: annual daytime maximum 
surface temperature (TXx; 10 of 17 camps), low surface soil moisture (SSM; 8 of 17 camps), and specific humid-
ity (Q; 7 of 17 camps). The Palmer Drought Severity Index (PDSI), the long-term temperature anomaly (ΔT), 
and the precipitation maximum monthly anomaly in the March–April-May season  (PMAX) were only identified 
as key drivers of exposure in four, three, and one camp(s), respectively. Still, these camps include Kakuma and 
Pamir, which had the two highest overall exposures. Other than SSM, none of the geophysical variables were 
identified as being key drivers of exposure, indicating little difference in geophysical conditions between refu-
gee camps and sample border locations. Interestingly, the three most common key drivers also have the largest 
spatial resolutions of the eleven variables (ranging 0.1 to 2.5 deg), showing that meaningful differences between 
climate, weather, and geophysical conditions at refugee camps and sampled border sites are evident even with 
coarser resolution variables.

Although there is little correlation between the percentile of exposure and the year of camp establishment 
 (R2 = 0.16), there is a marked difference in exposure between camps established pre-2000 (n = 6, mean percentile 
of exposure: 49.5) and post-2000 (n = 11, mean percentile of exposure: 37.3) (Fig. 2). Kakuma refugee camp stands 
out as having the greatest exposure of all camps in the study in the 70th percentile. Kakuma is also the oldest 
camp, formally established in 1992. While identifying potential reasons for differences in camp exposure over 
time are outside the scope of this study, it is worth noting this distinction given the evolution of camp planning 
by UNHCR and other actors in the humanitarian  space34,45 in recent decades. Shifts in the geography of conflict 
and unrest over time have also driven displacements into new border regions, with varying responses from host 
communities/governments pushing refugee camps into further marginal  borderlands20. The data also indicates 
a rise in the variability in exposure of camps settled since 2010 with many of the lowest and highest exposure 
camps having been settled in the last decade.

The sensitivity analysis of iteratively removing variables to gauge the influence of a given variable on the over-
all exposure showed that the exposure rank of each camp was only marginally sensitive to the exclusion of any 
variable (Fig. 3). Across all countries, the maximum sensitivity across all exposure variants was 0.08 for the lower 
bound exposure in Kenya (shared borders: Somalia and Ethiopia) and 0.064 for the upper bound of exposure in 
Ethiopia and Uganda (shared border: South Sudan). The average sensitivity of the lower bound of exposure for 
each country was also marginal, deviating at most by 0.053 in Tanzania (shared border: Burundi) and just 0.042 
in Ethiopia (shared border: Somalia); the sensitivity of the upper bound was also consistent and low, deviating 
at most by 0.048 in Ethiopia (shared border: Somalia) and just 0.037 in Ethiopia and Uganda (shared border: 
South Sudan). Within the study camps, the most significant variable in terms of potential deviation in exposure 
was the Annual Daytime Maximum Surface Temperature (TXx).

In addition to testing the sensitivity of individual variables, we also generated an empirical bootstrap sample 
based on 10,000 model iterations to estimate confidence intervals per camp (Fig. 8). The average 95% confidence 
interval of the percentile of exposure deviated ± 4.73% for each camp from the estimated median, at most for the 
three camps in the Dadaab refugee complex by ± 6.19% (Hagadera, Dagahaley, Ifo), and the least for Mtendeli 
(± 3.29%) and Nguenyyiel (± 3.89%).

Figure 2.  Percentile of exposure and year of refugee camp establishment.
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Discussion
To our knowledge, this research provides the first systematic multi-hazard assessment of environmental and cli-
matic exposure across refugee camps spanning multiple countries. We found that seven refugee camps—Kakuma, 
Melkadida, Pamir, Ifo, Hagadera, Yida, and Ajuong Thok—across three countries (Kenya, Ethiopia, South Sudan) 
are more exposed to climate and environmental conditions than their respective average border sites. As climate 
change continues to accelerate, high confidence increases in surface temperature and pluvial flooding, among 
other drivers of exposure for the region of central and eastern Africa, could augment the relative exposure of 
refugee camps or redistribute the relative exposure across camps and surrounding border  regions46. The index 
construction approach presented here can track future changes in exposure at existing camps or be adapted to 
guide the selection of a minimally exposed location for construction of a new refugee camp. In addition, the index 
can be tailored to assess exposure for all refugee camps, informing context-specific decision-making based on 
camp results. For example, for cases where a refugee camp is sited in an area of heightened exposure, the index 
calculation can be used to understand the degree to which they are exposed, the difference in exposure compared 
to nearby areas, and, for both of these metrics, support the monitoring of refugee camp exposure change over 
time. Longer-term monitoring can inform prioritizing or deprioritizing operational and risk reduction actions, 
even in the absence of standard operating procedures to assess the exposure of refugee camps.

Given the paucity of climate hazard data at refugee camps, a rigorous assessment of the relationship between 
camp-level exposure as estimated in this work and hazard incidence is not possible. While an exhaustive record 
of hazard events is unavailable, there has been ad hoc documentation of climate hazard events by humanitarian 
organizations, including UNHCR, that highlight the occurrence of drought and flood events that have been 
recorded over the last fifteen years in Kenya’s Kakuma refugee camp and Dadaab refugee complex (comprised 
of Dagahaley, Hagadera, and Ifo refugee camps) (Table 2). These documented droughts and floods likely do not 
represent the totality of hazard event occurrence nor the diversity of hazard types at refugee camps. Natural 
hazard-driven disasters and disruptions with minimal impact on refugee camp populations or infrastructure 
may not be as readily documented. Individual-level physiological climate hazards (i.e., heat stress) may be less 
documented than meteorological hazards. Nonetheless, these known hazard events are indicative of the key 
drivers of exposure, SSM and TXx, identified at Kakuma and the three camps that comprise Dadaab.

Figure 3.  Exposure distributions by camp and reference sample. The sensitivity ribbons (in gray) represent the 
upper and lower bounds of exposure across eleven exposure variants.
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This study’s framework supports a retrospective analysis of climate exposure in refugee camps and risk-
informed or forecast-based approaches, such as anticipatory action (AA)—the act of prioritizing when and where 
to take specific actions based on uncertain forecast  information47. The work here can directly inform when and 
where actions should be taken—and perhaps more importantly, when and where actions must be deprioritized 
due to limited resources. For existing refugee camps, baseline and periodic assessments of climate exposure can 
inform the prioritization of refugee camps for AA implementation. For example, after a climatic shock, such as 
a flash flood, occurs in a refugee camp, determining the degree to which weather, climate, and physiographic 
factors contributed to the shock would be valuable information in prioritizing when and where recovery and 
resilience actions should take place, and perhaps to consider which areas should be abandoned due to height-
ened risk. Assessments of baseline risks like those presented here are also valuable in evaluating potential sites 
for a future refugee camp to understand the extent to which climate shocks and hazards could make refugees 
vulnerable if action is not taken.

This study has several limitations that are worth mentioning. The reliance on long-term temporal averages of 
satellite-derived products with coarse spatial resolutions inevitably overlooks short-term variations in exposure 
and long-term exposure trends. Reliance on these derived products also limits the ability to detect spatial vari-
ability in exposure within a given refugee camp, given the resolution. The sensitivity of index outcomes to the 
spatial resolution of aggregation and temporal scales could be further investigated, although initial testing found 
marginal effects on overall camp exposures (Fig. 3). As mentioned above, the general unavailability of climate 
hazard event documentation across study refugee camps prevents empirical validation of the relationship between 
modeled exposure and hazard events. Having data on camp management decision-making during periods of 
heightened risk of a natural hazard and the coping strategies of refugee populations would also help situate the 
theoretical framing of the exposure index. The selection of specific variables is context-dependent and may 
need to be adapted if the framework were to be deployed in another geography with different potential drivers 
of exposure or hazards. Similarly, since the area of sample border sites (3.1  km2) is more representative of the 
typical area of refugee camps in East Africa rather than the area of the seventeen study camps, which are among 
the largest in East Africa (mean boundary area: 7  km2), the area of the region surrounding the non-refugee sites 
selected for comparison may need to be adjusted, or the sensitivity of exposure measurements to the selected 
radial buffer width could be assessed.

Future applications of this framework would benefit from forming a more rigorous connection between 
camp-level refugee demographics, infrastructure, documentation of adverse weather events/hazards and their 
impacts, and the causal pathways for impacts on encamped refugee populations. Bringing these data together 
would not only help to calibrate or validate the exposure index in a specific geographic context, but it would also 
aid in the understanding of how refugee camp characteristics and management decision-making can mitigate 
exposure and prevent hazards from becoming disasters—including early warning and prioritization of anticipa-
tory actions based on forecasts.

Given that the global refugee population has steadily grown in recent years and a typical refugee can expect 
to stay in a camp for a decade or more, camp management strategies, especially in protracted refugee situations, 
must be more responsive to current and future  exposure48,49. This research offers three contributions to climate-
sensitive decision-making in refugee contexts: a quantitative, integrated assessment of the environmental and 
climatic exposure of refugee camps relative to other camps and border sites within each country; identification 
of the main drivers of exposure in each refugee camp and across a country; and methods that are designed to 
be iterated in novel refugee contexts with potentially different drivers of exposure, which has been a key limita-
tion of previous studies on refugee camp  exposure50. While the location and management of refugee camps is 
driven by a variety of geophysical, climatic, and socioeconomic factors, including logistic and political concerns 
associated with aid distribution and land  tenure51,52, this research offers a new way to assess the exposure implica-
tions of camp site selection and hopefully will inform more climate-sensitive camp planning and management 
practices going forward.

Materials and methods
Climatic and environmental exposure index conceptualization and variable selection. As a 
first step, we create an index of climatic and environmental exposure that integrates spatially referenced data 
representing climate, weather, and geophysical conditions. The conditions that are prioritized in this study are 

Table 2.  Documented hazard events and impacts in Kenyan refugee camps. *Dadaab refugee complex 
includes Dagahaley, Hagedera, and Ifo refugee camps.

Camp/complex Country Hazard event Affected population Year

Kakuma Kenya Drought  < 20 children 2022

Kakuma Kenya Flood 1000 individuals 2021

Kakuma Kenya Flood  < 350 individuals 2020

Dadaab* Kenya Flood 11,000 + families 2017

Kakuma Kenya Flood 50,000 individuals 2014

Dadaab* Kenya Drought 3–6 × increased infant mortality rate 2011

Dadaab* Kenya Floods 12,000 + individuals 2006

Kakuma Kenya Floods 2000 + individuals 2006
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defined by the hazards of interest for the region, including temperature-related and hydrometeorological. With 
floods and landslides usually driven at least in part by above-average precipitation, it was important to include 
precipitation as a variable of interest. For flash floods in particular, although sub-daily rainfall data would be 
ideal, rainfall at this time step in the region varies considerably spatially and  seasonally53, therefore a coarser 
approach to rainfall variability is taken, using seasonal anomalies, to allow for regional analysis.

For a given camp, we measure the exposure index, compare the camp’s exposure value to the distribution of 
exposure values measured at a stratified sample of locations in the border region of the camp’s country—where 
refugee camps are commonly established—following Van Den  Hoek30 and de Sherbinin et al.42, and identify the 
camp’s percentile of exposure (Fig. 4).

The variables for the exposure index (Table 3) were sampled from a more extensive list of exposure variables 
(e.g., land cover change, temperature and precipitation maxima, and fire and water occurrence) from vulner-
ability mapping  scholarship42 and well-documented exposure risks in the refugee-hosting region of Cox’s Bazar 
in  Bangladesh6. Selected climate variables capture historical extremes and patterns, which embed the current 
and future exposure of a refugee camp if trends continue. Weather variables were chosen to capture the central 
tendencies of precipitation and temperature, which, when elevated, can drive exposure for refugee  populations54. 
Geophysical variables capture topographic and physiographic conditions at and surrounding camp locations, 
which have a bearing on natural  hazards55. Only variables observed within study refugee camps were considered 
in the index calculation, while variables that have not historically affected study refugee camps were excluded. 
Finally, if a variable was found to be highly correlated (R > 0.75) with another variable but less representative 
of the specific hazard, it was also removed from the index calculation (e.g., subsurface soil moisture was highly 
correlated with surface soil moisture, but only surface soil moisture was included)56.

The eleven selected variables have coverage from 2015 to 2020, and most have coverage since 2000, a period 
of considerable changes in precipitation and temperature regimes. From 1985 to 2018, the Eastern African 
Long Rains (March to May) shifted in duration and volume with a drier second period from 1986 to 2007 and 
higher variability from 2009 to  201857. Mean temperatures in East Africa have risen by 0.7 to 1 °C from 1973 
to 2013, with substantial diversity between countries and  seasons58. Temperature changes have been greatest 
in the northern and central regions, with more significant increases in mean minimum temperatures at night. 
When coupled with rising daytime temperatures, such nighttime temperature increases heighten mortality and 
morbidity risks for vulnerable  populations59. All variables are included in the Google Earth Engine data catalog 
in raster format. The datasets vary in spatial resolution from 0.001° for slope to 2.5° for the NCEP/NCAR surface 
temperature reanalysis data, with a median resolution of 0.05°, or 5 km at the equator.

All climate and weather variables in the index represent many years of data, which was reduced to the 
temporal average or coefficient of variation over the duration of the observation period. We also calculated 
the long-term temperature anomaly and change in annual precipitation accumulation following Eqs. (1–2). 
We use the standard 30-year averaging period to define a climate normal for temperature change and a shorter 
20-year period for precipitation change due to data availability as CHIRPS’ data series began in 1981. The World 

Figure 4.  Six-step framework for creating exposure index and percentile at refugee camps. Map created in R 
Studio 4.2.2.
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Meteorological Organization has found that this is an acceptable period for calculating non-extreme parameters, 
with 10–12-year periods generating a similar predictive skill to a 30-year  period60.

Refugee camp selection. We considered three factors in selecting refugee camps for this analysis: climatic 
and environmental data availability, camp-level population data availability, and high population  density61. With 
these criteria, we selected 17 refugee camps in five East African countries (Ethiopia, Kenya, South Sudan, Tan-
zania, and Uganda) that collectively encamp 1,641,550 people as of 2020 and include the world’s second-largest 
refugee camp by population, Bidi Bidi (Uganda). Study refugee camps were settled between 1992 and 2016 
(median: 2013), encompass a wide range of ethnic groups, nationalities, and relationships with their host com-
munities (Table 4, Fig. 5), and are predominantly close to national borders (mean distance: 35 km) (Fig. 6). 
Several study camps are sited near each other, with Kenya’s Hagadera, Dagahaley, and Ifo refugee camp cen-
troids within 8.2–22.3 km, comprising the broader Dadaab refugee complex; and Tanzania’s Mtendeli and Nduta 
within 21 km of each other, as well as nearby Nyarugusu refugee camp (< 75 km from Mtendeli and Nduta), 
each established to receive asylees from nearby Burundi and the Democratic Republic of Congo. Refugee camp 
centroid locations were accessed using the UNHCR Geoservices Map  Portal44.

Refugee camp boundary mapping. To estimate the spatial extent of land inhabited by and accessible to 
refugees within a given camp, we used a combination of the UNHCR-provided refugee camp centroid coordi-
nates and a generated greenest pixel composite using Sentinel-2 NDVI (normalized difference vegetation index) 
satellite data from 2018 at each refugee camp. This approach is necessary as UNHCR provides camp centroid 
coordinates, without spatially referenced boundary data available for all study refugee camps. We manually 
digitized refugee camp boundaries based on the contrast between the relatively low-NDVI land within refu-
gee camps (resulting from structures and other non-vegetated surfaces) and the surrounding land with higher 
NDVI. Existing UNHCR planning maps and documentation were also used to guide camp boundary inter-
pretation. We also referenced available high-resolution satellite imagery and OpenStreetMap structure data to 
ensure that our interpreted boundaries encompassed all camp structures. Because several of the countries within 
our study restrict refugee movement beyond camp boundaries (with the notable exception of Uganda), the 
derived camp boundaries (mean boundary area: 7  km2) offer a reasonable, albeit conservative, estimate of the 
land directly accessible by refugees.

Sampling border sites to compare with refugee camp exposure. To compare the exposure at study 
refugee camps to non-refugee camp locations in border regions of each country, we first built a dataset of valid 
country borders based on camp- and district-level data provided by UNHCR’s Global Public API. For each study 
camp, we query the most disaggregated data on the national origin of the refugee population; when camp level 

(1)Temperature Anomaly = x
(

Temperature2000−2020

)

− x
(

Temperature1951−1990

)

(2)Change in Precipitation Accumulation = x
(

Precipitation2009−2020

)

− x
(

Precipitation1981−1990

)

Table 3.  Exposure index variables and associated information. At the equator, 0.01° is approximately 
equivalent to 1.11 km. The start period begins on January 1 of a given year and ends on December 31, unless 
otherwise stated. Variable-camp-level data is available in Supplementary Fig. S2.

Variable Phenomenon Units Observation period Spatial resolution Source

Climate and weather

 PDSI average Drought (unitless) 2000–2020 0.04° TerraClimate Palmer Drought Severity Index

 Precipitation: change in annual accumulation Drought/Flood mm/pentad 1981–2020 0.05° UCSB CHIRPS Pentad Annual Average Precipita-
tion change

 Precipitation: interannual coefficient of variation Drought/flood mm/pentad 1990–2020 0.05° UCSB CHIRPS

 Precipitation: maximum monthly anomaly in 
MAM (March–April–May) season  (PMAX) Flood mm/pentad 2000–2020 0.05° UCSB CHIRPS

 Temperature: annual daytime maximum surface 
temperature (TXx) Drought Kelvin 2010–2020 2.5°

CFSV2: NCEP Climate Forecast System Version 
2, 6-Hourly Products; Maximum temperature 2 m 
above ground, 6-h interval (12:00)

Temperature: long-term anomaly (ΔT), Drought Kelvin 1951–2020 2.5° NCEP/NCAR Reanalysis Data, Surface Tempera-
ture

Specific humidity (Q) Drought kg kg-1 2000–2020 0.1° FLDAS: Famine Early Warning Systems Network

Geophysical

Flow accumulation Flood (derived) N/A 0.004° WWF HydroSHEDS Flow Accumulation

Friction Landslide km/hr N/A 0.01° Oxford Global Friction Surface 2019

Slope Landslide meters N/A 0.001° SRTM Digital Elevation Data Version 4

Surface soil moisture (SSM) Drought mm 2015–2020 0.1° ASA-USDA Enhanced SMAP Global Soil Mois-
ture Data Surface
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data is not available, we use district-level data. Each origin country that shares a border with the study camp’s 
country and comprises more than one percent of the total camp population presents a valid border for compari-
son. Given that refugee camps are not randomly distributed within or along the borders of host countries but, 
rather, often proximate to the origin population country’s border, this geographic subset provides an appropriate 
comparison for other potential camp locations (see Supplementary Fig. S1).

We then created a 100-km-wide buffer along each valid border within each host country to approximate the 
near-border region that encompasses our study refugee camps (Fig. 7). We removed locations with at least one 
month of seasonal water based on the JRC Global Surface Water  dataset62 as seasonally or permanently inundated 
sites have distinct hazard profiles compared to study refugee camps. Next, we randomly sampled 500 points 
within each 100-km shared border region (Fig. 7) and buffered sample locations by one kilometer to simulate 
the boundary of the refugee camps. Each study camp’s reference sample population is based on the valid shared 
borders described above.

Climatology of sample and study camps. Of the 17 study camps, 9 of 17 are classified by the Köppen 
climate classification as tropical, desert (Aw), 7 of 17 are classified as arid steppe, hot arid (BSh), and Melkadida 

Table 4.  Study refugee camp overview. *Part of Dadaab refugee complex.

Camp Country Population Established

Kule Ethiopia 45,397 2014

Melkadida Ethiopia 34,762 2010

Nguenyyiel Ethiopia 83,658 2016

Pugnido Ethiopia 62,000 1993

Dagahaley* Kenya 87,000 1992

Hagadera* Kenya 106,000 1992

Ifo* Kenya 84,000 1992

Kakuma Kenya 185,000 1992

Ajuong Thok South Sudan 55,000 2013

Pamir South Sudan 27,489 2018

Yida South Sudan 70,331 2012

Mtendeli Tanzania 40,123 2016

Nduta Tanzania 104,784 2015

Nyarugusu Tanzania 150,000 1996

Bidi Bidi Uganda 287,087 2016

Nyumanzi Uganda 52,894 2014

Palorinya Uganda 166,025 2016

Total 1,641,550

Figure 5.  Study refugee camp locations (red dots) across five countries in east Africa. Map created in R Studio 
4.2.2.
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is classified as arid desert, hot arid (BWh). The 5,000 sample border sites distributed in the same border regions 
as the study camps are largely similar in climatology (see Supplementary Table S1), with 75 percent of the sample 
sites sharing the specific three climate zones (Aw, BSh, and BWh). Of the main Köppen climate groups, more 
than 95 percent of the sample camps are either tropical (A) or arid (B), with the rest temperate (C).

Exposure variable calculation and normalization. Using the Google Earth Engine API, we calculated 
the mean of each exposure variable within each camp boundary and the buffered sample location at a 100-m 
resolution. This zonal mean provides a camp-level value for all eleven variables at the 17 refugee camps and the 
5,000 sampled border sites. Because of the significant differences in scale between variables, we normalized vari-
able datasets for each refugee camp and comparison sample sites to ensure that every variable represents distinct 
high and low exposure  values63,64. For each refugee camp, we use the random sample of border sites as the com-

Figure 6.  Latitude and border proximity of study refugee camps.

Figure 7.  Location of sampled border sites (open black circles) for comparison with study refugee camps. Each 
border for comparison contains 500 randomly distributed sampled border sites (e.g., the shared border between 
Tanzania and Burundi contains 500 sampled border sites). Map created in R Studio 4.2.2.
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parison dataset for normalization and index construction. We constructed a min–max normalization function 
for all variables i with value x Eq. (3) to normalize each variable.

Normalization scaled variables from 0 to 1, with the assumption that higher values of all variables (except 
for surface soil moisture) would contribute to a higher level of  exposure63. For surface soil moisture (SSM), we 
used a flipped min–max normalization procedure Eq. (4), assuming that lower SSM would enhance exposure 
via a greater likelihood of desertification and lower agricultural yield.

The distribution of each variable was reviewed to identify irregularities that could skew the normalization 
process. Nearly all variables were normally distributed around their respective national mean values with few out-
liers. However, the flow accumulation variable exhibited a non-normal distribution with a group of anomalously 
high values. These extreme values were excluded from the flow accumulation distribution through winsorization 
with a 99th percentile  threshold64,65. We also identified a small amount (0.04% of observations) of missing data 
within study refugee camp boundaries and sampled border sites for two variables, SSM and specific humidity 
(Q). We addressed these missing data using mean imputation and confirmed a very slight shift in the resulting 
variable distribution with a very high correlation  (R2 > 0.99) between the imputed and original dataset.

Comparison of exposure between refugee camps and sampled border sites. We measured 
exposure at refugee camps and sampled border sites as the unweighted average of the eleven normalized vari-
ables Eq. (5) and calculated a simple percentile Eq. (6) and rank representing a given refugee camp’s exposure 
relative to sampled border sites in the camp’s country. We also identified the main drivers of exposure for each 
camp, defined as variables with one of the three highest normalized values measured at a given camp and in the 
top quartile of the national distribution of values at sampled border sites.

To test the robustness of the exposure index, we performed a series of sensitivity analyses during and after 
index construction, including testing distribution differences based on the number of sampled border sites, 
between random samples, the spatial resolution of variable extraction, and testing different imputation strate-
gies for missing  data64. An additional set of indices was constructed to check for the overfitting of variables by 
generating exposure variants. The eleven exposure variants, ExposureA through ExposureK, respectively represent 
indices based on the same eleven variable unweighted ranking scheme as above but with the exclusion of a single 
variable (i.e., A through K) in each overall exposure measurement (Fig. 3). The range of values for each exposure 
variant measured at a given refugee camp indicates the sensitivity of the exposure index for the camp and the 

(3)Normalizedi =
x −min(x)

max(x)−min(x)

(4)SSMi =
max(x)− x

max(x)−min(x)

(5)Exposure =

∑

var1+ var2 . . .

11

(6)Percentile = 1−
Exposure rank

N camps
Comparison border region

∗ 100
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shared border sample camps. Bootstrap samples were also generated based on 10,000 model iterations per camp 
(Fig. 8), with the iteration sample size based on the reference group (i.e., the number of sample border sites for 
each respective study camp).

Data availability
The Python code used to generate the environmental and climate data used in the exposure index, correspond-
ing datasets, and the raw figures are available at the following GitHub repository: https:// github. com/ eastc oasti 
ng/ Refug ee- Camp- Expos ure- Index.
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