
A Verification Technique for Deterministic
Parallel Programs (extended version)

S. Darabi, S.C.C. Blom, and M. Huisman

University of Twente, the Netherlands

Abstract. A commonly used approach to develop parallel programs is
to augment a sequential program with compiler directives that indicate
which program blocks may potentially be executed in parallel. This paper
develops a verification technique to prove correctness of compiler direc-
tives combined with functional correctness of the program. We propose
syntax and semantics for a simple core language, capturing the main
forms of deterministic parallel programs. This language distinguishes
three kinds of basic blocks: parallel, vectorized and sequential blocks,
which can be composed using three different composition operators: se-
quential, parallel and fusion composition. We show that it is sufficient to
have contracts for the basic blocks to prove correctness of the compiler
directives, and moreover that functional correctness of the sequential pro-
gram implies correctness of the parallelized program. We formally prove
correctness of our approach. In addition, we define a widely-used subset
of OpenMP that can be encoded into our core language, thus effectively
enabling the verification of OpenMP compiler directives, and we discuss
automated tool support for this verification process.

1 Introduction

A common approach to handle the complexity of parallel programming is to
write a sequential program augmented with parallelization compiler directives
that indicate which part of code might be parallelized. A parallelizing compiler
consumes the annotated sequential program and automatically generates a par-
allel version. This parallel programming approach is often called deterministic
parallel programming, as the parallelization of a deterministic sequential program
augmented with correct compiler directives is always deterministic. Determinis-
tic parallel programming is supported by different languages and libraries such as
OpenMP [2] and is often used for financial and scientific applications [17,1,13,5].

Although it is relatively easy to write parallel programs in this way, care-
less use of compiler directives can easily introduce data races and consequently
non-deterministic program behaviour. This paper proposes a static technique to
prove that parallelization as indicated by the compiler directives does not intro-
duce such non-determinism. Moreover it also shows how our technique reduces
functional verification of the parallelized program to functional verification of
the sequential program. We develop our verification technique over a core deter-
ministic parallel programming language called PPL (for Parallel Programming

2

Language). To show practical usability of our approach, we present how a com-
monly used subset of OpenMP can be encoded into PPL and then be verified in
our approach. We also discuss tool support for this process.

In essence, PPL is a language for the composition of code blocks. We identify
three kinds of basic blocks: a parallel block, a vectorized block and a sequential
block. Basic blocks are composed by three binary block composition operators:
sequential composition, parallel composition and fusion composition where the
fusion composition allows two parallel basic blocks to be merged into one. An
operational semantics for PPL is presented.

Our verification technique requires each basic block to be specified by an
iteration contract [8] that describes which memory locations are read and written
by a thread. Moreover, the program itself should be specified by a global contract.
To verify the program, we show that the block compositions are memory safe (i.e.
data race free) by proving that for all independent iterations (i.e. the iterations
that might run in parallel) all accesses to shared memory are non-conflicting,
meaning that they are disjoint or they are read accesses. If all block compositions
are memory safe, then it is sufficient to prove that the sequential composition of
all the basic blocks w.r.t. program order is memory safe and functionally correct,
to conclude that the parallelized program is functionally correct.

The main contributions of this paper are the following:
– A core language, PPL, and an operational semantics which captures the main

forms of parallelization constructs in deterministic parallel programming.
– A verification approach for reasoning about data race freedom and functional

correctness of PPL programs.
– A soundness proof that all verified PPL programs are indeed data race free

and functionally correct w.r.t. their contracts.
– Tool support that addresses the complete process of encoding of OpenMP

into PPL and verification of PPL programs.
This paper is organized as follows. After some background information, Section 3
explains syntax and semantics of PPL. Section 4 presents our verification tech-
nique for reasoning about PPL programs and also discusses soundness of our
verification approach. Section 5 explains how our approach is applied to verifi-
cation of OpenMP programs. Finally, we conclude with related and future work.

2 Background
We present some background information on OpenMP, Permission-based Sepa-
ration Logic and the notion of iteration contract.

2.1 OpenMP
This section illustrates the most important OpenMP features by an example.
We verify this example later in Section 5 where the program contract and the
iteration contracts are added. The example in Fig. 1 is a sequential C program
augmented by OpenMP compiler directives (pragmas). The pivotal paralleliza-
tion annotation in OpenMP is omp parallel which determines the parallelizable

3

1 /∗@ Program Contract (PC) @∗/
2 void adm(int L,int a[],int b[],int c[],
3 int d[]){
4 #pragma omp parallel {
5 #pragma omp for schedule(static) nowait
6 for(int i =0;i<L;i++) //Loop L1
7 /∗@ Iteration Contract 1 (IC1) @∗/
8 { c[i]=a[i]; }
9 #pragma omp for schedule(static) nowait

10 for(int i =0;i<L;i++) //Loop L2
11 /∗@ Iteration Contract 2 (IC2) @∗/
12 { c[i]=c[i]+b[i]; }
13 #pragma omp for
14 for(int i =0; i<L; i++) //Loop L3
15 /∗@ Iteration Contract 3 (IC3) @∗/
16 { d[i]=a[i]∗b[i]; }
17 }}

Fig. 1. OpenMP Example

code block (called parallel region). Threads are forked upon entering a parallel
region and joined back into a single thread at the end of the region.

The example shows a parallel region with three for-loops L1, L2, and L3.
The loops are marked as omp for meaning that they are parallelizable (i.e.
their iterations are allowed to be executed in parallel). To precisely define the
behaviour of threads in the parallel region, omp for annotations are extended by
clauses. For example the combined use of the nowait and schedule(static) clauses
indicates that it is safe to fuse the parallel loops L1 and L2, meaning that the
corresponding iterations of L1 and L2 are executed by the same thread without
waiting. The clause nowait implies that it is safe to eliminate the implicit barrier
at the end of omp for. The clause schedule(static) ensures that the OpenMP
compiler assigns the same thread to corresponding iterations of the loops. In
OpenMP all variables which are not local to a parallel region are considered as
shared by default unless they are explicitly declared as private (using private
clause) when they are passed to a parallel region.

2.2 Syntax and Semantics of Specification Language

Our verification technique is based on Permission-based Separation Logic [12,9].
Separation logic [20] is an extension of Hoare logic [15], originally proposed
to reason about pointer programs. Separation logic is also suited for modular
verification of concurrent programs [18]: two threads working on disjoint parts
of the heap do not interfere and thus can be verified in isolation.

The basis of our specification language is a separation logic for C [22], ex-
tended with fractional permissions [12,9] to denote the right to either read from
or write to a location. Any fraction in the interval (0, 1) denotes a read permis-
sion, while 1 denotes a write permission. Permissions can be split and combined,
but soundness of the logic prevents the sum of the permissions for a location over
all threads to exceed 1. This guarantees that if permission specifications can be
verified, the program is data race free. The set of permissions that a thread holds
are often called its resources. In earlier work, we have shown that this logic is
suitable to reason about kernel programs [7] and parallel loops [8].

Formulas F in our logic are built from first-order logic formulas b, permission
predicates Perm(l, f), conditional expressions (·?· : ·), separating conjunction ?,

4

and universal separating conjunctionF over a finite set I. The syntax of formulas
is formally defined as follows:

F ::= b | Perm(l, f) | b?F : F | F ?F |Fi∈IF (i)

where b is a side-effect free boolean expression, l is a side-effect free expression
of type location, and f is a side-effect free expression of type fraction.

To define the semantics of formulas, we assume the existence of the following
domains: Loc, the set of memory locations, VarName, the set of variable names,
Val, the set of all values, which includes the memory locations, and Frac, the set
of fractions ([0, 1]). A heap is a map from locations to values h : Loc → Val. A
heap mask is a map from locations to fractions π : Loc→ Frac with unit element
π0 : l 7→ 0. A store is function from variable names to values: σ : VarName→ Val.

Our semantics mixes concepts of Implicit Dynamic Frames [21] and Sepa-
ration Logic with fractional permissions: formulas can access the heap directly,
fractional permissions to access the heap are provided by the Perm predicate.
Moreover, a strict form of self-framing is enforced.

The semantics of expressions depends on a store, a heap, and a heap mask
and yields a value: σ, h, π [e〉 v. The store and the heap are used to determine the
value, the heap mask is used to determine if the expression is correctly framed.
For example, the rule for array access is:

σ, h, π [e〉 i π(σ(a) + i) > 0
σ, h, π [a[e]〉h(σ(a) + i)

The semantics of a formula, given in Fig. 2, depends on a store, a heap, and a
heap mask and yields a heap mask: σ, h, π [F 〉π′. The given mask π represents
the permissions by which the formula F is framed. The yielded mask π′ rep-
resents the additional permissions provided by the formula. Hence, a boolean
expression is valid if it is true and yields no additional permissions, while eval-
uating a Perm predicate yields additional permissions to the location, provided
the expressions are properly framed. We overload standard addition +, summa-
tion Σ, and comparison operators to be respectively used as pointwise addition,
summation and comparison over the heap masks.

Finally, a formula F is valid for a given store σ, heap h and mask π if starting
with the empty heap mask π0 the required heap mask of F is less than π:

σ, h, π |= F , if σ, h, π0 [F 〉π′ ∧ π′ ≤ π

2.3 Iteration Contract
An iteration contract specifies the variables read and written by one iteration
of the loop. In [8], we prove that if the iteration contract can be proven cor-
rect without any further specifications, the iterations are independent and the
loop is parallelizable. If a loop has dependences, we can add additional specifi-
cations that capture these dependences, and describe how resources are trans-
ferred to another iteration of the loop. For example the iteration contract of
L1 consists of: a precondition Perm(c[i], 1) ?Perm(a[i], 1/4) and a post-condition
Perm(c[i], 1) ?Perm(a[i], 1/4) ?(c[i]==a[i]).

5

3 Syntax and Semantics of Deterministic Parallelism

This section presents the abstract syntax and semantics of PPL, our core lan-
guage for deterministic parallelism.

3.1 Syntax

Fig. 3 presents the PPL syntax. The basic building block of a PPL program
is a block. Each block has a single entry point and a single exit point. Blocks
are composed using three binary composition operators: parallel composition
||, fusion composition ⊕ and sequential composition #. The entry block of the
program is the outermost block. Basic blocks are: a parallel block Par (N) S;
a vectorized block Vec (N) V; and a sequential block S, where N is a positive
integer variable that denotes the number of parallel threads, i.e., the block’s
parallelization level, S is a sequence of statements and V is a sequence of guarded
assignments b ⇒ ass. We assume a restricted syntax for fusion composition
such that its operands are parallel basic blocks with the same parallelization
levels. Each basic block has a local read-only variable tid ∈ [0..N) called thread
identifier where N is the block’s parallelization level. We generalize the term
iteration to refer to the computations of a single thread in a basic block. So
a parallel or vectorized block with parallelization level N has N iterations. For
simplicity, but without loss of generality, threads have access to a single shared
array which we refer to as heap. We assume all memory locations in the heap are
allocated initially. A thread may update its local variables by performing a local
computation (v := e), or by reading from the heap (v := mem(e)). A thread
may update the heap by writing one of its local variables to it (mem(e) := v).

3.2 Semantics

The behaviour of PPL programs is described using a small step operational
semantics. Throughout, we assume existence of the finite domains: VarName,
the set of variable names, Val, the set of all values, which includes the memory
locations, Loc, the set of memory locations and [0..N) for thread identifiers. We
write ++ to concatenate two statement sequences (S++S). To define the program
state, we use the following definitions.

σ, h, π [b〉 true

σ, h, π [b〉π0

σ, h, π [e1〉 l σ, h, π [e2〉 f π(l) + f ≤ 1

σ, h, π [Perm(e1, e2)〉π0[l 7→ f]

σ, h, π [b〉 true σ, h, π [F1〉π′

σ, h, π [b?F1 : F2〉π′
σ, h, π [b〉 false σ, h, π [F2〉π′

σ, h, π [b?F1 : F2〉π′

σ, h, π [F1〉π′ σ, h, π + π′ [F2〉π′′

σ, h, π [F1 ?F2〉π′ + π′′

∀i ∈ I : σ, h, π [F (i)〉πi π +Σi∈Iπi ≤ 1

σ, h, π [Fi∈IF (i)〉Σi∈Iπi

Fig. 2. Semantics of Formulas in Permission-based Separation Logic

6

Parallel Programming Language:
Block ::=

(
Block || Block

)
|
(
Block ⊕ Block

)
|
(
Block # Block

)
| Par(N) S | S

S ::= s;S | skip
s ::= ass | if (b) {S} else {S} | while (b) {S} | Vec(N) V
V ::= b⇒ ass;V | skip
ass ::= v := e | v := mem(e) | mem(e) := v
b ::= boolean expression over private memory
e ::= arithmetic expression over private memory
v ::= thread local variable

Fig. 3. Abstract Syntax for Parallel Programming Language

h ∈ Heap ∆= Loc→ Val heap, modeled as a single shared array
γ ∈ Store ∆= VarName→ Val program store, accessible to all threads
σ ∈ PrivateMem ∆= VarName→ Val private memory, accessible to a single thread

Now we define BlockState. We distinguish various kinds of block states: an
initial state Init, composite block states ParC and SeqC, a state in which a parallel
basic block should be executed Par, a local state Local in which a vectorized or
a sequential basic block should be executed, and a terminated block state Done.
EB ∈ BlockState ∆=

Init(Block)| initial block states
ParC(EB,EB)| SeqC(EB,Block)| composite block states
Par(LS)| parallel basic block states
Local(LS)| thread local states
Done terminated block state

The Init state consists of a block statement Block. The ParC state consists of
two block states, and the SeqC state contains a block state and a block statement
Block; they capture all the states that a parallel composition and a sequential
composition of two blocks might be in, respectively. The basic block state Par
captures all the states that a parallel basic block Par (N) S might be in during
its execution. It contains a mapping LS ∈ [0..N) → LocalState, that maps each
thread to its local state, which models the parallel execution of the threads.
There are three kinds of local states: a vectorized state Vec, a sequential state
Seq, and a terminated sequential state Done.
LS ∈ LocalState ∆=

Vec(Σ,E,V, σ, S)| vectorized basic block states
Seq(σ, S)| sequential basic block states
Done terminated sequential basic block states

The Vec block state captures all states that a vectorized basic block Vec (N) V
might be in during its execution. It consists of Σ ∈ [0..N)→ PrivateMem, which
maps each thread to its private memory, the body to be executed V, a pri-
vate memory σ, and a statement S. As vectorized blocks may appear inside a
sequential block, keeping σ and S allows continuation of the sequential basic
block after termination of the vectorized block. To model vectorized execution,
the state contains an auxiliary set E ⊆ [0..N) that models which threads have

7

[Init ParC]
Init(Block1||Block2), γ, h→p ParC(Init(Block1), Init(Block2)), γ, h

[Init SeqC]
Init(Block1#Block2), γ, h→p SeqC(Init(Block1),Block2), γ, h

[Init Fuse]
Init(Par(N) S1 ⊕ Par(N) S2), γ, h→p Init(Par(N) S1 ++ S2), γ, h

LS, h→s LS′, h′
[Lift Seq]

Local(LS), γ, h→p Local(LS′), γ, h′

LS ∆= λt ∈ [0..N).Seq(γ[tid := t], S)
[Init Par]

Init(Par(N) S), γ, h→p Par(LS), γ, h
[Init Seq]

Init(S), γ, h→p Local(Seq(γ[tid := 0],S)), γ, h

EB1, γ, h→p EB′1, γ, h′
[ParC Step1]

ParC(EB1,EB2), γ, h→p ParC(EB′1,EB2), γ, h′
EB2, γ, h→p EB′2, γ, h′

[ParC Step2]
ParC(EB1,EB2), γ, h→p ParC(EB1,EB′2), γ, h′

[ParC Done]
ParC(Done,Done), γ, h→p Done, γ, h

[Local Done]
Local(Done), γ, h→p Done, γ, h

EB, γ, h→p EB′, γ, h′
[SeqC Step]

SeqC(EB,Block), γ, h→p SeqC(EB′,Block), γ, h′
[SeqC Done]

SeqC(Done,Block), γ, h→p Init(Block), γ, h

i ∈ dom(LS) LS(i), h→s LS′, h′
[Par Step]

Par(LS), γ, h→p Par(LS[i := LS′]), γ, h′
∀i ∈ dom(LS).(LS(i) = Done)

[Par Done]
Par(LS), γ, h→p Done, γ, h

Fig. 4. Operational semantics for program execution

already executed the current instruction. Only when E equals [0..N), the next in-
struction is ready to be executed. Finally, the Seq block state consists of private
memory σ and a statement S.

We model the program state as a triple of block state, program store and
heap (EB, γ, h) and thread state as a pair of local state and heap (LS, h). The
program store is constant within a block and it contains all global variables (e.g.
the initial address of arrays). To simplify our notation, each thread receives a
copy of the program store as part of its private memory when it initializes. The
operational semantics is defined as a transition relation between program states:
→p⊆ (BlockState× Store× Heap)× (BlockState× Store× Heap), (Fig. 4), using
an auxiliary transition relation between thread local states →s⊆ (LocalState ×
Heap)× (LocalState×Heap), (Fig. 5), and a standard transition relation →ass⊆
(PrivateMem×S×Heap)×(PrivateMem×Heap) to evaluate assignments, (Fig. 6).
The semantics of expression e and boolean expression b over private memory σ,
written EJeKσ and BJbKσ respectively, is standard and not discussed any further.
We use the standard notation for function update: given a function f : A→ B,
a ∈ A, and b ∈ B:

f [a := b] = x 7→
{
b , x = a
f(x), otherwise

Program execution starts in a program state (Init(Block), γ, h) where Block is
the program’s entry block. Depending on the form of Block, a transition is made

8

[While]
Seq(σ,while (b) {S}; S′), h→s Seq(σ, if (b) {S ++ while (b) {S}} else {skip}; S′), h

BJbKσ
[if true]

Seq(σ, if(b){S1}else{S2}; S), h→s Seq(σ,S1 ++ S), h
¬BJbKσ

[if false]
Seq(σ, if(b){S1}else{S2}; S), h→s Seq(σ,S2 ++ S), h

σ, ass, h→ass σ
′, h′

[Ass]
Seq(σ, ass; S), h→s Seq(σ′, S), h′

[Seq Done]
Seq(σ, skip), h→s Done, h

Σ
∆= λt ∈ [0..N).σ[tid := t]

[Init Vec]
Seq(σ,Vec(N) V; S), h→s Vec(Σ, ∅,V, σ,S), h

i ∈ dom(Σ)\E BJbKΣ(i) Σ(i), ass, h→ass σ
′, h′

[Vec Step1]
Vec(Σ,E, b⇒ ass; V, σ,S), h→s Vec(Σ[i := σ′],E ∪ {i}, b⇒ ass; V, σ, S), h′

i ∈ dom(Σ)\E ¬BJbKΣ(i)
[Vec Step2]

Vec(Σ,E, b⇒ ass; V, σ, S), h→s Vec(Σ,E ∪ {i}, b⇒ ass; V, σ,S), h

[Vec Sync]
Vec(Σ, dom(Σ), b⇒ ass; V, σ, S), h→s Vec(Σ, ∅,V, σ,S), h

[Vec Done]
Vec(Σ,E, skip, σ, S), h→s Seq(σ,S), h

Fig. 5. Operational semantics for thread execution

into an appropriate block state, leaving the heap unchanged. The evaluation of
a ParC state non-deterministically evaluates one of its block states (i.e. EB1 or
EB2), evaluation of a sequential block is done by evaluating the local state. The
evaluation of a SeqC state evaluates its block state EB step by step when this
evaluation is done, the subsequent block is initiated.

The evaluation of a parallel basic block is defined by the rules Par Step and
Par Done. To allow all possible interleavings of the threads in the block’s thread
pool, each thread has its own local state LS, which can be executed indepen-
dently, modeled by the mapping LS. A thread in the parallel block terminates
if there is no more statement to be executed and a parallel block terminates if
all threads executing the block are already terminated.

The evaluation of sequential basic block’s statements as defined in Fig. 5 is
standard except when it contains a vectorized basic block. A sequential basic
block terminates if there is no instruction left to be executed (Seq Done). The
execution of a vectorized block (defined by the rules Init Vec, Vec Step, Vec
Sync and Vec Done in Fig. 5) is done in lock-step, i.e. all threads execute
the same instruction no thread can proceed to the next instruction until all are
done, meaning that they all share the same program counter. As explained, we
capture this by maintaining an auxiliary set, E, which contains the identifier of
the threads that have already executed the vector instruction (i.e. the guarded
assignment b ⇒ ass). When a thread executes a vector instruction, its thread

9

[LAss]
σ, v := e, h→ass σ[v := EJeKσ], h

[rdsh]
σ, v := mem(e), h→ass σ[v := h(EJeKσ)], h

[wrsh]
σ,mem(e) := v, h→ass σ, h[EJeKσ := v]

Fig. 6. Operational semantics for assignments

identifier is added to E (rules Vec Step). The semantics of vector instructions
(i.e. guarded assignments) is the semantics of assignments if the guard evaluates
to true and it does nothing otherwise. When all threads have executed the current
vector instruction, the condition E = dom(Σ) holds, and execution moves on to
the next vector instruction of the block (with an empty auxiliary set) (rule Vec
Sync).The semantics of assignments as defined in Fig. 6 is standard and does
not require further discussion.

4 Verification Approach

This section discusses our verification technique for reasoning about PPL pro-
grams, as well as soundness of our verification approach.

4.1 Verification

For the verification of PPL programs, we assume that each basic block is spec-
ified by an iteration contract. We distinguish two kinds of formulas in an it-
eration contract: resource formulas (in permission-based separation logic) and
functional formulas (in first-order logic). For an individual basic block if its iter-
ation contract is proven correct, then the basic block is data race free and it is
functionally correct w.r.t. its iteration contract. To verify the correctness of the
program, using standard permission-based separation logic rules, the contracts
of all composite blocks should be given. However, our verification approach re-
quires only the basic blocks to be specified at the cost of an extra proof obligation
that ensures that the heap accesses of all iterations which are not ordered se-
quentially are non-conflicting (i.e. they are disjoint or they are read accesses).
If this condition holds, correctness of the PPL program can be derived from
the correctness of a linearised variant of the program. The rest of this section
discusses the formalization of our approach.

To verify a program, we require each basic block of the program to be spec-
ified by an iteration contract which consists of: a resource contract rc(i), and a
functional contract fc(i), where i is the block’s iteration variable. The functional
contract consists of a precondition P(i), and a postcondition Q(i). We also re-
quire the program to be globally specified by a contract G which consists of the
program’s resource contract RCP and the program’s functional contract FCP
with the program’s precondition PP and the program’s postcondition QP .

Let P be the set of all PPL programs and P ∈ P be an arbitrary PPL program
assuming that each basic block in P is identified by a unique label. We define

10

BP = {b1 , b2 , ..., bn}, as the finite set of basic block labels of the program P.
For a basic block b with parallelization level m, we define a finite set of iteration
labels Ib = {0 b, 1 b, ..., (m − 1)b} where ib indicates the ith iteration of the block
b. Let IP =

⋃
b∈BP

Ib be the finite set of all iterations of the program P.
To state our proof rule, we first define the set of all iterations which are not

ordered sequentially, the incomparable iteration pairs, IP⊥ as:

IP⊥ = {(ib1 , jb2)|ib1 , jb2 ∈ IP ∧ b1 6= b2 ∧ ib1 ⊀e jb2 ∧ jb2 ⊀e ib1}

where ≺e⊆ IP × IP is the least partial order which defines an extended happens-
before relation. The extension addresses the iterations which are happens-before
each other because their blocks are fused. We define ≺e based on two partial
orders over the program’s basic blocks: ≺⊆ BP × BP and ≺⊕⊆ BP × BP . The
former is the standard happens-before relation of blocks where they are sequen-
tially composed by # and the latter is an happens-before relation w.r.t. fusion
composition ⊕. They are defined by means of an auxiliary partial order gen-
erator function G(P, δ) : P × {#,⊕} → BP × BP such that: ≺= G(P, #) and
≺⊕= G(P,⊕). We define G as follows:

G(P, δ) =

G ∪ {(b′, b′′)|b′ ∈ BP′ ∧ b′′ ∈ BP′′}, if P = P ′ • P ′′ ∧ δ = •
G, if P = P ′ • P ′′ ∧ δ 6= •
∅, if P ∈ {Par(N) S, S}

where G = G(P ′, δ) ∪ G(P ′′, δ).
The function G computes the set of all iteration pairs of the input program P

which are in relation w.r.t. the given composition operator δ. This computation
is basically a syntactical analysis over the input program. Now we define the
extended partial order ≺e as:

∀ib, jb
′
∈ IP .ib ≺e jb

′
⇔ (b ≺ b′) ∨

(
(b ≺⊕ b′) ∧ (i = j)

)
This means that the iteration ib happens-before the iteration jb′ if b happens-
before b′ (i.e. b is sequentially composed with b′) or if b is fused with b′ and i
and j are corresponding iterations in b and b′.

We extend the program logic that we introduced in [8] with the proof rule b-
linearise. We first define the block level linearisation (b-linearisation for short)
blin : P→ P# as a program transformation which substitutes all non-sequential
compositions by a sequential composition. We define P# as a subset of P in which
only sequential composition # is allowed as composition operator.

Fig. 7 presents the rule b-linearise. In the rule, rcb(i) and rcb′(j) are the
resource contracts of two different basic blocks b and b′ where ib ∈ Ib and jb′ ∈ Ib′ .
Application of the rule results in two new proof obligations. The first ensures

(
∀(ib, jb

′
) ∈ IP⊥.(RCP → rcb(i) ? rcb′ (j))

)
{RCP ?PP}blin(P){RCP ?QP}

[b–linearise]
{RCP ?PP}P{RCP ?QP}

Fig. 7. Proof rule for b-linearisation reduction of PPL programs.

11

that all heap accesses of all incomparable iteration pairs (the iterations that may
run in parallel) are non-conflicting (i.e. all block compositions in P are memory
safe). This reduces the correctness proof of P to the correctness proof of its b-
linearised variant blin(P) (the second proof obligation). Then the second proof
obligation is discharged in two steps: (1) proving the correctness of each basic
block against its iteration contract (using the proof rule introduced in [8]) and
(2) proving the correctness of blin(P) against the program contract.

4.2 Soundness

Next we show that a PPL program with provably correct iteration contracts and
a global contract that is provable in our logic extended with the rule b-linearise
is indeed data race free and functionally correct w.r.t. its specifications. To show
this, we prove soundness of the b-linearise rule, as well as data race freedom of
all verified programs.

For the soundness proof, we show that for each program execution there
exists a corresponding b-linearised execution with the same functional behaviour
(i.e. they end in the same terminal state if they start in the same initial state)
if all independent iterations are non-conflicting. From the rule’s assumption,
we know that if the precondition holds for the initial state of the b-linearised
execution (which is also the initial state of the program execution) then its
terminal state satisfies the postcondition. As both executions end in the same
terminal state, the postcondition thus also holds for the program execution.
To prove that there exists a matching b-linearised execution for each program
execution, we first show that any valid program execution can be normalized
w.r.t. program order and second that any normalized execution can be mapped to
a b-linearised execution. To formalize this argument, we first define: an execution,
an instrumented execution, and a normalized execution.

We assume all program’s blocks including basic and composite blocks have
a block label and program’s statements are labelled by the label of the block to
which they belong. Also there exists a total order over the block labels.

Definition 1. (Execution). An execution of a program P is a finite sequence of
state transitions Init(P), γ, h→∗p Done, γ, h′.

To distinguish between valid and invalid executions, we instrument our op-
erational semantics with heap masks. A heap mask models the access permis-
sions to every heap location. It is defined as a map from locations to fractions
π : Loc → Frac where Frac is the set of fractions ([0, 1]). Any fraction (0, 1) is
read and 1 is write permission. The instrumented semantics ensures that each
transition has sufficient access permissions to the heap locations that it accesses.
We first add a heap mask π to all block state constructors (Init, ParC, SeqC
and so on) and local state constructors (Vec, Seq and Done). Then we extend
the operational semantics rules such that in each block initialization state with
heap mask π an extra premise should be discharged, which states that there
are n ≥ 2 heap masks π1, ..., πn, one for each newly initialized state such that
Σn
i πi ≤ π. The heap masks are carried along by the computation and termina-

tion transitions without any extra premises, while in the termination transitions

12

heap masks of the terminated blocks are forgotten as they are not required after
termination. As an example, we provide the instrumented versions of the rules
Init ParC, ParC Done, rdsh, and wrsh.

π1 + π2 ≤ π
[Init ParC]

Init(Block1||Block2, π), γ, h→p,i ParC(Init(Block1, π1), Init(Block2, π2), π), γ, h

[ParC Done]
ParC(Done(π1),Done(π2), π), γ, h→p,i Done(π), γ, h

l = EJeKσ π(l) > 0
[rdsh]

σ, v := mem(e), h, π →ass,i σ[v := h(l)], h, π

l = EJeKσ π(l) = 1
[wrsh]

σ,mem(e) := v, h, π →ass,i σ, h[l := v], π
where→p,i and→ass,i denote program and assignment transition relations in the
instrumented semantics respectively. If a transition cannot satisfy its premises
it blocks.

Definition 2. (Instrumented Execution). An instrumented execution of a pro-
gram P is a finite sequence of state transitions Init(P, π), γ, h→∗p,i Done(π), γ, h′
where the set of all instrumented executions of P is written as IEP .

Lemma 1. Assuming that (1). ` ∀(ib, jb′) ∈ IP⊥.RCP → rcb(i) ? rcb′(j) and
(2). ∀b ∈ BP .{Fi∈[0..Nb)rcb(i)}Blockb{Fi∈[0..Nb)rcb(i)} are valid for a program
P (i.e. every basic block in P respects its iteration contract), for any execution
E of the program P, there exists a corresponding instrumented execution.

Proof. Given an execution E, we assign heap masks to all program states that the
execution E might be in. The program’s initial state is assigned by a heap mask
π ≤ 1. Assumption (1) implies that all iterations which might run in parallel
are non-conflicting which implies that for all Init ParC transitions, there exist
π1 and π2 such that π1 + π2 ≤ π′ where π′ is the heap mask of the state in
which Init ParC evaluates. In all computation transitions the successor state
receives a copy of the heap mask of its predecessor. Assumption (2) implies that
all iterations of all parallel and vectorized basic blocks are non-conflicting. This
implies that for an arbitrary Init Par or Init Vec transition which initializes a
basic block b, there exists π1, ..., πn such that Σn

i πi ≤ πb holds in b’s initialization
transition and in all computation transitions of an arbitrary iteration i of the
block b the premises of rdsh and wrsh transitions is satisfiable by πi. ut

Lemma 2. All instrumented executions of a program P are data race free.

Proof. The proof proceeds by contradiction. Assume that there exists an instru-
mented execution that has a data race. Thus, there must be two parallel threads
such that one writes to and the other one reads from or writes to a shared heap
location e. Because all instrumented executions are non-blocking, the premises of
all transitions hold. Therefore, π1(e) = 1 holds for the first thread, and π2(e) > 0
for the second thread either it writes or reads. Also because the program starts
with one single main thread, both threads should have a single common ancestor
thread z such that πx(e) + πy(e) ≤ πz(e) where x and y are the ancestors of the
first and the second thread respectively. A thread only gains permission from

13

its parent; therefore π1(e) + π2(e) ≤ πz(e) holds. Permission fractions are in the
range [0, 1] by definition, therefore π1(e) + π2(e) ≤ 1 holds. This implies that if
π1(e) = 1, then π2(e) ≤ 0 which is a contradiction. ut

A normalized execution is an instrumented execution that respects the pro-
gram order, which is defined using an auxiliary labelling function L : T→ BallP ×L
where T is the set of all transitions, L is the set of labels {I, C, T}, and BallP is
the set of block labels (including both composite and basic block labels).

L(t) =

(LB(block), I), if t initializes a block block
(LB(s), C), if t computes a statement s
(LB(block),T), if t terminates a block block

where LB returns the label of each block or statement in the program. We assume
the precedence order I < C < T over L. We say transition t with label (b, l) is
less than t′ with label (b′, l′) if (b ≤ b′) ∨ (b > b′ → (l′ = T ∧ b ∈ LBsub(b′)))
where LBsub(b) returns the label set of all blocks of which b is composed.

Definition 3. (Normalized Execution). An instrumented execution labelled by
L is normalized if the labels of its transitions are in non-decreasing order.

We transform an instrumented execution to a normalized one by safely commut-
ing the transitions whose labels do not respect the program order.

Lemma 3. For each instrumented execution of a program P, there exists a nor-
malized execution such that they both end in the same terminal state.

Proof. Given an instrumented execution IE = (s1, t1) : (s2, t2) : IE ′, if L(t1) >
L(t2), a state sx exists such that a new instrumented execution IE ′′ = (s1, t2) :
(sx, t1) : IE ′ can be constructed by swapping two adjacent transitions t1 and t2.
As the swap is on an instrumented execution which from Lemma 2 is data race
free, any accesses of t1 and t2 to a shared heap location must be reads. Because t1
and t2 are adjacent transitions, no other write may happen in between; therefore
the swap preserves the functionality of IE , yielding the same terminal state for
IE and IE ′′. Thus, the corresponding normalized execution of IE obtained by
applying a finite number of such swaps, yields the same terminal state as IE . ut

Lemma 4. For each normalized execution of a program P, there exists a b-
linearised execution blin(P), such that they both end in the same terminal state.

Proof. An execution of blin(P) is constructed by applying the mapM : BlockState→
BlockState to each state of a normalized execution. M is defined as:

M(s) =

Init(blin(P)), if s = Init(P)
SeqC(M(EB1),Block2), if s = ParC(EB1, Init(Block2))
M(EB2), if s = ParC(Done,EB2)
SeqC(Par(LS1),Block2), if s = Par(LS1 ++ LS0

2)
s, otherwise

14

where LS0
2 is the initial mapping of thread local states of Block2 and Par(LS1 ++

LS0
2) indicates the state of two fused parallel blocks Par(LS1) and Par(LS0

2) where
++ is overloaded and indicates pairwise concatenation of statements in the local
states LS1 and LS0

2 (i.e. S1 ++ S2). ut

Definition 4. (Validity of Hoare Triple). The Hoare triple {RCP ?PP}P{RCP ?QP}
is valid if for any execution E (i.e. Init(P), γ, h →∗p Done, γ, h′) if γ, h, π �
RCP ?PP is valid in the initial state of E, then γ, h′, π � RCP ?QP is valid in
its terminal state.

The validity of γ, h, π � RCP ?PP and γ, h′, π � RCP ?QP is defined by the
semantics of formulas presented in Section 2.2.

Theorem 1. The rule b-linearise is sound.

Proof. Assume (1). ` ∀(ib, jb′) ∈ IP⊥.RCP → rcb(i) ? rcb′(j) and (2). ` {RCP ?PP}
blin(P){RCP ?QP}. From assumption (2) and the soundness of the program
logic used to prove it [8], we conclude (3). ∀b ∈ BP .{Fi∈[0..Nb)rcb(i)}Blockb
{Fi∈[0..Nb)rcb(i)}. Given a program P, implication (3), assumption (1) and,
Lemma 1 imply that there exists an instrumented execution IE for P. Lemma 3
and Lemma 4 imply that there exists an execution E′ for the b-linearised vari-
ant of P, blin(P), such that both IE and E′ end in the same terminal state.
The initial states of both IE and E′ satisfy the precondition {RCP ?PP}. From
assumption (2) and the soundness of the program logic used to prove it [8],
{RCP ?QP} holds in the terminal state of E′ which thus also holds in the ter-
minal state of IE as they both end in the same terminal state. ut

Finally, we show that a verified program is indeed data race free.

Proposition 1. A verified program is data race free.

Proof. Given a program P, with the same reasoning steps mentioned in the
Theorem 1, we conclude that there exists an instrumented execution IE for
P. From Lemma 2 all instrumented executions are data race free. Thus, all
executions of a verified program are data race free. ut

5 Verification of OpenMP Programs

Finally, this section discusses the practical applicability of our approach, by
showing how it can be used for verification of OpenMP programs. We demon-
strate this in detail on the OpenMP program presented in Section 2.1. More
OpenMP examples are available online1. Below we precisely identify a commonly
used subset of OpenMP programs that can be verified in our approach.

We verify OpenMP programs in the following three steps: (1) specifying
the program (i.e. providing an iteration contract for each loop and writing the
1 See the online version of the VerCors toolset at http://www.utwente.nl/vercors/.

http://www.utwente.nl/vercors/

15

Program Contract (PC):
/*@ invariant a != NULL && b != NULL && c != NULL && d != NULL && L>0;
invariant \length(a)==L && \length(b)==L && \length(c)==L && \length(d)==L;
context \forall∗ int k; 0 <= k && k < L; Perm(a[k],1/2);
context \forall∗ int k; 0 <= k && k < L; Perm(b[k],1/2);
context \forall∗ int k; 0 <= k && k < L; Perm(c[k],1);
context \forall∗ int k; 0 <= k && k < L; Perm(d[k],1);
ensures \forall int k; 0 <= k && k < L; c[k]==a[k]+b[k] && d[k]==a[k]∗b[k];@*/
Iteration Contract 1 (IC1) of loop L1:
/*@ context Perm(c[i] ,1) ∗∗ Perm(a[i] ,1/4);
ensures c[i]==a[i]; @*/

Iteration Contract 2 (IC2) of loop L2:
/*@ context Perm(c[i] ,1) ∗∗ Perm(b[i] ,1/4);
ensures c[i]==\old(c[i]) +b[i]; @*/

Iteration Contract 3 (IC3) of loop L3:
/*@ context Perm(d[i] ,1) ∗∗ Perm(a[i] ,1/4) ∗∗ Perm(b[i] ,1/4);
ensures d[i]==a[i]∗b[i]; @*/

Fig. 8. Required contracts for verification of the running OpenMP example

program contract for the outermost OpenMP parallel region), (2) encoding of the
specified OpenMP program into its PPL counterpart (carrying along the original
OpenMP specifications), (3) checking the PPL program against its specifications.
Steps two and three have been implemented as part of the VerCors toolset [6,23].
The details of the encoding algorithm is discussed in Section 5.2.

Fig. 8 shows the required contracts for the example discussed in Section 2.1.
There are four specifications. The first one is the program contract which is
attached to the outermost parallel block. The others are the iteration contracts
of the loops L1, L2 and L3. The requires and ensures keywords indicate pre
and post-conditions of each contract and the context keyword is a shorthand for
both requiring and ensuring the same predicate. We use ∗∗ and \forall∗ to denote
separating conjunction ? and universal separating conjunction Fi∈I receptively.
Before verification, we encode the example into the following PPL program P:

/∗@ Program Contract @∗/

P

(
Par(L) /*@IC1@*/ c[i]=a[i];︸ ︷︷ ︸

B1

⊕Par(L) /*@IC2@*/ c[i]=c[i]+b[i];︸ ︷︷ ︸
B2

)
||

B3︷ ︸︸ ︷
Par(L) /*@IC3@*/ d[i]=a[i]*b[i];

Program P contains three parallel basic blocks B1, B2 and B3 and is verified
by discharging two proof obligations: (1) ensures that all heap accesses of all
incomparable iteration pairs (i.e. all iteration pairs except the identical itera-
tions of B1 and B2) are non-conflicting which implies that the fusion of B1 and
B2 and parallel composition of B1 ⊕ B2 and B3 are memory safe (2) consists of
first proving that each parallel basic block by itself satisfies its iteration contract
∀b ∈ {1, 2, 3}.{Fi∈[0..L)ICb(i)}Bb {Fi∈[0..L)ICb(i)}, and second proving the cor-

16

OMP ::= #pragma omp parallel [clause]∗ {Job+} |
Job ::= #pragma omp for [clause]∗ {for-loop {SpecS}} |

#pragma omp simd [clause]∗ {for-loop {SpecS}} |
#pragma omp for simd [clause]∗ {for-loop {SpecS}} |
#pragma omp sections [clause]∗ {Section+} |
#pragma omp single {SpecS |OMP}

Section ::= #pragma omp section {SpecS |OMP} |
SpecS ::= a list of sequential statements with a contract
clause ::= allowed OpenMP clause

Fig. 9. OpenMP Core Grammar

rectness of the b-linearised variant of P against its program contract {RCP ?PP}
B1 # B2 # B3{RCP ?QP}.

We have implemented a slightly more general variant of PPL in the tool
that supports variable declarations and method calls. To check the first proof
obligation in the tool we quantify over pairs of blocks which allows the number
of iterations in each block to be a parameter rather than a fixed number.

5.1 Captured subset of OpenMP

We define a core grammar which captures a commonly used subset of OpenMP
[3]. This defines also the OpenMP programs that can be encoded into PPL
and then verified using our approach. Fig. 9 presents the OMP grammar which
supports the OpenMP annotations: omp parallel, omp for, omp simd, omp for
simd, omp sections, and omp single. An OMP program is a finite and non-empty
list of Jobs enclosed by omp parallel. The body of omp for, omp simd, and omp for
simd, is a for-loop. The body of omp single is either an OMP program or it is a
sequential code block SpecS. The omp sections block is a finite list of omp section
sub-blocks where the body of each omp section is either an OMP program or it
is a sequential code block SpecS.

5.2 OpenMP to PPL Encoding

This section discusses the encoding of OpenMP programs into PPL. The en-
coding algorithm is presented in Fig. 10 and accepts OpenMP programs that
conform to the core grammar in Fig. 9. The algorithm consists of a recursive
translate step and a compose step. The translation step recursively encodes all
OMP Jobs into their equivalent PPL code blocks without caring about how they
will be composed. Later, the compose step conjoins the translated code blocks
together to build a PPL program. The translation step is a map, which applies
the function m to the list of input tuples and returns a list of output tuples.
Depending on the case, m might itself use another map function sec. The input
tuples are in the form (A,C) where A is an OpenMP annotation and C is a
code block written in C. The tuple represents an annotated code block in OMP
programs. The output tuples are in the form (P, [A]) where P is a PPL program
and [A] is a list of OpenMP annotations.

17

The compose step takes as its input a list of tuples in the form (P, [A])
(the output of the translate step); then it inserts appropriate PPL composition
operators between adjacent tuples in the list provided certain conditions hold.
To properly bind tuples to the composition operators, the operators are inserted
in three individual passes; one pass for each composition operator, based on the
binding precedence of the operators from high to low as follows: # < || < ⊕.

Operator insertion is done by the function bundle (lines 32-36). In each pass
bundle consumes the input list recursively; Each recursive call takes the two first
tuples of the list and inserts a composition operator if the tuples satisfy the
conditions of the composition operator; otherwise, it moves one tuple forward
and starts the same process again.

For each composition operator the conditions are different. The conditions
for parallel and fusion compositions are checked by the functions fusiable and
par able. The fusion composition is inserted between two consecutive tuples
(Pi, [Ai]) and (Pj , [Aj]) where both [Ai] and [Aj] are omp for annotations, the
clauses of both annotations include schedule(static), and the clauses of [Ai] in-
clude nowait. The parallel composition is inserted between any two tuples in
the program where the clauses of the first tuple include nowait. Otherwise, the
sequential composition is inserted. The final outcome is a single merged tuple
(P, [A]) where P is the result of the encoding and [A] can be eliminated.

To verify generated PPL programs, our approach requires a program con-
tract and an iteration contract for each SpecS block in the OpenMP program
from which all the required PPL contracts can be gained. The only exception is
omp simd for which the contract of while-loop should also be given by the user.

6 Related Work
Botincan et al. propose a proof-directed parallelization synthesis which takes
as input a sequential program with a proof in separation logic and outputs
a parallelized counterpart by inserting barrier synchronizations [10,11]. Hurlin
uses a proof-rewriting method to parallelize a sequential program’s proof [16].
Compared to them, we prove the correctness of parallelization by reducing the
parallel proof to a b-linearised proof. Moreover, our approach allows verification
of sophisticated block compositions, which enables reasoning about state-of-the-
art parallel programming languages (e.g. OpenMP) while their work remains
rather theoretical.

Raychev et al. use abstract interpretation to make a non-deterministic pro-
gram (obtained by naive parallelization of a sequential program) deterministic
by inserting barriers [19]. This technique over-approximates the possible pro-
gram behaviours which ends up in a determinization whose behaviour is implied
by a set of rules which decide between feasible schedules rather than the be-
haviour of the original sequential program. Unlike them, we do not generate any
parallel program. Instead we prove that parallelization annotations can safely
be applied and the parallelized program is functionally correct and exhibits the
same behaviour as its sequential counterpart. Barthe et al. synthesize SIMD code
given pre and postconditions for loop kernels in C++ STL or C# BCL [4]. We

18

1 Def For as for(i..N*M){SpecS(i)}
2 Def Par as Par(N∗M){SpecS(tid)}
3 Def WhileVec as
4 while(i ∈ [0,N))
5 Vec(tid ∈ [0,M)) SpecS(i∗M+tid)
6 Def ParVec as
7 Par(tid1 ∈ [0,N))
8 Vec(tid2 ∈ [0,M)) SpecS(tid1∗M+tid2)
9

10 encode p = compose (translate p)
11 translate xs = map m xs
12 m(omp for clause∗,For)
13 =(Par,omp for clause∗)
14 m(omp simd simdlen(M) clause∗,For)
15 =(WhileVec,omp simd clause∗)
16 m(omp for simd simdlen(M) clause∗,For)
17 =(ParVec,omp for simd clause∗)
18 m(omp sections clause∗, xs)
19 = (fold || (map sec xs),clause∗)
20 m(omp single clause∗,x)

21 = (map sec x,clause∗)
22 sec(omp parallel clause∗, Job+)
23 = encode Job+

24 sec(SpecS) = Par(1){SpecS}
25

26 par able (P1,A1) (P2,A2) = nowait(A1)
27 fusiable (P1,A1) (P2,A2) =
28 omp for(A1) ∧ omp for(A2) ∧
29 sched static (A1) ∧ sched static(A2) ∧
30 nowait(A1)
31

32 bundle [x] = [x]
33 bundle op cond x:y: ys
34 = x : r , if !(cond x y)
35 = (op x (head r)) : (tail r), else
36 where r = bundle op cond (y:ys)
37 compose ys =
38 let p1 = bundle ⊕ fusiable ys in
39 let p2 = bundle || par able p1 in
40 fold # p2

Fig. 10. Encoding of a commonly used subset of OpenMP programs into PPL programs

alternatively enable verification of SIMD loops, by encoding them into vector-
ized basic blocks. Moreover, we address the parallel or sequential composition of
those loops with other forms of parallelized blocks.

Dodds et al. introduce a higher-order variant of Concurrent Abstract Pred-
icates (CAP) to support modular verification of synchronization constructs for
deterministic parallelism [14]. While their proofs make explicit use of nested
region assertions and higher-order protocols, they do not address the semantic
difficulties introduced by these features which make their reasoning unsound.

7 Conclusion and Future Work

We have presented the PPL language which captures the main forms of deter-
ministic parallel programming. Then, we proposed a verification technique to
reason about data race freedom and functional correctness of PPL programs.
We illustrated the practical applicability of our technique by discussing how a
commonly used subset of OpenMP can be encoded into PPL and then verified.

As future work, we plan to look into adapting annotation generation tech-
niques to automatically generate iteration contracts, including both resource
formulas and functional properties. This will lead to fully automatic verification
of deterministic parallel programs. Moreover, our technique can be extended
to address a larger subset of OpenMP programs by supporting more complex
OpenMP patterns for scheduling iterations and omp task constructs. We also
plan to identify the subset of atomic operations that can be combined with our
technique that allows verification of the widely-used reduction operations.

19

References

1. LLNL OpenMP Benchmarks. Last accessed Nov. 28, 2016. https://asc.llnl.gov/
CORAL-benchmarks/.

2. OpenMP Architecture Review Board, OpenMP API Specification for Parallel Pro-
gramming. Last accessed Nov. 28, 2016. http://openmp.org/wp/.

3. A. Aviram and B. Ford. Deterministic OpenMP for Race-free Parallelism. In
HotPar’11, pages 4–4, Berkeley, CA, USA, 2011.

4. G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron. From Relational
Verification to SIMD Loop Synthesis. In ACM SIGPLAN Notices, volume 48,
pages 123–134, 2013.

5. M. J. Berger, M. J. Aftosmis, D. D. Marshall, and S. M. Murman. Performance
of a New CFD Flow Solver Using a Hybrid Programming Paradigm. J. Parallel
Distrib. Comput., 65(4):414–423, Apr. 2005.

6. S. Blom and M. Huisman. The VerCors tool for Verification of Concurrent Pro-
grams. In FM, volume 8442 of LNCS, pages 127–131. Springer, 2014.

7. S. Blom, M. Huisman, and M. Mihelčić. Specification and Verification of GPGPU
Programs. Science of Computer Programming, pages 376–388, 2014.

8. S. C. C. Blom, S. Darabi, and M. Huisman. Verification of Loop Parallelisations.
In FASE 2015, volume 9033 of LNCS, pages 202–217. Springer, 2015.

9. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, pages 259–270, 2005.

10. M. Botincan, M. Dodds, and S. Jagannathan. Resource-sensitive Synchronization
Inference by Abduction. In POPL, pages 309–322, 2012.

11. M. Botinčan, M. Dodds, and S. Jagannathan. Proof-Directed Parallelization Syn-
thesis by Separation Logic. ACM Trans. Program. Lang. Syst., 35:1–60, 2013.

12. J. Boyland. Checking interference with fractional permissions. In Static Analysis
Symposium, volume 2694 of LNCS, pages 55–72. Springer, 2003.

13. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In Workload Charac-
terization. IISWC 2009, pages 44–54, 2009.

14. M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular Reasoning for Deter-
ministic Parallelism. In ACM SIGPLAN Notices, pages 259–270, 2011.

15. C. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

16. C. Hurlin. Automatic Parallelization and Optimization of Programs by Proof
Rewriting. In SAS, pages 52–68. Springer, 2009.

17. H.-Q. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. 1999.

18. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

19. V. Raychev, M. Vechev, and E. Yahav. Automatic Synthesis of Deterministic
Concurrency. In SAS, pages 283–303. Springer, 2013.

20. J. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science, pages 55–74. IEEE Computer Society, 2002.

21. J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames. ACM Trans.
Program. Lang. Syst., 34(1):2:1–2:58, 2012.

22. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hof-
mann and M. Felleisen, editors, POPL, pages 97–108. ACM, 2007.

23. VerCors project homepage, Sep. 28, 2016. http://www.utwente.nl/vercors/.

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
http://openmp.org/wp/
http://www.utwente.nl/vercors/

	A Verification Technique for Deterministic Parallel Programs (extended version)
	Introduction
	Background
	OpenMP
	Syntax and Semantics of Specification Language
	Iteration Contract

	Syntax and Semantics of Deterministic Parallelism
	Syntax
	Semantics

	Verification Approach
	Verification
	Soundness

	Verification of OpenMP Programs
	Captured subset of OpenMP
	OpenMP to PPL Encoding

	Related Work
	Conclusion and Future Work

