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A B S T R A C T

Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be
extremely successful in classifying images. In recent years, much work has been done to also
improve the theoretical understanding of neural networks. Nevertheless, it seems limited when
these networks are trained with cross-entropy loss, mainly because of the unboundedness of the
target function. In this paper, we aim to fill this gap by analysing the rate of the excess risk of
a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness
and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of
convergence which is independent of the dimension of the image. These rates are in line with
the practical observations about CNNs.

. Introduction

Deep convolutional neural networks (CNNs) have led to state-of-the-art performance in solving various problems, especially
isual recognition tasks, see, e.g., LeCun et al. (2015), Krizhevsky et al. (2012), Schmidhuber (2015) and Rawat and Wang (2017).
hile deep learning applications are characterised above all by a high degree of flexibility, ranging from different initialisation

trategies (Larochelle et al., 2009) to the choice of the right activation function (Janocha and Czarnecki, 2017) and the application
f a proper learning algorithm (Le et al., 2011), one thing has so far been chosen as fixed for classification: The log or cross entropy
oss. The smoothness of this loss function simplifies the optimisation procedure and shows good practical performance (Goodfellow
t al., 2016; Simonyan and Zisserman, 2015). However, statistical risk bounds for neural networks trained with logistic loss only
xist for very restrictive conditions (see, e.g., Kim et al. (2021)), mainly because of the unboundedness of the corresponding excess
-risk minimiser (see (2)), which leads to slow convergence rates.

In general, many results on CNNs are based on considering them as a special type of feedfoward neural networks (FNNs) and then
sing results on FNNs to derive theoretical properties (Oono and Suzuki, 2019 and the literature cited therein). Unfortunately, these
esults do not demonstrate situations, where CNNs outperform FNNs, which is the case in many practical applications, especially in
mage classification. Generalisation bounds for CNNs with arbitrarily ordered fully connected and convolutional layers were derived
n Lin and Zhang (2019). Here the model complexity is bounded by the norm of the convolutional weights leading to tighter bounds
han existing bounds for FNNs. Yarotsky (2021) obtained approximation properties of deep CNNs, but only in an abstract setting,
here it is unclear how to apply those results. Kohler et al. (2022) analysed plug-in classifiers based on CNNs and showed that
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under proper assumptions on the structure of the a posteriori probability, suitable defined CNNs trained by squared loss achieve a
rate of convergence which does not depend on the input dimension of the image. But as, e.g., experimental results in Golik et al.
(2013) show, CNNs learned by cross entropy loss allow to find a better local optimum than the squared loss criterion. Therefore,
CNNs learned by cross entropy loss are of higher practical relevance.

Cross-entropy loss or, more generally, convex surrogate loss functions have been studied in Bartlett et al. (2006) and Zhang
2004). Bartlett et al. (2006) showed that for convex loss functions 𝜙 satisfying a certain uniform strict convexity condition, the
ate of convergence can be strictly faster than the classical 𝑛−1∕2, depending on the strictness of convexity of 𝜙 and the complexity

of the class of classifiers. Zhang (2004) analysed how close the optimal Bayes error rate can be approximately reached using a
classification algorithm that computes a classifier by minimising a convex upper bound of the classification error function. Some
results of this article (see Lemma 1) are also used in our analysis. In Lemma 1(b) we derive a modification of Zhang’s bound which
enables us to derive better rate of convergence under proper assumptions on the a posteriori probability.

In this paper we derive dimension-free rates for CNN classifiers with cross-entropy loss in a binary image classification problem,
where we impose some hierarchical structure on the a posteriori probability. In case that with high probability the a posteriori
probability is very close to zero or one, meaning that the optimal classification rule makes only a very small error, our rate can
even been improved. The first result can be framed as an extension of the analysis of Kohler et al. (2022), which analysed plug-in
classifiers based on a class of CNNs in a similar setting. However, it is not straightforward to extend these results to CNNs with cross-
entropy loss as one cannot analyse the classification problem as a nonparametric regression setting and a network approximation
for the logistic function is needed. We deal with these difficulties with novel approximation results as well as an alternative proof
strategy to bound the excess risk of the classifier.

2. Problem setting

2.1. Image classification

We consider a binary classification problem. Let 𝑑1, 𝑑2 ∈ N,  = [0, 1]𝑑1×𝑑2 be an image space and  = {−1, 1} the set of
corresponding binary labels. We describe an (random) image from a (random) class 𝑌 ∈  by a (random) matrix 𝐗 ∈  with 𝑑1
columns and 𝑑2 rows, which contains at position (𝑖, 𝑗) the grey scale value of the pixel of the image at the corresponding position.
Let 𝐏 be the probability measure of  ×  and define by

𝜂(𝐱) = 𝐏(𝑌 = 1|𝐗 = 𝐱)

the so-called a posteriori probability.
Our aim is to predict 𝑌 by a deterministic function 𝑔 ∶  → R such that the sign of 𝑔(𝐗) is a good prediction of 𝑌 . In particular,

we aim to minimise the prediction error or 0-1 risk

(𝑔) = 𝐏(𝑌 sgn(𝑔(𝐗)) ≤ 0) = 𝐄(1(sgn(𝑔(𝐗)) ≠ 𝑌 )),

where sgn(𝑥) = 1 if 𝑥 > 0 and −1 otherwise and 1(𝐸) is the indicator function of the set 𝐸, that is, 1 if event 𝐸 occurs and 0
otherwise. It is well-known, that the Bayes classifier 𝑓 ∗(𝐱) = 2𝜂(𝐱)−1 minimises  among all measurable functions (cf., e.g., Theorem
2.1 in Devroye et al. (1996)). But, as the probability measure 𝐏 of (𝐗, 𝑌 ) is unknown in practice, we cannot find 𝑓 ∗. Instead we
stimate 𝑓 ∗ by using the training data 𝑛 = {(𝐗𝑖, 𝑌𝑖)}𝑛𝑖=1, where (𝐗𝑖, 𝑌𝑖) are independent copies of the random vector (𝐗, 𝑌 ) ∼ 𝐏. A
opular approach is estimating 𝑓 ∗ by minimising the empirical risk

𝑛(𝑔) =
1
𝑛

𝑛
∑

𝑖=1
1{sgn(𝑔(𝐗𝑖)) ≠ 𝑌𝑖}

mong a class of real-valued functions 𝑛. However minimising the empirical risk with 0-1 loss over 𝑛 is NP hard and thus
omputationally not feasible (Bartlett et al., 2006). By replacing the number of misclassifications by a convex surrogate loss 𝜑,
ne can overcome computational problems. For a given loss 𝜑 we are searching for an estimate 𝑓𝑛 ∈ 𝑛 that minimises

𝜑
𝑛 (𝑔) =

1
𝑛

𝑛
∑

𝑖=1
𝜑
(

𝑌𝑖𝑔(𝐗𝑖)
)

.

By the law of large numbers, the empirical 𝜑-risk converges to the population 𝜑-risk

𝜑(𝑔) = 𝐄(𝜑(𝑌 𝑔(𝐗)))

when 𝑛 → ∞. A wide variety of classification methods are based on the idea of replacing the 0-1 risk by some kind of convex
surrogate loss. In particular, AdaBoost (Friedman et al., 2000) employs the exponential loss exp(−𝑧), while support vector machines
ften use hinge loss max(1−𝑧, 0) (Vapnik, 1998) and logistic regression applies the log loss log(1+exp(−𝑥)) (Hastie et al., 2009). In the
ontext of CNNs and image classification it is a standard to use cross-entropy loss or log loss. Therefore we fix 𝜑(𝑥) = log(1+exp(−𝑥))

in the following.
The classification performance of an estimator

𝑓𝑛 ∈ arg min 𝜑
𝑛 (𝑔) (1)
2

𝑔∈𝑛
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is measured by its excess risk

(𝑓𝑛, 𝑓 ∗) = (𝑓𝑛) − (𝑓 ∗).

Accordingly we denote the excess 𝜑-risk by

𝜑(𝑓𝑛, 𝑓 ∗
𝜑) = 𝜑(𝑓𝑛) − 𝜑(𝑓 ∗

𝜑),

where

𝑓 ∗
𝜑 = arg min

𝑔∈𝑛

𝜑(𝑔) = log
(

𝜂(𝐱)
1 − 𝜂(𝐱)

)

(2)

in case of 𝜑(𝑥) = log(1 + exp(−𝑥)) (cf., Friedman et al. (2000)). Our following result states a relation between the excess risk and its
logistic surrogate counterpart.

Lemma 1. Define 𝑓𝑛, 𝑓 ∗ and 𝑓 ∗
𝜑 as above.

(a) Then

𝐄{(𝑓𝑛, 𝑓 ∗)} ≤
√

2 ⋅ 𝐄{𝜑(𝑓𝑛, 𝑓 ∗
𝜑)

1∕2}

holds.

(b) Then

𝐄{(𝑓𝑛, 𝑓 ∗)} ≤ 2 ⋅ 𝐄{𝜑(𝑓𝑛, 𝑓 ∗
𝜑)} + 4 ⋅ 𝜑(𝑓 ∗

𝜑)

holds.
In both parts the expectation is taken over the training data 𝑛.

Remark 1. We use two different bounds on the excess risk as in case of proper assumption on the distribution of (𝐗, 𝑌 ) (see
ssumption 2 below), 𝜑(𝑓 ∗

𝜑) is small, such that part (b) of this lemma leads to faster rates.

Part (a) follows from Theorem 2.1 in Zhang (2004), where we choose 𝑠 = 2 and 𝑐 = 2−1∕2. For part (b) we set 𝑓𝑛(𝐱) ∶=
1∕(1 + exp(−𝑓𝑛(𝐱))) and 𝑔(𝑧) ∶= log(𝑧∕(1 − 𝑧)) for 𝑧 ∈ (0, 1). One can show that

𝐄{(𝑓𝑛, 𝑓 ∗)} ≤ 2 ⋅ 𝐄{|𝑓𝑛(𝐗) − 𝜂(𝐗)|}. (3)

For ℎ1(𝑧) ∶= 𝜑(1 ⋅ 𝑔(𝑧)) and ℎ2(𝑧) ∶= 𝜑(−1 ⋅ 𝑔(𝑧)) it further holds that |ℎ′𝑗 (𝑧)| ≥ 1 for 𝑗 ∈ {1, 2} and 𝑧 ∈ (0, 1). Using mean value
theorem we can bound (3) by

2 ⋅ 𝐄
{

|

|

|

𝜑
(

𝑌 ⋅ 𝑔(𝑓𝑛(𝐗))
)

− 𝜑 (𝑌 ⋅ 𝑔(𝜂(𝐗)))||
|

}

.

With |𝑎 − 𝑏| ≤ 𝑎 + 𝑏 for 𝑎, 𝑏 ≥ 0, the assertion follows. The complete proof is found in the appendix.

2.2. Hierarchical max-pooling model

In order to derive nontrivial rate of convergence results on the excess 𝜑-risk of any estimate it is necessary to restrict the class
of distributions (cf., Cover (1968) and Devroye (1982)). In case of logistic loss we have 𝑓 ∗

𝜑(𝐱) = log(𝜂(𝐱)∕(1− 𝜂(𝐱))), showing that 𝑓 ∗
𝜑

is a monotone transformation of the a posteriori probability 𝜂. Hence we need to impose some assumptions on 𝜂.
As in Kohler et al. (2022) we assume that the a posteriori probability fulfils some (𝑝, 𝐶)-smooth hierarchical max-pooling model.

As smoothness measure we use the following definition of (𝑝, 𝐶)-smoothness. For simplicity we introduce the multi-index notation,
that is, 𝜕𝜶 = 𝜕𝛼1 … 𝜕𝛼𝑑 with 𝜶 = (𝛼1,… , 𝛼𝑑 ) ∈ N𝑑

0 .

Definition 1. Let 𝑝 = 𝑞 + 𝑠 for some 𝑞 ∈ N0 and 0 < 𝑠 ≤ 1. A function 𝑓 ∶ R𝑑 → R is called (𝑝, 𝐶)-smooth, if for every 𝜶 ∈ N𝑑
0 with

‖𝜶‖1 = 𝑞 the partial derivative 𝜕𝜶𝑓 exists and satisfies

|𝜕𝜶𝑓 (𝐱) − 𝜕𝜶𝑓 (𝐳)| ≤ 𝐶 ⋅ ‖𝐱 − 𝐳‖𝑠

for all 𝐱, 𝐳 ∈ R𝑑 .

For the next definitions we frequently use the following notation: For 𝑀 ⊆ R𝑑 and 𝐱 ∈ R𝑑 we define

𝐱 +𝑀 = {𝐱 + 𝐳 ∶ 𝐳 ∈ 𝑀}.

For 𝐼 ⊆ 𝑑1 × 𝑑2 and 𝐱 = (𝑥𝑖)𝑖∈𝑑1×𝑑2 ∈ [0, 1]𝑑1×𝑑2 we set

𝐱𝐼 = (𝑥𝑖)𝑖∈𝐼 .

The definition of hierarchical max-pooling models is motivated by the following observation: Human beings often decide, whether
3

a given image contains some object, i.e., a car, or not by scanning subparts of the image and checking, whether the searched object
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Fig. 1. Illustration of Definition 3 with 𝑙 = 2.

s on this subpart. For each subpart the human estimates a probability that the searched object is on it. The probability that the
hole image contains the object is then simply the maximum of the probabilities for each subpart of the image. This leads to the
efinition of a max-pooling model for the a posteriori probability.

efinition 2. Let 𝑑1, 𝑑2 ∈ N with 𝑑1, 𝑑2 > 1 and 𝑚 ∶ [0, 1]𝑑1×𝑑2 → R. We say that 𝑚 satisfies a max-pooling model with index set

𝐼 ⊆ 𝑑1 − 1 × 𝑑2 − 1,

f there exist a function 𝑓 ∶ [0, 1](1,1)+𝐼 → R such that

𝑚(𝐱) = max
(𝑖,𝑗)∈Z2 ∶ (𝑖,𝑗)+𝐼⊆𝑑1×𝑑2

𝑓
(

𝐱(𝑖,𝑗)+𝐼
)

or 𝐱 ∈ [0, 1]𝑑1×𝑑2 .

Additionally, the probability that a subpart contains the searched object is composed by several decisions, if parts of the searched
bjects are identifiable. This motivates the hierarchical structure of our model. In the following we denote the four block matrices
f a matrix 𝐱 ∈ [0, 1]2𝑘×2𝑘 by 𝐱1,1, 𝐱2,1, 𝐱1,2, 𝐱2,2, where

𝐱𝑖,𝑗 = 𝐱{(𝑖−1)2𝑘−1+1,…,𝑖2𝑘−1}×{(𝑗−1)2𝑘−1+1,…,𝑗2𝑘−1} ∈ [0, 1]2
𝑘−1×2𝑘−1 ,

, 𝑗 ∈ {1, 2}. This means that

𝐱 =
(

𝐱1,1 𝐱2,1
𝐱1,2 𝐱2,2

)

. (4)

Definition 3. Let 𝑑1, 𝑑2 ∈ N with 𝑑1, 𝑑2 > 1 and 𝑚 ∶ [0, 1]𝑑1×𝑑2 → R. We say that

𝑓 ∶ [0, 1]2
𝑙×2𝑙 → R

satisfies a hierarchical model of level 𝑙, if there exist functions

𝑔𝑘,𝑠 ∶ R4 → [0, 1] (𝑘 = 1,… , 𝑙, 𝑠 = 1,… , 4𝑙−𝑘)

such that we have

𝑓 = 𝑓𝑙,1

for some 𝑓𝑘,𝑠 ∶ [0, 1]2𝑘×2𝑘 → R recursively defined by

𝑓𝑘,𝑠(𝐱) = 𝑔𝑘,𝑠
(

𝑓𝑘−1,4⋅(𝑠−1)+1(𝐱1,1), 𝑓𝑘−1,4⋅(𝑠−1)+2(𝐱2,1), 𝑓𝑘−1,4⋅(𝑠−1)+3(𝐱1,2), 𝑓𝑘−1,4⋅𝑠(𝐱2,2)
)

or 𝑘 = 2,… , 𝑙, 𝑠 = 1,… , 4𝑙−𝑘 and 𝐱 ∈ [0, 1]2𝑘×2𝑘 and

𝑓1,𝑠(𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2) = 𝑔1,𝑠(𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2)

or 𝑠 = 1,… , 4𝑙−1 and 𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2 ∈ [0, 1].

An illustration of Definition 3 for 𝑙 = 2 is shown in Fig. 1.
Combining Definitions 1–3 leads to the final definition of (𝑝, 𝐶)-smooth hierarchical max-pooling models.

efinition 4. We say that 𝑚 ∶ [0, 1]𝑑1×𝑑2 → R satisfies a (𝑝, 𝐶)-smooth hierarchical max-pooling model of level 𝑙 (where
𝑙 ≤ min{𝑑1, 𝑑2}), if 𝑚 satisfies a max-pooling model with index set 𝐼 = 2𝑙 − 1 × 2𝑙 − 1, the function 𝑓 ∶ [0, 1](1,1)+𝐼 → R in the
efinition of this max-pooling model satisfies a hierarchical model with level 𝑙 and if all functions 𝑔𝑘,𝑠 in the definition of the
unctions 𝑚 are (𝑝, 𝐶)–smooth for some 𝐶 > 0.
4
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2.3. Convolutional neural networks

We consider CNNs that take 𝑑1 × 𝑑2-dimensional images as input and produce an one-dimensional output. As the name suggests,
the most important operation of a CNN is its convolution. The main idea behind it is to apply filters, i.e., small weight matrices
to the input image to extract high-level information. Mathematically a convolution can be described as follows: Let 𝐗 be a 𝑑1 × 𝑑2
nput matrix, 𝐗𝑖,𝑗 be its 𝓁×𝓁 block matrix with entries (𝑋𝑖+𝑎,𝑗+𝑏)𝑎,𝑏=0,…,𝓁−1 and 𝐖 be a corresponding filter of size 𝓁. The entry (𝑖, 𝑗)
f a resulting channel 𝐂̃ can then be described by

𝐶̃𝑖,𝑗 =
𝓁
∑

𝑘,𝑚=1
(𝐗𝑖,𝑗 ⊙𝐖)𝑘,𝑚, (5)

here ⊙ denotes the Hadamard product. Finally an activation function 𝜎 is applied componentwise, i.e., 𝐶𝑖,𝑗 ∶= 𝜎(𝐶̃𝑖,𝑗 ). This in turn
eans that the final channel 𝐂 consists of entries computed by the sum of a Hadamard product between the filter and the respective

lock matrix of the input applied to an activation function 𝜎. We set

𝐂 ∶= 𝜎(𝐖 ⋆ 𝐗)

ith 𝜎(𝑥) = max{𝑥, 0} being the ReLU activation function. Here ⋆ describes the computation of each entry 𝐶̃𝑖,𝑗 as in (5), where
𝜎 is applied componentwise. One can see that the weights generating the feature map 𝐂 are shared, which has the advantage
of reducing the complexity of the model and the training time of the networks. Usually a CNN consists of several convolutional
layers. Each convolutional layer 𝑙 (𝑙 ∈ {1,… , 𝐿}) consists of 𝑘𝑙 ∈ N channels (also called feature maps) while the filter size
𝑀𝑙 ∈ {1,… ,min{𝑑1, 𝑑2}} per layer is fixed. In our setting we make use of so-called zero-padding meaning that we enlarge each
hannel by appending zero matrices on each side such that the convolution does not change the in-plane dimension. This, in turn,
eans that every resulting channel has size 𝑑1 × 𝑑2. For filters

(𝐖𝑠1 ,𝑠2 ,𝑙)𝑙=1,…,𝐿,𝑠1=1,…,𝑘𝑙−1 ,𝑠2=1,…,𝑘𝑙

he 𝑠-th channel of layer 𝑙 (𝑠 = 1,… , 𝑘𝑙 , 𝑙 = 1,… , 𝐿) can be described by

𝐂𝑠,𝑙 = 𝜎

(𝑘𝑙−1
∑

𝑠1=1
𝐖𝑠1 ,𝑠,𝑙 ⋆ 𝐂𝑠1 ,𝑙−1

)

(6)

with 𝐂1,0 = 𝐗 and 𝑘0 = 1.
In our network, only in the last step a max-pooling layer is applied to the values of the last convolutional layer 𝐿. As in Langer

and Schmidt-Hieber (2022) we consider a global max-pooling where we extract from every channel 𝐂𝑠,𝐿 (𝑠 = 1,… , 𝑘𝐿) the largest
absolute value. A CNN with 𝐿 ∈ N convolutional layers and one pooling layer, channel vector 𝐤 = (𝑘1,… , 𝑘𝐿) ∈ N𝐿 and filter vector
𝐌 = (𝑀1,… ,𝑀𝐿) ∈ N𝐿, where 𝑘𝑖 describes the number of channels and 𝑀𝑖 describes the size of the filters in layer 𝑖, respectively,
can be described as a function 𝑓 ∶ [0, 1]𝑑1×𝑑2 → R𝑘𝐿 with

𝐱 ↦ 𝑓 (𝐱) = (|𝐂1,𝐿|∞,… , |𝐂𝑘𝐿 ,𝐿|∞)

with 𝐂𝑠,𝐿 recursively defined as in (6). We denote this network class by 𝐶
𝐿,𝐤,𝐌.

After convolutional and pooling layers typically several fully connected layers are applied. Again we choose the ReLU activation
function 𝜎(𝑥) = max{𝑥, 0}. Following the definition in Schmidt-Hieber (2020), a fully connected network with 𝐿 ∈ N hidden layers
and width vector 𝐤 = (𝑘0,… , 𝑘𝐿+1) ∈ N𝐿+2, where 𝑘𝑖 denotes the number of neurons in layer 𝑖, can be described by a function
𝑓 ∶ R𝑘0 → R𝑘𝐿+1 with

𝐱 ↦ 𝑓 (𝐱) = 𝐖𝐿𝜎𝑣𝐿𝐖𝐿−1𝜎𝑣𝐿−1 ⋯𝐖1𝜎𝐯1𝐖0𝐱,

where 𝐖𝑗 is a 𝑘𝑗 ×𝑘𝑗+1 weight matrix and 𝐯𝑗 is the 𝑗-th shift vector. We denote the network class of fully connected neural networks
by 𝐿,𝐤.

Our final function class 𝑛,𝛩 is then a composition of convolutional and fully connected layers, i.e.,

𝑛,𝛩 =
{

𝑔 ◦ 𝑓 ∶ 𝑓 ∈ 𝐶
𝐿(1)
𝑛 ,𝐤(1) ,𝐌

, 𝑔 ∈ 𝐿(2)
𝑛 ,𝐤(2) , ‖𝑔 ◦ 𝑓‖∞ ≤ 𝛽𝑛

}

, (7)

where 𝛩 = (𝐋,𝐤(1),𝐤(2),𝐌) with parameters

𝐋 = (𝐿(1)
𝑛 , 𝐿(2)

𝑛 ), 𝐤(1) =
(

𝑘(1)1 ,… , 𝑘(1)
𝐿(1)
𝑛

)

,

𝐤(2) =
(

𝑘(2)1 ,… , 𝑘(2)
𝐿(2)
𝑛

)

, 𝐌 = (𝑀1,… ,𝑀𝐿(1)
𝑛
)

5

and 𝛽𝑛 = 𝑐1 ⋅ log 𝑛 for some constant 𝑐1 > 0. Accordingly we denote by
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𝑓𝐶𝑁𝑁
𝑛 = arg min

𝑓∈𝑛,𝛩

1
𝑛

𝑛
∑

𝑖=1
log(1 + exp(−𝑌𝑖 ⋅ 𝑓 (𝐗𝑖))) (8)

the empirical risk minimiser based on our class of CNNs.
In general, deep learning theory can be roughly divided into three parts, namely expressivity, generalisation and optimisation

(see Kutyniok (2020)). While the intersection of all three aspects has only been analysed in very limited settings so far, e.g., for
shallow neural networks and a restricted class of regression functions (see, e.g., Braun et al. (2021)), most statistical risk bounds of
neural networks exclude the optimisation algorithm and deal with the empirical risk minimiser (ERM) instead (see, e.g., Schmidt-
Hieber (2020), Bauer and Kohler (2019) and Kohler and Langer (2021)). Following this line of work, we also analyse the ERM
based on a particular class of CNNs. It therefore remains an open question whether similar rates can be shown for CNNs trained
with (stochastic) gradient descent. In case of overparametrized CNNs, e.g., Du et al. (2019) could show that the gradient descent
is able to find the global minimum of the empirical loss function. But for overparametrized networks one cannot use standard
generalisation bounds as these usually depend on the number of parameters. Therefore a completely new statistical approach is
needed for this analysis.

3. Main result

In this section we derive convergence rates of the excess risk of 𝑓𝐶𝑁𝑁
𝑛 under the assumption that the a posteriori probability 𝜂

fulfils a (𝑝, 𝐶)-smooth hierarchical max-pooling model (see Definition 4). Before providing our results, two assumptions are imposed
on the distribution of (𝐗, 𝑌 ).

Assumption 1. For 𝑝 ≥ 1 and 𝐶 > 0 arbitrary, 𝜂(𝐱) = 𝐏{𝑌 = 1|𝐗 = 𝐱} satisfies a (𝑝, 𝐶)–smooth hierarchical max-pooling model of
finite level 𝑙 and 𝑠𝑢𝑝𝑝(𝐏𝐗) ⊆ [0, 1]𝑑1×𝑑2 .

The second is a margin condition on the a posteriori probability.

Assumption 2. For 𝑓 ∗
𝜑 being the minimiser of 𝜑(𝑔) and 𝑛 ∈ N, it holds

𝐏
{

𝐗 ∶ |𝑓 ∗
𝜑(𝐗)| >

1
2
⋅ log 𝑛

}

≥ 1 − 1
√

𝑛
.

Assumption 2 requires that with high probability the a posteriori probability is very close to zero or one, and hence the optimal
lassification rule makes only a very small error. This is in particular realistic for various image classification tasks, where object
lasses can often be confidently distinguished (cf., Kim et al. (2021)). Additionally, a similar assumption was applied in Bos and
chmidt-Hieber (2022) within the context of a multiclass classification problem, also analysing a ReLU network classifier minimising
ross entropy loss.

heorem 1. Suppose Assumption 1 holds. Set

𝐿(1)
𝑛 = 4𝑙 − 1

3
⋅ ⌈𝑐3 ⋅ 𝑛

2∕(2𝑝+4)
⌉ + 𝑙 and 𝐿(2)

𝑛 = ⌈𝑐2 ⋅ 𝑛
1∕4

⌉,

𝑀𝑠 = 2𝜋(𝑠) (𝑠 = 1,… , 𝐿(1)
𝑛 ),

where the function 𝜋 ∶ {1,… , 𝐿(1)
𝑛 } → {1,… , 𝑙} is defined by

𝜋(𝑠) =
𝑙

∑

𝑖=1
1{𝑠≥𝑖+

∑𝑙−1
𝑟=𝑙−𝑖+1 4

𝑟⋅⌈𝑐3⋅𝑛2∕(2𝑝+4)⌉}
,

choose 𝐤(1) = (𝑐4,… , 𝑐4) ∈ N𝐿(1)
𝑛 and 𝐤(2) = (𝑐5,… , 𝑐5) ∈ N𝐿(2)

𝑛 , and define the estimate 𝑓𝐶𝑁𝑁
𝑛 as in (8). Assume that the constants 𝑐2,… , 𝑐5

are sufficiently large.

(a) There exists a constant 𝑐6 = 𝑐6(𝜂, 𝑑1, 𝑑2, 𝑝, 𝐶, 𝑙) > 0 such that we have for any 𝑛 > 1

𝐄{(𝑓𝐶𝑁𝑁
𝑛 , 𝑓 ∗)} ≤ 𝑐6 ⋅ (log 𝑛) ⋅ 𝑛

−min{ 𝑝
4𝑝+8 ,

1
8 }.

(b) If, in addition, Assumption 2 holds , then there exists a constant 𝑐7 = 𝑐7(𝜂, 𝑑1, 𝑑2, 𝑝, 𝐶, 𝑙) > 0 such that we have for any 𝑛 > 1

𝐄{(𝑓𝐶𝑁𝑁
𝑛 , 𝑓 ∗)} ≤ 𝑐7 ⋅ (log 𝑛)2 ⋅ 𝑛

−min{ 𝑝
2𝑝+4 ,

1
4 }.

n both parts the expectation is taken over the training data 𝑛.

emark 2. An interesting feature of the convergence rates in Theorem 1 is that both rates do not depend on the dimension 𝑑1 ⋅𝑑2 of
he input image. Thus, given the structure of the a posteriori probability fulfils a (𝑝, 𝐶)-smooth hierarchical max-pooling model, our
stimator circumvents the curse of dimensionality. Under Assumption 2 the rate can even be improved. To us these results partly
6

xplain the good performance of CNN classifiers on image data.
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Remark 3. The definition of the parameters 𝐿(1)
𝑛 and 𝑀𝑖 (𝑖 = 1,… , 𝐿(1)

𝑛 ) of the estimate in Theorem 1 depends on the smoothness
and the level of the hierarchical max-pooling model for the a posteriori probability, which are usually unknown in applications. In
this case it is possible to define these parameters in a data-dependent way, e.g., by using a splitting of the sample approach (cf.,
e.g., Chapter 7 in Györfi et al. (2002)).

On the proof. To prove Theorem 1 we use Lemma 1 in combination with the following general upper bound on the excess 𝜑-risk
of an empirical risk minimiser 𝑓𝑛 ∈ 𝑛, where 𝑛 can be a general function space consisting of functions 𝑓 ∶ R𝑑1×𝑑2 → R.

Lemma 2. Let 𝜑 be the logistic loss and 𝑛 = {(𝐗𝑖, 𝑌𝑖)}𝑛𝑖=1. Then the empirical risk minimiser 𝑓𝑛 defined as in (1) satisfies

𝐄{𝜑(𝑓𝑛, 𝑓 ∗
𝜑)} ≤ 2 ⋅ sup

𝑓∈𝑛

|𝜑(𝑓 ) − 𝜑
𝑛 (𝑓 )| + inf

𝑓∈𝑛
𝜑(𝑓, 𝑓 ∗

𝜑).

Lemma 2 shows that the excess 𝜑-risk of an ERM is bounded above by the sum of two terms. The first term is the so-called
generalisation error. It is closely related to the complexity of the function class and can be bounded using results from empirical
process theory. The second one is the approximation error measuring how rich the function class 𝑛 is, meaning if we can express
the problem under consideration by a function of 𝑛.

In the following 𝑛 is chosen to be a class of convolutional neural networks, i.e., 𝑛 = 𝑛,𝛩 and the estimator under consideration
is defined as in (8).

4. Approximation error

To bound inf𝑓∈𝑛,𝛩
𝜑(𝑓, 𝑓 ∗

𝜑) we use that for an arbitrary ℎ ∈ 𝑛,𝛩

inf
𝑓∈𝑛,𝛩

𝜑(𝑓, 𝑓 ∗
𝜑) ≤ 𝜑(ℎ, 𝑓 ∗

𝜑) = ∫ (𝜂(𝐱) ⋅ 𝜑(ℎ(𝐱)) + (1 − 𝜂(𝐱)) ⋅ 𝜑(−ℎ(𝐱)))𝐏𝐗(𝑑𝐱)

− ∫ (𝜂(𝐱) ⋅ 𝜑(𝑓 ∗
𝜑(𝐱)) + (1 − 𝜂(𝐱)) ⋅ 𝜑(−𝑓 ∗

𝜑(𝐱)))𝐏𝐗(𝑑𝐱)

≤ sup
𝐱∈[0,1]𝑑1×𝑑2

(

|

|

|

|

𝜂(𝐱) ⋅
(

𝜑(ℎ(𝐱)) − 𝜑(𝑓 ∗
𝜑(𝐱))

)

|

|

|

|

+
|

|

|

|

(1 − 𝜂(𝐱)) ⋅
(

𝜑(−ℎ(𝐱)) − 𝜑(−𝑓 ∗
𝜑(𝐱))

)

|

|

|

|

)

≤ sup
𝐱∈[0,1]𝑑1×𝑑2

(

|𝜂(𝐱) ⋅ (𝜑(ℎ(𝐱)) − 𝜑(𝑔(𝜂(𝐱))))|

+ |(1 − 𝜂(𝐱)) ⋅ (𝜑(−ℎ(𝐱)) − 𝜑(−𝑔(𝜂(𝐱))))|
)

,

where

𝑔(𝑧) =

⎧

⎪

⎨

⎪

⎩

∞ , 𝑧 = 1
log 𝑧

1−𝑧 , 0 < 𝑧 < 1
−∞ , 𝑧 = 0.

his, in turn, means that in order to find a satisfying bound for our approximation error we need to build a CNN which approximates
(𝜂(𝐱)) properly. Using the compositional structure of neural networks, one can break this task down into two parts. On the one
and we show that CNNs approximate 𝜂(𝐱), i.e., (𝑝, 𝐶)-smooth hierarchical max-pooling models. On the other hand we build a fully

connected neural network that approximates 𝑔. The approximation result on 𝑔 is the following.

Lemma 3. Set

𝑔(𝑧) =

⎧

⎪

⎨

⎪

⎩

∞ , 𝑧 = 1
log 𝑧

1−𝑧 , 0 < 𝑧 < 1
−∞ , 𝑧 = 0

nd let 𝐾 ∈ N with 𝐾 ≥ 6. Let 𝜂 ∶ R𝑑 → [0, 1] and let 𝜂̄ ∶ R𝑑 → R such that ‖𝜂̄ − 𝜂‖∞ ≤ 𝜖 for some 0 ≤ 𝜖 ≤ 1∕𝐾. Then there exists a
eural network 𝑔̄ ∶ R → R with ReLU activation function, 𝐾 +3 hidden layers with 7 neurons per layer, which is bounded in absolute value
y log(𝐾 + 1) and which satisfies

sup
𝐱∈R𝑑1×𝑑2

(|𝜂(𝐱) ⋅ (𝜑(𝑔̄(𝜂̄(𝐱))) − 𝜑(𝑔(𝜂(𝐱))))|

+ |(1 − 𝜂(𝐱)) ⋅ (𝜑(−𝑔̄(𝜂̄(𝐱))) − 𝜑(−𝑔(𝜂(𝐱))))|)

≤ 𝑐10 ⋅
(

log𝐾
𝐾

+ 𝜖
)

.

A complete proof is found in the appendix. Roughly, it is based on the idea that functions of the form

𝑔̄(𝑧) ∶=
𝐾+1
∑

𝑎𝑘 ⋅ 𝐵𝑘(𝑧),
7

𝑘=−1
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where

𝐵𝑘(𝑧) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 , 𝑧 < 𝑘−1
𝐾

𝐾 ⋅ (𝑧 − 𝑘−1
𝐾 ) , 𝑘−1𝐾 ≤ 𝑧 < 𝑘

𝐾

𝐾 ⋅ ( 𝑘+1𝐾 − 𝑧) , 𝑘
𝐾 ≤ 𝑧 < 𝑘+1

𝐾

0 , 𝑧 ≥ 𝑘+1
𝐾 ,

can be computed by a ReLU network with 𝐾 + 3 hidden layers and 7 neurons per layer.
Combining Lemma 3 with the approximation result on the hierarchical max-pooling models, we are then able to show the

ollowing approximation result.

heorem 2. Suppose Assumption 1 holds. Let 𝑛,𝛩 be the set of all CNNs with 𝛩 = (𝐋,𝐤(1),𝐤(2),𝐌), where 𝐤(1) = (𝑐4,… , 𝑐4) with 𝑐4
sufficiently large and 𝐤(2) = (7,… , 7).

Furthermore assume (𝐿(1)
𝑛 )2𝑝∕𝑑 ≥ 𝑐8 ⋅ 𝐿

(2)
𝑛 . Then

inf
𝑓∈𝑛,𝛩

(𝑓, 𝑓 ∗
𝜑) ≤ 𝑐9 ⋅

(

log𝐿(2)
𝑛

𝐿(2)
𝑛

+ 1
(𝐿(1)

𝑛 )2𝑝∕4

)

,

with constant 𝑐9 = 𝑐9(𝜂, 𝑝, 𝐶, 𝑙).

The complete proof of this result is given in the appendix.

5. Generalisation error

The generalisation error sup𝑓∈𝑛
|𝜑(𝑓 ) − 𝜑

𝑛 (𝑓 )| can be bounded using results from empirical process theory together with bounds
on the covering number of CNNs.

In particular, using Theorem 9.1 in Györfi et al. (2002) it holds for

𝐙 = (𝐗, 𝑌 ),𝐙1 = (𝐗1, 𝑌1),… ,𝐙𝑛 = (𝐗𝑛, 𝑌𝑛),

and 𝜖 > 0, that

𝐏
{

sup
𝑓∈𝑛

|

|

𝜑(𝑓 ) − 𝜑
𝑛 (𝑓 )|| > 𝜖

}

= 𝐏
{

sup
ℎ∈𝑛

|

|

|

|

|

𝐄ℎ(𝐙) − 1
𝑛

𝑛
∑

𝑖=1
ℎ(𝐙𝑖)

|

|

|

|

|

> 𝜖

}

≤ 8𝐄
{

1

( 𝜖
8
,𝑛,𝐙𝑛

1

)}

𝑒
− 𝑛𝜖2

128⋅𝑐210 ⋅(log 𝑛)
2
.

Here

𝑛 = {ℎ ∶ R𝑑1×𝑑2 × R → R ∶ ∃𝑓 ∈ 𝑛,𝛩 such that ℎ(𝐱, 𝑦) = 𝜑(𝑦 ⋅ 𝑓 (𝐱))}

and 1(𝜀, , 𝐱𝑛1) describes the 𝜀–covering number of  on 𝐱𝑛1, that is the smallest 𝜀–cover of  on 𝐱𝑛1, i.e., the number 𝑁 ∈ N such
that there exists 𝑖 ∈ {1,… , 𝑁} such that

1
𝑛

𝑛
∑

𝑘=1
|𝑓 (𝐱𝑘) − 𝑓𝑖(𝐱𝑘)| < 𝜀.

As every 𝜖-cover of 𝑛,𝛩 is an 𝜖-cover of 𝑛, we have

1

( 𝜖
8
,𝑛,𝐙𝑛

1

)

≤ 1

( 𝜖
8
,𝑛,𝛩,𝐗𝑛

1

)

.

The following bound on the covering number of 𝑛,𝛩, then helps us to bound the generalisation error.

Lemma 4. Define 𝑛,𝛩 as in (7) and set

𝑘𝑚𝑎𝑥 = max
{

𝑘(1)1 ,… , 𝑘(1)
𝐿(1)
𝑛
, 𝑘(2)1 ,… , 𝑘(2)

𝐿(2)
𝑛

}

,

𝑀𝑚𝑎𝑥 = max{𝑀1,… ,𝑀𝐿(1)
𝑛
}

and

𝐿𝑚𝑎𝑥 = max{𝐿(1)
𝑛 , 𝐿(2)

𝑛 }.

Assume 𝑑1 ⋅ 𝑑2 > 1 and 𝛽𝑛 = 𝑐1 ⋅ log 𝑛 ≥ 2. Then we have for any 𝜖 ∈ (0, 1),

sup
𝑛 𝑑 ×𝑑 𝑛

log
(

1
(

𝜖,𝑛,𝛩, 𝐱𝑛1
))
8

𝐱1∈(R 1 2 )
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A

R

B
B
B
B
C
D

D
D
F

G
G
G
H
J
K
K
K
K

K
L
L

L

L
L

O

R
S
S
S
V
Y
Z

≤ 𝑐11 ⋅ 𝐿
2
𝑚𝑎𝑥 ⋅ log(𝐿𝑚𝑎𝑥 ⋅ 𝑑1 ⋅ 𝑑2) ⋅ log

(

𝑐1 ⋅ log 𝑛
𝜖

)

or some constant 𝑐11 > 0 which depends only on 𝑘𝑚𝑎𝑥 and 𝑀𝑚𝑎𝑥.

The proof of this result follows by Lemma 7 in Kohler et al. (2022).

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2024.106188.
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