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Abstract

In this paper we consider a Jackson network of independent service stations. To

improve upon the total expected waiting time, the stations may redistribute the total

arrival rate of customers over all queues. We investigate this situation by means of arrival

rate games. These are cooperative TU cost games in which the stations are the players

and the total cost of a coalition is linear in the total expected waiting time. We show

that these games are totally balanced; cooperation is beneficial to all stations. Further,

we provide a tailor-made cost allocation rule that belongs to the core of the game.

1 Introduction

Consider a system of heterogeneous computing and communication resources. Besides the

differences in service speeds, the job arrivals for the resources may be unequal. Therefore,

the workload on the resources, or computers, may vary greatly. Improving the performance

of the system by means of a better distribution of the work load is called load balancing [3].

In this paper we consider the work load in a Jackson network of independent service

stations. Each station has a single queue with an individual service rate, and its own arrival

rate of jobs or customers. The stations may redistribute their work loads, meaning that they

reallocate their total arrival rate statically (i.e., not state-dependent). Our goal is to improve

the total expected waiting time over the stations in the network.

Our problem is related to literature on load balancing for distributed systems. There, often

cooperative games with non-transferable utility (NTU) are used to model the cooperation

among the computers [1, 3, 8].

Also cooperative games with transferable utility (TU) are used. In [5] the core of coopera-

tive queueing games is studied. The authors show that any single-attribute game embedded in

an elastic function has a non-empty core. In [4] independent service providers are considered

that may cooperate by pooling their resources and customer streams. The authors provide

sufficient conditions for the corresponding cooperative TU game to have a core allocation.
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In previous papers [9, 10] we analysed a Jackson network with independent service sta-

tions, in which the stations may redistribute their service rates to improve the total expected

waiting time. It is shown that a tailor-made cost allocation always belongs to the core of the

corresponding cooperative TU game.

In this paper we model the load balancing problem, concerning the arrival rates of the

stations instead of their service rates, by means of cooperative TU games. We optimize the

total expected waiting time of stations in the system, and provide an algorithm to calculate

this optimum. Furthermore, we introduce a corresponding TU game, the arrival rate game,

in which the stations are the players. Such a game is shown to be totally balanced, meaning

that cooperation is beneficial to all stations. For this game we introduce a tailor-made cost

allocation. This allocation is shown to belong to the core of the game.

2 Model and preliminaries

Consider a Jackson network with a set N of service stations. Station i ∈ N has Poisson

arrival rate λi and exponential service rate µi, µi > λi. We refer to such a Jackson network

as (N, {µi}, {λi}). Without loss of generality assume µ1 ≥ µ2 . . . ≥ µn with n = |N |. Due to

these assumptions, the expected waiting time in station i (without cooperation) is given by

λi/(µi − λi).

2.1 Demand allocation problem

A group S of stations may redistribute their arrival rates λi. In the sequel, we may refer to

’arrival rates’ as ’demands’, and use these terms interchangeably. Given an allocation of these

arrival rates, the performance measure of the group is the total expected waiting time of its

stations. The goal is to minimize this waiting time. The optimal performance is given by the

following convex optimization problem, where the decision variables li, i ∈ S, are the newly

allocated arrival rates.

min
li,i∈S

∑

i∈S

li
µi − li

(1)

s.t.
∑

i∈S

li =
∑

i∈S

λi (2)

0 ≤ li < µi, i ∈ S. (3)

The objective value is the total expected waiting time of the customers related to the stations

in the group S. Restriction (2) describes that the total arrival rate should be relocated, while

restriction (3) provides the proper bounds on the arrival rate li allocated to station i. Denote

the optimal solution by {l∗i,S} to stress the dependence on coalition S.

As a first attempt to solve this problem, consider this optimization problem without the
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bounds (3). Using a Lagrange multiplier α′
S this unconstrained problem may be written as

follows.

min
l′
i
,i∈S

∑

i∈S

l′i
µi − l′i

− α′
S

(

∑

i∈S

l′i −
∑

i∈S

λi

)

, (4)

with optimal solution {l′i,S}. The first order conditions for a minimum are

µi

(µi − l′i,S)
2
− α′

S = 0, and (5)

∑

i∈S

l′i,S −
∑

i∈S

λi = 0. (6)

Equation (5) implies µi/α
′
S = (µi − l′i,S)

2. Because l′i,S < µi (3), this results in l′i,S =

µi −
√

µi/α′
S . Substituting this in (6) results in

l′i,S = µi −
√
µi

∑

j∈S
√
µj

∑

j∈S

(µj − λj). (7)

Hence, in this allocation station i ∈ S receives an arrival rate l′i,S that starts from the

stations service rate, or capacity, and subtracts from this a fraction of the overcapacity that

is proportional in the square root of the capacity.

However, this solution may violate (3) by becoming negative as the example below shows.

Example 1. Consider a Jackson network with two stations, N = {1, 2}, and parameters

µ1 = 16, λ1 = 2, µ2 = 4, λ2 = 3. The stations minimize their total expected waiting time:

min
li,i∈N

l1
16− l1

+
l2

4− l2

s.t. l1 + l2 = 5

0 ≤ l1 < 16,

0 ≤ l2 < 4.

The solution (7) to the optimization problem without lower bounds on l1 and l2 is l′
1,N = 6,

l′
2,N = −1 with total expected waiting time 2/5. However, this solution is infeasible for station

2! Thus, the restriction l2 ≥ 0 in the original optimization problem will be binding. The

optimal solution is l∗
2,N = 0, l∗

1,N = 5 with total expected waiting time 5/11. All customers go

to the fastest station, station 1.

If the unconstrained allocation problem (4) results in a solution with a negative demand

allocation l′i,N < 0 for some i ∈ N , then there is no closed-form solution to the constrained

optimization problem (1)-(3). Below we present an algorithm that solves this optimization

problem. This algorithm is inspired by the COOP algorithm of [3]. Given a coalition S =
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{1, . . . , s} of players, the algorithm determines the optimal demand allocation l∗i,S , i ∈ S, for

this coalition.

Algorithm 1 Optimal demand allocation for S = {1, . . . , s}.
Require: Queues in decreasing order of their average service rates (µ1 ≥ µ2 ≥ . . . ≥ µs)
Ensure: Demand allocation li for i ∈ S
1: ∆←∑s

j=1
λj

2: b← (
∑s

j=1
µj −∆)/

∑s
j=1

√
µj

3: while b ≥ √µs do

4: ls ← 0
5: b← (

∑s−1

j=1
µj −∆)/

∑s−1

j=1

√
µj

6: s← s− 1
7: end while

8: for i = 1, . . . , s do

9: li ← µi −
√
µib

10: end for

Thus in the resulting allocation the ’slow’ stations i = sS+1, . . . , s will have no customers

(li = 0), while the ’fast’ stations i = 1, . . . , sS share the total arrival rate. The switch-over

value sS is such that i ≤ sS is equivalent to
√
µi > bS where

bS =

∑sS
j=1

µj −
∑

j∈S λj
∑sS

j=1

√
µj

> 0

is the final value of b in the algorithm. The result of the algorithm is the optimal solution to

the optimization problem (1)-(3).

Theorem 1. The demand allocation (l1, . . . , ls) resulting from Algorithm 1 is the optimal

solution to (1)-(3).

Proof. The objective function (1) and the restrictions (3) are continuously differentiable and

convex, and the restrictions (2) are linear. Therefore, the Karush-Kuhn-Tucker (KKT) con-

ditions are necessary and sufficient to find an optimum. Using Lagrange multipliers α, βi,

and γi, i ∈ S, the minimization problem may be written as

min
l

∑

i∈S

li
µi − li

− α(
∑

i∈S

li −
∑

i∈S

λi)−
∑

i∈S

βili +
∑

i∈S

γi(µi − li).
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The KKT conditions are

µi

(µi − li)2
− α− βi − γi = 0, i ∈ S, (8)

∑

i∈S

li −
∑

i∈S

λi = 0, (9)

0 ≤ li < µi, i ∈ S (10)

βili = 0, i ∈ S, (11)

γi(µi − li) = 0, i ∈ S, (12)

βi ≥ 0, γi ≥ 0, i ∈ S. (13)

Because li < µi, by (12) γi = 0 for all i ∈ S. Then (8) reduces to

µi

(µi − li)2
− α− βi = 0, i ∈ S. (14)

Consider two cases. First, if li = 0 then by (14) βi =
1

µi
− α. This is nonnegative by (13),

from which we conclude
√
µi ≤ 1/

√
α. This shows that stations with small service capacities

will be inactive. This is exactly how the algorithm works. It orders the stations according to

decreasing capacity, and it iteratively determines whether a station is fast enough.

Second, if li > 0 then by (11) βi = 0. Substitute this in (14) to obtain α = µi/(µi − li)
2,

and (using li < µi)

li = µi −
√
µi

1√
α
. (15)

Hence, li > 0 if and only if
√
µi > 1/

√
α. Again we see that demand is assigned to stations

that have large enough service capacities. Let S+ denote the set of all players in S with a

positive demand allocation, S+ = {i ∈ S : li > 0}. According to (9)

∑

i∈S

λi =
∑

i∈S

li =
∑

i∈S+

(µi −
√
µi

1√
α
).

Rewriting results in

1√
α

=

∑

i∈S+
µi −

∑

i∈S λi
∑

i∈S+

√
µi

= bS . (16)

Substitution in (15) results in li = µi −
√
µibS . This is exactly what the algorithm does. We

conclude that the algorithm returns the optimal solution.
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2.2 The arrival rate game

For the analysis of this cooperative situation, we define a related cooperative game. Given a

Jackson network (N, {µi}, {λi}), define the corresponding arrival rate game (N, c) with N the

set of stations (players). A coalition S is a nonempty subset of N . The cost c(S) of coalition

S is given by its optimal performance in (1)-(3).

A cooperative game is subadditive if c(S) + c(T ) ≥ c(S ∪ T ). A cost allocation x is a

vector that assigns the cost xi to player i. Such an allocation is efficient if
∑

i∈N xi = c(N).

An allocation x is individual rational if xi ≤ c({i}) for all i ∈ N , and it is coalitional rational

if
∑

i∈S xi ≤ c(S) for any coalition S. The core C(c) of the game is the set of efficient and

coalitional rational cost allocations,

C(c) = {x ∈ R
N |
∑

i∈N

xi = c(N);
∑

i∈S

xi ≤ c(S), S ⊆ N}.

An allocation in the core is also called a stable allocation, since no coalition has an incentive

to deviate.

A collection (wS)S⊂N of weights in [0,1] is a balanced collection of weights if for every

player i ∈ N the total weight of all the coalitions to which the player belongs equals 1,
∑

S⊂N,i∈S wS = 1. A cost game (N, c) is balanced if
∑

S⊂N wSc(S) ≥ c(N) for every bal-

anced collection of weights. The game is called totally balanced if for any coalition S the

subgame (S, c|S) is balanced, where c|S denotes the restriction of the function c to players in

S. Bondareva [2] and Shapley [6] independently proved that the core C(c) of a cost game

(N, c) is nonempty if and only if (N, c) is a balanced cost game.

Lemma 2. Any arrival rate game is subadditive.

Proof. Let (N, c) be an arrival rate game. The combined optimal solutions for S,T ⊆ N ,

S ∩ T = ∅, are a feasible solution for S ∪ T . The result immediately follows.

If l′i,S ≥ 0 for all i ∈ S, then the minimal costs for coalition S are

cS =
(
∑

j∈S
√
µj)

2

∑

j∈S(µj − λj)
− |S|,

where |S| denotes the cardinality of S. Else, if l′i,S < 0 for some i ∈ S then the costs are

larger than this amount, c(S) > cS . For one-person coalitions, |S| = 1, c(S) = cS .

2.3 Special case

In this subsection we consider situations in which the unconstrained allocation problem does

not yield the optimal solution of the constrained allocation problem. That is, l′i,S < 0 for
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some i ∈ S. We show that a slight modification of the unconstrained allocation problem

yields the optimal solution.

Example 2. Consider the situation in Example 1. The arrival rate game (N, c) has N =

{1, 2}, c({1}) = 1/7, c({2}) = 3 and c(N) = 5/11. Because l∗
2,N = 0, we add this extra

constraint to (4) and obtain

min
l1,l2,α,β2

l1
16− l1

+
l2

4− l2
− α(l1 + l2 − 5)− β2l2.

Taking derivatives to respectively l1, l2, α and β2 results in four equations.

16

(16− l1)2
− α = 0 (17)

4

(4− l2)2
− α− β2 = 0 (18)

l1 + l2 − 5 = 0 (19)

l2 = 0 (20)

Combining (19) and (20) gives l∗
1,N = 5, l∗

2,N = 0. Inserting this in (17) gives α = 16/121.

Finally, from (18) we derive β2 = 57/484. Now consider the following allocation of costs.

For station 1 consider

y1 =
l∗
1,N

µ1 − l∗
1,N

− α(l∗1,N − λ1) =
7

121
,

and for station 2

y2 =
l∗
2,N

µ2 − l∗
2,N

− α(l∗2,N − λ2)− β2l
∗
2,N = αλ2 =

48

121
.

The cost allocation (y1, y2) belongs to the core of the game because y1 < c({1}), y2 < c({2})
and y1 + y2 = c(N). Hence, the core (N, c) is nonempty. Notice that the cost allocation y

differs from the Shapley value and the nucleolus, which equal (−185

154
, 255
154

) in this game.

The cost allocation y in the example above will provide the basis of the cost allocation

used in the remainder of the paper.

3 Main results

In this section we analyse the core of the arrival rate game to investigate whether it is beneficial

for the stations to cooperate. We show that arrival rate games are totally balanced, and we

present a cost allocation that always belongs to the core of the game.
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We start by showing that the core of an arrival rate game and of all its subgames is

nonempty.

Theorem 3. Let (N, {µi}, {λi}) be a Jackson network and (N, c) the corresponding arrival

rate game. This arrival rate game is totally balanced.

Proof. Since any subgame is another arrival rate game, it is sufficient to show that the game

(N, c) is balanced.

Let (wS)S⊂N be a balanced collection of weights. We show that
∑

S⊂N wSc(S) ≥ c(N).

Define l∗i =
∑

S⊂N,i∈S wSl
∗
i,S , which is a convex combination of the optimal demand allocations

l∗i,S for player i ∈ N . Then

∑

i∈N

l∗i =
∑

i∈N

∑

S⊂N,i∈S

wSl
∗
i,S =

∑

S⊂N

wS

∑

i∈S

l∗i,S =
∑

S⊂N

wS

∑

i∈S

λi =
∑

i∈N

λi

∑

S⊂N,i∈S

wS =
∑

i∈N

λi.

Using similar reasoning, 0 ≤ l∗i < µi. Therefore, the demand allocation {l∗i } is a feasible

solution of the allocation problem for coalition N . Finally,

c(N) ≤
∑

i∈N

l∗i
µi − l∗i

≤
∑

i∈N

∑

S⊂N,i∈S

wS

l∗i,S
µi − l∗i,S

=
∑

S⊂N

wS

∑

i∈S

l∗i,S
µi − l∗i,S

=
∑

S⊂N

wSc(S),

where the first inequality follows from {l∗i } being a feasible solution, and the second inequality

is due to the convexity of the function li
µi−li

in li. We conclude that the game is balanced.

This total balancedness implies that cooperation is beneficial for the stations in the Jack-

son network. Notice that the proof above is similar to the proof of the theorem of Shapley

and Shubik [7], when they show that any market game is balanced. The main difference is

due to our extra bounds on the demand allocation (3).

Based on our analysis in Section 2.3 and Theorem 1 we propose the following cost alloca-

tion. Player i pays

xi =
l∗i,N

µi − l∗i,N
− 1

b2N
(l∗i,N − λi), i ∈ N, (21)

with l∗i,N the optimal demand allocation for player i in the allocation problem (1)-(3) of

coalition N . Thus each player has to pay its individual cost in the optimal solution, it enjoys

a cost reduction if it serves more demand than its original arrival rate, and otherwise it pays

extra. This allocation belongs to the core of the arrival rate game.

Theorem 4. Let (N, {µi}, {λi}) describe a Jackson network with corresponding arrival rate

game (N, c). The cost allocation x in (21) belongs to the core of the game.
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Proof. Efficiency of x follows immediately from the definition,

∑

i∈N

xi =
∑

i∈N

(

l∗i,N
µi − l∗i,N

− 1

b2N
(l∗i,N − λi)

)

=
∑

i∈N

l∗i,N
µi − l∗i,N

= c(N).

For coalitional rationality, let αN , βi,N be the values of α and βi that satisfy the KKT

conditions for coalition N . Consider the function

fi(li) =
li

µi − li
− αN (li − λi)− βi,N li.

Taking the derivative and equating it to zero, results in

µi

(µi − li)2
− αN − βi,N = 0.

This resembles the KKT condition (14). Hence, the function fi is minimized in li = l∗i,N .

Note that (16) for S = N and (11) imply xi = fi(l
∗
i,N ).

Let S be a coalition with optimal demand allocations {l∗i,S}. Then xi = fi(l
∗
i,N ) ≤ fi(l

∗
i,S)

because l∗i,N is a minimizer of fi. Summing over the players in S gives

∑

i∈S

xi ≤
∑

i∈S

fi(l
∗
i,S) = c(S)−

∑

i∈S

βi,N l∗i,S ≤ c(S),

where the latter inequality is due to (3) and (13). Hence, x satisfies coalitional rationality.

We conclude that x ∈ C(c).

The tailor-made cost allocation x is a stable cost allocation in the arrival rate game. This

Theorem also implies that arrival rate games are totally balanced, thus it is a second way of

proving the result of Theorem 3.

If the demand allocations {l′i,N} are nonnegative, we obtain the following alternative

formulation of the cost allocation x.

Corollary 5. Let (N, {µi}, {λi}) be a Jackson network with arrival rate game (N, c). If

l′i,N ≥ 0 for all i ∈ N , then

xi =
l′i,N

µi − l′i,N
− α′

N (l′i,N − λi)

is an alternative formulation of the cost allocation x.
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