
Querying Fault and Attack Trees: Property Specification on a Water
Network

Stefano M. Nicoletti, University of Twente

Milan Lopuhaä-Zwakenberg, University of Twente

E. Moritz Hahn, University of Twente

Mariëlle Stoelinga, University of Twente

Key Words: fault trees, fault tree analysis, attack trees, case study analysis, property specification, logic

SUMMARY & CONCLUSIONS

We provide an overview of three different query languages
whose objective is to specify properties on the highly popular
formalisms of fault trees (FTs) and attack trees (ATs). These
are BFL, a Boolean Logic for FTs, PFL, a probabilistic
extension of BFL and ATM, a logic for security metrics on ATs.
We validate the framework composed by these three logics by
applying them to the case study of a water distribution network.
We extend the FT for this network – found in the literature –
and we propose to model the system under analysis with the
Fault Trees/Attack Trees (FT/ATs) formalism, combining both
FTs and ATs in a unique model. Furthermore, we propose a
novel combination of the showcased logics to account for
queries that jointly consider both the FT and the AT of the
model, integrating influences of attacks on failure probabilities
of different components. Finally, we extend the domain specific
language for PFL with novel constructs to capture the interplay
between metrics of attacks – e.g., “cost”, success probabilities
– and failure probabilities in the system.

1 INTRODUCTION

Critical infrastructure systems must operate safely and
securely. Fault tree analysis (FTA) [1,2] is a widespread method
used for risk assessment of these systems. Developed in the
early '60s [3], fault trees (FT) are directed acyclic graphs
(DAGs) that model how component failures arise and propagate
through the modelled system, eventually leading to system level
failures. Leaves in a FT represent basic events (BEs), i.e.
elements of the tree that need not be further refined. Once these
fail, the failure is propagated through the intermediate events
(IEs) via gates, to eventually reach the top level event (TLE),
which symbolizes system failure. In FTA, typically one
identifies the minimal cut sets (MCSs) of a FT, i.e. minimal sets
of BEs that, when failed, cause the system to fail. One can also
identify minimal path sets (MPSs), i.e. minimal sets of BEs that
– when operational – guarantee that the system will remain
operational. FTs are a required analysis methodology by, e.g.,
the Federal Aviation Administration, the Nuclear Regulatory
Commission, the ISO 26262 standard [4] for autonomous

driving and for software development in aerospace systems.
Attack trees (ATs) [5] are the security counterpart of FTs:

hierarchical diagrams that offer a flexible modelling language
to assess how systems can be attacked. As for FTs, ATs are
widely employed both in industry and academia: they are part
of many system engineering frameworks, e.g. UMLsec [6] and
SysMLsec [7, 8], and are supported by industrial tools such as
Isograph's AttackTree [9].

1.1 Combining Fault and Attack Trees

Due to their popularity, numerous combinations and
extensions of FTs and ATs have been proposed. Recent surveys
[10, 11] attest that at least seven such combinations/extensions
are popular in the literature: Extended Fault Trees or Fault
Trees/Attack Trees (FT/ATs) [12], Component Fault Trees
(CFTs) [13], Attack-Fault Trees (AFTs) [14], State/Event Fault
Trees (SEFTs) [15], Failure-Attack-CounTermeasure (FACT)
Graphs [16], Boolean Driven Markov Processes (BDMPs) [17]
and Attack Tree Bow-ties (ATBTs) [18].

In this paper, we focus our attention on FT/ATs. These
model the intuition that malicious actors often try to induce a
failure of some components in a system, in order to render it
non-operational: in doing so, they offer a sensible way of
combining FTs and ATs. FT/ATs model these situations by
replacing one or multiple BEs in the FT with the root of an AT,
symbolizing paths that an attacker can take to cause failure in
one or more basic components in an FT.

1.2 Querying Fault and Attack Trees

Despite their popularity, however, little work has been
done on developing tailored languages that enable practitioners
to specify flexible properties on FTs and ATs. Only very recent
work addressed this issue, by proposing three different logics
tailored to FTs and ATs, accompanied by model checking
algorithms that can check the truth value of formulae.

Boolean Fault tree Logic. Our previous work [19]
proposed a Boolean Fault tree Logic (BFL) with which
practitioners can: 1. set evidence to analyze what-if scenarios,
e.g., what are the MCSs, given that BE A or subsystem B has
failed? What are the MPSs given that A or B have not failed?

979-8-3503-0769-6/24/$31.00 ©2024 IEEE

20
24

 A
nn

ua
l R

el
ia

bi
lit

y
an

d
M

ai
nt

ai
na

bi
lit

y
Sy

m
po

siu
m

 (R
AM

S)
 |

 9
79

-8
-3

50
3-

07
69

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
RA

M
S5

14
92

.2
02

4.
10

45
77

96

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

To check whether two FT elements are independent or if they
share a child that can influence their status. 3. check whether
the failure of one (or more) element E always leads to the failure
of the TLE. 4. set upper/lower boundaries for failed elements,
e.g., would element E always fail if at most/at least two out of
A, B and C were to fail? Moreover, if a property does not hold,
the BFL framework generates counterexamples, to show why
the property fails.

Probabilistic Fault tree Logic. Extending the previous
framework, [20] presents a Probabilistic Fault tree Logic to
further enhance quantitative analysis capabilities, as
probabilities are the prime quantitative metric on FTs. With
PFL, one: 1. can check whether the probability of a given
element (potentially conditioned by another one) respects a
certain threshold, 2. can set the value of one BE in complex
formulae to an arbitrary probability value, 3. can check if two
BEs/IEs are stochastically independent, 4. can also return
probability values for given formulae, possibly mapping single
elements to an arbitrary probability value. Furthermore, [20]
presents LangPFL, a domain specific language for PFL that
propels the usability of this framework, allowing easier
property specification on FTs.

A Logic for Attack Tree Metrics. Concerning ATs, [21]
develops a Logic for Attack Tree Metrics (ATM) to specify a
variety of quantitative security properties on these models: the
authors present a general framework that considers security
metrics, such as ”cost” of an attack, ”probability” of getting
attacked and ”skill” of a malicious actor. With ATM, one: 1.
can reason about successful/unsuccessful attacks; 2. can check
whether metrics, such as the cost, are bounded by a given value
on single attacks; 3. can compute metrics for a class of attacks
and 4. perform quantification over all possible attacks. Note that
because ATM uses a general algebraic framework, it allows for

the analysis of many different metrics [22].

1.3 Our Contribution

In this paper we propose an extended version of the FT in
[23] that models a water distribution network. We enrich this
model by providing a FT/AT showcasing a malicious attack that
intends to contaminate water in the network. This scenario is
not unlikely, as testified by recent news that see a Florida water
treatment facility hacked using a dormant remote access
software [24]. Furthermore, to validate the framework
composed by BFL, PFL and ATM we showcase property
specification for the FT and the AT composing the model.
Moreover, we propose a novel combination of these logics and
present joint property specification for the FT/AT model.
Finally, we extend LangPFL – the domain specific language for
PFL presented in [20] – to support different metrics and the
specification of queries on ATs and FT/ATs.

2 CASE STUDY: WATER DISTRIBUTION NETWORK

The case study we are analyzing considers a water
distribution network that might be subject to a contamination
attack. The FT/AT in Figure 1 represents a water distribution
network: the TLE for the FT/AT models the risk of Water
Quality Failure (WQF), that is refined via an OR-gate. Children
of this gate are further refined in different subtrees. From left to
right, we find an indigo AND-gate representing Water Quality
at Point of Entry (PoE), an orange AND-gate for the Intrusion
of Contaminants (IoC), a green OR-gate refining Material
Deterioration (MD), a violet AND-gate for (Un)intended
Contamination (UC), a light blue OR-gate representing
Disinfectant-related (DR) risks, a yellow AND-gate for
Permeation (Pe) risks and a grey AND-gate, refining events
related to Biofilm growth (BiG).

Figure 1 – Fault tree with attacks (attack tree in red) for a water distribution network. Intermediate events are inside gates.

Subtrees from the original FT are extended with an AT
represented by an AND-gate for a malicious Contamination
attack (CAT), in red. This AT refines one of the BEs present in

the original FT model from [23] that generically represented a
Threat. In our model, for the contamination attack to be
successful, a malicious actor must perform Information

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

Gathering & Phishing (IGP) to Collect Information (CIn) on
the target infrastructure and to Steal User Credentials (SUC).
Furthermore, the attacker must hit the target with an Exploit,
and Execute (EE) the attack by Changing Chemicals (CCh)
percentages in the water. To successfully execute this plan, the
malicious actor can Gain Access (GA) by letting a Privileged
User Click the Link (UCL) of his/her malicious email, or by
successfully executing a BadUSB Attack (BUA). Note that BEs
shared between multiple IEs have a dashed border in Figure 1.

3 QUERYING FAULT TREES: BFL & PFL

Having introduced our model, we can now focus our
attention on property specification. In this section we will
showcase some queries that one can formalize for the FT
component of the FT/AT in Figure 1. We will do so by
presenting statements in BFL, PFL and the corresponding
domain specific language, LangPFL. For simplicity, we assume
the original FT from [21] with the BE Threat replacing the AT
rooted in CAT.

BFL & PFL Properties. Let us showcase different
properties in natural language and their respective translation in
BFL and PFL, starting with some BFL queries:
1) What are the MCSs for the TLE that include the presence of

Organic Matter and deterioration of Metallic Surface?

ሾሾ𝑀𝐶𝑆ሺ𝑊𝑄𝐹ሻ ∧ 𝑂𝑀 ∧𝑀𝑆ሿሿ (1)

2) Are there MPSs for the Disinfectant-related subtree, given
that the DBP and CRD BEs are guaranteed to fail?

∃𝑀𝑃𝑆ሺ𝐷𝑟ሻሾ𝐷𝐵𝑃 ↦ 1,𝐶𝑅𝐷 ↦ 1ሿ (2)

3) For all the possible configurations of BEs, are Broken Pipes
& Gaskets plus Loss of Pressure sufficient for the TLE to
fail?

∀ሺሺ𝐵𝑃𝐺 ∧ 𝐿𝑃ሻ ⇒ 𝑊𝑄𝐹ሻ (3)

Note that we use the double square brackets in query (1) to
signify that we want all the MCSs that respect the given
constraints, while we use the single square brackets in query (2)
to set the value of specific elements in a FT to failed, with 1,
and to operational, with 0. Finally, we can ask whether a
property holds for at least one/for all the possible configurations
of BEs via quantifiers (∃ and ∀respectively) as shown in queries
(2) and (3). Extending BFL with PFL, we can specify some
properties that include probabilities (we assume that BEs have
already been assigned probability values):
1) Is the probability of TLE occurring smaller than 0.01, if the

subtree rooted in Pathway failed?

𝑃𝑟ழ.ଵሺ𝑊𝑄𝐹ሻሾ𝑃𝑎𝑡 ↦ 1ሿ (4)

2) Assume that the probability of Organic Matter being present
equals 0.15. What would then be the probability of
Disinfectant-related risks?

𝑃𝑟ሺ𝐷𝑟ሻሾ𝑂𝑀 ↦ 0.15ሿ (5)

3) Assume that both Disinfectant Loss and Permeation happen
with certainty. Does this imply that the probability of TLE
is greater than 0.015?

𝑃𝑟ୀଵሺ𝐷𝐿ሻ ∧ 𝑃𝑟ୀଵሺ𝑃𝑒ሻ ⇒ 𝑃𝑟வ.ଵହሺ𝑊𝑄𝐹ሻ (6)

Note that one can set arbitrary probability values for FT

elements – as shown in (4) and (5) – and can specify desired
thresholds for failure probabilities as per queries (4) and (6).
Furthermore, probability values for a given element can be
computed anew considering what-if scenarios that account for
different probabilities in the children of such an element (5).
Finally, one can set assumptions on the failure probabilities of
certain elements, to then check whether these values are
sufficient to cause an increase exceeding given thresholds (6).

LangPFL. To ease usability, we showcase how these queries
would be specified using the domain specific language
presented in [20]. LangPFL is based on structured templates.
One can specify assumptions on the status of FT elements by
utilizing the assume keyword. These assumptions will be
appropriately integrated in the translated BFL/PFL query: e.g.,
set or setp – to set values of FT elements – are translated with
the according operators to set evidence, while other
assumptions will be the antecedent of an implication. A second
keyword separates specified queries from the assumptions and
dictates the desired result: compute and computeall compute
and return desired values, i.e., probability values and lists of
MCSs/MPSs respectively, while check establishes if a specified
property holds. Let us showcase these translations. The query
in (1) would be expressed by:

assume: (7)
 computeall:

 MCS[WQF] and OM and MS
Note that the section dedicated to assumptions is empty, as we
are not capturing a what-if scenario. Then computeall is the
keyword chosen to return all MCSs with desired filters. Queries
in (2) and (3) would translate to:

assume: (8)
set DBP = 1
set CRD = 1

 check:
 exists MPS[Dr]

assume: (9)
set BPG = 1
set LP = 1

 check:
 forall WQF
In (8) and (9), we see that assumptions are now populated and
that we use the check keyword to check if the desired properties
hold. Different kinds of assumptions would then be translated
into different properties, as per the underlying formulations in
(2) and (3). LangPFL can also handle property specification
with probabilities. Queries (4), (5) and (6) would translate to:

assume: (10)
set_prob Pat = 1

 check:
 P[WQF] < 0.01

assume: (11)
set_prob OM = 0.15

 compute:
 P[Dr]

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

assume: (12)
set_prob DL = 1
set_prob Pe = 1

 check:
 P[WQF] > 0.015

Operators to set evidence are now probabilistic, with setp,
and the compute keyword is used to compute the probability
value of the Dr element, given set assumptions (11). The check
keyword remains to verify if a given property holds, as in the
non-probabilistic case.

4 QUERYING ATTACK TREES: ATM

We now focus on the AT rooted in CAT, from Figure 1, by
specifying some queries using ATM. Currently, this logic
supports reasoning about (un)successful attacks and the
formulation of properties about “cost” of attacks, “time” of an
attack, both with parallel and sequential steps, “skill” needed by
the attacker and “probability” of a successful attack [21]. Let us
showcase some of these queries:
1) Are the costs of performing Info Gathering and Phishing and

a BadUSB Attack respectively lower than 30 and at most
15?

𝐶𝑜𝑠𝑡ሺ𝐼𝐺𝑃ሻ ൏ 30 ∧ 𝐶𝑜𝑠𝑡ሺ𝐵𝑈𝐴ሻ 15 (13)

2) Is there an attack that guarantees success in executing the
exploit without Dropping USBs in the Parking Lot?

∃ሺ𝐸𝐸ሾ𝑈𝑃𝐿 ↦ 0ሿሻ (14)

3) Is it necessary that a Privileged User Clicks on the Link from
a malicious email to mount a successful Contamination
Attack?

∀ሺ𝐶𝐴𝑇 ⇒ 𝑈𝐶𝐿ሻ (15)

4) Are the probability of a successful Contamination Attack and
the parallel time of attack lower than 0.010 and 30
respectively?

𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻ ൏ 0.010 ∧ 𝑃𝑎𝑟𝑇𝑖𝑚𝑒ሺ𝐶𝐴𝑇ሻ ൏ 30 (16)

5) Is there an attack that ensures an attacker gains access to the
system while keeping the cost under 35?

∃ሺ𝐶𝑜𝑠𝑡ሺ𝐺𝐴ሻ ൏ 35ሻ (17)

6) What is the minimal cost of the Contamination Attack
assuming that the cost of the BadUSB Attack equals 40?

𝐶𝑜𝑠𝑡ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 40ሿ (18)

As shown with these queries, ATM has a greater expressive
power than BFL and PFL, as ATM can express properties that
are not only concerned about probabilities but also, e.g., cost.
However, constructs seen in PFL remain available. E.g., one
can set arbitrary values for given metrics, as shown in (18) for
“cost”, can check bounds on metrics values – shown in (13),
(16) and (17) – and perform quantification reasoning about
some/all possible attacks. Furthermore, one can compute metric
values, as in (18), or formulate queries that reason about
different metrics: (16) reasons about a bounded “probability” of
successful attacks, while also checking if a bound on parallel
execution “time” of that attack is respected.

5 QUERYING FAULT TREES WITH ATTACKS

Integrating the logics. Having showed the capabilities of
BFL, PFL and ATM we now propose a novel way to integrate
these logics. The objective is to specify properties on FT/ATs
that consider both the failure probabilities from the FT and how
these are impacted by different metrics on the AT – e.g., success
probabilities or “cost” of attacks. Writing such complex
properties can be cumbersome, hence we propose to extend
LangPFL to handle metrics also on ATs and FT/ATs, extending
the application of setp operators on AT elements and
introducing appropriate operators for other metrics, e.g., setcost
for “cost”. Moreover, we introduce a new construct – that we
name decorator – employed to specify different sets of
assumptions. We showcase its usage in (22). Let us introduce
and comment some meaningful examples, where the part of the
property related to ATM is in red. For all these properties, we
assume the complete model in Figure 1, rooted in WQF.

1) Are the probabilities of TLE occurring and of an
(Un)intended Contamination respectively lower than 0.010 and
0.005, given that the probability of a successful BadUSB Attack
is equal to 0.12 and the probability of a privileged user clicking
a malicious link is equal to 0.04?

𝑃𝑟ழ.ଵሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ (19)
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ
∧ 𝑃𝑟ழ.ହሺ𝑈𝐶ሻሾ𝐶𝐴𝑇 ↦
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ

In this property, we consider the influence that the
probability of success of two attack steps have on the failure
probability of two FT elements. Given the what-if scenario
where a BadUSB Attack and a privileged used clicking on a
malicious email happen with probabilities 0.12 and 0.04
respectively, we can check whether the probabilities of both
TLE and (Un)intended Contamination respect the given
tresholds of 0.010 and 0.005.With our extended version of
LangPFL, one would specify this query in the following way:

assume: (20)
set_prob BUA = 0.12
set_prob UCL = 0.04

 check:
 P[WQF] < 0.010 and
 P[UC] < 0.005

The difference between (19) and (20) is noticeable:
extending LangPFL allows practitioners to focus on property
specification rather than worrying about cumbersome nesting
of different logics, while still retaining needed expressivity.

In this framework, one may also consider the influence that
multiple security-related what-if scenarios pose on the same FT
component, e.g.:

2) Is the probability of TLE occurring lower than 0.08 in
both the following scenarios: 1) when the probability of a
successful BadUSB Attack is equal to 0.12 and the probability
of a privileged user clicking a malicious link is equal to 0.04, 2)
when these probabilities equal 0.34 and 0.10 respectively?

𝑃𝑟ழ.଼ሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ (21)
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ
∧ 𝑃𝑟ழ.଼ሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.34,𝑈𝐶𝐿 ↦ 0.10ሿሿ
This query keeps the threshold for the failure probability of

TLE fixed, while varying assignments of probabilities on
elements of the AT. This allows practitioners to guarantee that
two different offensive scenarios will not influence the failure
of TLE in undesired ways. To translate this intention in our
extended version of LangPFL, we propose decorators: these
constructs enclose a set of assumptions and allow the user to
specify which properties must abide to a specific set of
statements under the assume keyword. E.g., query (21) would
be translated in the following way:

assume: (22)
@A1:
 set_prob BUA = 0.12
 set_prob UCL = 0.04
@A2:
 set_prob BUA = 0.34
 set_prob UCL = 0.10

 check:
 @A1(P[WQF] < 0.08) and
 @A2(P[WQF] < 0.08)
Where @A1 and @A2 are two different decorators, containing
two different sets of assumptions: these are declared under the
assume keyword, as shown before. Under the check keyword,
each part of the formula that we want to check is decorated with
either @A1 or @A2: assumptions in @A1 are applied to the
former occurrence of P[WQF] < 0.08, while those in @A2 are
applied to the latter.

Furthermore, we can present queries that capture the
interplay between AT metrics – other than probabilities – and
failure probabilities of FT elements. E.g.:

3) Is there an attack that guarantees that the failure
probability of TLE would be at least 0.12 when the attacker is
allowed to spend at most “cost” 30 to perform the
Contamination Attack?

∃ሺ𝐶𝑜𝑠𝑡ሺ𝐶𝐴𝑇ሻ 30 ∧ (23)
𝑃𝑟ஹ.ଵଶሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻ

In this query, we consider both the “cost” metric and the
probability of failure of TLE. The existential quantifier would
range over all possible states of the leaves (both the FT and AT
ones), to guarantee that there is an attack such that the cost for
CAT is at most 30 and that the TLE fails with probability at
least 0.12. This translates to LangPFL in the following way:

assume: (24)
set_cost CAT 30

 check:
 exists P[WQF] 0.12
In this translation, differently from (11), we see that our
assumption is on cost of an AT element instead of on
probability of a FT element. Finally, we can elaborate on
queries (22) and (24) to construct the following:

4) Is there an attack that guarantees that: 1) the probability
of TLE would be at least 0.12 and Info Gathering & Phishing
costs at most 12 and 2) the probability of (Un)intended
Contamination would be at least 0.08 and Exploit and Execute
costs at most 5?

∃ሺሺ𝐶𝑜𝑠𝑡ሺ𝐼𝐺𝑃ሻ 12 ∧ (25)

𝑃𝑟ஹ.ଵଶሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻ ∧
ሺ𝐶𝑜𝑠𝑡ሺ𝐸𝐸ሻ 5 ∧
𝑃𝑟ஹ.଼ሺ𝑈𝐶ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻሻ

This translates to LangPFL in the following way:
assume: (26)

@A1:
 set_cost IGP 12
@A2:
 set_cost EE 5

 check:
 exists @A1(P[WQF] 0.12) and
 @A2(P[UC] 0.08)

Here, we combine the use of decorators to specify different
sets of assumptions for each conjunt in the property to check
(22), with the construction of queries that reason about different
metrics on the AT component of FT/ATs (23).

6 FUTURE WORK

Our contribution opens different interesting directions for
further research. Firstly, validating the framework composed by
BFL, PFL and ATM on different combinations of FTs and ATs
could highlight further necessities when querying models for
joint safety-security analysis. Secondly, developing an
implementation of the proposed approach could propel
adoption of these methods in the field of reliability engineering
and w.r.t. safety-critical systems. Finally, conducting hands-on
tests of such an implementation with practitioners would help
us in refining the framework and in tailoring it to the needs of
domain experts.

REFERENCES

1. E. Ruijters, and M. Stoelinga. “Fault tree analysis: A
survey of the state-of-the-art in modeling, analysis and
tools”. Computer science review 15 (2015): 29-62.

2. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J.
Minarick, & J. Railsback, (2002). Fault tree handbook with
aerospace applications.

3. C. A. Ericson. (1999, August). “Fault tree analysis”. In
System Safety Conference, Orlando, Florida (Vol. 1, pp. 1-
9).

4. International Standardization Organization: ISO/DIS
26262: Road vehicles, functional safety.
https://www.iso.org/standard/68383.html, (2018).

5. B. Schneier. “Attack trees”. Dr. Dobb’s journal 24(12),
21–29 (1999).

6. J. Jürjens. “UMLsec: Extending UML for secure systems
development”. In: UML 2002 — The Unified Modeling
Language. LNCS, vol. 2460, pp. 412–425. Springer Berlin
Heidelberg (2002).

7. Y. Roudier, L. Apvrille: “SysML-Sec: A model driven
approach for designing safe and secure systems”. In:
MODELSWARD. pp. 655–664. IEEE (2015).

8. L. Apvrille, Y. Roudier. “SysML-sec: A sysML
environment for the design and development of secure
embedded systems”. In: APCOSEC (2013).

9. Isograph: AttackTree. (Accessed July 2023). URL:
https://www.isograph.com/software/attacktree/.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

10. C. Kolb, S. M. Nicoletti, M. Peppelman, & M. Stoelinga
(2021). “Model-based safety and security co-analysis:
Survey and identification of gaps”. arXiv preprint
arXiv:2106.06272.

11. S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, & Y.
Halgand (2015). “A survey of approaches combining
safety and security for industrial control systems”.
Reliability engineering & system safety, 139, 156-178.

12. I.N. Fovino, M. Masera, A. De Cian: “Integrating cyber
attacks within fault trees”. Reliability Engineering &
System Safety 94(9), 1394–1402 (2009).

13. M. Steiner, P. Liggesmeyer: “Combination of safety and
security analysis - finding security problems that threaten
the safety of a system”. In: SAFECOMP (2016).

14. Kumar, R., M. Stoelinga: “Quantitative security and safety
analysis with Attack-Fault Trees”. In: 18th International
Symposium on HASE. pp. 25–32 (2017).

15. M. Roth, P. Liggesmeyer: “Modeling and Analysis of
Safety-Critical Cyber Physical Systems using State/Event
Fault Trees”. In: SAFECOMP (2013).

16. G. Sabaliauskaite, A.P. Mathur: “Aligning cyber-physical
system safety and security”. In: Complex Systems Design
& Management Asia, pp. 41–53. Springer (2015).

17. S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, L. Pietre-
Cambacedes: “Safety and security interactions modeling
using the BDMP formalism: case study of a pipeline”. In:
SAFECOMP. pp. 326–341. Springer (2014).

18. H. Abdo, M. Kaouk, J. M. Flaus, F. Masse: “A
safety/security risk analysis approach of industrial control
systems: A cyber bowtie–combining new version of attack
tree with bowtie analysis”. Computers & security 72, 175–
195 (2018).

19. S. M. Nicoletti, E. M. Hahn, M. Stoelinga: “BFL: a Logic
to Reason about Fault Trees”. In: DSN. pp. 441–452.
IEEE/EUCA (2022).

20. S. M. Nicoletti, M. Lopuhaä-Zwakenberg, E. M. Hahn, M.
Stoelinga: PFL: “A Probabilistic Logic for Fault Trees”.
In: 25th International Symposium on Formal Methods, FM
2023. pp. 199–221. Springer Nature (2023).

21. S. M. Nicoletti, M. Lopuhaä-Zwakenberg, E. M. Hahn, M.
Stoelinga: “ATM: a Logic for Quantitative Security
Properties on Attack Trees”. Under review, SEFM 2023.

22. M. Lopuhaä-Zwakenberg, C. E.Budde, & M. Stoelinga.
“Efficient and Generic Algorithms for Quantitative Attack
Tree Analysis”. IEEE TDSC (2023).

23. R. Sadiq, E. Saint-Martin, Y. Kleiner: “Predicting risk of
water quality failures in distribution networks under
uncertainties using fault-tree analysis”. Urban Water
Journal 5(4), 287–304 (2008).

24. A. Marquardt, E. Levenson, A. Tal: Florida water

treatment facility hack used a dormant remote access
software, sheriff says. (Accessed July 2023). URL:
https://edition.cnn.com/2021/02/10/us/florida-water-
poison-cyber/index.html.

BIOGRAPHIES

Stefano M. Nicoletti, MA
University of Twente
Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: s.m.nicoletti@utwente.nl

Stefano M. Nicoletti is a PhD Candidate at the University of
Twente, working in the ERC-funded Project CAESAR with the
goal of marrying the historically separated fields of safety and
(cyber)security.

Milan Lopuhaä-Zwakenberg, Dr.
University of Twente
Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: m.a.lopuhaa@utwente.nl

Milan Lopuhaä-Zwakenberg is an assistant professor at
University of Twente (NL), studying safety and security metrics
and their interplay. Before, he was a postdoc at Eindhoven
University of Technology (NL) and he received his PhD from
Radboud University (NL) on arithmetic geometry.

E. Moritz Hahn, Dr.
University of Twente
Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: e.m.hahn@utwente.nl

E. Moritz Hahn is assistant professor at the Formal Methods and
Tools (FMT) group at the University of Twente within Mariëlle
Stoelinga's project CAESAR. Hahn’s main research interest is
probabilistic model checking.

Mariëlle Stoelinga, Prof. Dr.
University of Twente and Radboud University
Enschede, Drienerlolaan 5, 7522 NB, The Netherlands
Nijmegen, Houtlaan 4, 6525 XZ, The Netherlands

e-mail: m.i.a.stoelinga@utwente.nl

Mariëlle Stoelinga is professor of risk management at the
Radboud University and the University of Twente (NL). She is
the project coordinator on PrimaVera, a large collaborative
project on Predictive Maintenance in the Dutch National
Science Agenda. She also received a prestigious ERC
consolidator grant. She holds an MSc and a PhD degree from
Radboud University and was a postdoc at the UC Santa Cruz.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 24,2024 at 07:20:21 UTC from IEEE Xplore. Restrictions apply.

