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Abstract— In this article, we derive a practical limit on the
maximum achievable selectivity of three commonly used Pas-
sive Switched-Capacitor (PSC) Infinite-Impulse Response (IIR)
low-pass filter (LPF) topologies driven from a resistive source.
We show that filter topology selection and component dimen-
sioning aimed to improve the selectivity of these filters will
necessarily degrade the Noise Figure (NF), revealing a selectivity
versus NF trade-off. We subsequently capture this in selectivity
versus NF graphs. These graphs quantify the limitations on
achievable selectivity and NF for each topology given the number
of filter poles, and graphically provide guidance in navigating
the trade-off between them. The three considered topologies
mainly differ in how the sampling capacitor resets, inverts,
or holds its voltage between clock periods. We capture the
handling of the sampling capacitor as a new design parameter.
We derive a singular model to encompass the entire design
space consisting of the three topologies, filter order (number of
history/integration capacitors), clock frequency, and component
dimensions. The model comprises an adjoint network with a
state-space description and is used to analyze the filter transfer
function (to quantify selectivity), input- and output-referred
noise, and NF.

Index Terms— Adjoint network, analysis, charge rotating,
design strategy, infinite impulse response (IIR), low noise, low-
pass filter, selectivity, state space, switched capacitor, passive.

I. INTRODUCTION

THE growing number of radio spectrum users has
increased demand for interferer robust radio architectures.

Integrated filters [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15] are tasked with attenuating
interfering signals before they reach sensitive circuits. The
challenge in designing these filters is maximizing filter selec-
tivity (i.e., approximate an ideal ‘brick wall’ filter as closely
as possible) while ensuring sufficiently high linearity and low
noise to avoid corrupting the desired in-band signals. This
functionality can be implemented with e.g. the use of active

Received 22 August 2024; revised 28 December 2024; accepted 14 January
2025. This was supported in part by European Research Council (ERC)
under European Union’s Horizon 2020 Research and Innovation Programme
under Grant 834389 and in part by the Nationaal Groeifonds 6G Future
Network Services. This article was recommended by Associate Editor J. Goes.
(Corresponding author: Roel Plompen.)

The authors are with the IC Design Group, University of Twente, 7522 NB
Enschede, The Netherlands (e-mail: r.plompen@utwente.nl).

Digital Object Identifier 10.1109/TCSI.2025.3531706

Fig. 1. Generalized N th-order PSC-IIR LPF driven from a source resistance
Rs. The box with αf models three different ways of handling the sampling
capacitor Cs, namely hold, reset, and invert. When αf = 0, Rs = 0, the
implemented filter represents the “voltage-sampling mode” from [1], or the
RF pre-filter from [2] for Rs = 50�. For αf = −1, the topology is similar
to [3].

linear amplification as done in Op-amp RC, Gm-C, and (super)
source follower filters [6], [7], [11], [13], using a (fully)
Passive Switched-Capacitor (PSC) Infinite Impulse Response
(IIR) filter [1], [2], [3], or a combination of linear amplification
followed by a PSC-IIR filter [8], [9], [14].

Implementing high-performance linear amplifiers in mod-
ern deep-nanoscale CMOS is increasingly challenging [16].
In [17], the author proposes an alternative “No Gain”
approach, altogether avoiding the use of active linear ampli-
fiers and instead relying only on passive components and
(CMOS) switches. In shrinking technology nodes with more
dense metals, capacitors occupy less area, and CMOS switches
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exhibit reduced parasitic capacitance for a given on-resistance,
making deep-nanoscale CMOS favorable for a “no gain”
approach. The authors of [1], [3], and [15] point to the
transconductance cell preceding a highly linear PSC-IIR Low-
Pass Filter (LPF) as the chief overall linearity bottleneck for
the structure, therefore, omitting it would benefit overall lin-
earity. Thus, (fully) PSC-IIR LPFs seem attractive candidates
for modern deep-nanoscale CMOS, and this filter category
will be the focus of this article. In following this “No Gain”
approach to make PSC-IIR LPFs that do not contain active
linear amplification, the resulting switched-capacitor filters are
driven directly from a resistive source impedance. This has
considerable implications on the attainable filter selectivity and
Noise Figure (NF).

Recent examples of PSC-IIR LPFs in literature [1], [2],
[3], aimed to either improve selectivity or NF over a simple
Switched-Capacitor (R)C [18], all use a sampling capacitor
(Cs) that samples an input signal, and charge-share the
sampling capacitor with integration/history capacitor(s) (Ch)
sequentially one after the other. The main difference between
them lies in the treatment of the sampling capacitor Cs after
charge-sharing with the last Ch, before acquiring a new input
sample (i.e., during φN+1). Cs can either be reset, flipped
(inverted), or left unchanged (hold). See colored ‘αf’ boxes in
Fig. 1. We capture the permutation in circuit topology as a new
design parameter: “feedback factor” αf. Using αf, we present
a single model capable of analyzing all three topologies
simultaneously, including the effects associated with resistive
source impedance that are inevitably present in a (fully)
PSC-IIR LPF. This enables computation and an
apples-to-apples comparison of their key performance
metrics, such as filter selectivity and NF. We will show
how the combination of finite source resistance, feedback
factor αf, and component sizing, places a lower limit on the
achievable NF for a given filter selectivity, while sampling
capacitor Cs directly controls the trade-off between them.

To illustrate the significance of these limits and the present
trade-off, we illustrate how αf and the presence of a (50�)
source impedance affect filter performance. In Fig 2, we show
five transfer characteristics made with three different PSC-IIR
LPF topologies (αf). All filters contain four filter poles and
are designed for the same −3dB bandwidth. In this article,
we will show that the topology denoted with αf = −1
(Invert), which is based on [3], yields the best filter selectivity
(lowest transition bandwidth) due to the presence of complex
poles. However, it cannot have an NF less than 4.9dB when
driven directly from a finite source impedance. We will show
that to reach a lower NF of 4dB, the filter topology has
to be changed to the ‘Reset’ (α f ≈ 0) topology, which
is based on [1], [2]. We will show that from a selectivity
vs. NF perspective, there is an optimum design that has the
lowest attainable NF of around 4dB and always has the (all
real-pole) selectivity (filter shape) as shown in Fig 2.1 In
certain applications, the in-band losses for αf ∈ {0, −1} can

1We assume a fixed number of filter poles here. We discuss the effect of
changing the number of filter poles on this result in Section III-E.

Fig. 2. Transfer functions and annotated NF of five PSC-IIR LPF implemen-
tations made using three filter topologies (different αf). See the generalized
network in Fig 1. All filters have the same filter order and −3dB bandwidth
(by adjusting Ch). For αf = 1, Cs is increased to reduce NF, for αf ∈ {0,−1}

changing Cs does not improve NF.

be used for input matching purposes (e.g. as done in [2]).2

Reducing NF further necessitates changing the topology to
αf = 1 (Hold), which inadvertently decreases selectivity as
this topology has a low-frequency pole that causes an initial
first-order frequency response before additional filter poles
come into effect. With αf = 1, it is possible to reduce NF
further than shown in Fig 2, at the expense of selectivity,
by changing the size of the sampling capacitor. For αf = 1,
the NF is improved by increasing Cs. For αf ∈ {0,−1}, there
is a specific value for Cs (given fs, Rs, N ) that minimizes NF
(indicated with NFmin in Fig 2). As we will show in Section III,
for αf ≈ 0, deviating from the optimum Cs only degrades NF
without a change in selectivity (shape of the TF in Fig 2).
If αf = −1, a marginal selectivity improvement is possible
for smaller Cs, at a degraded NF.

Filter designers often work towards a specific required
selectivity (e.g., a transition bandwidth until a stop-band
attenuation, Astop in Fig 2, is reached) and/or a specific
noise requirement. We will capture the selectivity (transition
bandwidth) as a single value and plot it versus the NF for
different combinations of αf, number of history capacitors
Ch (filter poles), and sample capacitor size. This enables
designers of PSC-IIR LPFs to use our model and resulting
selectivity vs. NF graphs to translate their selectivity and
NF requirements directly into one of the three topologies
while simultaneously extracting the required number of history
capacitors and sample capacitor size.

The generalized circuit (Fig 1), including αf, contains eight
degrees of freedom. Exhaustively analyzing the design space
with this many degrees of freedom using Linear Periodic Time
Variant (LPTV) simulation tools, such as Spectre X, poses
significant challenges, including possible user intervention in
changing network topology (both αf and number of Ch), moni-
toring of the simulation accuracy/validity, especially for noise
simulations around extreme cases, and simulation duration.

2As this introduces additional limitations, we will not include input
matching as a requirement going forward.
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Instead, we propose an accurate mathematical model that
can easily be used to evaluate the performance of a large
amount of implementations quickly without user intervention.
The periodic and sampled nature of the generalized PSC-IIR
LPF forms the basis of the analysis. We formulate a discrete-
time state-space description of the periodicity of the adjoint
network [19] of the generalized filter to find the filter transfer
function (TF), similar as in [20]. We extend the analysis in [20]
by computing the input and output referred noise density over
frequency, which we use in evaluating the NF of the PSC-IIR
filter. The model also yields expressions for the (complex) pole
locations as functions of the network parameters (Spectre X
currently does not offer pole and zero locations as functions
of circuit component parameters). The resulting Pole-Zero
plots provide insight into how filter poles move differently
to changes in component values depending on αf. Though
mathematically more involved than [21], our approach will
yield accurate results up to the Nyquist frequency, places less
stringent assumptions on the ratio of Ch to Cs, incorporates
effects of a finite source and sample switch impedance for both
TF and NF, and relies on less simplifications for calculating
noise behavior. These aspects are crucial to allow us to explore
the broad design space, including extreme cases, encompassed
by the circuit in Fig 1.

The remainder of this article is organized as follows.
In Section II, we will derive a model to analyze the generalized
filter in Fig 1. in Section III we will explore the design
space encompassed by Fig 1, and discuss the design trade-
offs. Appendix A outlines a procedure to use the presented
selectivity vs. NF graphs to synthesize a PSC-IIR LPF.

II. ANALYSIS OF THE GENERALIZED PASSIVE
SWITCHED-CAPACITOR IIR FILTER

In this section, we analyze the generalized PSC-IIR
LPF (Fig 1) to find its (input to output) TF, Input- and
Output-Referred Noise (IRN and ORN, respectively), and the
NF. For the TF analysis, we make use of a similar adjoint
network-based analysis method with a state-space description
as in [20], extend it to include noise behavior, and apply it to
the circuit in Fig 1.

The generalized circuit (Fig 1) has eight degrees of freedom
(design parameters): the sampling capacitor (Cs), each history
capacitance (Ch,x = Ch, x ∈ [1, 2 . . . N ]), the number of
history capacitors (N ), the clock frequency ( fs = 1/Ts),3 the
on-time of a single clock sub-phase [τon = 1/( fs(N + 2))],
the source and switch impedances (Rs and Rsw, respectively),
and our feedback factor (αf). Every clock period of Ts starts
with sampling vin(t) through its finite source-impedance Rs,
followed by charge sharing of sampling capacitor Cs with the
first history capacitor Ch,1, sharing Cs with Ch,2 etc. until Cs
shares with Ch,N . What happens during the last clock phase,
φN+1, depends on the choice of αf:

1) (αf ≈ 0) Reset the sampling capacitor by a reset switch
to ground, as in [1] and [2].

3For the ‘invert’ implementation, αf = −1, output samples are produced
at fs rate, but two periods are needed to capture the inversion fully, see the
timing waveform in Fig 1.

2) (αf = −1) Invert (flip) the sampling capacitor between
clock periods, as shown in [3] and [21].

3) (αf = 1) Hold. Do nothing and leave the sam-
pling capacitor unchanged before the next sample.
Bozorg et al. [9] proposes a bandpass filter around
a charge-sharing filter topology, where the sampling
capacitor is neither inverted nor reset.

We impose two assumptions on the network parameters.
First, we assume that the switch resistance is sufficiently small,
such that the voltages on Cs and Ch settle to a stable voltage
within τon (thus Rsw(Cs||Ch) ≪ τon). This allows us to use
charge-balance equations to model interactions between the
sampling and history capacitors and allows for simplifications
regarding sampled noise later. Second, we assume all clock
signals are non-overlapping and have near-instantaneous rising
and falling edges. This reduces the complexity of the calcula-
tions, as effects associated with finite rise-and-fall times can be
omitted. Additionally, this will allow for simplifications when
introducing interleaving/pipelining in Section II-E.5.

A. Deriving the Adjoint Network of the Generalized Filter

We convert the LPTV circuit from Fig 1 into an adjoint
network and use reciprocity to derive the equivalent TF of
the original network. The equivalent TF, Heq( f ), is calculated
by Fourier transforming the impulse response [heq(t)] of
the adjoint network [22]. It should be noted that Heq( f ) is
the equivalent LTI transfer function, which when sampled
at the output with periodicity Ts, gives the same samples as
the original network (Fig 1) [22].

We now derive the adjoint network of Fig 1. Respecting the
port impedances, the input voltage source is replaced with a
short, while source impedance Rs remains. The output voltage
is replaced by a current source which injects a delta-dirac
current iin(t) = δ(t). All passive components remain unal-
tered. The timing of the clocks operating the switches is
reversed [22]. The resulting adjoint network is displayed in
Fig 3.

By observing the resultant current iout(t) flowing through
Rs, the location where in the original network vin(t) was
injected, we find the impulse response of the adjoint network
heq(t). Using the periodic nature of the LPTV circuit and the
fact that the input impulse only occurs at t = 0 and never after,
a prototype recursive expression for the impulse response can
be written as [20]:

iout(t) = heq(t) = p(t) + λheq(t − Ts) (1)

in which p(t) is the output current iout(t) during the first cycle
of the clock from t = 0+ until t = T +

s , and λ describes how
the impulse response is scaled from one clock period to the
next.

We will use a Signal Flow Graph (SFG) to formulate
a Discrete-Time State-Space (DTSS) description [20]. This
offers two distinct advantages. First, the eigenvalues of the
DTSS description yield information about the repetition of the
output current and provide λ for (1). Second, the state vector
x[kT +

s ] of the DTSS yields the voltages on all the capacitors
in the network (vCs and vCh,1...N ). We will use these capacitor
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Fig. 3. Adjoint network of the generalized circuit from Fig. 1. Note that
the switch timings in the αf box need to be replaced by their time-reversed
variants (φ̂N+1), if present.

voltages to calculate p(t) in (1), and later in Section II-E to
find the currents flowing through switch on-resistances of the
switches, which will be used to calculate noise contributions
of individual components.

B. Formulating a Discrete Time State-Space Description
Using a Signal Flow Graph

We will now describe how the state vector x[kT +
s ] is

affected by input signals and how it evolves from one clock
period (t = kT +

s ) to the next (t = (k + 1)T +
s ). The DTSS is

given by:

x[(k + 1)T +
s ] = Ax[kT +

s ] + Bδ[0]. (3)

Here, A is the N + 1 row by N + 1 column state matrix
(sometimes referred to as evolution matrix), and B the input
vector of length N + 1. Next, we construct B and A.

The B vector computes x[0+
] from the delta impulse that

has been injected at the output node on t = 0. As all
switches are open, only the last history capacitor, Ch,N is
charged. This results in the B vector shown in (2), as shown
at the bottom of the page, located in the footnote of this
page.4

To construct the A matrix, we realize that each element
of the A matrix in the DTSS description represents the
compounded effect of all the manipulations of the network
states (capacitor voltages) that occur during a full clock period

4The ’1’ in B stands for 1 Coulomb. Thus, 1/Ch is a voltage. From here,
we no longer explicitly write Bδ[0], but just B.

Fig. 4. Discrete-time signal flow graph of the adjoint network from Fig 3
from t = 0 till t = Ts . The thicker dots represent capacitor voltages as clock
sub-phases change. (Black) arrows without quantities are unity. The encircled
s represents voltage on Cs just before the sample switch closes.

Ts, from a single capacitor voltage to all other capacitor
voltages. To track these changes in capacitor voltages dur-
ing the sub-phases of the clocks (when the sampling and
charge-sharing switches are active), we will first construct an
SFG as shown in Fig 4. In the SFG, the quantity associated
with the transition arrow (β1, β2, αf, αs or ‘1’) is multiplied by
the capacitor voltage at the start of the sub-phase (thick dot at
the base of an arrow) to find the network state at the next clock
sub-phase (thick dot at the point of an arrow). By changing
the value of α f , the SFG in Fig 4 can represent all three
topologies of Fig 1:

• Setting αf = 1 represents a topology in which Cs is
neither reset nor inverted between clock cycles. Thus vCs
holds its state from t = kT +

s to t = kTs + τon, with
k ∈ [0, 1, . . .).

• Setting αf ≈ 0 represents a topology in which Cs is reset
between clock cycles. Thus vCs is reset to 0 V.

• Setting αf = −1 represents a topology in which Cs is
inverted between clock cycles.5 Thus vCs is inverted to
−vCs.

The arrows in the SFG with an associated (β1, β2) quantity
represent the elementary charge-sharing equations between
Cs and Ch,x , and the discharge of Cs through the source

5This ‘inversion’ of Cs could be implemented by appropriately sharing the
sampling capacitor in a differential implementation [23], or by using four
switches surrounding Cs [21]. If the nodes connected to Cs are sufficiently
low-ohmic, the signal-flow graph presented in Fig. 4. remains valid.

A =

 a1,1 . . . a1,N+1
...

. . . . . .

aN+1,1 . . . aN+1,N+1

 =



αfαsβ
N
1 αsβ2β

0
1 αsβ2β

1
1 αsβ2β

2
1 . . . αsβ2β

N−1
1

αfβ
N−0
1 β2 β2β

1
1 β2β

2
1 . . . β2β

N−1
1

αfβ
N−1
1 0 β2 β2β

1
1 . . . β2β

N−2
1

αfβ
N−2
1 0 0 β2 . . . β2β

N−3
1

...
...

...
...

. . .
...

αfβ
1
1 0 0 0 . . . β2


, B =


0
0
...

1/Ch

 (2)
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impedance (αs). They are:

[β1 β2] =

[
Cs

Cs+Ch

Ch
Cs+Ch

]
(4a)

αs = exp
(

−τon

(Rs + Rsw)Cs

)
. (4b)

Now that we have an SFG that captures all three topologies
from Fig 1, we will use it to construct a generalized A matrix.
The A matrix is constructed by tracing all combinations of
paths from x[kT +

s ] to x[(k + 1)T +
s ] in the SFG, i.e. from

the left of Fig 4 to the right. As an example, let us find
a1,1, which describes how vCs evolves from t = kT +

s to
t = (k + 1)T +

s . Starting on the left in Fig 4, at vCs[kT +
s ],

we follow the path that leads to vCs[(k + 1)T +
s ] on the

right of the figure.6 In this case, the capacitor voltage is
first affected by αf, followed by N charge-sharing actions
with history capacitors, and finally a partial discharge of Cs
in the source described by αs. This yields the compounded
effects (by multiplication) captured in a1,1 as αfαsβ

N
1 . Repeat-

ing the same procedure for all network states, we find the
generalized A matrix found in (2). Note that this is the last
step in the derivation where N is a degree of freedom; once
the state-space description is determined, N is fixed, as it
determines the size of the matrix. Generating the state-space
description using the generalized description of (2) is a
straightforward procedure, and all consecutive steps from this
point on can be fully automated for both symbolic and numeric
approaches.

C. Eigendecomposition of the A-Matrix

Similar to the case in [20], the A-matrix in (2) is not
diagonal due to charge sharing from the sampling capacitor
to all the history capacitors. This complicates using our
DTSS in solving the recursive equation in (1), as we cannot
directly use A for λ, i.e., to calculate the scaling of the
impulse response from one T +

s to the next. To solve this,
we follow the same two-step procedure outlined in [20]: First,
we decompose the A-matrix in into its eigenvalue matrix (D)
and eigenvectors (V). Second, we decompose the recursive
equation of the impulse response (1) into multiple responses,
in which the scaling from one clock period to the next (through
λi ) is described by the eigenvalues as found in the first
step.

Let us perform eigendecomposition, yielding A = VDV−1.
The state vector x[kT +

s ] at any multiple of the clock k, can
be found as:

x[kT +
s ] = Ak

· B = (VDV−1)k
· B = VDkV−1

· B. (5)

Written in this form, it becomes evident that the recur-
sion of the network can be captured by applying the
proper exponent to the eigenvalue matrix (Dk). As D is
a diagonal matrix, Dk is found by applying the expo-
nent to the individual eigenvalues (λi ) on the diagonal

6In our network, we find that there is a single path leading from an element
of the starting state (x[kT +

s ]) to an element of the next state (x[(k + 1)T +
s ]).

If there had been multiple, each path should have been followed individually
and their contributions summed.

elements di,i :

Dk
=


λk

1 0 . . . 0
0 λk

2 . . . 0
...

...
. . . 0

0 0 0 λk
N+1

 . (6)

The eigenvalues of the network represent the (filter) poles
of the network directly. We will use this property when
constructing pole-zero plots in Section III-A to illustrate how
filter selectivity is affected by network parameters.

To use the eigenvalues found in (6) to solve (1), we can
decompose heq(t) into multiple responses as:

heq(t) =

i=N+1∑
i=1

heq,i (t) (7a)

heq,i (t) = pi (t) + λi heq,i (t − Ts). (7b)

Each heq,i(t) response is a recursive expression with one
eigenvalue of the network.

D. Impulse Response and Transfer Function

Now that we have captured the recursion of (7) through the
eigenvalues (λi ) obtained from the DTSS, we need to construct
an expression for pi (t) to finish (7b). We can interpret pi (t) as
a contribution to iout(t) in the adjoint network (Fig 3), during
the first clock-period from t = 0+ until t = T +

s . We will
obtain pi (t) from the state vector x[kT +

s ] next.
The state vector x[kT +

s ] represents the capacitor voltages at
exact integer multiples of the clock only and not during the
sub-phases during which switches are active. Inspection of
Fig 3 shows that during φ̂s , current flows through Rs. Thus,
it is not possible to use the state vector x[kT +

s ] directly to
compute iout(t). Instead, we re-use the SFG of Fig 4 to find
the voltage across Cs, as the sample switch closes at t =

kTs + (N + 1)τon. This follows the same procedure as used
to construct A by tracing all the paths from the state vector
x[kT +

s ] on the left to node marked by Ⓢ in Fig 4. We find
the voltage across Cs before the discharge starts (vCs,d[kT +

s ])
to be:

vCs,d[kT +
s ] = vCs[kTs + (N + 1)τon]

=
[
αfβ

N
1 β2β

0
1 β2β

1
1 . . . β2β

N−1
1

]
x[kT +

s ]. (8)

We will re-write (8) such that the terms are grouped for
each individual eigenvalue λi. This regrouping collects the
eigenvalues (λi ) with their accompanying contributions to
pi (t). We denote the re-grouped terms as vi :

vCs,d[kT +
s ] =

i=N+1∑
i=1

vCs,d,i [kT +
s ] =

i=N+1∑
i=1

λk
i vi [kT +

s ] (9)

where vi [kT +
s ] are a function of V, B, αf, β1, and β2 given

by (5) and (8).
We are calculating partial contributions to iout(t) during the

first clock period [pi (t)], thus k = 0. This simplifies (9),
as λ0

i = 1, and vCs,d,i [0] = vi [0]. Using this (decomposed
contribution to the) voltage across R′

s just after the sample
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switch closed, we find the continuous time iout(t) to be an
exponential discharge of Cs through R′

s during φ̂s as:

pi (t) =
vi [0]

R′
s

(
e

−t−(N+1)τon
R′

sCs u(t − (N + 1)τon)

− αse
−t−(N+2)τon

R′
sCs u(t − (N + 2)τon)

)
(10)

where u(t) denotes the unit-step function used to start and stop
the discharge of Cs through R′

s. We now transform pi (t) into
the frequency domain. Using the addition, amplitude scaling,
and time-shift properties of Fourier transforms, we find:

Pi ( f ) =
vi [0]

R′
s

(
R′

sCs

1 + j2π f R′
sCs

e− j2π f (N+1)τon

− αs
R′

sCs

1 + j2π f R′
sCs

e− j2π f (N+2)τon

)
. (11)

Now that we have an expression of the Fourier transform
first period of the clock [currently decomposed in Pi ( f )],
and the eigenvalues (λi found in D) describing the repetition,
we can construct the transfer function by calculating the
Fourier transform of (7b), substituting the result in (7a), and
using the results of (11) and (6) yielding:

Heq( f ) =

i=N+1∑
i=1

Pi ( f )

1 − λi e− j2π f Ts
. (12)

We will show agreement between simulation and (12) in
Section II-F. The zeros of the TF can be obtained from (12)
by taking the summation over the fractions, and equating the
resulting numerator to zero.

E. Noise Analysis

In this section, we will extend the model to calculate
ORN and refer it back to IRN. To do so, we will cal-
culate the contributions to the (total) ORN from all noise
sources in the generalized circuit including the source resis-
tance. First, we calculate the noise contributions from the
charge-share switches Rsw,q , where index q refers to the
charge-share switch connected to the q th history capacitor
(q ∈ {1, 2, . . . , N }). Second, we will evaluate the noise
contributions associated with the implementation of the reset
action when αf ≈ 0. Last, we account for the noise contributed
by Rs and the sample switch resistance (Rsw,s) during φs.
After finding the contributions, we will combine them to find
the ORN, use Heq( f ) from (12) to find IRN, calculate NF,
and address considerations regarding pipelining/interleaving to
reduce NF.

1) Noise Density Contribution From Charge-Sharing
Switches: The on-resistance of the charge-sharing switches
is dimensioned such that the capacitor voltage has settled in
less than τon. Therefore, a simplification proposed by [24] is
valid. In this simplification, first the noise is sampled onto the
series combination of the sample and history capacitor Ceff =

(CsCh)/(Cs + Ch), which gives the single-sided switched-
capacitor sampled density of Sn,sc = (2kbT )/( fsCeff) from

f = 0 to f = fs/2. This sampled noise is subsequently
transferred to the output as:

Sn,sw,q( f ) = Sn,sc|Heq,Rsw,q( f )|2. (13)

In this, Heq,Rsw,q( f ) is the transfer function from the current
flowing through charge-share switch q to the network output,
which we will now calculate.

After the application of the Dirac (delta) impulse current
in the adjoint network (Fig 3), current will flow through all
branches of the network over the course of a clock period
Ts. In Section II-D, we observed the resulting current flowing
through Rs in order to derive the transfer function from vin(t)
to vout[kT +

s ] of the original network (Fig 1). Now, to find
the TFs from all charge sharing switches to the sampled
output vout[kT +

s ], we observe the current flowing through
the respective switch impedances: Rsw,q . We use the same
approach as taken for calculating (12), and note that the
eigenvalues of the network are system responses, and do not
change for different combinations of input/output. Thus, the
SFG (Fig 4), A-matrix, B-vector and resulting eigenvalues λi
remain valid, and are re-used.

To calculate the TF from the noise sources to the output,
we follow the same procedure described in Section II-D,
following (8) through (12). Similar to the calculation of (8),
we calculate the voltage across charge-sharing switch Rsw,q
just before it closes. Using the state vector x[kT +

s ] and the
SFG (Fig 4) we find:

vRsw,q [kT +
s + (N + 1 − q)τon]

= −vCh,q [kT +
s ]

+



αfβ
N−q
1

β2u(0 − q)β
|0−q|+0−q

2
1

β2u(1 − q)β
|1−q|1−q

2
1

...

β2u((N − 3) − q)β
|(N−3)−q|+(N−3)−q

2
1



T

x[kT +
s ] (14)

where vCh,q [kT +
s ] is the voltage of the history capacitor

connected to switch q; the q th entry of the state vector
found in (5), T denotes the matrix transpose, and u(n) is the
Heaviside step-function defined as:

u(n) =

{
0, n < 0
1, n ≥ 0.

(15)

Following the steps of (9) through (11), we find Pi,Rsw,q( f ):

Pi,Rsw,q( f ) =
vi,Rsw,q [0]

Rsw

RswCeff

1 + j2π f RswCeff

·

(
e j2π f (N+1−q)τon −αde j2π f (N+2−q)τon

)
(16)

with αd = e
−τon

RswCeff , and vi,Rsw,q [0] obtained by re-grouping
terms as shown in (9). The summation outlined in (12) can
be carried out with (16) and the λi system responses from (6)
to find the TF Heq,Rsw,q( f ). This TF is used to solve (13),
yielding the output noise contributions Sn,sw,q( f ) of all Rsw,q .
We verify the analytical results with simulation in Section II-F.
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2) Noise Density Contribution From the Reset Switch: The
reset switch is only present for the ‘reset’ (αf ≈ 0) topol-
ogy.7 Our prior assumption of Rsw,RrstCs ≪ τon also applies
here. Thus, we use the same simplification as Section II-E.1.
We note that the reset occurs right after the start of a
new period kT +

s , thus (14) simplifies to vRrst[kT +
s ] =

[1 0 . . . 0]x[kT +
s ]. Following the steps of (9) through (11),

we find:

Pi,Rrst( f ) =
vi,Rrst[0]

Rsw

RswCs

1 + j2π f RswCs

·

(
e j2π f τon − αr e j2π f 2τon

)
(17)

with αr = e
−τon

RswCs . We then find Heq,Rrst( f ) by substituting (17)
into (12). The output noise contribution associated with the
implementation of the reset switch is then found as follows:

Sn,Rrst,out( f ) = Sn,reset|Heq,Rrst( f )|2 (18)

where Sn,reset = 2kbT/( fsCs), following the same reasoning
as in Section II-E.1.

3) Noise Density Contribution of the Input Sampler: We
note that in our analysis in Section II-D, we did not impose
restrictions on the time-constant of the input sampler R′

sCs,
ensuring that our analysis remains general. However, this
means that we do not yet know in which regime the sampler
operates. The input sampling could occur in Sample and
Hold regime [24], [25] where R′

sCs ≪ τon, Passive-Mixer
regime [24], [25] where R′

sCs ≫ τon or somewhere in-
between R′

sCs ≈ τon [25]. As such, we cannot use the same
simplification as when calculating Sn,sw,q( f ) in (13). Instead,
we will calculate the noise contribution of the combination
of the source resistance Rs and input sampling switch on-
resistance Rsw,s by evaluating how the Double-Sided (D-S)
noise Power Spectral Density (PSD) from R′

s, Sn,Rs′ = 2kbTR′
s,

is filtered and folded to baseband via Harmonic Transfer
Functions (HTFs). To do so, we first use Heq( f ) from (12),
which describes the TF from vin(t) to the sampled output
vout[kT +

s ], capturing how Sn,Rs′ is filtered before frequency
translation. The product of Heq( f ) and Sn,Rs′ represents the
filtered PSD before folding, as shown in Fig 5a. According
to [25], Heq( f ) consists of a summation of harmonic transfer
functions Heq( f ) =

∑
∞

l=−∞
Hl( f ). Consequently, the filtered

PSD before folding already consists of the required HTFs
once we account for frequency translation from (multiples of)
the clock frequency, see Fig 5a. Then, the ORN contribution
originating from the sampling of vin(t) through R′

s onto Cs,
is found by summation of the frequency-translated and shaped
noise PSD as:

Sn,samp( f ) =

∞∑
l=−∞

|Heq( f − l fs)|
2(2kbTRs

′) (19)

for − fs/2 < f < fs/2. Heq( f ) is the same as obtained
during (1) - (12). In (19), Sn,samp( f ) contains the noise
from both the sample switch and Rs. Absorbing the noise
contribution of Rs into the circuit noise calculation implicitly

7We do not prescribe how an implementation of αf = −1 could be made,
and therefore do not account for its associated noise here.

Fig. 5. (a) Illustration of the noise density calculation using Heq( f )

from (12). This illustration shows the effect of the sampling of vin through
Rs for an implementation with αf = 1, N = 0, Cs = 1.5pF, fs = 2.5GHz
Rs = 50�, and Rsw = 1�. 5 Nyquist zones are shown. Additionally, we show
agreement with harmonic transfer functions obtained with Spectre PXF sim-
ulations (markers). The harmonic transfer functions have been normalized to
Sn(0). (b) Noise density of the sampler calculated using (19) as Double-Sided
(D-S) and Single-Sided (S-S) PSD. The summation of (19) is carried out over
50 harmonics and verified versus Spectre simulations (circles).

samples its noise contribution onto Cs, and propagates it to the
output. This will simplify the NF calculation in Section II-E.5.
Fig 5b shows agreement between a Spectre (Sampled) noise
simulation and the result obtained from (19).

4) Total Input/Output Referred Noise: After comput-
ing (13), (18), and (19), we can sum their powers to find the
ORN and IRN:

Sn,kernel,ORN( f ) = Sn,samp( f ) + Sn,Rrst( f ) +

N∑
q=1

Sn,sw,q( f )

(20a)

Sn,kernel,IRN( f ) =
Sn,kernel,ORN( f )

|Heq( f )|2
(20b)

for f = 0 till f = fs/2 and Heq( f ) is the TF found
from (1) - (12).

5) Pipelining, Interleaving, and Conversion to NF: In the
derived model, we assumed that charge sharing between the
sampling and history capacitors settles to a high degree within
one switch on-time τon, thus τon ≫ RswCeff. As pointed out
in [1], [9], this could become challenging when τon becomes
small to accommodate a high number of history capacitors
N , especially at high clock frequencies fs. The work in [1]
proposes a pipelining solution using one sampling capacitor
for each clock sub-phase Ts/τon. It similarly is also possible
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Fig. 6. Comparison between Spectre X simulations (data markers) and (13), (18), (19), (20a), (12) (solid lines), for (a) αf = 1, (b) αf ≈ 0, and (c) αf = −1.
The remaining network parameters are: Cs = 5pF, Ch = 50pF, N = 2, Rs = 50�, fs = 1GHz, and Rsw = 1� (all switches).

to time interleave several kernels (instances of Fig 1 consisting
of Cs and all Ch) together.

The result of (20a) can be expanded to account for the noise
improvement for a time-interleaved or pipelined structure.
Provided that there is no mismatch between the kernels,
no crosstalk between the kernels, and the clocks are non-
overlapping, the noise performance is found by realizing that
with M kernels, we add M2 times correlated signal power, and
M times uncorrelated noise power. This yields a net reduction
in PSD (in V2/Hz) of M [26]. As we have N + 2 available
clock phases, this is the maximal degree of interleaving
available, granting a noise PSD reduction of N + 2:

Sn,interleaved,IRN =
Sn,kernel,IRN

M
=

Sn,kernel,IRN

N + 2
. (21)

Sn,interleaved,IRN( f ) is the total input-referred noise PSD includ-
ing noise from Rs [see (19) and (20)], so NF can now be
calculated by dividing the Sn,interleaved,IRN( f ) with only the
source noise Sn,Rs( f ) (see e.g., [27, p. 50]), as:

NF( f ) = 10 log10

(
Sn,interleaved,IRN( f )

Sn,Rs( f )

)
. (22)

F. Model Verification

Let us verify the analysis by computing (12), (20a) and
comparing the calculation result to simulations with Spectre X.
We do this for three PSC-IIR LPFs, one for each αf ∈

{1, 0, −1}. The results are shown in Fig 6, where the simulated
markers and calculated (solid) lines overlap nearly perfectly,
indicating excellent agreement between the simulation and the
derived analytical model.

III. DESIGN SPACE EXPLORATION

In this section, we will use the model derived in Section II to
provide insights into the trade-offs present in the design space
of the PSC-IIR LPF represented in Fig 1. In Appendix A,
we describe a brief implementation procedure which uses the
results presented in this Section to design a filter with the
topology presented in Fig 1 for a certain NF and selectivity.

We use a normalized design parameter |Zeq|/Rs. Zeq is
the equivalent switched-capacitor impedance of the periodical

charge and subsequent discharge of Cs with the input or
Ch capacitors, while accounting for interleaving/pipelining.8

Using |Zeq|/Rs, we can evaluate the noise and selectivity char-
acteristics irrespective of fs, while simultaneously assuming
noise minimization through interleaving/pipelining, and have
the result normalized to Rs. |Zeq|/Rs is defined as:

|Zeq|

Rs
=

1
(N + 2) fsCs Rs

. (23)

We will show that the ratio |Zeq|/Rs plays a crucial role
in determining both the noise and selectivity of the circuit
and that |Zeq|/Rs directly trades one for the other. We will
first discuss the effect of |Zeq|/Rs on selectivity and noise
individually, then we will explore the trade-off between them.

A. Selectivity Considerations

The Selectivity of the filter is mainly determined by
|Zeq|/Rs, the topology (denoted with αf), and the number of
history capacitors N . Because a complex-pole filter requires
N ≥ 2 and the closed-form expressions become long and
difficult to interpret for N > 2, we will first treat an example
with N = 2. In Section III-E, we will consider the effects of
increasing N . We will look at absolute and normalized transfer
functions (Fig 7), a Pole-Zero plot (Fig 8), and capture the
selectivity as a single number to be used in Section III-D for
evaluating selectivity vs NF.

To express the selectivity of the filter as a single number
irrespective of its bandwidth, we will quantify the filter selec-
tivity as the (Number of) Normalized Transition Bandwidths
until Astop (stopband) attenuation is reached (see diamond-
shaped markers in Fig 7):

NTBWAstop =
f Astop

f−3dB
− 1. (24)

8The use of equivalent impedance Zeq bears similarity to [1], [21], where
key design aspects are captured in a SC resistor Req. The SC resistor
approximation only holds if the nodes to which the sampler capacitor is
connected may be approximated as a stable voltage. We explicitly will not do
so, as such an assumption severely restricts the size of the sampling capacitor
in the presence of a source impedance Rs, and the ratio Cs:Ch. Seen from
the input of the circuit, Zeq may appear capacitive if RsCs ≈ τon.
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Fig. 7. Computed filter responses from (12) to illustrate how the transition band is affected by changing |Zeq|/Rs, for (a) αf = 1, (b) αf ≈ 0, and (c) αf = −1.
The different lines within a plot represent different |Zeq|/Rs, which run from 0.1 until 2.9 in steps of 0.7. To aid in comparing the normalized transition
bandwidth (NTBW) in the presence of variable in-band attenuation, each transfer (dashed lines) has been normalized (solid lines) by its DC magnitude
|Heq(0)|. Note that in (a), for αf = 1, Heq(0) = 0dB irrespective of |Zeq|/Rs. For all implementations Rsw = 0.02Rs and N = 2, while Ch is adjusted to
ensure a constant bandwidth of f−3dB = 0.001 fs.

Fig. 8. Pole-Zero plot of the generalized filter implementations. |Zeq|/Rs
is swept from 0.1 to 2.9 in steps of 0.7, and this coincides with the marker
spacing. For all implementations, the filter bandwidth is kept equal at 0.01 fs
by adjusting Ch. In the case of α f ≈ 0, all poles stay at the same frequency
and are unaffected by |Zeq|/Rs. For αf = 1, the second pole continues shifting
to higher frequencies after |Zeq|/Rs = 1.6, at the left of the figure.

Here, Astop is the desired stopband attenuation relative to the
pass band, f Astop the frequency at which Astop is attained,
and f−3dB the -3dB bandwidth. A lower value of NTBWAstop

means that the stopband attenuation is reached in a narrower
transition band and is therefore indicative of a more selective
filter. This section will use Astop = −40dB, representing a
practical filter stopband attenuation.

The selectivity of the filter is directly related to the pole
locations, which we will find from the eigenvalue matrix D
in (6). The pole locations primarily change depending on αf,
Ch, and |Zeq|/Rs. For the filter derived in Section II with
N = 2, we find that the two poles are located (in the z-domain)
at:

λ1,2 ≈ β2

(
1 ± β1

√
αfαs(1 + Cs/Ch)

)
. (25)

These poles can be approximated in the s-domain by using
the bilinear transform:

f p,i ≈
2
Ts

λi − 1
λi + 1

. (26)

The pole locations are used to construct the Pole-Zero plot
in Fig 8. We will now discuss in detail how |Zeq|/Rs and αf
affect the selectivity using Fig 7 and Fig 8.

For αf = 1 (Hold), the poles remain purely real as
predicted by (25). The rightmost pole in Fig 8 shifts to a
lower frequency for decreasing |Zeq|, and the leftmost pole
to a higher frequency. This means that for |Zeq| ≤ Rs (large
Cs), the rightmost (low frequency) pole primarily determines
the bandwidth of the resulting filter. The second pole (the
leftmost pole in Fig 8) moves to a frequency much higher
than the filter bandwidth (in Fig 8 it moves off screen for
|Zeq|/Rs ≤ 1.6 with f p2 > 3 f−3dB). At frequencies between
these two pole frequencies, the filter roll-off is only first-order,
which is especially visible for |Zeq|/Rs = 0.1 in Fig 7a.
It could be concluded that from a selectivity point of view,
|Zeq| > Rs should be larger than approximately 1.5, as in
that case Fig 7a indicates almost no selectivity degradation.
However, as will be discussed in Section III-B, the reduced
selectivity for small |Zeq|/Rs comes with improved NF, which
make designs with |Zeq|/Rs < 1 a sensible design point
in situations where achieving a low NF is prioritized over
achieving a high frequency-selectivity.

if αf ≈ 0 (Reset), inspection of (25) reveals that both poles
are located at β2 = (Ch)/(Ch + Cs) (in z-domain), a result
consistent with [1]. As the poles have the same expression
regardless of |Zeq| (Cs), the selectivity remains unchanged
when changing this design parameter. Therefore, all poles in
the Pole-Zero plot (square data markers) and all normalized
curves in Fig 7b overlap. The absolute transfer functions are
affected by |Zeq|, particularly showing considerable in-band
losses for low |Zeq|/Rs. We will discuss the implications of
in-band (signal) losses in Section III-B.

When αf = −1 (Invert), the real part of both poles is equal,
and the root in (25) becomes negative, resulting in a complex
pole pair. The selectivity is improved slightly when lowering
|Zeq|/Rs (larger Cs), mainly through the reduction of the droop
at the band-edge, as the Q of the poles is increased (see Fig 8).
It should be noted that, as pointed out in [21] and shown in
Fig 8, the maximum quality factor Q for a 2-pole filter is
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Fig. 9. In-band NF of the network vs |Zeq|/Rs. The markers represent
Spectre X sampled PNOISE simulations for (20b), and the solid lines represent
the analytical model up to (22). The number of poles N does not affect this
result. We assume that the filter is interleaved or pipelined N + 2 times to
reach optimal noise performance. Rsw = 0.02Rs.

limited to 1/
√

2. The improvement of selectivity by lowering
|Zeq|/Rs, comes at the expense of in-band losses in excess
of those occurring for αf ≈ 0, as shown by the absolute TFs
in Fig 7c.

B. Noise Performance Considerations

In Section II-E, a method was described to calculate the NF
of the generalized circuit. Fig 9 shows the NF of the filter
versus |Zeq|/Rs for αf ∈ {1, 0, −1}. The NF is calculated
using (22) for a single frequency well below the f−3dB of
the filter.

The curves in Fig 9 can be used as a guide to minimize
the NF of a filter with a given transfer function using (23).
To understand how these curves (and thus the minimum NF
for each αf) are independent of Rs, we first note that the
x-axis in Fig 9 is normalized to Rs as described in (23).
Increasing (decreasing) Rs for a given N , fs and |Zeq|/Rs
requires a proportional increase (decrease) in Cs. To keep
the filter response the same, Ch must change proportionally
with Cs. As a result, the transfer functions of each of the
noise contributions of the filter also remain constant. While an
increase (decrease) in Rs proportionally increases (decreases)
its input-referred voltage noise PSD in (19), the same is
true for the noise contributions resulting from each charge
sharing phase, as described by (13), and the reset phase,
as described by (18). As such, a change in Rs results in
an equal, proportional change in both the total input-referred
noise PSD Sn,interleaved,IRN( f ) and the input-referred voltage
noise PSD Sn,Rs( f ) contributed by Rs alone. Thereby, (22)
is independent of Rs and the curves in Fig 9 hold for any
Rs, as long as the mentioned assumptions in Section II are
respected.

The definition of |Zeq|/Rs accounts for N + 2 inter-
leaved/pipelined stages to minimize NF, as discussed in
Section II-E.5. If less interleaved/pipelined stages are present,
the NF degrades. We will discuss the results in Fig 9 by
splitting up into 3 operating regions: |Zeq| ≫ Rs, |Zeq| ≈ Rs,
and |Zeq| ≪ Rs. For these regions, we discuss how NF is
degraded by (in-band) signal attenuation [|Heq|

2( f ) in (20b)]
and/or (sampled) noise contributions [Sn,kernel,ORN in (20b)] in
the filter.

When |Zeq| ≪ Rs, in-band signals are attenuated for the
implementations with αf ∈ {0, −1} (see Fig 7b and 7c), but

Fig. 10. In-band signal attenuation vs. |Zeq|/Rs = 0.1 to |Zeq|/Rs = 4.
Markers are Spectre X, solid lines evaluate (12) for f = 0. The arrows indicate
the design point that yields the lowest NF (Fig 9), resulting in a signal loss
of 2.9 dB and 3.2 dB for αf = 0 and αf = −1, respectively. The number of
poles N does not affect this result. Rsw = 0.02Rs.

experience negligible attenuation if αf = 1 (as shown in
Fig 7a). The in-band attenuation of the filters can be found
by evaluating (12) at f ≪ f−3dB, and is shown in Fig 10.
Intuitively, this attenuation can be explained by considering
the time-domain behavior when Cs samples vin(t) through Rs.
The in-band loss of the filter is determined by how much vCs

settles to vin during the sample phase φ̂s. For implementations
with αf ∈ {0,−1}, the voltage on Cs at the start of the sample
phase is either 0V (when αf ≈ 0), or even −vCs(t − Ts)

when αf = −1. Cs gets subsequently charged to vin(t) through
Rs. For lower values of |Zeq|, Cs increases, and vCs cannot
fully charge to vin. This results in the increased in-band losses
shown in Figs 7b and 7c. When no reset is present (αf = 1),
all Ch capacitors will settle to the input voltage and in-band
signals remain present on Cs after charge-sharing with all
history capacitors. This results in little in-band attenuation
during input sampling during the next clock period, as shown
in Fig 7a. When |Zeq| ≪ Rs, it is this in-band loss for αf ∈

{0, −1} that dominates the NF through |Heq( f )|2 in (20b),
while these losses are negligible if αf = 1.

When |Zeq| ≫ Rs the Cs capacitor is relatively small,
and vCs can reasonably settle to vin within τon. This results
in negligible in-band signal attenuation for all αf (as shown
in Fig 7). As the sampling capacitor reduces in size with
increasing |Zeq|, the output noise density of the filter calcu-
lated with (20) increases. Since |Heq( f )|2 approaches 1 for
all filters, the NF curves for |Zeq| ≫ Rs converge to the same
value at the right in Fig 9. As |Zeq| gets much bigger than Rs,
the NF will keep increasing due to increasing contributions
of sampled noise, while no additional signal is present. Thus,
when |Zeq| ≫ Rs, the NF is dominated by sampled noise
contributions (Sn,kernel,ORN) in (20b).

The case for |Zeq| ≈ Rs is the point where the NF
transitions from being degraded primarily by significant input
signal losses for αf ∈ {0, −1} (with only minor filter noise
contribution), towards being primarily degraded by significant
noise contributions (with negligible signal loss). An optimum
between these two extremes exists that balances the two effects
dominating the extremes. Fig 9 shows that for αf ≈ 0 and
αf = − 1, the NF is minimized for |Zeq|/Rs ≈ 1.3 and
|Zeq|/Rs ≈ 1.7, respectively. For implementations with
αf = 1, no optimum exists, as there is negligible signal
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Fig. 11. Noise vs. selectivity (number of transition bandwidths) for N = 2.
The different lines in the plot each represent their own feedback factor αf.
The distance between the drawn markers can be used to identify the design
parameter |Zeq|/Rs by counting the elapsed markers since the start (end).
|Zeq|/Rs runs from 0.1 to 4.1 in ten steps of 0.4. Rsw = 0.02Rs.

attenuation for |Zeq| ≪ Rs. Instead, filters with αf = 1 exhibit
an NF that increases proportionally to the increase in ORN.

C. Implications of In-Band Signal Attenuation

We caution the reader of the implications caused by the
in-band attenuation (Fig 10) occurring for implementations
using αf ∈ {0, −1} when considering the NF of the PSC-IIR
filter in a system context. Not only is the NF of the standalone
filter affected by the signal attenuation (Section III-B), but
it may also impact the design considerations of the circuits
following the filter. If, for instance, an amplifier is used to
amplify the output of the filter, its IRN must be designed to
keep the cascaded NF of the filter + amplifier at an acceptable
level. If the input signal is attenuated by a factor due to the
reset or Cs-inversion in the filter, the IRN of the cascaded
baseband amplifier needs to be reduced to keep the cascaded
NF equal. Thus, resetting or inverting Cs to improve filter
selectivity may disproportionately degrade NF beyond that
predicted by Fig 9 on a system level or result in considerable
power consumption increase elsewhere in the system.

D. Noise-Versus-Selectivity Design Space

In Sections III-A and III-B, we showed that both Selectivity
and Noise are affected by |Zeq|/Rs and αf. This section will
discuss how |Zeq| controls the trade-off between them. First,
we illustrate the NF versus selectivity (as defined in (24)
for Astop = −40dB) in Fig 11. Note that |Zeq|/Rs can be
interpreted from the data markers in the figure and can be
directly related to the TF and noise characteristics in Fig 7 and
Fig 9, respectively. We relate Fig 11 to the results discussed
in Sections III-A and III-B first.

When αf = 1, there is no distinct minimum NF, as illustrated
in Fig 9. Thus, it is possible to reduce |Zeq|/Rs (increase Cs)
to reduce the NF. However, the selectivity worsens as can be
seen in Fig 7a and Fig 8, due to the presence of a bandwidth-
limiting low-frequency pole for lower |Zeq|/Rs, as discussed
in Section III-A.

Fig. 12. Effect of increasing the number of Ch capacitors from N = 2 to
N = 8. Not all line segments have their N annotated to minimize clutter, but
N = 2 always starts right, and increases when moving left, up to N = 8.
|Zeq|/Rs from 0.1 to 2 in steps of 0.4 for αf ∈ {1,−1} and |Zeq|/Rs = 1.3 for
αf = 0 to minimize visual cluttering of the figure. Rsw = 0.02Rs. The shaded
area and marked ‘1’ are relevant for Appendix A.

When αf ≈ 0, all poles of the filter are located at the
same frequency (as shown in Fig 8). Thus, |Zeq|/Rs does not
change the transition bandwidth, and selectivity (NTBW) is
only dependent on the number of poles N . NF is affected
by |Zeq|/Rs with a distinct minimum as illustrated in Fig 9.
As NF is affected by |Zeq|/Rs and selectivity is not, the result
is a vertical line in Fig 11. When optimizing the circuit for
noise, it is sensible to pick the design point associated with
the minimum NF: |Zeq|/Rs ≈ 1.3, as shown in Fig 9, unless
demands on chip area, input matching, maximum fs, or power-
consumption dictate otherwise.

When αf = −1 there is an improvement of selectivity for
reducing |Zeq|/Rs. There is an observed minimum in the NF
at |Zeq|/Rs ≈ 1.7 as shown in Fig 9. Lowering |Zeq|/Rs to
improve selectivity is possible, but keep in mind that the NF of
the filter worsens, and the in-band attenuation starts to increase
considerably, while the selectivity begins to asymptote (Fig 8
and Fig 7c).

For |Zeq| ≫ Rs, the noise and selectivity performance
become nearly independent of αf, as shown by the point
encircled around |Zeq|/Rs = 4.1 in the inset in Fig 11. Fig 7
shows that selectivity is mostly unaffected by αf, as for large
|Zeq| β1 ≈ 0, resulting in all filter poles residing at the
same frequency as predicted by (25). Likewise, the NF of
all αf is roughly equal (right side in Fig 9), as the output
referred noise caused by the small Cs dominates while input
signals experience negligible attenuation (Fig 7). Together, this
results in the convergence point at |Zeq|/Rs = 4.1 in Fig 11.
If |Zeq|/Rs > 4.1, all three implementations will continue to
degrade in NF as ORN increases with reducing Cs at negligible
improvement of selectivity.

E. Increasing the Number of Poles

Fig 11 provides guidance in selecting which αf topology to
pick to implement a filter given a specific selectivity and/or
NF, but only does so for N = 2. Increasing the number of
history capacitors adds additional poles to the TF and thus
may improve the selectivity. To investigate this, we used our
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model to derive the selectivity for N = [2, 3, . . . , 8], with the
results shown in Fig 12. It can be seen that from N = 2 to
N = 3, a considerable selectivity improvement is achieved for
all αf. After N = 4, the improvement in selectivity begins
to asymptote. As indicated by the data-markers representing
|Zeq|/Rs, moving only horizontally for changing N in Fig 12
(thus keeping |Zeq|/Rs constant), an increase in N does
not change the NF. In addition, in-band signal attenuation
also does not change when increasing N . As discussed in
Section III-B, the in-band attenuation is determined by the
degree of settling of the voltage on Cs during τon, which
change in equal proportions for increasing N , keeping the
transfer from vin to vCs constant.

It is worth highlighting that Fig 12 encompasses a con-
siderable number of realizations of Fig 1. It therefore
indicates the attainable selectivity (as defined in (24) with
Astop = −40). It also shows which topology (αf) may be
best suited to implement a combination of selectivity and NF,
as the data-markers in Fig 12 represent which |Zeq|/Rs is used
for this data-point. It is possible to find a full filter realization
(with component values) using (23) and Fig 1 for individual
points in the graph. This can considerably reduce the time
spent on dimensioning and comparing different topologies.
In Appendix A, we show an example that uses the results
presented in Fig 12 to synthesize a filter from selectivity and
NF specifications.

IV. CONCLUSION

This article investigated the selectivity and noise charac-
teristics of three PSC-IIR LPFs driven directly from a source
resistance. By assigning each topology a new design parameter
‘feedback factor’ αf, a singular model was derived that can
efficiently analyze the exhaustive design space. The ‘feedback
factor’ αf captures three possible techniques of handling the
sampling capacitors between clock periods: resetting the sam-
pling capacitor Cs (αf ≈ 0), inverting Cs (αf = −1), or simply
do nothing (αf = 1). The comprehensive model used an
adjoint network with a state-space matrix to track the capacitor
voltages during discrete clock intervals. We included noise
analysis by evaluating noise folding from clock harmonics
during sampling and charge-sharing and calculating their ORN
contributions using their associated transfer functions. The
analysis results remain valid irrespective of the operating
region of the input sampler, which allowed us to evaluate the
broad design space without loss of accuracy when the size of
the sampling capacitor becomes large.

We have shown that the combination of finite source resis-
tance, αf, and component sizing place a lower limit on the
achievable NF for a given filter selectivity and that we can con-
trol the trade-off between them through a (normalized) design
parameter |Zeq|/Rs. This relation was quantified by plotting
the selectivity of a filter (number of transition bandwidths)
versus the NF. The resulting selectivity versus NF graphs are
used to find limits in attainable selectivity and NF, as well as
to provide guidance in navigating the trade-off between them.

When driving a PSC-IIR LPF from a resistive source, there
is a minimum in the NF that can be achieved when αf ≈ 0 or
αf = −1. The minimum NF for a resetting implementation

(αf ≈ 0 ) is approximately 4dB for |Zeq|/Rs ≈ 1.3, and
NF ≈ 4.9dB at |Zeq|/Rs ≈ 1.7 when the sampling capacitor
is inverted between clock periods (αf = −1). We showed that
this limitation arises from signal losses in the input sampler
when |Zeq| ≪ Rs, and considerable switched-capacitor noise
contributions when |Zeq| ≫ Rs. When αf ≈ 0, selectivity does
not change upon changing |Zeq|/Rs. The best selectivity for a
fixed number of poles is achieved when inverting the sampling
capacitor between clock periods. However, we caution the
reader that signal losses will become considerable for small
|Zeq| (big Cs when αf ∈ {0,−1}, and may affect the design of
subsequent circuits. If the sampling capacitor is left un-altered
between clock periods (αf = 1), the NF can theoretically
be reduced to values well below the minima available when
αf ∈ {0, −1}, but this is accompanied by a degradation in
filter selectivity due to the presence of a low-frequency pole,
causing an initial first-order roll-off even if a large number of
Ch capacitors are present.

Assuming an appropriately interleaved or pipelined system,
selectivity does improve upon adding more poles to any of the
filters without necessarily degrading NF. However, in the limit
towards an infinite number of poles, the selectivity of each
of the three passive PSC-IIR filters described in this article
reaches an upper limit (see Fig 12).

APPENDIX A
DESIGNING USING THE SELECTIVITY VS NF PLOT

In this appendix, we describe an example filter design
with the following specifications: a NF less than 3dB, and a
NTBW−40dB of at most 15. We target a 10MHz bandwidth and
assume other relevant system parameters to be: fs = 1GHz,
Rs = 50�.9 We will use Fig 12 to translate specifications into
a network from Fig 1.

1) Selectivity and NF Requirement: The NTBW−40dB < 15
and NF < 3dB specifications together define the shaded
area shown in Fig 12, in which all compatible designs lie.
As can be seen, there are multiple possible implementations,
in which case it is possible to prioritize certain aspects over
the others: 1) minimize NF (pick lowest curve), 2) minimize
the number of poles and consequently circuit complexity
and area (pick lowest N ), 3) pick a preferred αf, if for
instance droop is of concern.10 If there are no implemen-
tations in the shaded area constricting NF and selectivity,
the filter is not implementable as a PSC-IIR filter following
the generalized topology of Fig 1. For our example appli-
cation, we will pick the design point indicated with ① in
Fig 12.

2) Determining Number of Poles, Feedback Factor, and
Normalized Design Parameter: We will now extract the net-
work parameters for Fig 1 for the selected point ①. The αf and
N are determined by the line (segment) to which ① points.
In our example application, we find αf = 1 and N = 3. Next,
we extract the design parameter |Zeq|/Rs from the curve by

9Generally Rs will be a given, and fs should be taken sufficiently high
such that aliasing is not detrimental. In practice, this means that a continuous
time pre-filter with sufficient alias suppression should be present somewhere
before the sampling stage.

10In our example application, only αf = 1 is possible.
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Fig. 13. Resulting filter design with component values.

Fig. 14. Results from the design example. (a) TF as computed from (12) and
with Spectre sampled PAC. (b) In-band NF as calculated in (22) and using
Spectre PNOISE results for (20b).

checking the number of markers passed since the start (or
end).11 In the example case |Zeq|/Rs ≈ 1.1. From (23) we
find Cs ≈ 3.6pF and using (21) with N = 3, we find that the
filter should be pipelined/interleaved five times to reach the
NF indicated by Fig 12.

If the selected αf is 0 or −1, and there, for instance, will
be an amplifier following the filter under design, It is recom-
mended to check the implications of the in-band attenuation
on a system level. The in-band signal attenuation can be read
from the graph in Fig 10.

3) Setting the Bandwidth and Dimension the Switches:
For the charge-share switches, the primary consideration is
to ensure that the capacitors’ voltages can settle sufficiently
during the on-time of a single clock sub-phase τon. For the
sample switch, it is important to realize that it appears in
series with Rs, and therefore could affect NF and/or transfer
characteristics. A complete discussion on switch dimensioning
is beyond the scope of this article, and therefore we pragmat-
ically set Rsw = 5�, i.e., 1/10th of Rs, making it of minor
influence.

The bandwidth of the filter is mainly determined by αf, |Zeq|

and Ch. As |Zeq| was fixed in the previous step to determine
NF, and αf is also fixed, Ch needs to be adjusted to set the
bandwidth. We do this by (numerically) solving (12) such that
f−3dB = 10MHz. We find Ch ≈ 14.2pF.

The resulting filter topology with component values is
shown in Fig 13. Fig 14 shows the TF from (12) and NF
obtained using (22) of the resultant filter. The NF is slightly
higher in Fig 14 than predicting with Fig 12, due to Rsw = 5�.

11In the case of αf ≈ 0, |Zeq|/Rs will always be ≈ 1.3.

In Fig 14, we see excellent agreement between the calculated
and simulated results.
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