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SUMMARY & CONCLUSIONS 

We provide an overview of three different query languages 
whose objective is to specify properties on the highly popular 
formalisms of fault trees (FTs) and attack trees (ATs). These 
are BFL, a Boolean Logic for FTs, PFL, a probabilistic 
extension of BFL and ATM, a logic for security metrics on ATs. 
We validate the framework composed by these three logics by 
applying them to the case study of a water distribution network. 
We extend the FT for this network – found in the literature – 
and we propose to model the system under analysis with the 
Fault Trees/Attack Trees (FT/ATs) formalism, combining both 
FTs and ATs in a unique model. Furthermore, we propose a 
novel combination of the showcased logics to account for 
queries that jointly consider both the FT and the AT of the 
model, integrating influences of attacks on failure probabilities 
of different components. Finally, we extend the domain specific 
language for PFL with novel constructs to capture the interplay 
between metrics of attacks – e.g., “cost”, success probabilities 
– and failure probabilities in the system.   

1 INTRODUCTION 

Critical infrastructure systems must operate safely and 
securely. Fault tree analysis (FTA) [1,2] is a widespread method 
used for risk assessment of these systems. Developed in the 
early '60s [3], fault trees (FT) are directed acyclic graphs 
(DAGs) that model how component failures arise and propagate 
through the modelled system, eventually leading to system level 
failures. Leaves in a FT represent basic events (BEs), i.e. 
elements of the tree that need not be further refined. Once these 
fail, the failure is propagated through the intermediate events 
(IEs) via gates, to eventually reach the top level event (TLE), 
which symbolizes system failure. In FTA, typically one 
identifies the minimal cut sets (MCSs) of a FT, i.e. minimal sets 
of BEs that, when failed, cause the system to fail. One can also 
identify minimal path sets (MPSs), i.e. minimal sets of BEs that 
– when operational – guarantee that the system will remain 
operational. FTs are a required analysis methodology by, e.g., 
the Federal Aviation Administration, the Nuclear Regulatory 
Commission, the ISO 26262 standard [4] for autonomous 

driving and for software development in aerospace systems. 
Attack trees (ATs) [5] are the security counterpart of FTs: 

hierarchical diagrams that offer a flexible modelling language 
to assess how systems can be attacked. As for FTs, ATs are 
widely employed both in industry and academia: they are part 
of many system engineering frameworks, e.g. UMLsec [6] and 
SysMLsec [7, 8], and are supported by industrial tools such as 
Isograph's AttackTree [9]. 

1.1 Combining Fault and Attack Trees 

Due to their popularity, numerous combinations and 
extensions of FTs and ATs have been proposed. Recent surveys 
[10, 11] attest that at least seven such combinations/extensions 
are popular in the literature: Extended Fault Trees or Fault 
Trees/Attack Trees (FT/ATs) [12], Component Fault Trees 
(CFTs) [13],  Attack-Fault Trees (AFTs) [14], State/Event Fault 
Trees (SEFTs) [15], Failure-Attack-CounTermeasure (FACT) 
Graphs [16],  Boolean Driven Markov Processes (BDMPs) [17] 
and Attack Tree Bow-ties (ATBTs) [18]. 

In this paper, we focus our attention on FT/ATs. These 
model the intuition that malicious actors often try to induce a 
failure of some components in a system, in order to render it 
non-operational: in doing so, they offer a sensible way of 
combining FTs and ATs. FT/ATs model these situations by 
replacing one or multiple BEs in the FT with the root of an AT, 
symbolizing paths that an attacker can take to cause failure in 
one or more basic components in an FT.  

1.2 Querying Fault and Attack Trees 

Despite their popularity, however, little work has been 
done on developing tailored languages that enable practitioners 
to specify flexible properties on FTs and ATs. Only very recent 
work addressed this issue, by proposing three different logics 
tailored to FTs and ATs, accompanied by model checking 
algorithms that can check the truth value of formulae.  

Boolean Fault tree Logic. Our previous work [19] 
proposed a Boolean Fault tree Logic (BFL) with which 
practitioners can:  1. set evidence to analyze what-if scenarios, 
e.g., what are the MCSs, given that BE A or subsystem B has 
failed? What are the MPSs given that A or B have not failed? 
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To check whether two FT elements are independent or if they 
share a child that can influence their status. 3. check whether 
the failure of one (or more) element E always leads to the failure 
of the TLE. 4. set upper/lower boundaries for failed elements, 
e.g., would element E always fail if at most/at least two out of 
A, B and C were to fail? Moreover, if a property does not hold, 
the BFL framework generates counterexamples, to show why 
the property fails.  

Probabilistic Fault tree Logic. Extending the previous 
framework, [20] presents a Probabilistic Fault tree Logic to 
further enhance quantitative analysis capabilities, as 
probabilities are the prime quantitative metric on FTs. With 
PFL, one: 1. can check whether the probability of a given 
element (potentially conditioned by another one) respects a 
certain threshold,  2. can set the value of one BE in complex 
formulae to an arbitrary probability value, 3. can check if two 
BEs/IEs are stochastically independent, 4. can also return 
probability values for given formulae, possibly mapping single 
elements to an arbitrary probability value. Furthermore, [20] 
presents LangPFL, a domain specific language for PFL that 
propels the usability of this framework, allowing easier 
property specification on FTs.  

A Logic for Attack Tree Metrics. Concerning ATs, [21] 
develops a Logic for Attack Tree Metrics (ATM) to specify a 
variety of quantitative security properties on these models: the 
authors present a general framework that considers security 
metrics, such as ”cost” of an attack, ”probability” of getting 
attacked and ”skill” of a malicious actor. With ATM, one: 1. 
can reason about successful/unsuccessful attacks; 2. can check 
whether metrics, such as the cost, are bounded by a given value 
on single attacks; 3. can compute metrics for a class of attacks 
and 4. perform quantification over all possible attacks. Note that 
because ATM uses a general algebraic framework, it allows for 

the analysis of many different metrics [22].    

1.3 Our Contribution 

In this paper we propose an extended version of the FT in 
[23] that models a water distribution network. We enrich this 
model by providing a FT/AT showcasing a malicious attack that 
intends to contaminate water in the network. This scenario is 
not unlikely, as testified by recent news that see a Florida water 
treatment facility hacked using a dormant remote access 
software [24]. Furthermore, to validate the framework 
composed by BFL, PFL and ATM we showcase property 
specification for the FT and the AT composing the model. 
Moreover, we propose a novel combination of these logics and 
present joint property specification for the FT/AT model. 
Finally, we extend LangPFL – the domain specific language for 
PFL presented in [20] – to support different metrics and the 
specification of queries on ATs and FT/ATs. 

2 CASE STUDY: WATER DISTRIBUTION NETWORK 

The case study we are analyzing considers a water 
distribution network that might be subject to a contamination 
attack. The FT/AT in Figure 1 represents a water distribution 
network: the TLE for the FT/AT models the risk of Water 
Quality Failure (WQF), that is refined via an OR-gate. Children 
of this gate are further refined in different subtrees. From left to 
right, we find an indigo AND-gate representing Water Quality 
at Point of Entry (PoE), an orange AND-gate for the Intrusion 
of Contaminants (IoC), a green OR-gate refining Material 
Deterioration (MD), a violet AND-gate for (Un)intended 
Contamination (UC), a light blue OR-gate representing 
Disinfectant-related (DR) risks, a yellow AND-gate for 
Permeation (Pe) risks and a grey AND-gate, refining events 
related to Biofilm growth (BiG). 

 

 

Figure 1 – Fault tree with attacks (attack tree in red) for a water distribution network. Intermediate events are inside gates. 

Subtrees from the original FT are extended with an AT 
represented by an AND-gate for a malicious Contamination 
attack (CAT), in red. This AT refines one of the BEs present in 

the original FT model from [23] that generically represented a 
Threat. In our model, for the contamination attack to be 
successful, a malicious actor must perform Information 
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Gathering & Phishing (IGP) to Collect Information (CIn) on 
the target infrastructure and to Steal User Credentials (SUC). 
Furthermore, the attacker must hit the target with an Exploit, 
and Execute (EE) the attack by Changing Chemicals (CCh) 
percentages in the water. To successfully execute this plan, the 
malicious actor can Gain Access (GA) by letting a Privileged 
User Click the Link (UCL) of his/her malicious email, or by 
successfully executing a BadUSB Attack (BUA). Note that BEs 
shared between multiple IEs have a dashed border in Figure 1. 

3 QUERYING FAULT TREES: BFL & PFL 

Having introduced our model, we can now focus our 
attention on property specification. In this section we will 
showcase some queries that one can formalize for the FT 
component of the FT/AT in Figure 1. We will do so by 
presenting statements in BFL, PFL and the corresponding 
domain specific language, LangPFL. For simplicity, we assume 
the original FT from [21] with the BE Threat replacing the AT 
rooted in CAT.  

BFL & PFL Properties. Let us showcase different 
properties in natural language and their respective translation in 
BFL and PFL, starting with some BFL queries: 
1) What are the MCSs for the TLE that include the presence of 

Organic Matter and deterioration of Metallic Surface? 

ሾሾ𝑀𝐶𝑆ሺ𝑊𝑄𝐹ሻ ∧ 𝑂𝑀 ∧𝑀𝑆ሿሿ  (1) 

2) Are there MPSs for the Disinfectant-related subtree, given 
that the DBP and CRD BEs are guaranteed to fail? 

∃𝑀𝑃𝑆ሺ𝐷𝑟ሻሾ𝐷𝐵𝑃 ↦ 1,𝐶𝑅𝐷 ↦ 1ሿ        (2) 

3) For all the possible configurations of BEs, are Broken Pipes 
& Gaskets plus Loss of Pressure sufficient for the TLE to 
fail? 

∀ሺሺ𝐵𝑃𝐺 ∧ 𝐿𝑃ሻ ⇒ 𝑊𝑄𝐹ሻ  (3) 

Note that we use the double square brackets in query (1) to 
signify that we want all the MCSs that respect the given 
constraints, while we use the single square brackets in query (2) 
to set the value of specific elements in a FT to failed, with 1, 
and to operational, with 0. Finally, we can ask whether a 
property holds for at least one/for all the possible configurations 
of BEs via quantifiers (∃ and ∀respectively) as shown in queries 
(2) and (3). Extending BFL with PFL, we can specify some 
properties that include probabilities (we assume that BEs have 
already been assigned probability values):  
1) Is the probability of TLE occurring smaller than 0.01, if the 

subtree rooted in Pathway failed? 

𝑃𝑟ழ.ଵሺ𝑊𝑄𝐹ሻሾ𝑃𝑎𝑡 ↦ 1ሿ   (4) 

2) Assume that the probability of Organic Matter being present 
equals 0.15. What would then be the probability of 
Disinfectant-related risks? 

𝑃𝑟ሺ𝐷𝑟ሻሾ𝑂𝑀 ↦ 0.15ሿ    (5) 

3) Assume that both Disinfectant Loss and Permeation happen 
with certainty. Does this imply that the probability of TLE 
is greater than 0.015? 

𝑃𝑟ୀଵሺ𝐷𝐿ሻ ∧ 𝑃𝑟ୀଵሺ𝑃𝑒ሻ ⇒ 𝑃𝑟வ.ଵହሺ𝑊𝑄𝐹ሻ             (6) 

Note that one can set arbitrary probability values for FT 

elements – as shown in (4) and (5) – and can specify desired 
thresholds for failure probabilities as per queries (4) and (6). 
Furthermore, probability values for a given element can be 
computed anew considering what-if scenarios that account for 
different probabilities in the children of such an element (5). 
Finally, one can set assumptions on the failure probabilities of 
certain elements, to then check whether these values are 
sufficient to cause an increase exceeding given thresholds (6). 

LangPFL. To ease usability, we showcase how these queries 
would be specified using the domain specific language 
presented in [20]. LangPFL is based on structured templates. 
One can specify assumptions on the status of FT elements by 
utilizing the assume keyword. These assumptions will be 
appropriately integrated in the translated BFL/PFL query: e.g., 
set or setp – to set values of FT elements – are translated with 
the according operators to set evidence, while other 
assumptions will be the antecedent of an implication. A second 
keyword separates specified queries from the assumptions and 
dictates the desired result: compute and computeall compute 
and return desired values, i.e., probability values and lists of 
MCSs/MPSs respectively, while check establishes if a specified 
property holds. Let us showcase these translations. The query 
in (1) would be expressed by:  

assume:    (7) 
         computeall:     

   MCS[WQF] and OM and MS  
Note that the section dedicated to assumptions is empty, as we 
are not capturing a what-if scenario. Then computeall is the 
keyword chosen to return all MCSs with desired filters. Queries 
in (2) and (3) would translate to: 

assume:    (8) 
set DBP = 1    
set CRD = 1    

         check:     
   exists MPS[Dr]    
 

assume:    (9) 
set BPG = 1    
set LP = 1    

         check:     
   forall WQF    
In (8) and (9), we see that assumptions are now populated and 
that we use the check keyword to check if the desired properties 
hold. Different kinds of assumptions would then be translated 
into different properties, as per the underlying formulations in 
(2) and (3). LangPFL can also handle property specification 
with probabilities. Queries (4), (5) and (6) would translate to: 

assume:    (10) 
set_prob Pat = 1    

             check:   
   P[WQF] < 0.01    

assume:    (11) 
set_prob OM = 0.15   

        compute:     
   P[Dr]     
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assume:    (12) 
set_prob DL = 1    
set_prob Pe = 1    

        check:     
   P[WQF] > 0.015    

Operators to set evidence are now probabilistic, with setp, 
and the compute keyword is used to compute the probability 
value of the Dr element, given set assumptions (11). The check 
keyword remains to verify if a given property holds, as in the 
non-probabilistic case.  

4 QUERYING ATTACK TREES: ATM 

We now focus on the AT rooted in CAT, from Figure 1, by 
specifying some queries using ATM. Currently, this logic 
supports reasoning about (un)successful attacks and the 
formulation of properties about “cost” of attacks, “time” of an 
attack, both with parallel and sequential steps, “skill” needed by 
the attacker and “probability” of a successful attack [21]. Let us 
showcase some of these queries:  
1) Are the costs of performing Info Gathering and Phishing and 

a BadUSB Attack respectively lower than 30 and at most 
15?  

𝐶𝑜𝑠𝑡ሺ𝐼𝐺𝑃ሻ ൏ 30 ∧ 𝐶𝑜𝑠𝑡ሺ𝐵𝑈𝐴ሻ  15      (13) 

2) Is there an attack that guarantees success in executing the 
exploit without Dropping USBs in the Parking Lot? 

∃ሺ𝐸𝐸ሾ𝑈𝑃𝐿 ↦ 0ሿሻ            (14) 

3) Is it necessary that a Privileged User Clicks on the Link from 
a malicious email to mount a successful Contamination 
Attack? 

∀ሺ𝐶𝐴𝑇 ⇒ 𝑈𝐶𝐿ሻ                       (15) 

4) Are the probability of a successful Contamination Attack and 
the parallel time of attack lower than 0.010 and 30 
respectively? 

𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻ ൏ 0.010 ∧ 𝑃𝑎𝑟𝑇𝑖𝑚𝑒ሺ𝐶𝐴𝑇ሻ ൏ 30     (16) 

5) Is there an attack that ensures an attacker gains access to the 
system while keeping the cost under 35? 

∃ሺ𝐶𝑜𝑠𝑡ሺ𝐺𝐴ሻ ൏ 35ሻ           (17) 

6) What is the minimal cost of the Contamination Attack 
assuming that the cost of the BadUSB Attack equals 40? 

𝐶𝑜𝑠𝑡ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 40ሿ   (18) 

As shown with these queries, ATM has a greater expressive 
power than BFL and PFL, as ATM can express properties that 
are not only concerned about probabilities but also, e.g., cost. 
However, constructs seen in PFL remain available. E.g., one 
can set arbitrary values for given metrics, as shown in (18) for 
“cost”, can check bounds on metrics values – shown in (13), 
(16) and (17) – and perform quantification reasoning about 
some/all possible attacks. Furthermore, one can compute metric 
values, as in (18), or formulate queries that reason about 
different metrics: (16) reasons about a bounded “probability” of 
successful attacks, while also checking if a bound on parallel 
execution “time” of that attack is respected.  

5 QUERYING FAULT TREES WITH ATTACKS 

Integrating the logics. Having showed the capabilities of 
BFL, PFL and ATM we now propose a novel way to integrate 
these logics. The objective is to specify properties on FT/ATs 
that consider both the failure probabilities from the FT and how 
these are impacted by different metrics on the AT – e.g., success 
probabilities or “cost” of attacks. Writing such complex 
properties can be cumbersome, hence we propose to extend 
LangPFL to handle metrics also on ATs and FT/ATs, extending 
the application of setp operators on AT elements and 
introducing appropriate operators for other metrics, e.g., setcost 
for “cost”. Moreover, we introduce a new construct – that we 
name decorator – employed to specify different sets of 
assumptions. We showcase its usage in (22). Let us introduce 
and comment some meaningful examples, where the part of the 
property related to ATM is in red. For all these properties, we 
assume the complete model in Figure 1, rooted in WQF. 

1) Are the probabilities of TLE occurring and of an 
(Un)intended Contamination respectively lower than 0.010 and 
0.005, given that the probability of a successful BadUSB Attack 
is equal to 0.12 and the probability of a privileged user clicking 
a malicious link is equal to 0.04?  

𝑃𝑟ழ.ଵሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦         (19) 
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ 
∧ 𝑃𝑟ழ.ହሺ𝑈𝐶ሻሾ𝐶𝐴𝑇 ↦ 
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ  

In this property, we consider the influence that the 
probability of success of two attack steps have on the failure 
probability of two FT elements. Given the what-if scenario 
where a BadUSB Attack and a privileged used clicking on a 
malicious email happen with probabilities 0.12 and 0.04 
respectively, we can check whether the probabilities of both 
TLE and (Un)intended Contamination respect the given 
tresholds of 0.010 and 0.005.With our extended version of 
LangPFL, one would specify this query in the following way: 

assume:    (20) 
set_prob BUA = 0.12   
set_prob UCL = 0.04   

        check:     
   P[WQF] < 0.010 and 
   P[UC] < 0.005 

The difference between (19) and (20) is noticeable: 
extending LangPFL allows practitioners to focus on property 
specification rather than worrying about cumbersome nesting 
of different logics, while still retaining needed expressivity.  

In this framework, one may also consider the influence that 
multiple security-related what-if scenarios pose on the same FT 
component, e.g.: 

2) Is the probability of TLE occurring lower than 0.08 in 
both the following scenarios: 1) when the probability of a 
successful BadUSB Attack is equal to 0.12 and the probability 
of a privileged user clicking a malicious link is equal to 0.04, 2) 
when these probabilities equal 0.34 and 0.10 respectively?  

𝑃𝑟ழ.଼ሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦         (21) 
𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.12,𝑈𝐶𝐿 ↦ 0.04ሿሿ 
∧ 𝑃𝑟ழ.଼ሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ 
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𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሾ𝐵𝑈𝐴 ↦ 0.34,𝑈𝐶𝐿 ↦ 0.10ሿሿ  
This query keeps the threshold for the failure probability of 

TLE fixed, while varying assignments of probabilities on 
elements of the AT. This allows practitioners to guarantee that 
two different offensive scenarios will not influence the failure 
of TLE in undesired ways. To translate this intention in our 
extended version of LangPFL, we propose decorators: these 
constructs enclose a set of assumptions and allow the user to 
specify which properties must abide to a specific set of 
statements under the assume keyword. E.g., query (21) would 
be translated in the following way: 

assume:    (22) 
@A1:     
     set_prob BUA = 0.12   
     set_prob UCL = 0.04 
@A2:     
     set_prob BUA = 0.34   
     set_prob UCL = 0.10   

        check:     
   @A1(P[WQF] < 0.08) and 
   @A2(P[WQF] < 0.08) 
Where @A1 and @A2 are two different decorators, containing 
two different sets of assumptions: these are declared under the 
assume keyword, as shown before. Under the check keyword, 
each part of the formula that we want to check is decorated with 
either @A1 or @A2: assumptions in @A1 are applied to the 
former occurrence of P[WQF] < 0.08, while those in @A2 are 
applied to the latter.  

Furthermore, we can present queries that capture the 
interplay between AT metrics – other than probabilities – and 
failure probabilities of FT elements. E.g.: 

3) Is there an attack that guarantees that the failure 
probability of TLE would be at least 0.12 when the attacker is 
allowed to spend at most “cost” 30 to perform the 
Contamination Attack?  

∃ሺ𝐶𝑜𝑠𝑡ሺ𝐶𝐴𝑇ሻ  30 ∧           (23) 
𝑃𝑟ஹ.ଵଶሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻ         

In this query, we consider both the “cost” metric and the 
probability of failure of TLE. The existential quantifier would 
range over all possible states of the leaves (both the FT and AT 
ones), to guarantee that there is an attack such that the cost for 
CAT is at most 30 and that the TLE fails with probability at 
least 0.12. This translates to LangPFL in the following way: 

assume:    (24) 
set_cost CAT  30  

        check:     
   exists P[WQF]  0.12 
In this translation, differently from (11), we see that our 
assumption is on cost of an AT element instead of on 
probability of a FT element. Finally, we can elaborate on 
queries (22) and (24) to construct the following: 

4) Is there an attack that guarantees that: 1) the probability 
of TLE would be at least 0.12 and Info Gathering & Phishing 
costs at most 12 and 2) the probability of (Un)intended 
Contamination would be at least 0.08 and Exploit and Execute 
costs at most 5?  

∃ሺሺ𝐶𝑜𝑠𝑡ሺ𝐼𝐺𝑃ሻ  12 ∧           (25) 

𝑃𝑟ஹ.ଵଶሺ𝑊𝑄𝐹ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻ ∧    
ሺ𝐶𝑜𝑠𝑡ሺ𝐸𝐸ሻ  5 ∧             
𝑃𝑟ஹ.଼ሺ𝑈𝐶ሻሾ𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏ሺ𝐶𝐴𝑇ሻሿሻሻ         

This translates to LangPFL in the following way: 
assume:    (26) 

@A1:     
     set_cost IGP  12 
@A2:     
     set_cost EE  5   

        check:     
   exists @A1(P[WQF]  0.12) and 
   @A2(P[UC]  0.08) 

Here, we combine the use of decorators to specify different 
sets of assumptions for each conjunt in the property to check 
(22), with the construction of queries that reason about different 
metrics on the AT component of FT/ATs (23).  

6 FUTURE WORK 

Our contribution opens different interesting directions for 
further research. Firstly, validating the framework composed by 
BFL, PFL and ATM on different combinations of FTs and ATs 
could highlight further necessities when querying models for 
joint safety-security analysis. Secondly, developing an 
implementation of the proposed approach could propel 
adoption of these methods in the field of reliability engineering 
and w.r.t. safety-critical systems. Finally, conducting hands-on 
tests of such an implementation with practitioners would help 
us in refining the framework and in tailoring it to the needs of 
domain experts.   
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