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Abstract—We propose a new score function to compare and
evaluate the relative impact of state-of-charge profiles on overall
battery lifetime. Our score function, based on on a discrete
Fourier transform of the state-of-charge profile, formalizes and
generalizes earlier ideas found in the literature, and can form an
important help in optimizing overall life time for battery powered
systems. In this paper we introduce and illustrate the method,
and discuss its merits as well as open issues and related literature.

I. INTRODUCTION

Battery powered devices are ubiquitous: You can find them
in embedded contexts such as satellites, sensor networks,
and pacemakers, in laptops/tablets/smartphones, and electric
cars are also becoming popular. But while batteries provide
portable power, they only do it for a limited period of time,
whether it is a day or several years. Nonrechargeable (primary)
batteries by definition need replacement when they run out,
but even rechargeable (secondary) batteries deteriorate with
time and use due to various unwanted chemical reactions that
accompany the desired reactions that bind and release the
chemically stored energy.

For systems that are not easily serviceable such as un-
manned spacecraft and sensors embedded in bridges and build-
ings, predicting the wear on secondary batteries is a central part
of predicting the total system lifetime. For serviceable systems,
prediction can be part of calculating the maintenance cost of
the complete battery powered system.

As part of design space exploration, a system designer
may propose a set of possible system designs that (among
other things) use the battery differently. To help evaluate these
designs, he may consult battery documentation and data sheets
but will often find that the manufacturer has only included
limited performance and endurance data.

Testing proposed designs in experiments with physical
batteries can be prohibitively expensive and slow, even with
accelerated tests that wear out the battery faster at artificially
high temperatures. Instead, we propose a scoring function
that takes as input a battery usage profile (state-of-charge
timeseries) obtained from, e.g., system simulation. To be
able to analyze complicated workloads that cannot easily be
decomposed into alternating phases of discharging and fully
recharging, we analyze the usage profile in the frequency
domain. The advantage of our approach is that we provide
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a fully model-based evaluation approach for the performance
and lifetime of battery-powered systems.

This paper is organized as follows. Section II introduces
batteries and battery degradation, and Section III introduces
our new score function, Section IV discusses limitations and
assumptions, and Section compares to related work.

II. BATTERY CONCEPTS

Batteries store chemical energy and are able to release it as
electrical energy. In primary batteries the reaction irreversibly
changes the chemical composition of the battery, but in sec-
ondary batteries it can be reversed, converting electrical energy
back to chemical energy.

A fundamental concept for batteries is the state of charge
(SOC). Using a car analogy, a full tank corresponds to 100%
SOC, and an empty tank corresponds to 0%. But while a fuel
tank is a simple concept, batteries are more complicated. In a
car, the distance you can drive depends on the speed, but the
chemical energy you can get out of the fuel tank is proportional
to the amount of fuel you put into it. On the other hand, the
amount of energy a battery can deliver before running dry
depends strongly on the usage pattern. This is due to the
rate/capacity effect [4]. Furthermore, a battery that runs dry
is not really empty because the recovery effect [4] means that
it will slowly regain some charge while resting. Last but not
least, a battery can be charged above the design capacity if
a higher voltage is applied (at the cost of faster wear of the
battery).

Since both an empty and a full battery are not easily defined
in practical usage, we refer to the battery datasheets to define
the SOC. The battery is full when it is charged at the design
charge voltage. The battery has reached a 0% SOC when it
has delivered the nominal capacity.

Some batteries are used for backup power and spend most
of their lifetime near full SOC. In this work, we are interested
in secondary batteries used in the typical cycling between
discharging and discharging.

Depth of discharge (DOD) is defined here as 1−SOC and
is a concept that is often used in discussion of battery wear. A
cycle consists of discharging the battery and then recharging
it to its full capacity. These concepts are illustrated in Fig. 1.
The term DOD is often used in the sense of maximal DOD.
For example, “cycling at 80% DOD” means to repeatedly
discharge to 80% DOD and recharge to 100% SOC (0% DOD).
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Fig. 1. Illustration of key battery concepts: State of charge (SOC), depth of
discharge (DOD), discharge and recharge phases, and cycle.

Batteries consist of one or more electrochemical cells
connected in series, for increased voltage, or in parallel for
increased capacity. Small variations among the connected cells
affect the performance and degradation of the overall battery
and complicate charging and discharging procedures. Batteries
can in turn be connected into battery packs with the same
challenges. In this paper, we limit our attention to (single)
batteries consisting of only one electrochemical cell.

A. Battery Wear

The chemical reactions that store and release energy, are,
unavoidably, accompanied by other, unwanted chemical reac-
tions and processes that slowly destroy the reactants or the
electrodes. The main performance consequence is that with
time and use, the capacity of the battery fades.

The rate of deterioration depends, among other things, on
the maximal DOD reached, the rate of charge and discharge,
temperature, dwelling at high and low SOC, and overcharg-
ing [2]. The maximal DOD that is discharged to is especially
important, and can be the only focus of battery manufacturers’
datasheets. For example, one battery is expected to reach end-
of-life (80% capacity remaining) after 350 cycles at 100%
DOD, 1000 cycles at 50%, and 1700 cycles at at 25%1. This
kind of data can be good enough for simple workloads and
system designs, but is not enough for advanced workloads,
which motivates our approach.

III. A NEW SCORE FUNCTION

For a complicated workload, defining a cycle is not
straightforward. Or at least, the mathematical definition of
a cycle is not the most interesting. A periodically repeating

1http://www.gomspace.com/documents/gs-ds-batteries.pdf

pattern is by definition cyclic, but each cycle may contain many
alternating discharging and recharging phases. One example is
SOC profile F in Fig. 3, where each cycle consists of three
discharge-recharge phases. Another example is a battery that
is discharged to, say, 20% SOC, then charged to 90%, and
then discharged again to 20% before being recharged fully and
starting over. It’s only one cycle but from a battery application
point of view, it is close to two “cycles”. Not only is this
completely likely usage of a battery difficult to discuss, it
is also unlikely that a battery data sheet will say anything
about the expected battery lifetime for this type of load, further
making a score function desirable.

We propose to examine the SOC profile in the frequency
domain to sidestep this issue. Using the discrete Fourier
transform (as computed by a Fast Fourier transform (FFT)
algorithm), we convert the SOC timeseries into a frequency
spectrum containing all component frequencies and their mag-
nitudes. The FFT output is a sequence of complex numbers,
the moduli of which correspond to the magnitudes of the
component frequencies. If the SOC profile is a sequence
S = s1s2 . . . sn of SOC values sampled at frequency f , its
score is

score(S, f) =
2f

n

bn/2c∑
i=0

i|F(S)i|2 (1)

where F is the FFT function and | · | the modulus. Because
the input consists only of real numbers, the values in the
second half of the FFT output (above the Nyquist frequency)
are a mirror image of the first half, so we “fold it back” by
multiplying the first half by two and discarding the second
half (indexes above bn/2c). The fraction if/n is the frequency
corresponding to the FFT magnitude at index i. We devised
the score function such that an SOC profile with a lower score
is better for the longevity of the battery.

Fig. 2 illustrates four different SOC profiles and an inter-
mediate result of the score calculation. The FFT-like plots in
fact show the calculation of (1), but with the calculation done
element-wise on the FFT output sequence before the summa-
tion. In other words, each plot is the sequence 2fi|F(S)|2/n, with
modulus, exponentiation, and multiplication applied element-
wise on the sequences. In the plot, the frequency axes are
truncated to “zoom in” on the interesting harmonics.

Normalized to the first score, the four scores are 1, 2, 4,
and 8. Comparing the profiles A and B, we see discharging
to the same DOD (50%), but a doubling of the charge and
discharge rates as well as number of cycles that can be
completed in the same time frame. This also doubles the score.
The same applies when comparing C and D. In these two
simple comparisons, the score is proportional to the number
of cycles/time, which matches well with the general idea that
a battery can sustain a fixed number of cycles at a given DOD.

Comparing profiles B and C, we see that the same amount
of charge is delivered — equivalent to three full capacities
are discharged in six hours. However, profile C discharges to
twice the DOD while doing it. This also increases the score,
because a higher DOD wears out the battery faster, even though
the same charge is delivered. This matches what [2] cites as
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Fig. 2. The top row shows four example SOC profiles. The bottom row shows the corresponding FFT spectra with all the modifications done before the
summation (see the text).
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Fig. 3. Three SOC profiles that show different schedulings of 15 minute tasks with load −4 and a constant recharging at +1.

Symon’s [6] Premise 2: “The charge life of the cell will always
[. . . ] be greater than [the rated charge life] when the battery
is cycled less deeply.” In other words, shallow DOD cycling
improves the total amp-hour throughput in the lifetime of a
battery.

In Fig. 3, a battery powered system is supplied with a
constant charge rate of +1 current unit, but every three hours it
has to perform three sequential tasks, each affecting the system
with −4 current units for 15 minutes. In profile E, they are
run back to back, after which the battery is recharged fully.
In profile G, the tasks are equally spaced in time. Profile F is
an example of a “non-simple” workload in between the two
others. The charge delivered and the charge and discharge rates
involved are the same, but the DOD reached, as well as the
score, is in between the two others’.

IV. DISCUSSION

Our prediction method is generic and must be fitted to
a specific battery technology based on measurements from
the manufacturer and/or the system designer. The method is
valid for battery technologies where charging and discharging
can be considered to have symmetric effects on wear. With

some battery technologies, this is not always the case for high
currents, see, e.g., [1]. Drouilhet and Johnson [2] also cite a
work saying that high charge rates at low and intermediate
SOC may increase battery life, but they do not consider the
evidence conclusive.

As we saw when comparing profiles B and C, the score
doubled with a doubled DOD. This tendency is correct but also
generic. In practice the wear may not be directly proportional
to the DOD. At the moment, the score function can be
minimized to, e.g., schedule a set of tasks in a way that
is beneficial to the battery. To more exactly predict battery
lifetime, the approach will have to be targeted to a specific
battery technology.

However, obtaining wear data from battery manufacturers’
datasheets can be very challenging. Petricca et al. [5] report
that “from an extensive survey of more than 100 datasheets
of commercial battery of different chemistries, sizes, energy
and form factors, we did not find a single datasheet that report
information about the following characteristics altogether in
the same document: battery behavior due to constant current,
pulse current, and aging effects.”



We speculate that with enough data available for fitting,
the following generalized form of (1) parameterized on p and
q could be relevant.

2fp

n

bn/2c∑
i=0

i|F(S)i|q (2)

For our score function, we assume that the proposed SOC
profile is thought to be repeated indefinitely. Therefore it
should start and end at the same SOC to prevent an assumed
discrete jump between SOCs when the profile is repeated. We
also assume that the profile is of a short duration wherein the
battery wear can be ignored, i.e., the capacity remains close
to constant. Such a profile could be on the order of days or
weeks rather than months or years.

The sampling/simulation parameters f and n are chosen
according to the speed of changes in the SOC. The sampling
frequency f should be large enough that the oscillations of
interest are slower than the Nyquist frequency f/2. Higher har-
monics are negligible at realistic uses of batteries because they
would not support sustained high currents (changes in SOC),
which in turn give rise to strong high frequency harmonics. The
sampling window n/f affects the lowest observable frequency,
which is its reciprocal f/n. The lowest observable frequency
should be low enough to observe the oscillations of interest.

It seems to be not very well studied what happens when
batteries are used in ways that are not simply repeating ”charge
fully, then immediately discharge to some depth”. Drouilhet
and Johnson [2] mention dwell time at low and high states
of charge as a contributor to wear, implying that a medium
SOC could be good for battery life. Similarly, the end of
charge voltage, which also affects the SOC to which the
battery is charged, is said to influence battery life2. Here, the
DC component of the Fourier transform could be relevant to
explore even though it is ignored in (1) and (2) due to being
multiplied by zero.

Finally, we assume a constant temperature for the battery.

V. RELATED WORK

Drouilhet and Johnson [2] in the context of energy storage
describe a battery life prediction method that takes into account
DOD and discharge rate. They propose a function for each of
these to which manufacturer data can be fitted. Combining the
two expressions, the effective discharge affecting the battery
with respect to wear can be computed from a user-prescribed
discharge profile consisting of a series of discharge events. The
battery is seen as having a fixed charge life (lifetime Ampere-
hour throughput until end-of-life), but relative to “effective”
discharge, which depends on DOD and discharge rate. They
apply their method to a case study of peak shaving in an
Alaskan village powered by wind energy. By predicting the
lifetime of different sizes of NiCd and VRLA batteries, they
find the most cost effective battery technology and size for
the given application. In our approach, we try to generalize
from the focus on simple workloads described as a sequence of

2http://batteryuniversity.com/learn/article/how to prolong lithium based
batteries

discharge event (specified only with average discharge current),
between which full a recharge is assumed.

Petricca et al. [5] describe an electrical circuit model of
capacity fading due to cycling, as well as the increase of the
internal resistance due to cycling. What is needed to build
the model is manufacturer’s data on capacity fading due to
cycling at different temperatures and discharges rates (C-rates),
and data on increase of the internal resistance at a reference
discharge rate and for various DODs. It is questionable whether
this data is always available to the user. As mentioned in
Section IV, the authors had a hard time obtaining it. The
capacity loss is based on an equation that takes as input the
number of cycles. Again we encounter the concept of cycles
that only works for simple workloads, where each discharge
phase starts at 100% SOC.

Guena and Leblanc [3] in the context of backup power
experimentally examine how DOD affects the cycle life of
lithium-metal-polymer batteries. They test at 0.6%, 50%, 60%,
70%, 80%, and 100% DOD and find that reduced DOD
improves cycle life and total charge throughput. This matches
our expectations. They also test micro cycling (to 0.6% DOD)
and find it to have no effect on cycle life, i.e., the micro cycled
cell had the same capacity fade as one with a float charge (no
cycling). Unfortunately the sample sizes are too small to say
anything conclusive (one cycled cell compared to three floating
cells), and more information would be interesting to have.
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