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1. Introduction

The growing prominence of electric vehicles (EV) in the 
automotive market, driven by sustainability concerns, has led to 
an increasing global demand for the battery. The lithium-ion 
battery (LIB) manufacturing market accounted for 26.7% of the 
rechargeable battery market in 2019 while it will emerge as a 
dominant cell manufacturing technology by 2030, with a 
production capacity share of more than 50% [1,2]. Thus, 
accelerating battery manufacturing to meet market demand is 
imperative. Concurrently, advanced battery technologies 
beyond the LIB are being raised for consideration for better 
performance, especially in terms of higher energy density and 

lower manufacturing expenses. For instance, implementing 
lithium metal for solid-state batteries (SSB) can improve energy 
content, and using raw materials like sodium or sulfur can lead 
to lower costs for cell components [3]. When applying these 
new battery manufacturing technologies, cell factories are 
facing various changes and challenges. For example, additional 
mixing and coating processes are needed for sulfidic SSB 
production. Also, it is necessary to include dry mixing and 
electrostatic spraying in solvent-free production steps for 
lithium-air batteries [1]. Therefore, speeding up the ramp-up 
and the production processes to increase the production yield 
for battery manufacturing systems (MSs) gains more and more 
attention.
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The production of LIBs is characterized by high complexity 
and manifold interdependencies [4]. Any alterations or 
interventions in one parameter within battery MS can lead to 
consequential impacts on other parameters [5]. For instance, 
fluctuations in temperature or humidity during anode 
production can cause variations in anode mass loading, 
subsequently influencing the energy density of the cell. To 
decouple and optimize the complex production processes, data-
driven methodologies or machine learning (ML) within battery 
MS are applied to ensure the desired product performance and 
production cost efficiency [6]. Despite this, some prerequisites 
of machine learning, such as the substantial demand for labeled 
data, often remain unfulfilled in industrial settings. Hence, an 
efficient approach to applying machine learning methods with 
scarce data and less effort in battery MS is required. In this 
paper, a conceptual framework termed the "Transfer Learning 
Cube" addresses the above issue along three key dimensions to 
support the promising transfer learning approach to be further 
implemented.

2. State-of-the-Art

As shown in Fig.1, battery manufacturing process is mainly 
divided into three phases: electrode manufacturing, cell 
assembly and cell finishing. In general, current LIB electrodes 
are manufactured through five standard processes, which are 
slurry mixing, coating and drying, calendaring, slitting, and 
vacuum drying [7]. After the electrode preparation, there are 
three main cell formats for stacking: pouch, cylindrical, and 
prismatic. Then the electrodes are enclosed within the cell 
housing. As for LIB, the liquid electrolyte is filled into the cell 
under specific environmental conditions. At last, the cell is 
finalized through the formation and aging process. The 
diversity of manufacturing technologies within each production 
process contributes to the high complexity of producing battery 
cells. Various manufacturing technologies are listed under each 
process in Fig. 1. 

Fig. 1. Battery manufacturing process chain and corresponding 
technologies[6], [8]. 

According to [9], the relation between LIB production 
processes is depicted in Fig. 2, decoupling the complex LIB 
manufacturing parameters into three main categories, namely 
process, intermediate product and final product characteristics. 
Given the high complexity of electrode manufacturing, there 
has been a growing focus on data-driven methodologies in this 

field in recent years, along with advancements in digitalization 
and machine learning (ML). ML-based approaches have 
significant potential to speed up the optimization of battery 
manufacturing systems by their capacity to manage 
multidimensional datasets and offer deeper insights into the 
interrelationships among manufacturing parameters.

Fig. 2. LIB process-structure-property function adapted from [9]. 

While the utilization of ML has been extensively examined 
and reviewed in the battery material domain and characteristic 
estimation domain, the field of battery cell manufacturing has 
received relatively less attention. A notable contribution to 
understanding the current state of ML methods within the field 
of LIB manufacturing systems is the comprehensive mapping 
study conducted by [10] in 2023. This study focuses on 
extracting and highlighting the current focal points from the 
aspect of processes, product and process parameters of battery 
cell production. The multi-perspective comparison reveals the 
ML capabilities in future research to accelerate battery 
manufacturing. Building upon the insights of the mapping 
study, further investigations have delved deeper into specific 
aspects. For instance, Schnell et al. [11] applied CRISP-Data 
Mining methodology to the data from a real LIB manufacturing 
scenario. Process dependencies are identified and the main 
impact factors on predictive quality are investigated. Turetskyy
et al. [4] proposed a holistic data-driven pipeline in LIB cell 
production to acquire and combine relevant data from different 
sources for further analysis, management and visualization. 
Moreover, Cunha et al. [12] performed quantitative analysis of 
parameter interdependencies and the prediction of the slurry 
manufacturing parameters impact on the final characteristics of 
NMC cathodes before calendaring, using un-classified raw 
experimental data. Niri et al. [13] compared different ML 
models with the experimental data to investigate and achieve 
the quantitative prediction for LIB cell performance through the 
key parameters of electrode manufacturing. These studies 
provide detailed perspectives and contribute to a 
comprehensive understanding of ML within battery 
manufacturing systems.

However, the mentioned studies only consider one type of 
battery electrode or one specific battery production scenario for 
machine learning. In industrial settings, it is often not feasible 
to acquire a sufficiently large amount of data required for 
traditional ML approaches [14]. Adapting transfer learning 
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(TL) in industry can help represent the relationship between 
process parameters and product quality faster with less data 
requirement [15]. Maschler and Weyrich [16] extracted 
findings from different use cases of deep TL for industrial 
automation and proposed four base use case categories. This 
paper offers a foundation for TL in real industrial scenarios.
Liang et al. [17] proposed a shared connected DNN for time-
series anomaly forecasting to transfer knowledge between two 
aluminum extrusion electricity consumption datasets. 

Thus, a lack of a comprehensive study investigating the 
feasibility of TL in battery manufacturing is obvious, since 
most ML applications in battery manufacturing focus on 
specific cases, which don`t take transferability into account. TL 
is an established approach that is proven in other manufacturing 
fields, such as anomaly detection [18], time series prediction
[19], fault diagnosis [20] and quality management [21]. 
However, there is no TL for battery manufacturing so far. The 
proposed conceptual framework addresses this issue by 
presenting a visualized model of TL across three key 
dimensions for battery manufacturing system.

3. Methodology

3.1. Concepts of Transfer Learning within battery 
manufacturing systems

Traditional ML methods involve individual datasets tailored 
for specific learning tasks. Learning occurs in isolation without 
leveraging past knowledge acquired from other tasks. 
However, in TL, similarities between datasets can be identified. 
This allows prior knowledge or the pre-trained model to be 
transferred from previous tasks to new ones instead of training 
from scratch. Thus, the learning process can be more efficient, 
accurate, and requires less training data. (See Fig.3) Within
battery MS, TL is promising due to the production dynamics 
from the changes of the recipe, materials or machines. 

The main definitions about TL in battery MSs are listed as 
follows.

Fig. 3. Illustration of TL concept [22].

• Domain : The domain for a specific use case in battery MS
represents production features and is used as input for 
further ML methods. 

• Task : The task of the battery MS can be varied such as 
quality control, process optimization and so on. Depending 
on different aims, the output variable can be process 
parameters or intermediate product properties like mass 

loading of electrode, or final product characteristics like 
energy density of the battery cell.

• Source/Target: Generally the dataset with sufficient samples 
and labels is chosen as the source domain and task for a good 
transfer foundation, such as the existing battery production 
line. In contrast, the dataset with scarce samples or some 
unlabeled data is selected as the target domain and task to 
receive the prior knowledge, such as a new similar 
production to be ramped up or a new manufacturing 
technology.

• Transfer learning (TL): Given a source domain and learning 
task, a target domain and learning task, transfer learning 
aims to enhance the learning performance of the target task 
by using the knowledge extracted from the source domain
and task.

• Deep TL: A pre-trained deep learning model, such as a deep 
neural network (DNN), can serve as a feature extractor or 
initializer at a higher level of abstraction for TL. The 
knowledge encoded in the weights and biases of the pre-
trained model is transferred to a new domain with limited 
labeled data. Three basic models for deep TL are illustrated
in Fig. 4. The pre-trained network is applied directly to the 
source domain and task without any retraining. Fixed 
feature extraction method is to freeze gained features from 
the first few layers of the pre-trained model and retrain the 
last layer for a new regression task. By fine-tuning method,
the pre-trained model on the new task or domain-specific 
dataset, deep TL enables the model to adapt and learn task-
specific features while retaining the common knowledge 
learned from the source task.

Fig. 4. Basic models for deep TL. (FC layer: Fully Connected layers ) 

3.2. Transfer Learning Cube

To structure and systematically identify TL use cases, the 
proposed “Transfer Learning Cube (TL Cube)” is a conceptual 
framework along the three key dimensions of battery MSs (see 
Fig. 5). It can be used to assess the viability and scope of TL for 
multiple use cases in the field of battery MSs in terms of 
production scale, manufacturing technology and battery cell 
design. The quantity of sub-cubes within a given volume is not 
constrained, with the representation typically using three 
subcubes along each dimension to elucidate the model. The 
variables corresponding to each axis are subject to 
determination and modification based on the particular 
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application. Some examples and explanations of variables 
corresponding to each axis are demonstrated as follows.

Fig. 5. Overview of TL Cube for battery manufacturing system.

Production scale: In general, production scale in the current 
manufacturing system is separated into three main levels:
prototype scale, pilot scale and series scale [23]. In this paper, 
“laboratory scale” is used instead of “prototype scale”, since 
laboratory scale is part of the prototype phase and some of our 
use cases consider the laboratory production of battery cells.
While there may be higher-dimensional or more finely-grained 
levels in the future, the main emphasis of this paper remains on 
these three levels as typically utilized.

Manufacturing process: It encompasses a set of parameters 
crucial to manufacturing processes. In battery MS, 
“Manufacturing process” can range from broad concepts like 
"process chain parameters" to specific elements such as 
"coating process parameters”. The process parameters of 
different battery manufacturing technologies can likewise be 
grouped here, such as “lamination process parameters” of solid-
state batteries, and “extruding and calendaring process 
parameters” of lithium–sulfur batteries. Alterations of battery 
materials and structures are analyzed in the scope of 
manufacturing process as well.

Battery cell design: Battery cell design refers to the 
configuration and architecture of individual cell e.g. in terms of 
general cell concept (e.g. pouch, prismatic, cylindrical), 
involved material system (e.g. NMC, LFP), or dimensions.
Variables corresponding to this axis can be the traditional 
components of the battery cell, such as “anode”, “cathode”, 
“electrolyte”, “cell format” or specific use-case-oriented terms 
like “single-layer cell format”, “multi-layer cell format” etc.

Therefore, this “TL Cube” addresses the gap in TL within 
battery manufacturing and provides a conceptual guideline to 
support the researchers and the industry in categorizing their 
specific use cases. Source domain and target domain can be 
illustrated on the TL cube to visualize their discrepancy in 
terms of battery manufacturing. Whereas the development of
specific TL methods is not the main point in this paper, the 
framework supports to identify promising TL strategies along 
the three dimensions which facilitates further implementations.

4. Exemplary industrial transfer learning use cases

4.1. Electrode Production Technologies (Leydenjar)

Leydenjar is a Dutch battery company, that produces pure 
silicon anode for higher energy density and thinner cell format. 
One-step Plasma Enhanced Chemical Vapor Deposition 
(PECVD) technology [24] is used for anode production instead 
of the traditional five steps (See Fig. 6). To enhance the quality 
of anode, various adjustments and tests were conducted on the 
production recipe, such as altering process parameters like 
speed, airflow, power, etc., to observe the potential variations 
in the mass loading, which is one of the main intermediate 
product features (IPFs) of anode. 

The industrial cost of conducting a single recipe test is 
substantial. For instance: 1) Time cost: Adjusting machine 
parameters and setup of the production line for a new recipe 
entail significant time consumption. 2) Material cost: Anode 
materials are costly, and multiple physical experiments based 
on trial-and-error methods can accumulate considerable 
material costs. 3) Cost of quality testing: Despite the assistance 
of advanced detection machinery, the quality testing process is 
not continuous and requires human resources and time. 

Fig. 6. One-step PECVD anode production machine in Leydenjar.

All the obstacles need to be taken into account when 
Leydenjar aims to speed up its attempt at the new recipe. 
Additionally, it was found that each adjustment to the recipe is 
based on accumulated prior knowledge from previous manual 
operations. Therefore, adapting transfer learning in 
Leydenjar`s anode production is feasible. By extracting 
suitable feature knowledge from current recipes and applying 
it to new recipes, the new prediction of anode mass loading can 
be achieved.

The “TL Cube” can serve as a guide to assist Leydenjar in 
exploring the implementation perspective of TL in their 
specific production case. Given their primary objective of 
uncovering similarities between different recipes and 
transferring useful information to new recipes, while 
maintaining the production scale unchanged at the pilot scale 
level and the object of quality control being the single-sided 
and double-sided anode, the focus can be placed on the 
"manufacturing process" dimension of the “TL Cube”.

For the "manufacturing process" axis, the approach can be 
refined as follows: firstly, an existing recipe (including 
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different process parameters like power, temperature, etc.) for 
single-sided anode with a sufficient amount of labeled data is 
selected as the source domain for training a pre-trained base. 
Secondly, the new recipe for double-sided anode is identified 
for testing as the target domain. Then, the similarity between 
the two domains can be defined and the discrepancy between 
them can be measured as well. Therefore, the TL cube tailored 
to Leydenjar's specific scenario is depicted in Fig. 7 below. 
Thus, the source domain is the single-sided anode production 
process at the pilot line, and the target domain is the double-
sided anode production at the pilot line. Both source and target 
tasks remain consistent, focusing on predicting IPF, 
specifically anode mass loading.

Fig. 7. “Transfer Learning Cube” for Leydenjar`s scenario.

4.2. Production scale up from lab to pilot line (PowerCo SE)

The next use cases have been developed in cooperation with 
the cell manufacturer PowerCo SE. PowerCo focuses on 
ramping up battery cell production to cover the constantly 
rising demand for automotive applications. Additionally, of 
high importance for the company is to optimize the design and 
performance of battery cells through research and development 
to create competitive advantages.

To accelerate the upscaling process of battery cells, early 
deployment of ML models in the production ramp-up, such as 
those described in [10], could be beneficial. However, early use 
of ML models is hampered by data and concept drifts due to 
the large number of experiments in the laboratory phase.
Furthermore, the upscaling process is characterized by 
different cell formats. At the beginning, smaller cell formats 
like coin cells or single-layer pouch cells are used to reduce 
experiment costs. After a cell design is found, which should be 
further developed, the manufacturability needs to be checked 
with industrial sized production processes. This ultimately 
leads to changing manufacturing processes and an increased 
dissimilarity in the data of the first upscaling phases.

To overcome these challenges, TL is a promising method to 
improve the utilization of ML models in the upscaling process 
of battery cell production and accelerate the product 
development process. Fig. 8 shows the classification of the use 

cases of PowerCo into the “TL Cube”. The example contains 
three use cases with different complexity levels regarding their 
feasibility. As complexity increases, so does the difference 
between manufacturing processes and cell design. The highest 
feasibility is expected in use case 1.

Fig. 8: “Transfer Learning Cube” for PowerCO SE`s scenario.

Use case 1 (Fig. 8, blue) is similar to the one presented by 
Leydenjar, but has a different motivation. In this use case, a 
new electrode design has successfully been tested on laboratory 
scale and is now to be produced on pilot scale. In pilot 
production, a ML model is in use based on the data of a 
previous electrode design A. This ML model is for example 
utilized for predictive quality, to reduce the scrap rate. 
Applying this ML model on the new electrode design B
presumably leads to a reduced accuracy of the model. This is 
caused by necessary changes in the manufacturing process, 
which are categorized as process parameters A and B on the 
corresponding axis of the TL cube. Fig. 9 illustrates that the 
ML model, which is updated to the new electrode design, can 
be a process or process chain model.

Fig. 9. Differences between the use cases related to the production data used.

A more complex application of TL in the upscaling process 
is transferring a ML model from laboratory scale to pilot scale. 
This is described by use cases 2 (Fig. 9, orange) and 3 (Fig. 9, 
green), which differ in the number of process steps included in 
the ML model. It is assumed, that the transfer of a process 
model is easier than the transfer of a process chain model. This 
assumption is based on the fact the amount of dissimilarities 
increases with more process steps. The utilization of the ML 
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models is similar to use case 1, as the aim is predictive quality 
and a faster ramp up of the manufacturing process.

In use case 2, the transfer takes place from a coating process 
using the doctor blade technology to a coating process using 
slot die coating. Regarding the cell design axis of the “TL 
Cube”, the coating properties are expected to vary. Use case 3 
considers a transfer from process chain A to B, which includes
different manufacturing processes and at different production 
scales. The cell format in laboratory production is a single-layer
pouch cell and in pilot production a multi-layer prismatic cell. 

5. Conclusion and outlook

In this paper, we proposed a conceptual framework named 
“TL Cube” for discovering the adaptation of TL in battery 
manufacturing system across three key dimensions: production 
scale, manufacturing process, and battery cell design. The three 
dimensions represent parameters from a general perspective in 
battery manufacturing that vary frequently and require 
optimization considerations. Two exemplary use cases are 
illustrated and demonstrated based on the proposed framework. 
Leydenjar has leveraged the "TL Cube" to uncover the 
potential for recipe transfer within their production line, mainly 
focusing on process technology aspects. In addition, the 
potential of TL in the upscaling process of battery cell 
production was identified using examples of PowerCo SE.
These examples are visualized utilizing the “TL Cube”.
Therefore, the framework could serve as a guide for the 
practical application of TL in battery manufacturing systems.

In future works, the framework will be a starting point for 
TL adaptation in battery manufacturing systems. With a 
comprehensive understanding of the transfer background 
provided by the "TL Cube," experiments of specific TL 
approaches in battery manufacturing system can be conducted, 
such as fine-tuning and domain adaptation. The potential of TL 
in battery cell production to speed up the existing ML 
approaches under the constraint of sparse data for new 
manufacturing scenarios will be investigated as well with the 
support of the “TL Cube”. Additionally, the “TL Cube”, 
initially tailored for battery manufacturing, can be adapted to
other manufacturing domains due to its versatile concept.
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