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Abstract— This paper proposes an innovative identification
scheme to estimate parameters constituting linear relations
in time–invariant systems: the bounding box recursive Frisch
scheme. A novel recursive version of the Frisch scheme, a
linear estimator characterised by mild prior assumptions in
the error-in-variables (EIV) framework, has been derived. The
fast computational time and convergence in the identification
of linear systems are the most relevant feature of this recursive
version of the scheme. The performance of the developed
algorithm has been evaluated trough numerical simulations.
Results proved the effectiveness and accuracy of the proposed
solution.

I. INTRODUCTION

One of the most explored mathematical problems is the
extraction of linear relations from data which are affected
by additive noise. Many of the research work regarding
this problem focused on finding a single solution, e.g. least
squares methods, but, unfortunately, the uniqueness of the
solution can be achieved only by introducing prior assump-
tions in the estimation scheme, whose correctness cannot
be confirmed by the available data. However, according to
Kalman [1], the Frisch Scheme (first introduced by the Nobel
prize Ragnar Frisch in 1934 [2]) appears to be less prejudiced
than most other schemes. The peculiarity of the scheme has
been intensively investigated in [3], [4], [5]. The main feature
of the Frisch Scheme, which remarks a positive distinction
from others identification algorithms, is represented by the
milder assumptions on the noisy input data that lead to
a whole space of solutions fitting a given dataset, instead
of a single one. In the analysis of real physical systems
described by error-in-variables (EIV) models, the Frisch
scheme establishes a post-identification degree of freedom in
the choice of one set of parameters between feasible solutions
which are compatible with the physical constraints of the
problem, e.g. masses cannot be negative. The knowledge
of these constraints provides a way to add to the “blind”
estimation step, which depends only on the acquired data, a
rational selection procedure of the real parameters.

Besides, once collected a data set, the family of solutions
provided by the Frisch scheme may be very large, making the
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selection process meaningless. In practice, to obtain a solu-
tions set of a useful size, one should collect a great amount
of data or should perform a well conditioned experiment,
which result to be not be suitable for online estimations or
diagnostics purposes. A recursive version of the algebraic
Frisch scheme, in which the solution space was greatly
reduced in size by subdividing the data in different subsets
and iteratively approximating the intersection of the resulting
simplices by means of static particles, has previously been
introduced by the authors in [6]. However, due to the curse
of dimensionality, the number of particles involved in the
algorithm increased exponentially with the dimension of the
system, leading to extremely large computation times.

In this paper, to overcome dimensional problems, we
propose a novel scheme whose computation complexity
scales polynomially with the number of parameters. The
new algorithm indeed shrinks the size of the solution space
significantly. However, the improvement in computational
complexity is traded with a reduced estimation accuracy
with respect to [6]. This paper introduces of a new Frisch–
scheme–based linear recursive estimator, which consistently
restricts the searching space of the solution without loosing
the trademark of a post-identification degree of freedom.
Here, the mathematical formulation of the bounding box
recursive Frisch (BBRF) scheme is presented and tested on
a generic EIV model.

II. BACKGROUND

The Frisch scheme is an effective method to derive models
from noisy measurements through a modification of the
observed data. The scheme relies on a priori assumptions
which are necessary to extract linear relations from data
affected by error.

A. Assumptions for EIV Estimation Schemes

Consider the linear equation

α1x1 + α2x2 + · · ·+ αnxn = 0 (1)

relating the n variables xi through n scalars αi. The ob-
servation matrix X is constructed with m samples of the
variables as

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 , X ∈ IRm×n (2)

Relation (1) is equivalent to

XA = 0 (3)
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where A = (α1, α2, · · · , αn)>. In general, A ∈ IRn×q being
q the number of linearly independent parameters vectors
compatible with the data. Let the sample covariance matrix
be Σ = X>X

m . Then, (3) can be rewritten as

ΣA = 0 (4)

since Σ and X have identical null spaces. Notice that the
diagonal of Σ contains the variances of the variables while
the covariances are the entries of the off-diagonal elements.
Let us assume that additive noise affects the variables, i.e.
xi = x̂i + x̃i where x̂i, x̃i are, respectively, the unknown
exact value of the variable and the noise sample. The additive
noise yields Σ > 0 making unsolvable the problem of
extracting linear relations (i.e. A) from its null space. The
only way is to modify the observations Σ. Under the usual
assumptions made in EIV schemes of zero–mean value of
the noise samples and orthogonality of noise and noiseless
samples (see [5]), it turns out that Σ = Σ̂ + Σ̃, in which
Σ̂ = X̂>X̂

m and Σ̃ = X̃>X̃
m , where X̂ , X̃ are defined as

in (2) with x̂i and x̃i instead of xi. Hereafter, follows a
formalization of the problem of seeking linear relations in
noisy data.

Definition 1 (EIV Estimation Problem [1]). Let Σ be a
sample covariance matrix. Determine Σ̃ such that

Σ̂ = Σ− Σ̃ ≥ 0 det(Σ̂) = 0 (5)

Any base of null(Σ̂) will span a space describing a set of
linear relations compatible with the data and the assumptions,
i.e. it is possible to solve Σ̂A = 0. Estimation schemes can
be distinguished by the assumptions on the noise, i.e. on Σ̃.

The estimation schemes relevant this to this work are
formally introduced in the following subsections.

B. Ordinary Least Squares (OLS) [7]

This estimator assumes noise affecting only one variable.
Let the noisy variable be the i-th. Therefore,

Σ̃ = diag(0, · · · , 0, σ̃2
i , 0, · · · , 0)

where σ̃2
i is the variance of the noise x̃i.

Let Σi be obtained from Σ deleting its i-th row and
column. The solution of the estimation problem is given by

σ̃2
i =

det (Σ)

det (Σi)
(6)

Equation (6) defines the upper bound of noise level satisfying
condition (5). Notice that, when the noisy variable is not
specified, the OLS has n distinct solutions, each of which
minimizes the squared norm of the estimation error, min

A
e>e:

e>e = ‖ [X]i −XiA‖2 (7)

where [X]i is the i-th column of X and Xi is obtained
from X deleting its i-th column. A ∈ IRn−1 describes the
linear dependence of the orthogonal projection of [X]i on
the subspace spanned by the columns of Xi from these
generators. If we assume that the noisy variable is the i-th,
a unique closed-form solution of the problem (5) is given

by A = (XT
i Xi)

−1XT
i [X]i. In this case A belongs to

IRn−1 and not to IRn because the i-th element is implicitly
normalized to -1.

C. The Frisch Scheme

In this scheme, noise samples affecting different variables
are assumed to be mutually independent, i.e.

Σ̃ = diag
(
σ̃2

1 , σ̃
2
2 , · · · , σ̃2

n

)
Notice that for a given sample covariance matrix Σ, the n
OLS solutions are also solutions of the Frisch estimation
scheme. Hence, the prior assumption of the Frisch scheme
is more general and milder than those of all the other
estimators providing a single solution, e.g. OLS with a prior
on the noisy variable (usually computed by pseudoinversion).
Besides, closed-form solutions are more difficult to be ob-
tained, as, in general, infinite solutions exist. Here, part of
the results in [5] are employed to address this problem. In
particular, we need to introduce a definition and a theorem.
Let MaxcorF (Σ) be defined as the maximum number of
linear relations which can be extracted from Σ in the context
of the Frisch scheme. Therefore

MaxcorF (Σ) = max
Σ∈D

{
dim

(
null(Σ̂)

)}
where D is the set of all the diagonal matrices satisfying (5),
i.e., all the Frisch scheme solutions.

Theorem 1. [5] Let MaxcorF (Σ) = 1. Then, the following
hold:

1. The vectors A of all the linear relations consistent with
the Frisch scheme lie (normalizing one parameter to
1) inside the simplex of the parameters space whose
vertices are the n OLS solutions.

2. There exists a one-to-one relation linking the points
of the simplex and the solutions ˜Sigma of the Frisch
scheme.

III. BOUNDING-BOX RECURSIVE METHOD

A. Geometrical Properties of Simplices and Bounding Boxes

From the aforementioned assumptions, it is possible to
define the set of solutions of the Frisch scheme as a simplex
of the parameter space which can be easily computed by
its vertices. In order to derive a recursive version of the
Frisch scheme, some geometrical properties of simplices and
bounding boxes have to be introduced.

Definition 2 (Simplex Matrix). Let vi ∈ IRn, i = 1, ..., n+
1 be the vertices of a n-dimensional simplex. The simplex
matrix Sn is defined as the matrix whose columns are the
n+ 1 vertices of the simplex, i.e.

Sn = (v1 v2 · · · vn+1) ∈ IRn×n+1

Because of convexity, any set of vertices uniquely identify
one and only one simplex. Given a simplex matrix Sn the
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corresponding simplex is the set of all the convex combina-
tions of the columns of Sn

S(Sn) = conv(Sn) =

=

{
n+1∑
i=1

µi[Sn]i : (µi ≥ 0 ∀i) ∧
n+1∑
i=1

µi = 1

}
where [Sn]i is the i-th column of Sn.

According to [8], the volume (i.e. the n-dimensional
Lebesgue measure) of a n-simplex S(Sn) can be computed
as

λ(S(Sn)) =
1

n!

∣∣∣∣det

(
Sn

1 · · · 1

)∣∣∣∣ (8)

Definition 3 (Bounds of a Simplex). Let Sn = Snij be
a simplex matrix. The lower bound of the simplex cor-
responding to Sn is l(Sn) = (l1, · · · , ln) with li =
minj(Snij) ∀i = 1, . . . , n. Analogously, the upper bound of
the simplex corresponding to Sn is u(Sn) = (u1, · · ·un)
with ui = maxj(Snij) ∀i = 1, . . . , n.

Recalling the concepts of minimum bounding box and
axis-aligned minimum bounding box (AABB) [9], we would
like to define a simple set enclosing any n-dimensional
simplex, e.g. the AABB given by the Cartesian product of
the simplex bounds.

Definition 4 (Simplex Bounding Box). Let Sn be a simplex
matrix and l,u be the bounds of the corresponding simplex
S(Sn). The simplex bounding box related to Sn is the AABB
of S(Sn). It is indeed unique and defined as

B(Sn) = b1 × b2 × · · · × bn =

n∏
i=1

bi

where bi = [li, ui] is an interval and “×” indicates the
Cartesian product. It follows that S(Sn) ⊆ B(Sn).

Hence, the volume of a simplex bounding box B(Sn) is

λ(B(Sn)) =

n∏
i

|ui − li|

Proposition 1. Given N simplex matrices Sn1 ,Sn2 ,. . . ,SnN , it
holds

N⋂
i=1

S(Sni ) ⊆
N⋂
i=1

B(Sni )

Proof: It is known that

S(Sni ) ⊆ B(Sni ) ∀i = 1, 2, . . . N.

Therefore,

S(Sni ) = S(Sni ) ∩B(Sni ) ∀i = 1, . . . , N

Thus, it leads
N⋂
i=1

S(Sni ) =

N⋂
i=1

[S(Sni ) ∩B(Sni )]

=

N⋂
i=1

S(Sni ) ∩
N⋂
i=1

B(Sni )

which is equivalent to
N⋂
i=1

S(Sni ) ⊆
N⋂
i=1

B(Sni )

�

Theorem 2. The intersection T of N simplex bounding
boxes is an axis-aligned box, i.e., there exist n intervals εi
(i = 1, . . . , n) such that

T =

N⋂
i=1

B(Sni ) =

n∏
j=1

εj

Proof: Any simplex bounding box B(Sni ) is the Carte-
sian product of n intervals, each of which is defined by the
minimal and maximal value of the corresponding coordinate
for the vertices of the simplex S(Sni ), namely bij = [lij , uij ],
i.e.

B(Sni ) = bi1 × bi2 × · · · × bin =

n∏
j=1

bij ∀i = 1, 2, . . . , N

Therefore,

T =

N⋂
i=1

B(Sni ) =

N⋂
i=1

n∏
j=1

bij

Thanks to the distributivity property of Cartesian products
across intersections, we have

T =

N⋂
i=1

n∏
j=1

bij =

n∏
j=1

N⋂
i=1

bij =

n∏
j=1

εj

where εj is computed as

εj =

N⋂
i=1

bij =
[
max

i
{inf(bij)} ,min

i
{sup(bij)}

]
=
[
max

i
{lij} ,min

i
{uij}

]
Thus,

T =

n∏
j=1

εj =

n∏
j=1

[
max

i
{lij} ,min

i
{uij}

]
�

It follows that
N⋂
i=1

S(Sni ) ⊆
n∏

j=1

[
max

i
{lij} ,min

i
{uij}

]
= T

B. Bounding-Box Method for Recursive Estimation

With the same fashion proposed in [6], let us keep observ-
ing the system (1). Let x(tk) = (x1(tk), x2(tk), · · · , xn(tk))
be the state of the system at the k-th time instant tk. Thus,
the observation matrix at that time instant is

X(tk) =


x(tk−m)

...
x(tk−1)
x(tk)

 ∈ IRm×n (9)
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while the sample covariance matrix as Σ(tk) = X(tk)TX(tk)
m .

Thanks to Theorem 1, when MaxcorF (Σ(tk)) = 1, the space
of solutions of the estimation problem Σ(tk)A = 0 is the
simplex lying in IRn−1 whose vertices Aj(tk) correspond to
the n (OLS) solutions with one normalized entry (to 1 or
-1):

Aj(tk) : span(Aj(tk)) = null(Σ(tk)− Σ̃j(tk)) (10)

where Σ̃j(tk) = diag(0, · · · , 0, σ2
j (tk), 0 · · · , 0) and

σ̃2
j (tk) =

det Σ(tk)

det Σj(tk)

with Σj(tk) obtained by deleting the j-th row and the j-th
column of Σ(tk). From now on, we will always choose to
normalize the last coefficient αn to 1 .

The simplex matrix of the corresponding simplex of solu-
tions at the k-th iteration is

Sn−1(tk) =
(
A1(tk) A2(tk) · · · An(tk)

)
∈ IR(n−1)×n

Furthermore, the corresponding simplex bounding box
B(Sn−1(tk)) is

B(Sn−1(tk)) =

n∏
i=1

[li(tk), ui(tk)] where

li(tk) = min
j
Sn−1
ij (tk) and ui(tk) = max

j
Sn−1
ij (tk)

As a matter of fact, inside the simplex obtained at the k-
th time instant, the value of each parameter αi will be
bounded by li(tk) and ui(tk). Indeed, this must true for all
the simplices obtained in different time instants, i.e,

li(tk) ≤ αi ≤ ui(tk) ∀k ≥ 0, k ∈ N

Since, the true vector of parameters A is contained in all
the simplices S(Sn−1(tk)), it is also contained in their inter-
section and, as ensured by Porposition 1, in the intersection
of their bounding boxes:

A ∈
k⋂

j=0

S(Sn−1(tj)) ⊆
k⋂

j=0

B(Sn−1(tj))

Although the Frisch scheme allows an easy computation
of the individual simplices in the parameters space, the

computation of
k⋂

j=0

S(Sn−1(tj)) from the knowledge of the

vertices is not trivial. In addition the number of intersection
points will keep increase with the number of iterations.
Therefore, we cannot setup a recursive Frisch scheme method
based on seeking a solution inside the intersection of sim-
plices obtained at different iterations.

However, the results shown in Section 2 allow a simple
computation of the intersection of simplices bounding boxes.
For this reason, in the bounding box recursive Frisch scheme
we consider as set of solutions the intersection of the
bounding boxes rather than the intersection of the simplices.

It must be pointed out that in the proposed method we
might include in the solutions set some points which do not
lie in the intersection of the simplices, and therefore violate
the Frisch scheme hypotheses.

C. Updating Rules of the Solutions Set

Definition 5 (Solutions Bounds). The lower solution bound
of each parameter αi is recursively defined as

γi(tk) = max {γi(tk−1), li(tk)} ∀i = 1, . . . , n− 1 (11)

computed at each iteration. Similarly, the upper solution
bound of αi is

µi(tk) = min {µi(tk−1), ui(tk)} ∀i = 1, . . . , n− 1 (12)

Notice that for any integer k ≥ 0, and ∀i = 1, . . . , n− 1

γi(tk) = max
k
{li(tk)} , µi(tk) = min

k
{ui(tk)} (13)

Moreover, by definition, γi are monotonically increasing
and the µi are monotonically decreasing, i.e., for all i =
1, . . . , n− 1

γi(tk) ≥ γi(tk−1) and µi(tk) ≤ µi(tk−1) ∀k > 0

Hence, by denoting with λ([li(tk), ui(tk)]) the Lebesgue
measure of the interval [li(tk), ui(tk)], it holds

λ([γi(tk), µi(tk)]) ≤ λ([γi(tk−1), µi(tk−1)]) ∀k > 0 (14)

Hereafter we will refer to T (tk) as the intersection of all the
bounding boxes until the k-th time instant and we name it
solutions box:

T (tk) =

k⋂
j=0

B(Sn−1(tj))

T (tk) is the set of solutions of the recursive Frisch scheme.

Proposition 2. T (tk) depends only on the solutions bounds
of each parameter at that time instant. In particular,

T (tk) =

n−1∏
i=1

[γi(tk), µi(tk)]

Proof: Thanks to Theorem 2 we have

T (tk) =

k⋂
j=0

B(Sn−1(tj))

=

n−1∏
i=1

[max {li(t0), li(t1), . . . , li(tk)} ,

min {ui(t0), ui(t1), . . . , ui(tk)}]

Thus, from (13), it yields

T (tk) =

n−1∏
i=1

[γi(tk), µi(tk)]

�
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x(tk)

X(tk) Σ(tk) Sn−1(tk)

γ(tk), µ(tk)
get m new samples

Fig. 1. Schematic representation: block diagram of the overall procedure.

D. Convergence of the Algorithm

It’s known that the (hyper)volume of a simplex of solutions
can be seen as a measure of the estimation precision [5]. In
general this criteria can be extended to any solutions set, e.g.
to the simplex bounding box. We now want to formalize that,
during the execution of the BBRF scheme the volume of the
set of solutions is monotonically decreasing.

Theorem 3. The measure (volume) of T is monotonically
decreasing:

λ(T (tk)) ≤ λ(T (tk−1))

Proof: T (tk) can be obtained as

T (tk) =

k⋂
j=0

B(Sn−1(tj))

= B(Sn−1(tk)) ∩
k−1⋂
j=0

B(Sn−1(tj))

= B(Sn−1(tk)) ∩ T (tk−1)

Therefore, T (tk) ⊆ B(Sn−1(tk)) ∩ T (tk−1).
Thanks to the monotonicity property of the Lebesgue mea-
sure, it holds

λ(T (tk)) ≤ λ(T (tk−1))

�
The measure of T (tk) can be computed as follow

λ(T (tk)) =

n−1∏
i=1

|µi(tk)− γi(tk)| (15)

and, thus, the proof of Theorem 3 comes directly from
(14). We have shown that set of solutions can be easily
obtained iteratively as it only depends on λi(tk) and µi(tk)
which are updated directly from the new simplex matrix.
In addition, we have proved that the size of the set of
solutions is monotonically decreasing. However, it is not
possible to define a region of convergence of these values,
i.e. a lower or upper bounds in the value of λ(T (tk)) as it is
totally dependent on the data. A schematic overview of the
procedure is reported in Fig. 1.

IV. EXPERIMENTAL SIMULATIONS AND DISCUSSION

The proposed algorithm has been tested considering the
following linear model:

α1x1 + α2x2 + x3 = 0

where the following values have been assigned to the param-
eters: α1 = 1.5, α2 = 1.2. In a Monte Carlo simulation of

1 2 3 4 5

2

4

6

α1

α
2

Fig. 2. Comparison between the solution box (dark blue), the total simplex
(light) blue and the simplices computed at different itarations (orange). The
red dot indicates the position of the true parameters.

150 runs, random sequences of x1 and x2 have been gen-
erated from independent zero-mean Gaussian distributions
with unitary variance, while x3 has been obtained as x3 =
−(α1x1 + α2x2). Hence, x(tk) = (x1(tk), x2(tk), x3(tk))
for all tk and X(tk) has been constructed according to (9).
The height of X has been chosen to be m = 20, while
the total number of samples mtot was 2 · 107, resulting in
N = 106 BBRF iterations. In order to respect the ideal con-
dition of uncorrelation of noise, a diagonal noise covariance
matrix Σ̃ = diag(σ̃2

1 , σ̃
2
2 , σ̃

2
3), has been added to the sample

covariance matrix at each iteration. The noise variances σ̃2
i

(i = 1, 2, 3) has been assigned as σ̃2
i = δ·σ̂2

i , where σ̂2
i refers

to the variance of the i-th variable and δ has been chosen to
be 0.3. The first m samples has been used to initialize the
procedure, i.e. X(t0). The simplex of solutions have been
obtained, at each iteration, normalizing to 1 the last entry of
each OLS solution, having the prejudice on the value of the
parameter related to x4. Then the solution bounds have been
derived as in (11) and (12), having initialized γi, µi (i = 1,2),
with the bounds of the first simplex. In order to compare the
BBRF results, all the mtot data points have been used to
compute the total simplex Stot. It represents the classical
way of performing the Frisch scheme estimation on a given
set of measurements. The whole procedure was implemented
in Python1. The results of one Monte Carlo run, are pictured
in Fig. 2. It can be noticed that the solution box is much
smaller than the total simplex or all the simplices computed
at different iterations. In Fig. 3, the time evolution of the
solution bounds are shown.

The measure (volume) λsol = λ(T (tk)) of the solution
space (i.e. the solution box), which is computed according
to (15), has been chosen as metric for the evaluation of the
performance of the proposed method. This value has been
compared with the measure λtot of Stot and the measure λk
of the simplices obtained at different iterations computed, in
both case,s as in (8). The rapidly descent in time of λsol and
its comparison with λtot and λk are shown in Fig. 4.

A. Performance Analysis

The results of the simulations show the reliability of
the estimation bounds even before having collected and
processed a great amount of data. In fact, as shown in Fig. 4,
after about 10 iterations, the size of the solution box becomes

1The source code is available at https://github.com/
massastrello/Recursive-Estimation

1105

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on August 29,2024 at 12:57:07 UTC from IEEE Xplore.  Restrictions apply. 



100 101 102 103 104 105 106
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3
4

α
1

100 101 102 103 104 105 106
0

2

4

Iteration [log]

α
2

Fig. 3. Lower and upper solution bounds in the case of m = 20, δ = 0.3.
The dotted black line indicates the true value of the parameters. The mean
of all Monte Carlo runs of µi is plotted with a solid blue line while the one
of γi with a solid orange line. The solid lines are bounded by the minimum
and maximum values obtained among all the Monte Carlo iterations.

smaller than the one of the total simplex, which is, in
average, comparable to the one of the simplices computed at
different iterations. Although the convergence of the bounds
to specific values cannot be formally proven, the results
show an interesting phenomenon. It is possible to notice
that the solution bounds are observed to get closer reaching,
eventually, a constant values. Consequently and with the
same fashion, the λsol will become constant. Moreover, the
BBRF overtakes in terms of computational efficiency the
previous recursive Frisch method based on particles. The
computational complexity results to be O(n3) because of the
null space extraction in (10). Figure 5 clearly shows how the
computational time increases polynomially, i.e. O(n3). This
result has been obtained using a machine equipped with an
Intel R© Xeon E3-1240v5. These evidences demonstrate that,
whenever a set of measurements of a time-invariant linear
system is accessible, the BBRF estimator is more accurate
than the classical Frisch. Furthermore, thanks to the low
computational time and its rapid (observed) convergence, the
proposed algorithm can be adopted and implemented for real
time applications. Conversely, the BBRF estimation would
be inevitably compromised in presence of time varying
parameters. In addition, the solution box is redundant with
respect to the intersection of all the simplices. This makes
the BBRF scheme less accurate than the particle version of
the recursive Frisch scheme previous implemented [6]. Other

100 101 102 103 104 105 106
10−1

100

101

Iteration [log]

λ
[l

og
]

Fig. 4. Evolution in time of the measure of the solution box λsol (solid
orange line), the measure λk of each simplex (solid blue line) and the
measure λtot of the total simplex (dashed black line), for m = 20, δ = 0.3.
The solid lines represent the mean among the Monte Carlo runs of the values
and are enclosed by the minimum and maximum values obtained among all
the Monte Carlo iterations.

20 40 60 80 100
0

0.05

0.1

0.15

n

tim
e/

st
ep

[s
]

Fig. 5. Computation time for a single BBRF iteration as function of
the dimension of the system. The solid black line represents the ground
truth while the dashed blue line indicates the fitting obtained with a cubic
function.

problems which may rise in practical applications, such as
the validity of the assumption of unitary MaxcorF (Σ(tk)) in
each iteration and the correlation of noises affecting different
variables, implying a not guaranteed inclusion of the true
solution in all the simplices. These problems will be explored
in future work.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel recursive estimation scheme
developed from the Frisch scheme, the BBRF scheme.
This scheme is an iterative procedure which benefit of the
structural properties of simplices bounding boxes to finds
a solution set for the identification problem. In order to
introduce the concept of simplex bounding box, we have
firstly analyzed the geometrical properties of the locus of
solutions of the standard version of the Frisch scheme. Then
we have presented the BBRF and analytically proved some
of its properties. Finally, the effectiveness of the proposed
method has been tested on a practical and constructive case
of study of relevant interest. Although the method allows a
simple recursive computation of the solutions set, there is a
consistent redundancy of the solutions box with respect to
the intersection of all the simplices. In future works, we will
formalize a proof of stability of this scheme and explore its
extension to the case of time-varying systems.
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