
Mining Frequent Structures in Conceptual
Models

Mattia Fumagalli1, Tiago Prince Sales2, Pedro Paulo F. Barcelos2,
Giovanni Micale3, Philipp-Lorenz Glaser5, Dominik Bork5, Vadim

Zaytsev4, Diego Calvanese1, Giancarlo Guizzardi2

1KRDB Research Centre on Knowledge and Data, Free University of Bozen-Bolzano, Bolzano, Italy.
2Semantics, Cybersecurity & Services (SCS), University of Twente, Enschede, The Netherlands.

3Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
4Formal Methods and Tools (FMT), University of Twente, Enschede, The Netherlands.

5TU Wien, Business Informatics Group, Vienna, Austria.

Abstract
The challenge of using structured methods to represent knowledge is a well-
documented issue in conceptual modeling and has been the focus of extensive
research. It is widely recognized that adopting modeling patterns offers an
effective structural approach for designing conceptual models. Patterns, in this
context, refer to generalizable, recurring structures that provide solutions to
common design problems. They significantly enhance both the understanding
and improvement of the modeling process. Numerous experimental studies have
demonstrated the undeniable value of using patterns in conceptual modeling.
Despite this, the task of identifying patterns in conceptual models remains highly
complex, and there is currently no systematic method for pattern discovery. To
address this gap, this paper proposes a general approach for discovering frequent
structures in conceptual modeling languages as a means to support pattern iden-
tification. Specifically, we focus on uncovering recurring structures that reflect
the usage patterns of a given conceptual modeling language. As proof of concept,
we implement our approach by focusing on two widely-used conceptual modeling
languages. This implementation includes an exploratory tool that integrates a
frequent subgraph mining algorithm with graph manipulation techniques. The tool
processes multiple conceptual models and identifies recurrent structures based on
various criteria. We validate the tool using two state-of-the-art curated datasets:
one consisting of models encoded in OntoUML and the other in ArchiMate. The
primary objective of our approach is to provide a support tool for language engi-
neers. This tool can be used to identify both effective and ineffective modeling
practices, enabling the refinement and evolution of conceptual modeling lan-
guages. Furthermore, it facilitates the reuse of accumulated expertise, ultimately
supporting the creation of higher-quality models in a given language.

1



Keywords: Conceptual Modeling, Mining Conceptual Models, Frequent Subgraph
Mining, Recurrent Modeling Structures, Modeling Patterns

1 Introduction
Conceptual modeling is a highly complex task. As empirical results show [1–5], this is
often due to multiple factors, such as the cognitive limitation of modelers, the lack of
information about the domain to be modeled, and the nature of the conceptual mod-
eling language being adopted. For this reason, one of the main concerns of language
engineers is overcoming modelers’ difficulties and devising conceptual modeling lan-
guages that assure as much as possible the high-level quality of the output conceptual
model. Patterns play a key role in this regard. These recurrent structures are gener-
alizable solutions to design problems that help in understanding and improving the
process of creating models. Specifically, patterns represent examples of good (or bad)
recurring practices that language engineers can identify by looking at the practical
application of the language itself. By discovering and adopting recurrent structures,
language engineers can then evolve the modeling language itself, speeding up and facil-
itating its application and easing the reuse of working experiences, by also helping to
avoid common errors or misconceptions.

During the past decade, modeling patterns have been widely adopted by lan-
guage designers [6, 7] and, consequently, discovering them from design experiences has
become of paramount importance. Still, the task of discovering recurring modeling
structures across conceptual models presents multiple challenges. For instance, con-
sider that .i recurrent modeling practices can only be discovered by observing a vast
number of conceptual modeling examples, and .ii the assessment of the conceptual
models and the identification of recurrent modeling structures often require analy-
sis activities that are highly time-consuming when performed manually, as seen in
processes like modularization, frequency calculation, or constructs correlation.

The analysis of conceptual patterns and the discovery of recurring structures or use-
ful patterns has emerged as a distinct research path that has seen significant growth in
recent years. This research, as evidenced by seminal works like [6–9], focuses on analyz-
ing reference patterns—used as case studies—to infer modeling strategies for specific
problems. More recent work has explored the application of automated techniques to
support heuristic tasks traditionally performed manually [10–13].

In this article, we join the ongoing research efforts to develop automated support
for facilitating the empirical discovery of recurring modeling structures. Our contri-
bution is an approach that integrates several state-of-the-art techniques, designed as
an exploratory tool to enable users to interactively discover and analyze frequent
structures. The implementation of this approach is based on gSpan [14], a widely rec-
ognized frequent subgraph mining algorithm. Through a command-line interface, this
tool enables users to:

.i select the models to be processed,
.ii prepare the data to be mined by focusing on specific information and filtering

out concepts that might not be relevant for that type of analysis,

2



.iii select certain features that the output frequent structures should have (e.g.,
number of nodes, frequency, or dissimilarities from known patterns),

.iv visualize the output frequent structures and query the input models to verify the
domain occurrences of that structure, and

.v cluster the output structures to simplify the user’s final assessment.
The main scope of our solution is to offer a support facility for language engineers

that aims at exploiting bad/good practices to evolve and maintain the conceptual
modeling language but also to favor the reuse of encoded experience in designing better
models with the given language.

We evaluate our approach using two large and curated state-of-the-art datasets
of frequently used conceptual modeling languages, in particular, the OntoUML
dataset [15] and the ArchiMate dataset [16]. We adopted datasets encoded in
OntoUML and ArchiMate languages for several reasons. Primarily, these languages
are based on pre-defined patterns, which are frequently used across different models to
address common modeling issues. This allows us to evaluate our approach to finding
useful structures that are already known by the designers of each language. Second,
for our evaluations, we can access curated high-quality datasets, encoded in a uniform
format, thus improving our findings’ comprehensibility and reliability. Third, for our
evaluations and experiment design, we can obtain feedback directly from the authors
of the languages,1 showing how this may help enabling us to gather valuable infor-
mation about the practical utility of the approach. Finally, OntoUML and ArchiMate
have a variety of constructs and features that allow us to assume that if our approach
works for these languages, it also works for widely used standard languages, such as
UML or BPMN.

The outline of this paper is as follows: Section 2 explores the concept of “pattern”
in conceptual modeling, focusing particularly on “recurrent modeling structures”. This
section also provides a brief overview of the primary technique employed for automat-
ing the mining process. Section 3 enumerates the requirements that guided the design
of our methodology. In Section 4, we introduce our framework, elaborating on its work-
flow and individual components. Section 5 details the implementation of our approach.
In Section 6 and Section 7, we discuss the experiments and demonstrations conducted
to validate our solution. In Section 8, we analyze insights gained from the evalua-
tion and demonstration processes. Section 9 situates our work within the context of
existing literature. Finally, Section 10 offers reflections on our findings.

2 Research Baseline

2.1 Patterns in Conceptual Modeling
Currently, our proposal primarily focuses on patterns in conceptual models. These
model fragments represent recurrent structures formed by modeling constructs from
a specific conceptual modeling language. Keeping track of these patterns allows one
to understand how a language is applied, thus offering powerful means to language
designers for maintaining and evolving the language itself. Using recurrent structures,

1In particular, we leveraged this feedback in the OntoUML scenario.

3



one can, e.g., discover the most common combinations of language constructs, identify
language dialects for specific application domains, verify possible restrictions in using
constructs or their combinations, and determine the frequent subversions of the lan-
guage. The notion of systematic language subversion [17] refers to an ungrammatical
use of a language’s constructs that becomes recurrent in a language community sig-
nalling a design limitation of that language. It is closely related to coding traditions [18]
that cover coding policies, notational guidelines, naming conventions, implementation
patterns, programming idioms, etc.

Fig. 1: Example of inheritance recurrent structures in UML class diagrams [19].

Figure 1 shows examples of common usages of the generalization relationship in
UML class diagrams. These structures represent the ways by which modelers represent
intentional sub-typing (inheritance) between classes (see .a, .b and .c types), and can
be taken as useful insights for understanding the language application. For instance,
given a set of models about a certain domain, it is possible to discover that the multiple
inheritance (.c) is used to capture class compositionally [19]. This observation might
trigger language designers to suggest class composition relations when modelers use
two or more generalization relations for a class.

Fig. 2: Example of parallel split recurrent structures in BPMN diagrams [20].

Similarly, Figure 2 represents three examples of recurring structures in BPMN
models. These patterns correspond to equivalent ways of modeling tasks parallel split-
ting (see .a, .b, and .c types) and are related to how people design control flows.
Just as with UML structural patterns, these BPMN fragments can offer interesting
insights into the language’s usage. For instance, by observing multiple occurrences of
the implicit parallel split (.b), language designers may decide to force modelers to

4



make explicit the gateway for the splitting, to avoid unintended instantiations of the
model (i.e., where the splitting may be intended as an “OR”, instead of an “AND”,
depending on the modelers’ scope).

2.2 Frequent Subgraph Mining
Frequent Subgraph Mining (FSM) is a well-known technique [21] used to find frequent
subgraphs in a graph dataset. This technique typically involves a dual-phase approach.
The initial stage involves the creation of subgraph candidates [21], where subgraphs
in the graph dataset are searched and proposed for the analysis, while the subsequent
step entails evaluating the frequency of the generated subgraphs to ascertain their
prevalence.

FSM presents two distinct problem formulations: .i graph transaction-based FSM,
and .ii single graph-based FSM. In graph transaction-based FSM, the input dataset
comprises a collection of medium-sized graphs termed “transactions” [22]. On the
other hand, single graph-based FSM uses a single, significantly large graph as input.
In this setting, a subgraph, denoted as g, is deemed frequent if its occurrence count
surpasses a predefined threshold value, commonly referred to as the support threshold.
The support calculation varies according to the problem formulation. In a transactional
dataset, the support α(0 < α < 1) of a graph is the ratio of the number of transactions
to which this graph occurs to the total number of transactions. In a single large graph,
the support of a graph is the number of its occurrences in this graph.

Formally, given a graph G = (Vg , Eg), where Vg is a set of (possibly labeled)
vertices and Eg is a set of (possibly labeled) edges, then a graph H = (Vh, Eh) is a sub-
graph of G if and only if its vertices and edges are a subset of the vertices (Vh ⊆ Vg)
and edges (Eh ⊆ Eg) of graph G, and the vertex subset include all endpoints of the
edge subset. A subgraph is considered frequent when its support equals or exceeds the
user-defined minimum support threshold.

Fig. 3: Example of three graphs, with subgraph B−J−D having support (frequency)
of 3

Let us consider the three graphs represented in Figure 3. Suppose that we want to
discover all the (connected) subgraphs with at least two nodes that occur in at least
three graphs. By adopting minimum support 3 as a parameter and applying an FSM
algorithm, we can obtain the set of all subgraphs appearing in at least three graphs,
namely B − J −D.

5



In practical scenarios, different tools or algorithms can identify frequent subgraphs.
In this paper, we adopt gSpan [14], a popular state-of-the-art solution. This algorithm
is often used for discovering frequent subgraphs in large graph databases and has vari-
ants that work on conceptual graphs [23], typed linked data [24], chemical compound
data [25], large disk-based databases [26], data with differential privacy [27], etc. It
uses an approach based on a minimum DFS code [28] that allows the efficient genera-
tion of candidate subgraphs and pruning of infrequent ones. The algorithm iteratively
discovers all frequent subgraphs containing an edge and then expands the search to
include larger subgraphs. The database is shrunk as the search continues, and only
graphs containing the current subgraph are considered. Studies show that gSpan can
mine large frequent subgraphs with lower frequency and high performance [21].

3 Requirements
Our design for the proposed approach is based on an initial problem identification
activity. During this phase, we gathered feedback from five potential users of our
approach: expert language engineers, who have been involved in the development of
different conceptual modeling languages and who have been working on the identifi-
cation of conceptual modeling patterns. We performed open-ended interviews and the
main open questions we asked were:

.i What is the relevance of an approach for facilitating the empirical discovery of
structural modeling patterns in conceptual models?, and

.ii What is required in order to facilitate the empirical discovery of modeling
patterns?

This preliminary step helped us improve our awareness of the problem, better
understanding the related work, and better identifying the features that our solution
should offer to the end-users. The feedback from experts was crucial in defining both
functional and non-functional requirements, which are needed to design the approach
and evaluate the artifact in which our contribution is embedded.

We mapped the key features that specify what our approach should do into the
following functional requirements:

R1. Interestingness: The approach should facilitate the discovery of subjectively inter-
esting patterns, namely recurrent structures that can be considered interesting
according to the user’s interpretation. Here, the notion of “subjectively interest-
ing” is inspired by the work from Silberschatz and Tuzhilin [29], where a pattern
is ranked as interesting by a user mainly because .i it is considered exploitable
for the modeling activities, or .ii it contradicts some users’ expectations.

R2. Customization: The approach should allow engineers to manipulate the input
models to obtain different patterns, which may vary in size (number of nodes
or edges), may be related to different constructs (see, for instance, taxonomical
vs. non-taxonomical structures), or maybe taken at different levels of granular-
ity (e.g., in UML compositions and aggregations relations may be taken just as
associations). The approach should also allow the user to filter the output of the
discovery process according to custom parameters.

6



R3. Comprehension: The approach should assist engineers in the process of assessing
and analyzing the output structures. This should be feasible by accounting for
multiple types of frequency, e.g., relative frequency, as the number of occurrences
of a structure in each model; total frequency, as the overall occurrences for a given
pattern; frequency across models, as the number of models in which a pattern
occurs. Moreover, this should be supported by a human-readable visualization
format of the output structures.

We mapped the key features that specify how the approach should perform its
functions into the following non-functional requirements:

R4. Performance. The approach should outperform the human discovery activity
in terms of time. Moreover, the conceptual models processing and the mining
step should happen in a reasonable amount of time, even with a large amount
of data, where “reasonable” and “large” are considered concerning related work
[30, 31] (e.g., hundreds of models).

R5. Compatibility. The approach should be able to support pattern discovery in
multiple conceptual modeling languages.

4 Method
Our approach is represented as a workflow, consisting of several tasks, which can
be categorized into three main phases: preparation, discovery, and assessment. These
phases allow the user to intervene in the workflow whose inputs, outputs, and
dependencies are combined as from Figure 4 below.

4.1 Preparing the Input Data
The “Preparation” phase focuses on transforming the input conceptual models in a
format that is processable by the subsequent steps. In this phase, we have two main
tasks. First, the Importing (0) task consists of taking a set of conceptual models M
encoded in a language (e.g., UML or BPMN) and transforming each model mi ∈ M
into a Labeled Property Graph (LPG) gj . Such a task is denoted by a white box in
Figure 4 because it is language-dependent, namely it requires an ad hoc transformation
for each source conceptual modeling language taken into consideration. At first glance,
this might seem straightforward since conceptual models are essentially graphs. That,
however, is not always the case. Consider, for instance, the transformation of UML
class diagrams into graphs. The simple solution is transforming classes into nodes and
generalizations and associations into edges. Still, if we want to convert, generalization
sets, association classes, generalizations between associations, cardinalities, and several
other constructs, this solution no longer works. Moreover, a challenge for the available
frequent subgraph mining approaches is accounting for complex (semantically-rich)
graph data [21, 32, 33]. There are several algorithms each of which admits graphs with
different characteristics (e.g., labeled vs. unlabeled or directed vs. undirected).

In the conceptual modeling context, we encounter construct-rich languages that
challenge the capabilities of existing FSM solutions. For instance, some languages sup-
port multiple labels for classes and relations, multiple relationships between the same

7



Fig. 4: The frequent structures discovery workflow.

classes, and even classes of relations. This requires the mining algorithm to potentially
handle various types of graphs, such as multi-labeled, directed, or multi-graphs. To
the best of our knowledge, no existing algorithm fully accommodates all these graph
types. Therefore, we ensured full compatibility with all algorithms by addressing the
problem at its source. The importing process generates an LPG that captures all the
information from conceptual models encoded in any conceptual modeling language,
ensuring the output format is always suitable for the mining algorithm.

Algorithm 1: Description of the generic importing algorithm.

Data: Set of Conceptual Models M
Result: Set of Labeled Property Graphs (LPG) G

1 for each conceptual model m ∈ M do
2 for each concept c in m do
3 map c to a node nc;
4 if c represents a relation then
5 Connect nc to the source node with an edge es labeled

“source”;
6 Connect nc to the target node with an edge et labeled

“target”;
7 end
8 for each property p of c do
9 assign a label lp to node nc;

10 end
11 end
12 create an undirected labeled graph g using the set of nodes and

edges;
13 add g to G;
14 end

8



Algorithm 1 presents a simplified overview of the importing process. The core idea
is to reify every element in the input conceptual model. For example, associations,
cardinalities, and classes are all mapped into graph nodes with multiple labels. Figure 5
illustrates this transformation process, applied to three models encoded in different
modeling languages: (a) OntoUML, (b) ArchiMate, and (c) BPMN. On the right, the
resulting LBGs are shown. The edge labels “source” and “target” are used to preserve
the directionality of the relationships.

Fig. 5: Example of transformation from conceptual models to labeled property graphs.

In the Filtering (1) task, users can choose which language constructs to exclude
from the models. For instance, with OntoUML, one may want to seek patterns only
involving classes decorated with certain stereotypes, or involving only classes, gener-
alizations, and generalization sets. Finally, the outputs of the filtering task are a set

9



of (possibly filtered) LPGs (.ii in Figure 4) to be given as input to the mining algo-
rithm and the storage of all the generated graphs (.iii, which can be used to run the
Deepening (3) task (see Section 4.2 below).

4.2 Discovering Structures Across and Within Models
The “Discovery” phase is the workflow’s core and aims to generate the candidate
patterns in a format that can then be processed and made accessible to the user for
the final assessment. This phase, in turn, is composed of two main tasks.

Mining (2), the first task, involves applying an FSM algorithm. This allows for an
interaction with the user, who can select:

.i the minimum structure size for the output patterns (e.g., filter out patterns that
have less than five nodes),

.ii the minimum frequency threshold for the output patterns (e.g., filter out patterns
that occur less than 30 times across models), and

.iii the known patterns to be excluded from the final output (e.g., the user can provide
graphs representing known patterns as input. These will be excluded from the
final output to maximize the discovery of results that contain new information).

The output of the mining task will then comprise a list of the discovered patterns in
a format that eases the final assessment, along with a pattern index, a list of indexes of
the source models in which the pattern occurs, and a model frequency value calculated
as the number of conceptual models that contain the pattern. For instance, given five
models, the model frequency cannot be more than ‘5’.

An optional task named Deepening (3) allows users to select a pattern from the
previous task and discover the occurrences of this pattern within each input model.
This operation can be run for each of the output patterns and implies using the selected
pattern as a query to be run over the graphs storage generated via the importing task.
The output of the deepening task is a set of pattern occurrences for each selected
pattern. This allows the user to derive the total frequency for each pattern, calculated
as the sum of the pattern occurrences within each input model (e.g., given five models,
if the pattern occurs twice in each model the total frequency will be of ‘10’, but the
model frequency will be ‘5’). Through this step, the user can extract information that
is related to the specific usage of the pattern within the reference model domain. For
instance, via deepening, we can infer that, in a pattern, a node with stereotype Kind is
associated with the label ‘Vehicle’ in a model and ‘Means of transportation’ in another
model.

4.3 Assessing the Output Frequent Structures
The “Assessment” phase aids users in analyzing the output. Similar to previous phases,
this one comprises two main tasks.

The Clustering (4) task groups output structures—specifically, the recurrent or
frequent structures from the mining task—based on their similarities.2 This should

2Notice that in the approach we are proposing, to assess whether one conceptual model sub-structure is
close to another, we take inspiration from conceptual model similarity techniques [34–36], where the main
task is to find similar models given a reference model input, to categorizing models according to their
characteristics.

10



Algorithm 2: Partial Description of the Clustering Algorithm.

Data: Set of of Frequent Structures F
Result: Set of Clustered Frequent Structures C

1 for every frequent structure f, where f ∈ F do
2 extract α as the number of nodes in f;
3 extract β the number of edges in f;
4 extract the adjacency matrix A for f;
5 for each node n where n ∈ f do
6 extract the associated labels L;
7 end
8 for α, β, A and L do
9 flatten A into a vector vA concatenating its rows;
10 generate a vector vf = (α, β, vA, L);
11 store vf in a list of vectors V ;
12 end
13 end
14 for every vector vi

f ∈ V do
15 compute similarity with every other vector vj

f ∈ V ;
16 take as input a similarity threshold γ;
17 create the set of clusters C according to γa;
18 end

aNote that, in our scenario, if we have three patterns, A, B, and C, and,
according to a certain threshold, A is similar to B and B is similar to C, this
implies that A is also similar to C, and A, B and C are in the same cluster.

facilitate the user’s process of scraping and consulting the output. Often, the number
of outputs produced can surpass hundreds, and numerous structures can have similar
characteristics. For example, some structures might differ by just one label (in one
structure we might have three nodes where one is labeled as Kind and the other two
specialize it as Subkind, while in another structure we might have three nodes where
one is Kind, and the other two specialize it as Subkind and Role, respectively. In
this sense, a cluster of patterns can be considered by the user as a set of variations,
which sometimes may refer also to the same structural pattern (e.g., where a kind is
specialized by two or three Subkinds). To enable clustering, in our process, we extract
key characteristics from the graphs that represent each pattern. At present, the steps
addressed to enable the clustering step are as from Algorithm 2.

Currently, we adopt a single feature extraction method to calculate structure
similarity. However, this does not prevent adopting different feature extraction or
embedding techniques. This is valid also for the approach used to assess similarity,
which now is limited to a cosine similarity [37], but in the future, it can be extended
to other measures.

The Visualization (4) task is crucial, focusing on creating an output that maximizes
users’ comprehension and engagement. This process revolves around transforming gen-
erated patterns, which inherently encapsulate the reified structure of input graphs,
back into their original format — a multi-directed graph. In this graphical representa-
tion, relationships, generalizations, and associations manifest as edges, complete with
corresponding cardinalities to provide a richer context.

The significance of this visual representation lies in its ability to empower users in
several ways. For example, by translating the outputs from the FSM algorithm into

11



Fig. 6: Visualization example of recurrent structure (.a) and a related occurrence (.b).

multi-directed graphs, users can better grasp complex relationships and hierarchies
within the data. This enables deeper insights and understanding. Figure 6 exemplifies
the transformation power of visualization. On the left-hand side, you can observe
a recurrent structure. On the right, you are presented with one of its occurrences,
generated through the deepening task. This visual juxtaposition illustrates how the
raw outputs of the mining and deepening tasks can be transformed into a visually
accessible and actionable representation, empowering users to easily extract valuable
knowledge from their data.

5 Implementation
We developed a command-line Python application for our approach, allowing users
to interactively configure the process, select the input conceptual modeling language,
manipulate the data, and assess the mining algorithm’s output. The scripts we created
are available at https://github.com/unibz-core/CM-Mining.

For tasks involving graph importing, processing, and transformation, we used the
NetworkX library3, a powerful Python package for creating, analyzing, and visualizing
complex networks. NetworkX played a crucial role in each step of the entire workflow.
We integrated the Grandiso library4—a versatile Python library known for its effi-
cient graph-matching and isomorphism-checking capabilities—in tasks involving graph
matching, isomorphism detection, and motif search. For pattern mining, we relied
on the gSpan Python implementation5 of the frequent subgraph mining algorithm.
This library enabled us to discover recurring subgraph patterns within our data. We
achieved the visualization of discovered patterns using PlantUML6, a flexible tool for
generating UML and ArchiMate diagrams. PlantUML is seamlessly integrated into our
framework, enhancing the interpretability of our results through clear and informative
visual representations.

3https://networkx.org/
4https://pypi.org/project/grandiso/
5https://pypi.org/project/gspan-mining/
6https://plantuml.com/

12

https://github.com/unibz-core/CM-Mining
https://networkx.org/
https://pypi.org/project/grandiso/
https://pypi.org/project/gspan-mining/
https://plantuml.com/


This suite of tools enabled a robust and efficient framework for graph structure
discovery and visualization, ensuring we can efficiently access useful information from
the mining outputs.

5.1 OntoUML Miner
As an initial proof of concept for our scientific contribution, we adapted our pipeline
to support UML class diagrams, focusing specifically on OntoUML models. These
represent the output of a trending paradigm situated at the confluence of concep-
tual modeling and ontology engineering, namely Ontology-driven conceptual modeling
(ODCM). ODCM frequently entails the utilization of fundamental ontologies to steer
the formulation of conceptual models, modeling languages, and tools [38]. Within this
framework, the OntoUML modeling language [39, 40], has risen to prominence as one
of the predominant methodologies [38].

Algorithm 3: Partial Description of the OntoUML Importing Algorithm.

Data: Set of of Conceptual Models M
Result: Set of Labeled Property Graphs (LPG) G

1 for every conceptual model m, where m ∈ M do
2 map each class c into a node nc;
3 map each association a into a a node na;
4 map each generalization g into a node ng;
5 map association cardinalities ϕ into a node nϕ;
6 for each generalization node ng do
7 Connect ng to the parent class-node nc with an edge “general”;
8 Connect ng to the child class-node nc with an edge “specific”;
9 end

10 for each association node na do
11 Connect na to the source class-node nc with an edge “source”;
12 Connect na to the target class-node nc with an edge “target”;
13 for each cardinalities node nϕ do
14 Connect nϕ to the corresponding na with an edge

“cardinalities”;
15 end
16 end
17 for each class c do
18 create the corresponding label(s) for node nc;
19 end
20 for each association a do
21 create the corresponding label(s) for node na;
22 end
23 create LPG g;
24 add a graph g to G;
25 end

OntoUML extends the UML modeling language. Its meta-model is grounded on
UFO (Unified Foundational Ontology) [41], a formal theory based on contributions
from Formal Ontology in Philosophy, Philosophical Logic, Cognitive Psychology, and
Linguistics. UFO is one of the most used foundational ontologies in conceptual mod-
eling and OntoUML is among the most used languages in ontology-driven conceptual
modeling [38]. An example of core ontological distinctions underlying OntoUML is
represented by the key categories of object types (e.g., Kind, Subkind, Roles, and

13



RoleMixins), trope types (e.g., Relator, Mode) and Relations (FormalRelations,
MaterialRelations, and ParthoodRelations).7

One of the main goals of OntoUML is to support the conceptual modeling activ-
ities by making explicit the semantics behind the modelers’ design choices, thus
enabling key features of the output conceptual models, such as understandability,
interoperability, and reusability.

The purpose of the OntoUML miner is to enable the discovery of recurrent
structures within OntoUML models, requiring the ability to handle all OntoUML
constructs. To achieve this, the module adapts both the importing and visualization
steps of the pipeline, which were identified as language-dependent in Figure 4. The
OntoUML-specific importing step is detailed in Algorithm 3, providing a specialized
version of Algorithm 1. This partial view of the algorithm shows that the input con-
cepts from the conceptual model correspond to specific OntoUML constructs, many
of which also appear in UML. For example, taxonomic relations, associations, and
relation properties like cardinalities are represented.8

As a final remark on the OntoUML visualization step, this process entails adapting
the PlantUML transformation so that output patterns are displayed using OntoUML-
like notation.

5.2 ArchiMate Miner
Besides OntoUML, we extended our pipeline to support ArchiMate models, demon-
strating the adaptability of our mining approach to different modeling languages.
ArchiMate, standardized by the Open Group,9 is one of the most widely used Enter-
prise Architecture (EA) modeling language [42]. The ArchiMate framework adopts
a layered view of an enterprise, where the core entities of an enterprise are catego-
rized along layers (e.g., Business, Application, or Technology) and aspects (e.g., Active
Structure, Passive Structure, or Behavior).

To enable the discovery of frequent structures within ArchiMate models, we
adapted our pipeline to accommodate ArchiMate constructs during the language-
dependent importing, filtering, and visualization steps.

The ArchiMate-specific importing step is detailed in Algorithm 4, extending the
general approach outlined in Algorithm 1. This step transforms ArchiMate models into
Labeled Property Graphs (LPGs) by mapping elements and relationships to nodes and
assigning labels that capture their name and type information (e.g., BusinessProcess
for an element or Assignment for a relationship). Specialization relationships are
treated distinctly, with nodes connected by edges labeled general and specific to
ensure that hierarchical structures are distinctly represented and allow for additional
filtering.

7For an in-depth analysis and characterization of the ontological categories underlying OntoUML, the
reader is referred to [39, 40].

8Note that the example pseudocode presented covers only a subset of constructs. Information on gen-
eralization sets, aggregation, and composition relations is not included. However, the importing step can
readily handle these elements by applying the same reification strategy outlined in Algorithm 1 (e.g., a
generalization set is represented as a node linked to generalization relation nodes, with properties such as
disjoint and complete).

9https://pubs.opengroup.org/architecture/archimate3-doc/

14

https://pubs.opengroup.org/architecture/archimate3-doc/


The filtering step allows users to refine the models before mining, reducing the
graph size and, subsequently, the search space. Users can apply filters based on:

.i element types (e.g., ApplicationComponent, TechnologyService),
.ii layers or aspects (e.g., focus solely on the Technology Layer or Behavior Aspect),
.iii relationship types (e.g., include only Realization or Access relationships), and
.iv edge labels (e.g., filtering by general/specific or source/target labels).

Finally, similar to the OntoUML implementation, the visualization step was
adapted to render ArchiMate patterns using PlantUML, which natively supports
ArchiMate diagrams.10

Algorithm 4: Partial Description of the ArchiMate-specific Importing Algorithm.

Data: Set of of ArchiMate Models M
Result: Set of Labeled Property Graphs (LPG) G

1 for every model m, where m ∈ M do
2 map each element e into a node ne;
3 map each relationship r into a a node nr;
4 map each specialization s into a node ns;
5 for each specialization node ns do
6 Connect ns to the parent element-node ne with an edge “general”;
7 Connect ns to the child element-node ne with an edge “specific”;
8 end
9 for each relationship node nr do
10 Connect nr to the source element-node ne with an edge “source”;
11 Connect nr to the target element-node ne with an edge “target”;
12 end
13 for each element e do
14 create the corresponding label(s) for node ne;
15 end
16 for each relationship a do
17 create the corresponding label(s) for node nr;
18 end
19 create LPG g;
20 add graph g to G;
21 end

6 Experiments
In this section, we test our approach through three experiments, keeping as refer-
ence the requirements described in Section 3, and addressing the following research
questions:

RQ1 Can the proposed approach generate structures encoding previously recognized
interesting patterns? This research question is aimed at testing whether the pro-
posed solution can discover pre-identified interesting patterns (R1). This research
question is also used to check the role of the customization steps in supporting the
discovery process (R2) and the level of comprehensibility of the outcome (R3).

10https://plantuml.com/archimate-diagram

15

https://plantuml.com/archimate-diagram


RQ2 What are the main parameters affecting the performance of the approach? Here,
we want to identify the characteristics of the input data or parameters having a
major influence on the performance (R4).

RQ3 Is the clustering step accurate in grouping structures? This research question
is mainly concerned with (R3). Here, we want to assess the practical utility of a
key component in the presentation of the output.

The data about the experiments and detailed instructions for reproducibility are
available at this GitHub link: https://github.com/unibz-core/cmining-approach.

6.1 Experiment 1: Reliability Test
The primary objective of this experiment is to validate the approach with respect to
RQ1. Specifically, we aim to determine whether the choices made in the importing
task enable the discovery of structures similar to those previously identified by domain
experts. To achieve this, we used known patterns for each language as a reference and
observed the impact of selected input parameters on the mining task outputs. For full
control over the validation, we created ten models, each containing instances of the
known patterns. This controlled context and small dataset also allowed us to closely
monitor how filtering actions effectively prune results that fall outside the search scope.

6.1.1 Using the OntoUML Dataset

This experiment used an ad hoc set of models with some OntoUML patterns we already
know as input and we checked how many expected patterns were found.

Data: A dataset comprising 10 models developed by the authors of this paper. These
are small models (varying from a minimum of 6 classes and 5 relations to a maximum
of 10 classes and 8 relations)11 that were created specifically for this experiment,
taking inspiration from structures that are present in real models, with the goal of
reproducing a controlled number of target patterns. The distribution of patterns per
model can be observed in Table 1.

Setup: For validation, we used six common OntoUML patterns that served as “lit-
mus test”.12 These patterns were previously manually identified as useful for building
OntoUML models by the designers of the language within multiple example models
[7, 44]. We represent the selected patterns in Figure 7.

We executed the application seven times (one without adopting parameters to fil-
ter specific concepts and the other times with six different configurations, each to
find one of the 6 selected target patterns) and we checked whether the proposed solu-
tion could discover the pre-identified interesting patterns (R1). Moreover, we tested
the role of the customization steps in supporting the discovery process (R2) and the
level of comprehensibility of the outcome (R3). First, we conducted a trial adopting
no customization facility from the pipeline. As parameters, we selected 3 (the sup-
port of the less frequent patterns, i.e., Relator, Subkind, and Phase) as minimum

11The model files are available here: cmining-approach/tree/main/ontouml/experiment1
12A litmus test is “a critical indicator of future success or failure” A is a litmus test for B if A can be

effectively used to measure some property of B [43].

16

https://github.com/unibz-core/cmining-approach
https://github.com/unibz-core/cmining-approach/tree/main/ontouml/experiment1


Fig. 7: OntoUML modeling patterns examples [44].

support, and 5 as minimum number of nodes (the size of the smaller pattern, i.e.,
Characterization),13 so that all patterns can be discovered. For each other trial, we
customized the pipeline to find the target pattern, e.g., by filtering some constructs
and some other patterns we did not want to discover. For instance, for the Relator
pattern, we selected Kind, Relator, and Role as target constructs and we filtered out
information about the generalizations sets (the customization we adopted in terms
of minimum support, nodes number, and selected/removed constructs is reported in
Table 2.).14

Results: The conducted trial successfully identified all the target patterns, demon-
strating the pipeline’s proficiency in addressing R1. The approach identified all the
(classes of) patterns that were explicitly identified a priori and correctly counted their
occurrences.

The “Neutral” trial yielded an extensive list of output patterns, numbering in the
thousands, augmenting the challenge of pinpointing the target pattern.

In subsequent trials, the application of the customization features significantly
decreased the number of output patterns, thus showing the key role of the features we

13Where we have 2 nodes for the classes, 1 node as an association and 2 nodes for the cardinalities.
14To provide context on the OntoUML constructs present in the patterns, here is a brief explanation:

A Kind is a construct commonly used across models to represent rigid concepts that establish an identity
principle. A Subkind represents rigid specializations of identity providers, such as Kinds, while the Relator
construct is used to represent truth-makers of material relations—entities that must exist for two or more
individuals to be connected by material relations. A Role represents anti-rigid specializations of identity
providers, like Kinds. The Category construct serves as a rigid mixin, which does not depend on a specific
identity principle but is used to aggregate essential properties across individuals with different identity
principles. A RoleMixin is the equivalent of Role for types that aggregate instances with different identity
principles. The Phase stereotype represents anti-rigid subtypes of identity providers, such as Kinds, that arise
due to changes in intrinsic properties (for example, a person’s age). Finally, Characterization is a relation
that connects a bearer type with its features. More detailed information on OntoUML constructs can be
found in [39] and https://github.com/OntoUML/ontouml-models.

17

https://github.com/OntoUML/ontouml-models


Table 1: Patterns distribution over the synthetic data set.
Model Relator RoleMixin Charact. Category Subkind Phase

01 0 0 1 1 1 1

02 0 0 2 1 0 1

03 0 0 1 1 0 2

04 1 0 1 0 0 0

05 1 0 1 1 0 0

06 0 1 0 2 0 0

07 0 1 1 0 1 0

08 1 0 1 1 0 0

09 0 1 0 2 0 0

10 0 1 1 0 1 0

Overall Freq. 3 4 9 9 3 4

Model Freq. 3 4 8 7 3 3

Table 2: Discovered patterns. “Neutral” is the trial where no customization has
occurred. Each of the other records represents a trial performed to find a target pat-
tern. For instance, “Relator” was performed to find the corresponding pattern and the
total patterns found were 42.
trial freq. nodes filter freq. strs.

Neutral 3 5 none 4045

Relator 3 12 { Select: Kind, Role, Relator } { Remove: Charact } 42

RoleMixin 4 10 { Select: Kind, Role, Rmixin } { Remove: Assoc } 2

Charact. 8 4 { Select: Kind, Mode } {Remove: Gen } 1a

Category 6 4 { Select: Kind, Category } { Remove: Assoc } 32

Subkind 3 4 { Select: Kind, Subkind } { Remove: Assoc } 41

Phase 3 4 { Select: Kind, Phase } { Remove: Assoc } 89

1Note that the result “1” does not mean that only one occurrence of that pattern was found, but that
exactly one structure corresponding to that pattern was found. This structure, in turn, can occur
multiple times, for example, in this case, the frequency was “8”, as expected.

implemented in the discovery process (R2). For instance, with the Relator pattern,
we selectively filtered extraneous stereotypes classes and relations out, resulting in a
noteworthy reduction of the number of outputs (from 4045 to 42, see Table 2). We
provide a visual representation and explain the Relator pattern in Figure 8. Particu-
larly, the pipeline accurately and comprehensively identified all constructs originating
from the input graphs.

18



Fig. 8: Example of visualization for a Relator pattern occurrence as the pipeline
returned it.

6.1.2 Using the ArchiMate Dataset

Similarly to the OntoUML experiment, we used an ad hoc set of ArchiMate models,
containing various known patterns as input, and we conducted different trials to verify
that the expected patterns can be found in the mining output.
Data: This experiment used a synthetic dataset of 10 manually created ArchiMate
models, with sizes ranging from 10 to 15 elements and 8 to 12 relationships. Six
EA Smells were selected as target anti-patterns for this analysis, as illustrated in
Figure 9. These patterns include Chatty Service (CS), Combinatorial Explosion
(CE), Cyclic Dependency (CD), Data Service (DS), Multifaceted Abstraction
(MA), and Wrong Cuts (WC). EA Smells [45] serve as qualitative indicators of structural
inefficiencies and represent potential issues that affect the non-functional aspects of
EA models (e.g., maintenance). Analogous to code smells that signal technical debt in
source code, EA Smells assesses an organization holistically, beyond purely technical
scopes [45]. The EA Smells used in this experiment were selected from an exten-
sive catalog15 and translated into ArchiMate patterns (cf. [46]) using the provided
descriptions. The distribution of the patterns across the dataset is listed in Table 3.

Setup: The experiment was organized into seven trials. The first, referred to as the
“neutral” trial, mined patterns without applying any filters to capture all potential pat-
terns. Parameters were set to identify patterns with a frequency of at least 3 (matching
the frequency of less frequent patterns, e.g., Chatty Service and Data Service) and
a minimum node count of 5 (corresponding to the size of the smallest patterns, e.g.,
Multifaceted Abstraction and Wrong Cuts).

15https://swc-public.pages.rwth-aachen.de/smells/ea-smells/

19

https://swc-public.pages.rwth-aachen.de/smells/ea-smells/


.c Cyclic Dependency.a Chatty Service .b Combinatorial Explosion

.d Data Service .e Multifaceted Abstraction .f Wrong Cuts

Fig. 9: ArchiMate selected EA Smells Patterns.

Table 3: Patterns distribution over the synthetic ArchiMate dataset
Model CS CE CD DS MA WC

01 1 0 1 0 1 0

02 0 1 1 0 0 2

03 0 1 0 1 0 1

04 1 0 0 1 1 0

05 0 1 0 0 1 2

06 0 0 2 0 0 1

07 0 0 1 0 1 1

08 1 0 1 1 0 0

09 0 1 0 0 2 1

10 0 0 2 0 0 1

Overall Freq. 3 4 8 3 6 9
Model Freq. 3 4 6 3 5 7

The subsequent six trials focused on identifying the individual patterns by applying
specific filters to narrow the search space. For instance, Cyclic Dependency patterns
in the dataset exclusively consist of TechnologyService elements and Triggering
relationships. Hence, filters were applied to include only these elements and relation-
ships while excluding others. The mining parameters, such as the minimum frequency
and node count, were also adjusted to ensure patterns of interest were captured. The
complete configuration of parameters and filters for each trial is summarized in Table 4.

20



Results: Table 4 summarizes the results of the seven trials. The neutral trial yielded
80 total patterns, including unrelated or redundant outputs, showcasing the need for
customized filtering to refine results. In contrast, the filtered trials successfully identi-
fied all target patterns, with each trial isolating the intended structure and significantly
reducing the number of output patterns (R2). For instance, the Wrong Cuts (WC) pat-
tern, distributed 9 times across 7 models (see Table 3), was correctly identified as
a single recurring pattern during the corresponding trial, when applying the speci-
fied parameters and filters. Similarly, all other filtered trials correctly identified the
intended EA Smell patterns, confirming the approach’s reliability in detecting known
structures and accurately counting their occurrences (R1). Note that in the Cyclic
Dependency (CD) trial 3 patterns were found, consisting of our target pattern and two
duplicates, due to the cycle in the graph structure. An example visualization for a
concrete pattern, as returned from the pipeline, is shown in Figure 10.

Table 4: Discovered Patterns

trial freq nodes filter freq. strs.

Neutral 3 5 none 80

CS 3 9 { BusinessProcess } { Flow, Serving, Triggering } 1

CE 4 9 { TechnologyService, Artifact, ApplicationService }
{ Realization, Access } 1

CD 6 8 { TechnologyService } { Triggering } 3

DS 3 7 { ApplicationService, BusinessService, DataObject }
{ Access, Serving } 1

MA 5 5 { BusinessActor, BusinessProcess } { Assignment } 1

WC 7 5 { ApplicationComponent, ApplicationFunction }
{ Realization } 1

6.1.3 Threats to Validity

This experiment focused on a limited set of patterns that, although relatively intricate,
represent only a fraction of a broader spectrum of patterns. Moreover, the synthetic
datasets used in this study were fairly compact. However, the combination of the
patterns we selected from the OntoUML and the ArchiMate scenarios is suitable for
assessing whether our approach can discover structures with the required level of
expressiveness.

6.2 Experiment 2: Performance Test
This experiment primarily addresses RQ2. Here, performance is not measured by the
number of patterns identified versus those expected, as the chosen mining algorithm
has been verified to be 100% accurate [14], making metrics like precision and recall
irrelevant. Likewise, the main focus is not the time required to generate output, given

21



.a .b

Fig. 10: Example visualization for a Combinatorial Explosion pattern and occur-
rence as the pipeline returned it: .a shows the pattern with its related element- and
relationship types, while .b shows an example occurrence of the pattern including ele-
ment names.

that FSM tasks are known to be time-consuming. Instead, the goals are: .i to assess
whether the algorithm can produce results on real datasets containing models of vary-
ing sizes when run on basic, affordable hardware, and .ii to observe how the execution
time scales with an increase in input models.

It is important to note that performance is influenced by the specific implementa-
tion choices made for each module in the pipeline, which can vary. For instance, future
versions of the application may adopt a different mining algorithm if needed. This
highlights the modular nature of our approach, which allows different components to
be interchanged to support the same tasks effectively.

6.2.1 Using the OntoUML Dataset

Data: The input data comprised 94 models from a catalog of OntoUML models [15].
The catalogue results from a community effort, which collected models of different
sizes, describing different domains, and developed for varying purposes in different
contexts.

Setup: This validation was executed on a MacBook Pro (Retina, 13-inch, Early 2015)
with CPU 2,7 GHz Intel Core i5 and was organized in two main trials: a baseline trial
(0), where we selected as input the 47 conceptual models from the OntoUML dataset
and trial (1) where we added 47 more models. The selected models have different sizes,
in terms of relations and and classes. As an example, the graphs generated from these
sources can have a small number of nodes and relations, namely 47 and 35 respectively
(see lindeberg2022simple-ontorights.json, in the reference experiments reposi-
tory), or higher, namely 2.449 and 2.282 (see indeberg2022full-ontorights.json).
For each step, to increase the amount of data to be handled, we also tested the
approach with six different customizations (we show these values in Table 5) concerning
partition size parameters and the minimum frequency of the mining task.

Results: Table 5 summarizes the results of this experiment by providing the time
taken by the graph partitioning, the mining step, the clustering, and the generation of
a visual representation for each pattern. The execution time reveals that the processing
time rises when:

22



.i the number of models increases,
.ii the number of nodes for the partitioned graph decreases, and
.iii the minimum frequency threshold is decreased, thus allowing to find a larger

number of patterns.
As we might expect, the function that takes the most time is the one dedicated to

mining and pattern generation.

Table 5: Experiment 2 results. For each of the two trials (47 and 94 models), we selected
the same parameters (nodes and frequency) and provided the number of patterns plus
the time taken by four functions of the pipeline.

models import (s) nodes freq. mining (s) patterns clustering (s) viz. (s)

47 0.7327

5 20 1.375 1 0.011 0.106
3 20 1.591 15 0.043 1.648
5 15 3.792 22 0.073 2.257
3 15 3.950 65 0.422 6.669
5 10 47.579 246 0.982 16.387
3 10 48.448 372 1.360 20.387

94 1.238

5 20 130.458 37 0.103 3.781
3 20 184.239 72 0.503 7.360
5 15 224.782 141 0.734 9.410
3 15 229.138 193 0.812 11.500
5 10 324.781 586 1.990 25.675
3 10 359.318 662 3.156 31.057

6.2.2 Using the ArchiMate Dataset

Data: For this experiment, we used subsets of 50 and 100 medium-sized ArchiMate
models, extracted from the EAModelSet dataset [16]. The EAModelSet is a FAIR
dataset comprising over 900 ArchiMate models of varying sizes, collected from GitHub,
GenMyModel, and the EA community. From the dataset, we first filtered for English-
language models and then selected medium-sized models with 30 to 80 relationships
each. The 50-model subset contained 2.862 elements and 3.570 relationships, while the
100-model subset comprised 5.890 elements and 6.920 relationships.

Setup: The experiment was run on the machine adopted also in the experiment with
OntoUML models (see Section 6.2.1) Two primary trials were conducted: one with
50 models and the other with 100 models. For each trial, six different parameter
combinations were tested, progressively increasing the amount of data to be processed.
No filters were applied, meaning all elements and relationships in the models were
analyzed. A timeout of 600 seconds (10 minutes) was imposed for the mining step to
ensure execution feasibility. The parameter combinations and results are presented in
Table 6.

Results: Table 6 summarizes the results, detailing the time taken for each step of
the pipeline: graph partitioning (import), mining, clustering, and visualization. For

23



the visualization step, only the time required to generate PlantUML.txt files was
measured. As expected, the mining step accounted for most of the execution time.
The results show that processing time increased under the following conditions:

.i when the number of total elements and relationships is increased (e.g., moving
from 50 to 100 models),

.ii when the minimum node parameter decreased, allowing smaller patterns to be
considered,

.iii when the frequency threshold was reduced, resulting in a larger number of
patterns being mined.

For the 50-model subset, all parameter combinations were completed successfully
within the timeout limit. However, for the 100-model subset, the mining step exceeded
the 600-second timeout in both trials with the lowest frequency (10), indicating that
processing models of this size with such settings would require more time and more
robust hardware. These results reaffirm the high computational cost of the mining
step, particularly when handling larger datasets with more lenient parameters. The
results also show the need to balance parameter settings with hardware capabilities
to ensure efficient execution.

Table 6: Experiment 2 results with the ArchiMate dataset

models import (s) nodes freq. mining (s) patterns clustering (s) viz. (s)

50 0.066

5 20 0.178 1 0.545 0.153
3 20 0.182 11 0.562 0.137
5 15 1.257 42 0.571 0.124
3 15 1.283 79 0.582 0.147
5 10 66.810 502 0.593 0.159
3 10 87.120 604 0.624 0.187

100 0.154

5 20 125.447 8 0.657 0.201
3 20 131.459 38 0.683 0.207
5 15 455.807 68 1.032 0.314
3 15 507.853 93 1.154 0.462
5 10 600+ - - -
3 10 600+ - - -

6.2.3 Threats to Validity

The primary challenge to the validity of this experiment stems from the absence of
a comparative analysis involving multiple devices. The ultimate performance might
be influenced by additional variables not present in the current setting. Nonetheless,
the configuration we employed can be viewed as a stress test, given its resemblance
to the common features found in widely utilized laptops and the absence of a high-
performance CPU.

24



6.3 Experiment 3: Clustering Accuracy Test
The goal of this final experiment is to address RQ3 by testing the utility of the
clustering component. It is important to note that the clustering component is not
the primary focus of our contribution, so this is not the context to compare our
implementation choices with existing alternatives (particularly regarding the embed-
ding techniques and similarity computations used). Instead, the purpose of this test
is mainly to assess how effectively this feature assists users in performing an output
grouping task that would otherwise require manual effort.

6.3.1 Using the OntoUML Dataset

Data: As input data, we used the same set of models used in experiment 1. In this
experiment, we executed a mining task on the synthetic dataset adopted for experi-
ment 1 and selected 33 out of the whole set of generated patterns, where each selected
pattern can be easily traced back to one of the patterns presented in Figure 7 or one of
its variations (e.g., Subkind patterns with a missing Subkind). We then manually clus-
tered all the generated patterns by assigning a cluster label to them (e.g., we labeled
the Subkind pattern and its variations as cluster_0). As the final segmentation, we
produced six clusters, each one representing a pattern of Figure 7.

Fig. 11: Correlation similarity threshold vs. accuracy (bar plot on the left) and true
clusters vs. predicted clusters ratio for the best case when there was the number of
clusters correspondence (confusion matrix on the right).

Setup: We applied our automated clustering step testing multiple similarity thresh-
old values, e.g., 0.1, 0.15, 0.2, 0.25. We then compared the output of each test with
the manually created dataset to calculate the accuracy of the automated clustering.
Note that, in multiple cases, the number of clusters generated differed from those gen-
erated by hand (e.g., when the selected threshold was 0.1, the number of clusters was
2 against 6). For this reason, we calculated the accuracy as the percentage of correctly

25



predicted cluster assignments out of the pairs of patterns being compared. More pre-
cisely, the function we adopted calculates the accuracy by comparing pairs of elements
on two lists, namely: Pi, the list of automatically clustered patterns, and Pj , the list
of manually clustered patterns. For each pair of patterns (i, j), the function checks
whether pattern i and j in both lists Pi and Pj are inserted the same cluster. After
checking all pairs (i, j), the function returns the accuracy as the ratio of correctly
predicted pairs to the total number of pairs.

When the accuracy increased significantly, we decreased the distance of the thresh-
old values, to understand what exactly was the point of best performance (for example,
instead of going from 0.5 to 0.55, we tested 0.5, 0.51, 0.52, 0.53, 0.54, ..., 0.64, etc.)

Results: We depict the outcomes in Figure 11. For the dataset we considered, the
clustering component we employ in the pipeline achieves 0.93 accuracy when the
adopted similarity threshold is 0.6 or 0.61. The increase in accuracy in this is due to
the creation of the same number of clusters, such that the different patterns have been
distinguished and the variations for each of them not deemed as different patterns.
The approach incorrectly predicted only two patterns in the best case, as shown in
the confusion matrix in the figure.

The confusion matrix (right) was reordered using the Hungarian algorithm,16 to
optimize alignment between true and predicted clusters, ensuring a clearer visualiza-
tion of results and accounting for the fact that cluster labels are assigned arbitrarily
by the clustering algorithm (e.g., predicted cluster_6 could represent ground truth
cluster_1). Rows represent true clusters (ground truth labels), columns represent
predicted clusters and diagonal cells indicate correctly predicted samples, while off-
diagonal cells highlight misclassification. The confusion matrix reports the results at
the optimal thresholds (0.60–0.61).

6.3.2 Using the ArchiMate Dataset

Data: For this experiment, we used the same dataset of ArchiMate models as in
experiment 1 (see Section 6.1.2) and we selected 20 patterns from the mining output
of the neutral trial in experiment 1. Each selected pattern corresponds to one of the
patterns depicted in Figure 9 or a variation (e.g., missing an element or relationship).
The chosen patterns were manually clustered into groups to serve as ground truth
in our evaluation (e.g., Chatty Service patterns are assigned the label cluster_0),
resulting in six total clusters, each representing a pattern of Figure 9.

Setup: We evaluated the clustering component by applying multiple similarity thresh-
olds (e.g., 0.1, 0.2, ..., 0.9) and comparing the clustering outputs with the ground
truth. Initially, to calculate clustering accuracy, we used the same pairwise comparison
method as in the OntoUML experiment (see Section 6.3.1). For each pair of patterns,
the predicted clustering result was compared with the ground truth to determine if
the clustering algorithm accurately grouped or separated them. To refine the evalu-
ation, we further explored thresholds within the interval where the accuracy peaked
(e.g., 0.65–0.7) by testing intermediate values (e.g., 0.66, 0.67).

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

26

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html


Results: The results of this experiment are shown in Figure 12. The bar plot (left)
shows pair-wise accuracy (from Section 6.3.1) across various clustering thresholds. The
highest accuracy, 0.96, was achieved within the range of 0.65–0.7. Beyond this range,
accuracy slightly decreased due to over-clustering or merging distinct clusters. The
confusion matrix (right) was reordered using the Hungarian algorithm to optimize
alignment between true and predicted clusters, as in the OntoUML scenario. The
results reported concern the optimal threshold between 0.65 and 0.7.

Fig. 12: Correlation similarity threshold vs. accuracy (left) and true clusters vs. pre-
dicted clusters ratio for the best threshold (right)

6.3.3 Threats to Validity

A primary concern regarding the validity of this experiment is that we conducted the
test over a limited set of patterns by considering one clustering approach only.17 Users
may vary in their way of classifying patterns, and it could be more challenging when
the structures to be classified cannot be straightforwardly traced back to a reference
pattern. Still, the test was enough to demonstrate how the clustering approach is
reliable in distinguishing the structures that are generated and can be used to organize
the data in a manner similar to what the user would adopt.

7 Application Example
To illustrate the applicability and utility of our proposed approach, we conducted a
simulation of a use case. The primary objective of this simulation was to showcase

17Note that for the current implementation, we adopted a straightforward approach where all vectors
must be of the same size, with the same dimensions. Each pattern is represented as a record in a matrix
with features such as “number of nodes”, “kind”, “number of relations”, “general”, and “specific”, etc. Each
feature can hold different values for each pattern (for instance, if a pattern has three nodes classified as
“kind”, it will have “number of nodes” = 3 and “kind” = 3, while if it lacks nodes for generalizations, it will
report 0 for both “specific” and “general”).

27



the effectiveness of our approach in analyzing the practical usage of a particular mod-
eling language: OntoUML. Our specific goal was to demonstrate how the discovery
pipeline can be used to extract valuable insights that can enhance our understanding
of the language, facilitate modifications, and drive improvements. Within this scope,
we have used an extended version of the OntoUML dataset, comprising 143 models.18
To ensure a substantial number of patterns for analysis, we conducted five compre-
hensive tests, adjusting parameters to avoid generating an overwhelming number of
structures.19 In a second step, we went through the whole set of generated patterns
and we engaged in internal discussions with two experts who contributed to the design
of the language.20 The interaction with the experts occurred in two stages. First, we
presented the generated patterns and asked them to identify the patterns for which
it was worth having a more in-depth discussion. Second, after defining a subset of 40
patterns, we went through a discussion of each of them,21 focusing primarily on .i the
unexpectedness of the mined structure, and .ii the possibility of reusing the structure
somehow. This simulation allowed us to address a new research question:

RQ4 To what extent can the approach be used to discover new interesting structures?
This research question relates to R1, R2 and R3, and explores the approach’s
capability to identify compelling structures—potentially unexpected ones—in
real-world scenarios featuring a diverse set of models with varying levels of com-
plexity. If identified, these structures can offer valuable insights for language
engineers, potentially informing their future design strategies.

Next, we present four exemplary structures, taken from the subset of selected inter-
esting patterns, which represent significant findings from our demonstration. Each
example is accompanied by a brief discussion outlining the actions that could be
undertaken based on our observations.

Example 1: In OntoUML, Modes are concepts representing particular types of prop-
erties with no structured values, which depend on their bearers [40]. According to the
OntoUML specifications provided in [39] the constraints for modes are the following:

.i every Mode must be (directly or indirectly) connected to an association end of at
least one Characterization relation, and

.ii the multiplicity of the characterized end (opposite to the Mode) must be exactly
one.

Therefore, the situation in which a Mode is connected to two different bearers is
not admitted.

18More information about this ever-growing dataset, with statistics about models, can be found in [15]
and https://github.com/OntoUML/ontouml-models.

19Note that the mining process should be viewed as an iterative procedure, concluding once interesting
results are obtained, so it becomes difficult to envision an optimal set of parameter a priori. Testing the
current approach to establish optimal mining parameters and exploit the pipeline to generate a robust
dataset of patterns could be a valuable objective for future research.

20Note that we have deliberately separated this section from the experiments section. The reason is that
in this case we did not properly design an experiment, but simulated a use case with two language designers,
who also participated in the requirements definition and design of the approach we are offering. That’s why
we talked about “demonstration” and “internal” discussion.

21The examples in this section can be viewed as a summary of discussions on the most relevant patterns.
We added this clarification as a note at the location indicated by the reviewer.

28

https://github.com/OntoUML/ontouml-models


Figure 13 shows a structure with three Modes, each one of them characterizing a
distinct bearer, where two Modes are subtypes of a parent Mode.22

Fig. 13: Interesting structure: Modes typing and multiple Characterizations. .a
found structure; .b example occurrence.

The information related to the occurrence of the pattern (.b) reveals that the
reference bearers are represented by a Role, a Category, and a Kind, respectively.
This does not yet present an actual problem; however, it may involve the generation
of scenarios that are not intended. In fact, the pattern suggests checking whether role
and kind are subtypes of the same concept. In fact, if this is not the case, the child
modes might end up associated with two different bearers (e.g., class_0 and class_1
may classify different instances). This specific situation may be avoided by forcing the
bearers of the child modes (e.g., class_0 and class_2) to be subclasses of the bearer of
the main parent mode. In conclusion, the recurring structure we found does not present
an incorrect practice, but it may trigger an evolution of the language. Originally,
in fact, the designers of OntoUML did not dwell on the possibility of constructing
taxonomies of modes. However, through the results of this mining activity, emerges
how the de facto modelers use these taxonomies (the importance of which was also
discussed in [47]). This uncovered structure, then, opens the door to introducing new
possible language constraints to avoid unwanted configurations.

Example 2: The structure provided by Figure 14 is significant for understanding how
Events and their relationships are used in OntoUML.

Besides the structure we report here, many other variations having similar char-
acteristics have been found. Consequently, a useful lesson we can learn from this is
that the OntoUML module concerning events is less in control by modelers than that
concerning, for example, Kinds or Roles. OntoUML has several relationships that can
be used between Events. For example, see the common participation relationship or

22Nodes with dashed line denoted as class_0 or class_1, i.e., without associated stereotype, are nodes
that in the discovered patterns present relationships about which we have information related to the source
node, but not the target node, or vice versa. This is because, as mentioned above, the graphs given as input
to the mining algorithm have all relationships reified. So, for example, in Figure 13 class_1 was created
because in the pattern we had a mode node associated with an edge source to a relation characterization.

29



Fig. 14: Interesting structure: Events and their relations. .a found structure; .b exam-
ple identified.

the HistoricalDependence relationships. The fact that the structure in Figure 14
and many similar ones do not have stereotypes for relations between Events can cer-
tainly be a sign that the users of the language do not properly understand these. In
addition, by looking at the pattern occurrence information, one can see that some
users have used relationship labels that invoke a specific stereotype (e.g., the case of
ParticipationOf in the figure). In conclusion, this identified structure emphasizes
the need for development guidelines for any related patterns for Event modeling.

Example 3: This example’s structure still relates to Event modeling. Here, what we
represent in Figure 15 could be an occurrence of a syntactical mistake, depending on
the cardinalities of the participation relation between event and RoleMixin. Here, the
concept of RoleMixin [39] is the equivalent of Role, but instead of being played by
instances of the same Kind (e.g., student-person), it is played by instances of different
Kinds. Examples of RoleMixins include customers and insured items, the former being
played by both people and companies, whilst the latter being played by cars, houses,
and paintings [48].

That being considered, the OntoUML RoleMixin construct requires that there are
at least two identity providers involved and then at least two different Role instances.
Thus, in what sense does a RoleMixin participate in an Event? Looking at the occur-
rence of the pattern, the concept of RoleMixin is modeled as “client” and in this sense,
we may have different instances of this class that are, for instance, persons or organi-
zations. Considering this structure, to avoid possible mistakes, the cardinalities of the
relationship between the RoleMixin concept and the Event concept must be made
explicit. The recurrent structure we found indicates that the modeler left this informa-
tion implicit. Consequently, the possible insight that can be collected by the language
engineer through the assessment of this structure is that the modeler should be guided
in making explicit the connection between the identity providers and the given Event,
possibly by providing the correct cardinalities of the associations in question.

30



Fig. 15: Interesting structure: Relator, RoleMixin and Event structure. .a found
structure; .b example occurrence.

8 Discussion

RQ1: Can the proposed approach generate structures encoding previously
recognized interesting patterns? The answer to this question is affirmative. Exper-
iment 1 demonstrated that already-known structures can be discovered accounting for
all the constructs of which they are composed and without missing any occurrence.
For the patterns we selected, we successfully discovered all classes of patterns and their
occurrences. The patterns we have chosen were also useful to demonstrate how the
approach can account for the core constructs in the input language. The experiment
also highlighted the importance of customization options is important in reducing
the number of results, thus facilitating the identification process. The importance is
enlarged when the methodology is applied to extensive real-world datasets, such as
the one represented by the OntoUML catalog.

RQ2: Which are the main parameters affecting the performance of the
proposed approach? According to Table 5 and Table 6, the increase in pattern
size and minimum support value improves the average performance but decreases the
number of patterns that can be found. Unlike when the goal is to search for more
frequent structures, we can conclude from this that when it is necessary to find more
information or possibly unexpected information, it is necessary to find the right trade-
off between effectiveness and performance. On a dataset comprising OntoUML or
ArchiMate models, if we search too small and too infrequent patterns, the algorithm
can produce even more than 10.000 outputs, often very similar to each other. Here, too,
the role of customization steps can be essential, especially in reducing the information
in the graphs to be sent as input to the mining algorithm and in eliminating redundant
or unwanted outputs, thus also reducing the time of visualization and assessment.

RQ3: Is the clustering step accurate in grouping structures? Thanks to
Experiment 3, we observe how our proposed clustering component provides a grouping
criterion for patterns akin to manual user-performed ones. Our current configuration

31



enables the differentiation of various structures by considering both the node count
and the types of constructs involved. This capability positions it as a valuable asset
during the results assessment phase. However, a point of discussion centers on the het-
erogeneity of the threshold values needed to achieve a satisfactory grouping, which, as
we have found in other tests, can vary from case to case. We cannot assert a universally
optimal threshold, such as adhering to a specific value like 5, for attaining the best
grouping. Our trials have shown that optimal thresholds may range around 0.6 or 0.7
in some instances. One consistent observation, though, is that the optimal range for
classification consistently falls within the mid-range of the scale. That is, thresholds
between 0.1 and 0.3 or between 0.8 and 1.0 do not consistently achieve the most effec-
tive clustering. Considering the iterative nature of the discovery process, where users
often experiment and fine-tune parameters to get the desired output in terms of size
and type of structures, adjusting threshold values to achieve the desired clustering is
also part of the iterative discovery process.

RQ4: To what extent is the approach useful for discovering new interesting
structures? From the tests we did for the utility demonstration, we observed that to
find unexpected modeling practices, the importance value of frequency (or minimum
support) decreases. In fact, if parameters are set to find frequent structures, it is
more likely that we will find already known structures, especially with a language like
OntoUML, where modelers operate following predefined guidelines and patterns. This
mainly has a negative effect on the overall performance of the approach. In fact, as
we saw in Experiment 2, the more we decrease the frequency threshold, the longer the
mining process takes. Moreover, the approach has the potential to generate patterns
of a very large order of magnitude. However, this did not prevent us from collecting
useful and interesting information, such as that discussed in the previous section, which
can trigger a range of analyses and possibly interventions by the language engineers
that they had not thought of before. Currently, our emphasis is not on exploring the
interesting types and unexpected structures that can be found, as it is not the main
purpose of the paper. Our understanding of classifying these outputs is growing as we
consider the analyzes and operations they might trigger.

Structures triggering the definition of new patterns or anti-pattern. For instance,
structures like the one represented in Figure 13 could be a good start for understand-
ing and, possibly, devising new modeling strategies to be suggested to modelers. In
the specific case of the example given, the structure of modes is a concrete case for
understanding how to enable the engineers to avoid generating unintended instan-
tiations. For example, engineers can concretely achieve this by exploiting the found
structure and offering an ideal way of modeling modes taxonomies, or by introducing
new constraints that force the creation of generalization links between the concepts
characterized by the sub-modes and the concept characterized by the parent-mode.

Structures triggering a clarification of constructs and their usages. A typical exam-
ple in this regard is that represented by Figure 14. Here, the pervasive absence of
relation stereotypes composing structures involving events is a clear sign of how the
modeling guidelines related to the area of the language devoted to these constructs
(in this case, the area dependent on UFO-B [49]) can be further elaborated.

32



Structures that highlight possible adoptions of bad practices. In this sense, the
approach is useful in unearthing new types of errors or understanding whether prac-
tices deemed to be avoided are actually adopted, and to what extent. The example
provided by Figure 15 is a typical case and demonstrates the utility of the approach
since it can be a strong ally in understanding how to possibly guide modelers to not
omit key information or extend the language with new constraints.

9 Related Work
There is extensive literature [32, 50–52] on pattern discovery and its applications
in a variety of domains, including software code [53], databases [54], educational
processes [55], business processes [56], model-driven engineering (MDE) [57], EMF
metamodels [58], etc. However, to the best of our knowledge, there is a significant
potential for research into automatic applications that support pattern discovery in
conceptual models.

In this focused area of research, the closest work to what we propose is that of
Skouradaki et al. [12], who designed a pattern mining algorithm for BPMN. Still,
the goal of our contribution is not to provide a new mining algorithm. Our emphasis
predominantly lies in the combination of a well-established FSM technique with graph
manipulation techniques. Furthermore, a considerable amount of effort from our side
concerns the definition of an interactive process where users can participate in the
discovery activities, thus affecting the reliability of the final output. Last, we designed
the approach with the scope of covering different conceptual modeling languages by
keeping all the functions of the approach as language-independent.

Ławrynowicz et al. [11] seek to discover domain patterns related to specific areas
of information and independent of the modeling language constructs that recur across
OWL ontologies by applying a tree-mining technique. They divide their contribu-
tion into two main steps, which partially resemble aspects of our strategy, namely:
a transformation step, where ontology axioms are transformed into tree structures;
and an association analysis step, where co-occurring axioms are extracted to discover
ontology patterns. This research is applied to a set of ontologies from the BioPortal
repository and is very similar to ours in spirit. However, our solution presents key
differences. First, for the mining step, we adopted the frequent subgraph mining algo-
rithm, thus involving a completely different input preparation step. Second, we devised
our approach with the main goal of discovering structural modeling patterns, namely
patterns defined simply by the combination of constructs of a modeling language. In
Ławrynowicz et al.’s work, the discovered patterns concern primarily domain-specific
information that may recur within or across ontologies (e.g., what are the recurrent
properties of the class “person”) [11]. Again, the interaction capabilities we proposed
are out of their scope.

In the same direction, Lee et al. [59] seek to discover domain patterns across and
within ontologies. However, to address this challenge, two different steps are adopted:
a step where sub-graphs are extracted through candidate generation and chunking
processes; a step where frequent sub-graphs mining [60] is adopted. This work also
focuses on domain-specific patterns and one of its priorities is to allow the processing

33



of large-scale knowledge graphs. Furthermore, the paper lacks instructions on how to
handle an interactive discovery process.

Two other approaches that are worth mentioning are the ones presented by Ardi-
mento et al. [61] and the one that was introduced by Fumagalli et al. [10]. Both
refer directly to UML class diagrams as the reference modeling language to be mined.
However, the former is more aimed at mining modeling events that occur on Visual
Paradigm,23 i.e., the reference editing tool, and not properly frequent subgraph struc-
tures. The second, on the other hand, is much closer to our approach and is primarily
focused on using frequent item set mining, instead of frequent subgraph mining, and
also does not introduce the set of facilities we have offered here to support the discovery
process.

Along similar lines, particularly within the context of MDE and, more broadly,
software engineering, other solutions exist that address problems similar to ours.

For instance, the work in [62] aims to enhance software maintenance by identi-
fying design motifs, which are solutions to recurring design challenges. The authors
employ two pattern-matching algorithms adapted from bioinformatics—automata sim-
ulation and bit-vector processing—to detect exact and approximate occurrences of
design motifs in object-oriented code. The findings from this research underscore the
potential of bioinformatics-inspired graph-matching methods to facilitate design recov-
ery, streamline the analysis of complex software architectures, and uncover embedded
design patterns.

Likewise, the study in [63] tackles the issues of recognizing design patterns in
object-oriented programs. The proposed approach utilizes design motifs to identify
pattern instances and filter out irrelevant matches. This strategy effectively narrows
the search space, aiding the pattern discovery process.

To summarize, our approach distinguishes itself from related work through two key
novel contributions. First, we empower users in their discovery process by offering a
comprehensive set of interactive steps, providing guidance and assistance throughout
the discovery journey. Second, we employ frequent subgraph mining, a robust estab-
lished mining technique, for mining subgraphs in diagrams representing models in
different languages. Our approach also accounts for all vital elements of these diagrams,
including cardinalities, multiple edge labels and class labels, and multi-directionality,
thus ensuring the possibility of finding patterns containing all this information.

As a final remark, the approach we propose employs various techniques across each
module in the pipeline. For example, we use a technique for mining frequent structures,
a technique for matching to trace domain information, a technique for transforming
mining algorithm outputs into vectors, and a technique for clustering these vectors.
Each of these techniques could merit its own discussion of related work, spanning fields
such as “metamodel clone detection”, “linguistic corpus analysis”, “efficient pattern
similarity computation and clustering”, and “plagiarism detection”.

However, we have focused our related work review on approaches that address our
specific problem: the automatic support for identifying recurrent structure heuristics.
Therefore, where relevant, we have included information on complementary techniques

23https://www.visual-paradigm.com/download/community.jsp

34

https://www.visual-paradigm.com/download/community.jsp


related to individual pipeline steps within the sections dedicated to implementation
choices.

10 Final Considerations
This paper presents a practical interactive approach, whose implementation is avail-
able at https://github.com/unibz-core/CM-Mining, for automating the empirical
discovery of recurrent structures in conceptual models by combining state-of-the-art
graph manipulation techniques and frequent subgraph mining. Structural patterns can
be exploited to identify reusable representations of bad or good modeling practices.
They are typically harvested by manual labor-intensive processes, which usually take
a long time to converge into pattern catalogs. Our automated process for pattern dis-
covery facilitates the construction of pattern catalogs tailored for modeling languages.
Additionally, we create a mechanism for helping language engineers to create higher-
granularity primitives in that language, i.e., modeling patterns that can become part
of the grammar and tools of that language [7].

Based on the encouraging results presented here, we created a list of tasks for
immediate future work. First, we are going to further assess the approach to finding
unexpected patterns. In order to address this, we will involve representative users and
run an evaluation through usability testing. Second, we are going to test the approach
with models encoded in new conceptual modeling languages, such as BPMN (R5).

We chose to validate the proposed approach using two state-of-the-art concep-
tual modeling languages, OntoUML and ArchiMate. However, our solution is designed
around graph-structured data, allowing it to encode any conceptual model con-
structs. Furthermore, the approach is fully language-independent, apart from the
initial importing and the final visualization steps, and can be adapted to various input
formats.

Our focus on these two languages and their associated datasets was driven by
several key factors. First, both languages include constructs—such as classes, anno-
tations, and cardinalities—that are also prevalent in widely-used languages like UML
and BPMN. Additionally, these languages are accompanied by two high-quality, sci-
entifically validated datasets that adhere to FAIR principles. Finally, we had direct
access to the language designers, who provided essential support and feedback on the
functionalities and output structures required throughout our research.

References
[1] Guizzardi, G.: Theoretical Foundations and Engineering Tools for Building

Ontologies as Reference Conceptual Models. Semantic Web 1(1, 2), 3–10 (2010)

[2] Gürlebeck, K., Legatiuk, D., Nilsson, H., Smarsly, K.: Conceptual Modelling:
Towards Detecting Modelling Errors in Engineering Applications. Mathematical
Methods in the Applied Sciences 43(3), 1243–1252 (2020)

[3] Harmelen, F., Teije, A.: Validation and Verification of Conceptual Models of
Diagnosis. In: Validation and Verification of Conceptual Models of Diagnosis, pp.

35

https://github.com/unibz-core/CM-Mining


117–128 (1997)

[4] Kayama, M., Ogata, S., Masymoto, K., Hashimoto, M., Otani, M.: A Practical
Conceptual Modeling Teaching Method Based on Quantitative Error Analyses for
Novices Learning to Create Error-free Simple Class Diagrams. In: 2014 IIAI 3rd
International Conference on Advanced Applied Informatics, pp. 616–622 (2014).
IEEE

[5] Reder, A., Egyed, A.: Model/analyzer: A Tool for Detecting, Visualizing and
Fixing Design Errors in UML. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pp. 347–348 (2010)

[6] Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology Patterns:
Clarifying Concepts and Terminology. In: Proceedings of the 4th International
Conference on Ontology and Semantic Web Patterns - Volume 1188. WOP, pp.
14–26. CEUR-WS.org, Aachen, DEU (2013)

[7] Guizzardi, G.: Ontological Patterns, Anti-patterns and Pattern Languages for
Next-Generation Conceptual Modeling. In: ER 2014, pp. 13–27 (2014)

[8] Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies,
pp. 221–243. Springer, ??? (2009)

[9] Besheli, P.R.: The pattern of patterns: What is a pattern in conceptual modeling?
In: VMBO, pp. 99–106 (2018)

[10] Fumagalli, M., Sales, T.P., Guizzardi, G.: Pattern Discovery in Conceptual Models
Using Frequent Itemset Mining. In: Conceptual Modeling. ER 2022, vol. 13607,
pp. 52–62 (2022). https://doi.org/10.1007/978-3-031-17995-2_4 . Springer

[11] Ławrynowicz, A., Potoniec, J., Robaczyk, M., Tudorache, T.: Discovery of Emerg-
ing Design Patterns in Ontologies Using Tree Mining. Semantic web 9(4), 517–544
(2018)

[12] Skouradaki, M., Andrikopoulos, V., Kopp, O., Leymann, F.: RoSE: Reoccurring
Structures Detection in BPMN 2.0 Process Model Collections. In: Debruyne, C.,
Panetto, H., Meersman, R., Dillon, T., Kühn, e., O’Sullivan, D., Ardagna, C.A.
(eds.) On the Move to Meaningful Internet Systems: OTM 2016 Conferences, pp.
263–281. Springer, Cham (2016)

[13] Mitra, S., Rao, T.M.: Discovering Design Patterns in Software Behavior Models.
Journal of Computing Sciences in Colleges 32(6), 120–129 (2017)

[14] Yan, X., Han, J.: gspan: Graph-based Substructure Pattern Mining. In: 2002
IEEE International Conference on Data Mining, 2002. Proceedings., pp. 721–724
(2002). IEEE

36

https://doi.org/10.1007/978-3-031-17995-2_4


[15] Sales, T.P., Barcelos, P.P.F., Fonseca, C.M., Souza, I.V., Romanenko, E., Bern-
abé, C.H., Silva Santos, L.O.B., Fumagalli, M., Kritz, J., Almeida, J.P.A., et
al.: A FAIR Catalog of Ontology-driven Conceptual Models. Data & Knowledge
Engineering 147, 102210 (2023) https://doi.org/10.1016/j.datak.2023.102210

[16] Glaser, P., Sallinger, E., Bork, D.: EA modelset - A FAIR dataset for machine
learning in enterprise modeling. In: Almeida, J.P.A., Kaczmarek-Heß, M.,
Koschmider, A., Proper, H.A. (eds.) The Practice of Enterprise Modeling - 16th
IFIP Working Conference, PoEM 2023, Vienna, Austria, November 28 - December
1, 2023, Proceedings. Lecture Notes in Business Information Processing, vol. 497,
pp. 19–36. Springer, ??? (2023). https://doi.org/10.1007/978-3-031-48583-1_2

[17] Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards Ontological
Foundations for Conceptual Modeling: The Unified Foundational Ontology (UFO)
Story. Applied ontology 10(3-4), 259–271 (2015)

[18] Farooq, A., Zaytsev, V.: There Is More Than One Way to Zen Your Python,
68–82 (2021) https://doi.org/10.1145/3486608.3486909

[19] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering using UML,
Patterns, and Java. Learning 5(6), 7 (2009)

[20] Wohed, P., Aalst, W.M.P., Dumas, M., Hofstede, A.H.M., Russell, N.: Pattern-
based Analysis of BPMN — An Extensive Evaluation of the Control-flow, the
Data and the Resource Perspectives. Bpm center report bpm-06-17, BPMcen-
ter.org (2006)

[21] Jiang, C., Coenen, F., Zito, M.: A Survey of Frequent Subgraph Mining
Algorithms. The Knowledge Engineering Review 28(1), 75–105 (2013)

[22] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Pro-
ceedings of the 20th International Conference on Very Large Data Bases (VLDB),
vol. 1215, pp. 487–499 (1994). Santiago, Chile

[23] Faci, A., Lesot, M.-J., Laudy, C.: cgSpan: Pattern Mining in Conceptual Graphs.
In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz,
R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 149–158.
Springer, Cham (2021)

[24] Zhang, X., Zhao, C., Wang, P., Zhou, F.: Mining Link Patterns in Linked Data.
In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) Web-Age Information
Management, pp. 83–94. Springer, Berlin, Heidelberg (2012)

[25] Han, S., Ng, W.K., Yu, Y.: FSP: Frequent Substructure Pattern Mining. In:
2007 6th International Conference on Information, Communications & Signal
Processing, pp. 1–5 (2007). https://doi.org/10.1109/ICICS.2007.4449818

37

https://doi.org/10.1016/j.datak.2023.102210
https://doi.org/10.1007/978-3-031-48583-1_2
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.1109/ICICS.2007.4449818


[26] Wang, C., Wang, W., Pei, J., Zhu, Y., Shi, B.: Scalable Mining of Large
Disk-Based Graph Databases. In: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD, pp.
316–325. ACM, New York, NY, USA (2004). https://doi.org/10.1145/1014052.
1014088

[27] Xing, J., Ma, X.: DP-gSpan: A Pattern Growth-based Differentially Private Fre-
quent Subgraph Mining Algorithm. In: 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 397–404 (2021). https://doi.org/10.1109/TrustCom53373.2021.00067

[28] Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM journal on
computing 1(2), 146–160 (1972)

[29] Silberschatz, A., Tuzhilin, A.: On Subjective Measures of Interestingness in
Knowledge Discovery. In: KDD, vol. 95, pp. 275–281 (1995)

[30] García-Vico, et al.: A Big Data Approach for the Extraction of Fuzzy Emerging
Patterns. Cognitive Computation 11(3), 400–417 (2019)

[31] Mabroukeh, N.R., Ezeife, C.I.: A Taxonomy of Sequential Pattern Mining
Algorithms. ACM Computing Surveys 43(1), 1–41 (2010)

[32] Güvenoglu, B., Bostanoglu, B.E.: A Qualitative Survey on Frequent Subgraph
Mining. Open Computer Science 8(1), 194–209 (2018)

[33] Song, W., Truong, T., Duong, H.: Pattern Mining: Current Challenges and
Opportunities. In: Proceedings of Database Systems for Advanced Applications
(DASFAA) International Workshops: BDMS, BDQM, GDMA, IWBT, MAQTDS,
and PMBD, vol. 13248, p. 34 (2022). Springer Nature

[34] Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML Class Recommender Sys-
tem for Software Design. In: 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pp. 1–8 (2016). IEEE

[35] Ma, Z., Yuan, Z., Yan, L.: Two-level Clustering of UML Class Diagrams Based
on Semantics and Structure. Information and Software Technology 130, 106456
(2021)

[36] Guizzardi, G., Sales, T.P., Almeida, J.P.A., Poels, G.: Automated conceptual
model clustering: a relator-centric approach. Software and Systems Modeling,
1–25 (2022)

[37] Rahutomo, F., Kitasuka, T., Aritsugi, M.: Semantic Cosine Similarity. In: The 7th
International Student Conference on Advanced Science and Technology ICAST,
vol. 4, p. 1 (2012)

38

https://doi.org/10.1145/1014052.1014088
https://doi.org/10.1145/1014052.1014088
https://doi.org/10.1109/TrustCom53373.2021.00067


[38] Verdonck, M., Gailly, F.: Insights on the Use and Application of Ontology and
Conceptual Modeling Languages in Ontology-driven Conceptual Modeling. In:
Conceptual Modeling. ER 2016, pp. 83–97 (2016). Springer

[39] Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. (2005).
Telematica Instituut / CTIT

[40] Guizzardi, G., Fonseca, C.M., Almeida, J.a.P.A., Sales, T.P., Benevides, A.B.,
Porello, D.: Types and Taxonomic Structures in Conceptual Modeling: A Novel
Ontological Theory and Engineering Support. Data & Knowledge Engineering
134, 101891 (2021) https://doi.org/10.1016/j.datak.2021.101891

[41] Guizzardi, G., Benevides, A.B., Fonseca, C.M., Porello, D., Almeida, J.P.A., Sales,
T.P.: UFO: Unified Foundational Ontology. Applied Ontology 17(1), 167–210
(2022) https://doi.org/10.3233/ao-210256

[42] Robl, M., Bork, D.: Enterprise architecture management education in academia:
An international comparative analysis. Complex Syst. Informatics Model. Q. 31,
29–50 (2022) https://doi.org/10.7250/CSIMQ.2022-31.03

[43] Collins: Litmus Test. https://www.collinsdictionary.com/dictionary/english/
litmus-test (Accessed in 2021-04-02)

[44] Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From Refer-
ence Ontologies to Ontology Patterns and Back. Data & Knowledge Engineering
109, 41–69 (2017) https://doi.org/10.1016/j.datak.2017.03.004

[45] Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture smells.
In: Gronau, N., Heine, M., Krasnova, H., Poustcchi, K. (eds.) Entwicklun-
gen, Chancen und Herausforderungen der Digitalisierung: Proceedings der 15.
Internationalen Tagung Wirtschaftsinformatik, WI 2020, Potsdam, Germany,
March 9-11, 2020. Community Tracks, pp. 276–290. GITO Verlag, ??? (2020).
https://doi.org/10.30844/WI_2020_Y1-SALENTIN . https://doi.org/10.30844/
wi_2020_y1-salentin

[46] Smajevic, M., Hacks, S., Bork, D.: Using knowledge graphs to detect enterprise
architecture smells. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds.) The
Practice of Enterprise Modeling - 14th IFIP WG 8.1 Working Conference, PoEM
2021, Riga, Latvia, November 24-26, 2021, Proceedings. Lecture Notes in Business
Information Processing, vol. 432, pp. 48–63. Springer, ??? (2021). https://doi.
org/10.1007/978-3-030-91279-6_4

[47] Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D.,
Sales, T.P.: Endurant Types in Ontology-Driven Conceptual Modeling: Towards
OntoUML 2.0. In: Conceptual Modeling. ER 2018, vol. 11157, pp. 136–150 (2018).
https://doi.org/10.1007/978-3-030-00847-5_12 . Springer

39

https://doi.org/10.1016/j.datak.2021.101891
https://doi.org/10.3233/ao-210256
https://doi.org/10.7250/CSIMQ.2022-31.03
https://www.collinsdictionary.com/dictionary/english/litmus-test
https://www.collinsdictionary.com/dictionary/english/litmus-test
https://doi.org/10.1016/j.datak.2017.03.004
https://doi.org/10.30844/WI_2020_Y1-SALENTIN
https://doi.org/10.30844/wi_2020_y1-salentin
https://doi.org/10.30844/wi_2020_y1-salentin
https://doi.org/10.1007/978-3-030-91279-6_4
https://doi.org/10.1007/978-3-030-91279-6_4
https://doi.org/10.1007/978-3-030-00847-5_12


[48] Sales, T.P., Guizzardi, G.: Ontological Anti-patterns: Empirically Uncovered
Error-prone Structures in Ontology-driven Conceptual Models. Data & Knowl-
edge Engineering 99, 72–104 (2015)

[49] Guizzardi, G., Wagner, G., Almeida Falbo, R., Guizzardi, R.S., Almeida, J.P.A.:
Towards Ontological Foundations for the Conceptual Modeling of Events. In:
Conceptual Modeling. ER 2013, pp. 327–341 (2013). Springer

[50] Fournier-Viger, P., Lin, J.C.-W., Kiran, R.U., Koh, Y.S., Thomas, R.: A Survey
of Sequential Pattern Mining. Data Science and Pattern Recognition 1(1), 54–77
(2017)

[51] Gan, W., Lin, J.C.-W., Fournier-Viger, P., Chao, H.-C., Tseng, V.S., Philip, S.Y.:
A Survey of Utility-oriented Pattern Mining. IEEE Transactions on Knowledge
and Data Engineering 33(4), 1306–1327 (2019)

[52] Fournier-Viger, P., Gan, W., Wu, Y., Nouioua, M., Song, W., Truong, T., Duong,
H.: Pattern Mining: Current Challenges and Opportunities. In: Rage, U.K.,
Goyal, V., Reddy, P.K. (eds.) International Workshops on Database Systems for
Advanced Applications (DASFAA), pp. 34–49. Springer, Cham (2022)

[53] Pham, H.S., Nijssen, S., Mens, K., Nucci, D.D., Molderez, T., Roover, C.D., Fabry,
J., Zaytsev, V.: Mining Patterns in Source Code using Tree Mining Algorithms,
471–480 (2019) https://doi.org/10.1007/978-3-030-33778-0_35

[54] Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.-W., Tseng,
V.S.: SPMF: A Java Open-Source Pattern Mining Library. The Journal of
Machine Learning Research 15(1), 3389–3393 (2014)

[55] Bogarín, A., Cerezo, R., Romero, C.: A Survey on Educational Process Mining.
WIREs Data Mining and Knowledge Discovery 8(1), 1230 (2018) https://doi.
org/10.1002/widm.1230

[56] Tiwari, A., Turner, C.J., Majeed, B.: A Review of Business Process Mining: State-
of-the-art and Future Trends. Business Process Management Journal 14(1), 5–22
(2008)

[57] Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., Lara, J.: Pattern-based
development of domain-specific modelling languages. In: 2015 ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), pp. 166–175 (2015). IEEE

[58] Babur, Ö., Constantinou, E., Serebrenik, A.: Language usage analysis for emf
metamodels on github. Empirical Software Engineering 29(1), 23 (2024)

[59] Lee, K., Jung, H., Hong, J.S., Kim, W.: Learning Knowledge Using Frequent
Subgraph Mining from Ontology Graph Data. Applied Sciences 11(3), 932 (2021)

40

https://doi.org/10.1007/978-3-030-33778-0_35
https://doi.org/10.1002/widm.1230
https://doi.org/10.1002/widm.1230


[60] Ramraj, T., Prabhakar, R.: Frequent subgraph mining algorithms — a survey.
Procedia Computer Science 47, 197–204 (2015)

[61] Ardimento, P., Aversano, L., Bernardi, M.L., Carella, V.A., Cimitile, M., Scalera,
M.: UML Miner: A Tool for Mining UML Diagrams. In: Proceedings of the 26th
International Conference on Model-Driven Engineering Languages and Systems
(2023). https://doi.org/10.1109/MODELS-C59198.2023.00014

[62] Kaczor, O., Guéhéneuc, Y.-G., Hamel, S.: Identification of design motifs with
pattern matching algorithms. Information and Software Technology 52(2), 152–
168 (2010)

[63] Guéhéneuc, Y.-G., Guyomarc’h, J.-Y., Sahraoui, H.: Improving design-pattern
identification: a new approach and an exploratory study. Software Quality Journal
18, 145–174 (2010)

41

https://doi.org/10.1109/MODELS-C59198.2023.00014

	Introduction
	Research Baseline
	Patterns in Conceptual Modeling
	Frequent Subgraph Mining

	Requirements
	Method
	Preparing the Input Data
	Discovering Structures Across and Within Models
	Assessing the Output Frequent Structures

	Implementation
	OntoUML Miner
	ArchiMate Miner

	Experiments
	Experiment 1: Reliability Test
	Using the OntoUML Dataset
	Using the ArchiMate Dataset
	Threats to Validity

	Experiment 2: Performance Test
	Using the OntoUML Dataset
	Using the ArchiMate Dataset
	Threats to Validity

	Experiment 3: Clustering Accuracy Test
	Using the OntoUML Dataset
	Using the ArchiMate Dataset
	Threats to Validity


	Application Example
	Discussion
	Related Work
	Final Considerations

