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Radarcoding Reference Data for SAR Training Data
Creation in Radar Coordinates

Anurag Kulshrestha™, Member, IEEE, Ling Chang™, and Alfred Stein

Abstract— Extracting training datasets for supervised classifi-
cation of synthetic aperture radar (SAR) images is complicated,
due to, e.g., poor radiometric resolution, speckle noise, and lack
of reference data. It is challenging to link radar scatterers in SAR
images with the counterparts in the reference datasets registered
in geographic coordinate systems. To address this issue, this
letter proposes a method called Rdr-Code to radarcode geodetic
reference datasets for creating SAR training datasets for machine
learning applications. To assess the importance of building
heights in radarcoding, we compared the assignment of height
values by a minuscule pseudo height with the actual building
heights derived from a Lidar-based DEM product. We used
30 PAZ SAR images in X-band, which were acquired between
2019 and 2021, over the north-west part of the Netherlands,
and employed ToplO0NL and AHN as reference LULC polygon
and height datasets, respectively. The radarcoding accuracy
was compared using nine buildings as references in the SAR
coordinates. The radarcoding accuracy was 64.5% with the
pseudo height and 84.5% with actual building heights. A trade-
off between accurate building feature information and separation
between close buildings was observed. We conclude that this is
an effective way to radarcode reference datasets and can be used
for crafting training datasets for machine learning methods.

Index Terms— AHN, radarcoding, supervised classification,
synthetic aperture radar (SAR), Top10NL, training data.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) datasets are useful in

classifying ground targets [1], scattering mechanisms [2],
as well as for identifying the movement of ground objects
in interferometric phase images [3]. SAR-based classification
using supervised algorithms, especially ‘data-hungry’ deep
learning methods [4], requires training datasets. In the absence
of benchmark labeled datasets for SAR data, one often turns
to self-delineation of these datasets. The creation of these
training datasets can be a time-intensive and demanding task.
As SAR datasets are usually referenced to their relative radar
coordinate system, one option is first to flip, shift, and stretch
the single-look complex (SLC) or multilook complex (MLC)
images with respect to the geographic coordinate system, and
then label SAR training datasets by visual interpretation and
comparison with optical observations. This, however, makes
it cumbersome to identify targets and increases the chance
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of introducing bias in the training datasets. Another option
is to use georectified ground range detected (GRD) products
of, e.g., Sentinel-1 SAR mission [5]. GRD datasets, however,
merely provide amplitude-related features, like backscatter
coefficients, and not phase-related features. This hinders the
extraction of several polarimetric features, such as the copolar-
ization cross-product: Sy, - S¥,, and the copolarization phase
difference: ¥y — Y¥yy (Shns Sy, are the complex elements
of scattering matrix in HH and VV polarization channels,
and vy, and ,, are the SLC phases in these respective
polarizations). There have been a few attempts made for
coding radar datasets, but they have been mostly carried
out for large areas, e.g., in mountainous areas, and they
have mostly focused on geocoding radar datasets in WGS
coordinates, e.g., [6]. Radarcoding was also used to classify
radar scattering mechanisms using PAZ data [7]. In this
study, we present the strategy for radarcoding available labeled
datasets from geographic coordinates to radar coordinates and
use them to create unbiased training datasets.

In the remaining part of this letter, we first review the
theory behind radarcoding in Section II, then move toward
explaining the methodology in Section III. Section IV shows
the application of the method using PAZ SAR datasets,
available labeled reference datasets, e.g., ToplONL with land
use and land cover (LULC) and actual height of Netherlands
(AHN) information, and software tools such as GDAL [8] and
DORIS [9]. We also discuss the results in Section V, and
finally conclude in Section VI.

II. RADARCODING THEORY

Reference datasets are usually rasterized and referenced
to the geographical coordinates, e.g., WGS84 coordinates.
A radar-coded grid can then be constructed by following a
two-step procedure [10]. Step 1: the geographical coordinates
including latitude (¢), longitude (A), and ellipsoidal height
(h), are converted into geocentric Cartesian coordinates, with
X, Y, z using the known parameters of, e.g., WGS84 ellipsoid.
These Cartesian coordinates are obtained as

x = (N + h) cos(¢) cos(r)

y = (N + h) cos(¢) sin(A)

z=((1—e*N +h)sin(n) (1)
where N is the radius of curvature in the prime vertical,
obtained as N = ell, /(1 — €*sin®(¢))'/?, while e* = (ell? —
el ll%) /el lg is the squared first eccentricity of the WGS reference

ellipsoid, and ell, and ell, are its semimajor and semiminor
axes, respectively.
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TABLE I

SAMPLE POSITIONAL VECTORS FOR SATELLITE ORBITS. HERE,
THE SUBSCRIPTS 0, n DEPICT THE EARLIEST
AND LATEST MEASUREMENTS

Time X y z
to To | Yo | 20
tn Tn Yn Zn

Step 2: The Cartesian coordinates are converted into radar
coordinates with azimuth (az, with lines) and range (rg,
with pixels) direction. To do so, the preliminary orbits are
first gathered from the product metadata, e.g., through the
Sentinel-1 orbit data portal [11], or from the metadata XML
files provided with the datasets for, e.g., TerraSAR-X and PAZ.
They can be arranged as shown in Table I.

During this Step 2, the time ¢ is normalized using between
earliest and latest time points, i.e., fy and #,, respectively, using
thorm = (t — 10)/(t, — tp). Along with positional coordinates
in Table I, the normalized time is used to fit the positional
vectors in each spatial dimension » with r € {x,y, z} using
a quadratic function at time ¢: r|, = a,t* + bt + ¢,. After
estimating the parameters in this function, they are rescaled
with respect to the actual time using

a, b, 2a,ty
(arabracr)(_ 2 - PR
(tn - tO) (ln - tO) (tn - tO)
b, to a3 >
¢ — + . )
(ty —t0) ~ (ta —10)?

Using the quadratic model, the instantaneous velocities
and accelerations are derived as v, = dr(t)/dt and a, =
8%r(t)/d1. Thereafter, the positional, velocity, and acceler-
ation vectors are interpolated with respect to the time f;,
associated with the midline (/,,) of the acquired image, where
t;, = ((ln —1)/PRF) +1,. Here, PRF is the pulse repetition
frequency and 7, is the time corresponding to the first line.
These can be read as

Ur|t,m = 2arl‘l,,, + br

= 2ay, 3)

ay |t[,”

where the symbol |, suggests the interpolation at f;,. Fol-
lowing this, we estimate the time associated with Cartesian
coordinates (from Step 1) with respect to the mid-azimuth
line. For each time point, the distance between the actual
position and the interpolated position with respect to #,,
ie., A, =r—r|;, is estimated. This is used in turn to estimate
the time difference as
= > Wy, A

re{x,y,z}

> @l A= D Wy, )

re{x,y,z} re{x,y,z}

At = “4)

where summation is over all the three spatial dimensions, i.e.,
r € {x,y, z}. Using At, the time #,, is adjusted as 1, < 1, +
At. This readjustment is done iteratively until At converges
to zero or until the maximum number of iterations is reached.
This final value of the parameter f;,, is then assigned as the
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Fig. 1. Methodological flow diagram.

azimuth time (7,;) associated with the Cartesian coordinates.
This process is repeated for all (x, y, z) derived from Step 1.
The range time t,, is estimated as

2
Zre{x,y,z} Ar

fy = L 5)

where c is the speed of light. Then, the radar line numbers [
and pixel numbers p are estimated as

I =1+ PRF(ty, —1;,)
p=1+2-RSR(t;y — 1) (6)

where RSR is the range sampling rate and ¢,, is the range time
associated with the first column of the radar image.

After estimating the geometry of the grid, the feature values
are radiometrically interpolated into the grid, e.g., using bilin-
ear convolution. In this way, the radarcoding of the reference
datasets is completed. This method is based on the radarcoding
implementation in the Doris software [9].

III. METHODS

The practical methodology is illustrated in the methodologi-
cal flow diagram Fig. 1. At least two repeat-pass SAR images,
namely master and slave SAR image, are processed using
differential SAR Interferometry (DInSAR) [12]. The positional
vectors for the satellites, as indicated in Table I, are estimated
using the coarse orbit estimation step [9]. The orbit points
are then interpolated using (2) with the midline timing. Both
master and slave images are coregistered to ensure geometrical
consistency between the images. The slave image needs to
be resampled after coregistration. The midline number, PRF,
RSR, first-line timing, and first-pixel timing information are
taken from the SAR image metadata. The SAR coverage
boundary is extracted using the extreme extent coordinates
from the satellite image metadata.

The reference polygon datasets are rasterized classwise
using the GDAL rasterize function. Here, the choice of the
raster image resolution is dependent upon the size of reference
polygons, the spatial resolution of the SAR data, and the
processing limitations of the computer. Higher resolutions are
better for smooth representations of polygon features in the
raster data model, but this can cause the raster dataset to
become too fine as compared to the resolution of SAR data
or too large in terms of the computer memory space.
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Fig. 2. (a) Study area and (b) PAZ time-averaged intensity image in VV
channel (Iyy).

In case the reference datasets are available as rasters, e.g.,
optical images, generic atmospheric correction online service
for InSAR (GACOS) atmospheric phase delay maps [13], and
the datasets can be used directly for radarcoding. However,
they can be optionally resampled to a required spatial reso-
lution. This is especially required for datasets with ultrafine
resolutions.

The pixel values of the rasterized reference datasets are
interpreted as geographical heights, and the pixel values are
rescaled between 0 and a minuscule positive real number €.
These values can be scaled back in the original range after
radarcoding. For polygons that are rasterized, the resulting
rasters are assigned a value of € to the pixels overlapping
the polygons. This is to avoid unwanted layover and fore-
shadowing effects for flat features, i.e., roads and water. For
buildings, we experimented with € and using actual building
heights, e.g., AHN [14]. This is done for two reasons. First,
to account for the layover and shadow effects of high-rise
buildings, and second, to account for different building shapes.

Next, the geographical extent of the reference data and the
SAR data coverage are cropped to a common intersecting
geometry. The geometry of the cropped reference dataset is
then radarcoded using (6) and brought to the same coordinate
system as that of the SAR data. Finally, the class values are
interpolated into the radarcoded grid.

The radarcoding accuracy is assessed by comparing the
radarcoded pixels of nine buildings, with nonuniform shapes or
tall heights, with masks drawn using the SAR intensity image.
The percentage of areal overlap is considered as the accuracy
metric. Note that the whole methodology is developed and
implemented upon Doris [9], and scripted in python and
available on GitHub with repository name: rdrcode.

IV. APPLICATION

For the application of our method, we chose a study area
over the north-west of the Netherlands, covering large parts
of the province Friesland, see Fig. 2(a). The map shows
five LULC classes: Buildings, Roads, Water, Agriculture, and
Railway line. A set of 30 multitemporal X-band, descending
pass, stripmap mode PAZ images in VV was acquired over
the extent cropped and marked as ‘PAZ coverage’ in Fig. 2(a)
between 2019-09-28 and 2021-10-15. The time averaged
intensity image in VV (denoted as Iyy) corresponding to the
master date is shown in Fig. 2(b). Due to the descending pass
of the satellite, an upside-down shift can be observed between
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the two subfigures. The black polygon inside Fig. 2(a) and (b)
shows the extent of the crop that is going to be used for further
analysis.

Vector datasets for the five LULC classes were acquired
from open data portals. The agriculture parcel data were
acquired from the Publieke Dienstverlening Op de Kaart
(PDOK) [15] while the data for the remaining four classes
were acquired using the ToplONL product made available by
the Kadaster [16]. The building heights were acquired from the
AHN3 [14] data. Next, the vector datasets were cropped to the
extent of the satellite image. The cropped vector datasets were
then individually rasterized using GDAL to a user-defined
spatial resolution. In our case, we chose a resolution equal
to 10~* decimal degrees or approximately 11 m. The value of
€ was 0.1 m. Thereafter, the rasterized files were radarcoded.

The results after radarcoding are displayed in Fig. 3.
Fig. 3(a) shows the crop corresponding to the black polygon
in Figs. 2(a) and 3(b) show the radarcoded image with LULC
classes. These radarcoded images show an exact match over
the radar image. This can be seen in Fig. 3(c) which shows
the overlay of the radarcoded reference data over the SAR
intensity image. The radarcoded data are vectorized using
GDAL using a connectivity of 8 pixels.

Next, we used the AHN data to extract building heights.
The extracted building heights were radarcoded and used to
create the building footprints. The radarcoded building heights
can be seen in Fig. 3(d). Fig. 3(e) shows the radarcoded
LULC map, and Fig. 3(f) shows the overlay of vectorized
version of Fig. 3(e) on top of SAR amplitude image. For this
version, we put a threshold of 3 m as the minimum height
for buildings. The image in Fig. 3(e) is slightly darkened for
all areas except for the masked building used for radarcoding
accuracy assessment.

To compare the results between using a pseudo height €
to radarcode building footprints and using actual building
heights, we analyzed the histograms of Iyy values for pix-
els overlapped by the radarcoded building, roads and water
classes. Fig. 4(a) shows the Iyy distribution of the three
classes with polygons radarcoded with height €. As expected,
the mode of the building class distribution is the highest,
followed by the mode of the road class and the mode of the
water class being the lowest. Similarly, Fig. 4(b) shows the
distribution of the three classes where building heights are
used to radarcode building polygons. The distribution follows
a similar trend as in Fig. 4(a), but with reduced peak values for
each classes. This reduction in the number of pixels is evident
in the difference of the above two histograms as shown in
Fig. 4(c). The reduction is highest for the road class followed
by the building class. Quantitatively, there was approximately
a 4% reduction in the number of building pixels, whereas a 7%
reduction in road samples between the histograms shown in
Fig. 4(a) and (b). There is also an increase of high Iyv values
for the building class suggesting an increase in the percentage
of high intensity scatterers overlapped by the building class.

For further analysis of building shapes, we highlight a set of
buildings using a white rectangle in Fig. 3(a), (c), (d), and (f).
A zoomed-in version of the figure is shown in Fig. 5.
Fig. 5(a) shows a 3-D perspective view of the buildings,
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Fig. 3.

(a) Crop of reference land cover classes in WGS coordinates corresponding to the city of Leeuwarden, The Netherlands, corresponding to the black

rectangle in Fig. 2(a). (b) Shows the radarcoded classes with buildings, roads, water, and railway shown using red, yellow, blue, and cyan colors. (c) Shows
an overlay of the radarcoded data over the PAZ amplitude image. (d) Shows the radarcoded building heights. (e) Shows the radarcoded classes using building
heights with the masks of building polygons used for accuracy assessment. (f) Shows its corresponding overlap.
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Fig. 4. Histograms of Iyy overlapped by radarcoded areas for building,

roads, and water classes (a) without using building heights, (b) using building
heights, and (c) difference between (b) and (a).

Fig. 5. Zoomed-in image of the building outlined by a white rectangle in
Fig 3. The descriptions of sub-figures follow correspondingly as in Fig. 3.

overlaid by a mask that hides the other surrounding buildings.
Fig. 5(b) and (c) shows the radarcoded images in raster
and vector form, respectively, for standard reference poly-
gons. Fig. 5(d) shows the radarcoded DEM of the buildings.
Fig. 5(e) and (f) shows the radarcoded images in raster and
vector images with building pixels thresholded by a height of
3 m. Fig. 5(f), shows that the building polygon follows the
shape of buildings from the 3-D perspective view in Fig. 5(a),
while the building footprint shown in Fig. 5(c) covers the

TABLE I

DISTRIBUTION OF RADARCODED PIXELS OVER BUILDING REFERENCE
Radarcoding Building  Roads ~ Railway ~ Water Mask  Accuracy
Type

Pseudo 7781 445 55 145 3649  64.43%
height

Building 10214 110 8 78 1665  84.59%
height

entire building. This results in a reduction of the number of
pixels with low-intensity values within the building boundary
defined by the reference polygon. These rejected pixels may
have similarities with other LULC classes, such as water and
roads. This ultimately improves the geographic accuracy and
feature reliability of SAR training data.

The radarcoding accuracy was also assessed. A total of
12075 pixels overlapped with the nine buildings selected as
the reference. These buildings were radarcoded with an overlap
accuracy of 64.43% in case of building heights assigned as €.
This accuracy increases to 84.59% for buildings assigned with
the true heights using the radarcoded DEM. Table II shows
the distribution of reference pixels over the four radarcoded
classes, and the no-data masked area. An increase in the
building class pixels and a reduction in the road class pixels
can be observed in the latter case. This indicates a possible
encroachment of buildings into the road class.

V. DISCUSSION

The transformation of geometries from WGS coordinates
to radar coordinates is more complicated than a simple affine
transformation. This is especially because of the slant acqui-
sition geometry of the radar sensor. In this study, we show the
application of radarcoding to overlay land use and land cover
classes in radar coordinates. The distribution of the radarcoded
classes are shown in the histograms in Fig. 4. The reason for
the mode to be the highest for the building class and the least
for the water class is most likely due to the higher presence
of high and low intensity scatterers in the respective cases.
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In this study, we experimented with using a pseudo height
€ versus actual building height to get radarcoded geometries.
We clearly observe a trade-off between accurate building
feature information and separation between close buildings.
In case of using building heights for radarcoding building
polygons, we observe that there is an increase in high-intensity
pixels overlapped by building polygons. This could most likely
be owed to better accounting of layover and foreshortend
pixels using the actual building heights. In a few cases, we also
observed that the extracted building shapes resemble the
building shapes from the optical images. We further observed
that the number of road pixels are reduced in the case with
building heights. This is mainly due to the resampling of the
building heights from a coarse resolution. Since resampling
is done from a coarse resolution posting of the height model,
it could be responsible for this ‘smearing’ of buildings in the
radarcoded image. A finer resolution of the building heights
could reduce this tradeoff.

We achieved a high radarcoding accuracy. The accuracy was
assessed for nine buildings with tall heights and nonuniform
shapes. Building class was considered to be the best class to
assess the overlap accuracy because they are supposed to be
the class most impacted by geometrical distortions, such as
layover and foreshortening. Other classes, such as roads, were
not chosen because it was difficult to delineate polygons over
such narrow features in the radar image. The number of testing
sites can further be increased to increase the significance of
the radarcoding accuracy.

VI. CONCLUSION

This letter proposed a strategy for obtaining labeled SAR
data in radar coordinates using the radarcoding method
addressed in Section II. The application in Section IV demon-
strated this strategy is useful in extracting labeled SAR
datasets for LULC classification.

We identified a trade-off between the building feature
accuracy and the separation between buildings in the use of
building heights for radarcoding. We recommend using build-
ing heights during radarcoding when buildings tall or farther
spaced out, so as to reduce the ‘smearing’ effect of building
onto other classes. The radarcoding accuracy was 64.43% with
the pseudo height and 84.59% with actual building heights.

In the processing, we recommend that the rasterization and
radarcoding be done per class. This helps in dealing with the
border pixel values between two or more classes. We further
recommend the use of data augmentation to increase the
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number of training datasets. We can also use novel data
augmentation strategies to generate multiscale datasets for
learning ground features at various scales. In addition to
LULC-related datasets, other available geospatial reference
data like meteorological and geological measurements can also
be radarcoded. In addition to vector datasets, raster could also
be used.
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