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Abstract

In this paper we present a new method on how to compute the expecta-
tion and distribution of the queue length for a particular class of systems.
We apply this method and prove its time-efficiency for models in road
traffic such as the fixed-cycle traffic light (FCTL) model and for the bulk-
service queue model. We give several generalizations of the FCTL queue,
which model right-turns, disruptions of the traffic and uncertainty in de-
parture times. We also consider different ways of green time allocation,
which are based on either minimizing the maximum expected delay per
vehicle or minimizing the total expected queue length. We compare these
methods to proportional allocation.

Keywords: Fixed-cycle traffic light model, bulk service queue, roots,
contour integration

Introduction

The fixed-cycle traffic-light (FCTL) queue is the basic and very important model
in the traffic research. The analysis of this system was first based on simulations
and approximations, but, in 1964, Darroch [3] proposed a method to find the
probability generating function (pgf) for the FCTL queue length. His method
resembles the one proposed by Bailey [2] for the bulk-service queue. In both
cases the pgf of the queue length is a rational function with several unknown
probabilities. In these papers, it is proposed to find these probabilities using the
analyticity of the pgf function inside the unit disk. This implies that each zero
of the denominator inside the closed unit disk is also a zero of the numerator.
Since zeros are roots of the corresponding equation, in what follows we will use
these terms interchangeably. In case of stable systems, it can be shown, see
[1], that the number of zeros of the denominator coincides with the number of
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the unknown probabilities. Thus, if one knows the roots, one can construct a
system of equations for the unknown probabilities by equating the numerator
to zero at the zeros of the denominator. In both cases it is a linear system of
equations, one of which is trivial due to the fact that 1 is always a zero of both
the denominator and the numerator. However, the fact that the pgf is equal to 1
at point 1 yields one more equation. Thus, in case of distinct zeros it is possible
to find all the required probabilities. The main drawback of this approach is the
problem of finding the roots, since, in general, no closed-form formula exists.

The numerical problem of determining the zeros is now a classical problem
in queueing theory. There are different ways how to find these roots in some
special cases. For example, for Poisson arrivals there are analytic formulas for
the roots, see, e.g., [4]. However, these formulas include infinite summations
and the rate of convergence of these summations is not clear. Moreover, the
precision of the acquired zeros influences the resulting unknown probabilities.

Some authors decided to derive approximations and bounds for the mean
queue length. For the FCTL model the most famous approximation is due to
Webster [11], which appeared earlier than the Darroch solution. In this paper,
Webster assumed Poisson arrival process and proposed a semi-empiric formula
for the mean delay and an empiric formula for the optimal cycle length. The
formula for the mean delay is based on an analytical model and simulation
results. Later Miller [6] proposed an approximation formula for the mean delay
with arbitrary arrivals. Some approximations are difficult to use. For example,
in [7] the approximation formula contains an integration. In [5], the bulk service
queue was used as an upper bound for the FCTL model and the solution for bulk
service contains a double infinite summation. The most simple approximation
for the mean delay in the case of an arbitrary arrival process is due to Van den
Broek et al. [8].

In this paper, we present a method to calculate the queue length distribution
and its mean without finding the zeros of the denominator explicitly. The key
point of the method is that the unknown probabilities depend on the denomina-
tor zeros in a symmetric way, and it can be shown that the actual values of the
zeros are not important. In this paper, we show that it is possible to apply the
residue theorem, i.e., to find these unknown probabilities by using contour inte-
grations. The mean queue length is, in fact, a function of only one such contour
integral. This makes our method computationally efficient in comparison with
standard root-finding method. The proposed method is also general in the sense
that it can be applied for an arbitrary arrival process with a pgf analytic in an
open neighbourhood of the unit disk. Moreover, it is possible to use our method
not only for the FCTL and bulk-service models but also for other simple cases.
As an example, we give several generalizations of the FCTL model. Namely,
we consider the difference between straight and turning flows, different types of
traffic disruptions and uncertain departure times. Additionally, we investigate
the impact of the variability of the arrival process on the expected queue length
and compare different green time allocation policies.

The paper is structured as follows. In section 1, we give an overview of
several models, for which our method is applicable. The method in general form
is presented in section 2. In section 3, we give computational recommendations
for method parameters. Exact formulas of the average delay for the described
models are given in section 4. In section 5, we discuss possible generalizations
of FCTL model. Numerical examples are given in section 6. In section 7, we
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present the final conclusions and discuss future research directions.

Models

In this section, we discuss several discrete-time models. In each model the pgfs of
an important performance indicator is a rational function, i.e., it is represented
as a fraction. The denominator of the fraction has a general form zg − A(z),
where A(z) is a pgf of a known discrete random variable. The numerator has a
“nice” form with g unknown parameters. What is meant by “nice” we explain
in section 2. Since the pgf should be analytic inside the unit disc and continuous
up to the unit circle, all zeros of zg −A(z) inside and on the unit circle should
be also zeros of the numerator with the same or a higher multiplicity. It turns
out that equation zg = A(z) has exactly g roots inside and on the unit circle
(see, e.g., [1]). The common approach to find the unknown variables includes
finding these zeros and solving a system of equations.

FCTL model

Consider a fixed-cycle traffic-light. It is a basic model in traffic and was ex-
tensively studied before, see, for example, [3], [9]. Since we give several gen-
eralizations of this model later, we explain it here in detail. We focus on one
approaching lane and consider the queue length on this lane. The same analysis
can be repeated to other lanes to find, for example, the average delay of a vehicle
on the intersection. Suppose that each delayed vehicle needs the same time τ to
depart from the intersection. Thus, if there is a long queue in the beginning of
the green time, we see a departure each τ seconds. In what follows, we suppose
that time is split in time-intervals, each one of which consists of τ seconds. We
suppose that the effective green time consists of g ∈ N time-intervals and the
effective red time of r ∈ N time-intervals. Thus, not more than g delayed vehi-
cles can depart during the green time. We suppose that each cycle starts with
g green time-intervals and then switches to r red time-intervals. Together this
gives c = g + r time-intervals in a cycle.

Denote as Xn,m(z) the pgf of the queue length in the beginning of the nth

time-interval during the mth cycle, where n = 0, . . . , c− 1, m ∈ N. Let Yn,m be
the arrivals during the nth time-interval of the mth cycle with pgf Yn,m(z). We
assume that:

Assumption 1 (Independence assumption). The arrivals Yn,m are identical
and independent of each other and of n,m.

Thus, we can denote Yn,m simply as Y and Yn,m(z) as Y (z). This assumption
is realistic for an intersections that lies far enough from another signal-controlled
intersections, for example, if the intersection is isolated. If the distance is small,
then the vehicles arrive in platoons and this assumption does not hold. Following
[9], we add the so called FCTL assumption:

Assumption 2 (FCTL assumption). If a vehicle arrives during the green time
and finds an empty queue, then it proceeds without delay.

Assumption 2 means that if the queue is cleared before the end of the green
time, the vehicles that will arrive during the remaining green time will immedi-
ately depart. Therefore, the queue length will be zero till the end of the green
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time. This assumption is quite realistic for straight-going flow since vehicles
that find no queue will proceed without stopping and, thus, are able to depart
at the free-flow speed. For turning flows this assumption is not that realistic,
especially, for right-turn (or left-turn in the case of left-hand traffic). Thus,
we also consider the FCTL model with the one-vehicle assumption in the next
subsection.

Denote by qn,m the probability to have an empty queue in the beginning
of the nth time-interval during the mth cycle, i.e., qn,m = Xn,m(0). Under
Assumptions 1 and 2, we get

Xn+1,m(z) =
Xn,m(z)− qn,m

z
Y (z) + qn,m for n = 0, . . . , g − 1,

Xn+1,m(z) = Xn,m(z)Y (z) for n = g, . . . , c− 2,

X0,m+1(z) = Xc−1,m(z)Y (z).

(1)

The first equation in (1) is based on the fact that if there is at least one vehicle
in the queue in the beginning of the green time-interval, then one vehicle departs

and Y vehicles arrive. In terms of pgfs this means multiplying by Y (z)
z

. However,
if the queue is empty, it remains empty during the time-interval. Thus, qn,m
should not be multiplied by any additional function. During the red time, each
time-interval Y vehicles arrive and none departs. Therefore, we only multiply
by Y (z) in the last two equations of (1).

Denote by Xn(z) the pgf of the queue length in the stationary state in the
beginning of the nth time-interval during an arbitrary cycle. It exists in case of
stable system, i.e., when the possible amount of departures is bigger than the
expected amount of arrivals:

g > cY ′(1).

Let qn be the stationary probability to have an empty queue in the beginning of
the nth time-interval during a cycle, i.e., qn = Xn(0). Then from (1) it follows
that

Xn+1(z) =
Xn(z)− qn

z
Y (z) + qn for n = 0, . . . , g − 1,

Xn+1(z) = Xn(z)Y (z) for n = g, . . . , c− 2,

X0(z) = Xc−1(z)Y (z).

(2)

This gives us the pgf of the overflow queue, defined as the queue length in the
beginning of the red time:

Xg(z) =

∑g−1
k=0 qkz

k(Y (z))g−1−k

zg − (Y (z))c
(z − Y (z)). (3)

FCTL model with the one-vehicle assumption

For some cases it may turn out that the FCTL assumption does not hold. For
example, in case of a right turn on the intersection (or left turn in the case of
left-hand traffic) vehicles that find the queue empty need to decelerate almost
to the speed of a delayed vehicle. Thus, instead of the FCTL assumption it is
logical to consider the following assumption:

Assumption 3 (One-vehicle assumption). If a set of vehicles arrives during
the green time-interval and finds the queue empty, then only one of the vehicles
proceeds without delay, and the others form a queue.
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This assumption means that even if the queue was cleared during the pre-
vious green time-intervals, the overflow queue may be not empty. The stability
condition in this model coincides with the stability condition of the FCTL model
with the FCTL assumption. Equations (2) will change to

Xn+1(z) = Xn(z)
Y (z)

z
+ qn

(

1−
1

z

)

Y (0) for n = 0, . . . , g − 1,

Xn+1(z) = Xn(z)Y (z) for n = g, . . . , c− 2,

X0(z) = Xc−1(z)Y (z).

(4)

Indeed, if there are no vehicles, then max{Y −1, 0} arrive, with pgf Y (z)−Y (0)
z

+

Y (0). Therefore, we get for n < g that Xn+1(z) = (Xn(z) − qn)
Y (z)
z

+

qn

(

Y (z)−Y (0)
z

+ Y (0)
)

. This gives us the above result after a small rearrange-

ment. Hence, the pgf of the overflow queue is

Xg(z) =

∑g−1
k=0 qkz

k(Y (z))g−1−k

zg − (Y (z))c
(z − 1)Y (0). (5)

Note that in case of Bernoulli arrivals Assumptions 2 and 3 coincide. In this
case Y (z) = (1 − Y (0))z + Y (0), and, thus, z − Y (z) = Y (0)(z − 1). Note
also that even though the equation for roots is the same, generally qk may have
different values then in case of the FCTL assumption. This happens because
one of the roots is 1 and plugging it in the numerator gives 0 without giving
an additional equation to find qk. The required gth equation comes from the
fact that Xg(1) = 1. This normalization equation will have different forms for
Assumptions 2 and 3. Under Assumption 2, we have that

g−1
∑

k=0

qk(1− Y ′(1)) = g − cY ′(1).

However, under Assumption 3, the normalization equation has the following
form:

g−1
∑

k=0

qkY (0) = g − cY ′(1).

We see that these models coincide only if 1− Y (0) = Y ′(1). This happens only
in case of Bernoulli arrivals.

Discrete bulk-service model

Consider a discrete-time queue where each time-unit the server serves g cus-
tomers and during this time Ab new customers arrive with a pgf Ab(z). The
server serves only those customers that are present in the queue in the beginning
of the time-unit. If there are less than g customers in the queue, all of them
are served. Denote as Xb(z) the pgf of the queue length at the beginning of a
time-unit in the stationary state. Let qk be the stationary probability to have
k customers in the queue in the beginning of a time-unit. Then, (see e.g., [2])
we have that

Xb(z) =

∑g−1
k=0 qk(z

g − zk)

zg −Ab(z)
Ab(z). (6)

The stability condition in this model is g > A′
b(1).
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Method description

In this section, we propose a generic method to analyse different discrete-time
queuing systems such as those of section 1. Let us consider the function X(z)
with the following form:

X(z) =

∑g−1
k=0 xkz

k(B(z))g−1−k

zg −A(z)
f(z), (7)

where xk are unknown variables that we want to determine, A(z) and B(z) are
pgfs, f(z) is a function such that f(1) = 0 and for each zero zl 6= 1 of the
denominator f(zl) 6= 0, and X(1) = 1. Note, we do not assume that X(z) is
a pgf. The functions A(z), B(z) and the coefficients xk satisfy the following
conditions:

Assumption 4 (Analyticity assumption). For some ε > 0, the functions A(z)
and B(z) are analytic in the disk D1+ε = {z : |z| < 1 + ε}. The function X(z)
is analytic inside the unit disk and continuous up to the unit circle.

Assumption 5 (Stability assumption). The functions A(z) and B(z) satisfy
g > A′(1) and B′(1) < 1.

Under the stability and analyticity assumptions, there exist exactly g roots
z0 = 1, z1, . . . , zg−1 of the equation

zg = A(z) (8)

inside and on the unit circle. Note that 1 is always a simple root, since according
to the stability assumption (zg −A(z))′|z=1 = g −A′(1) 6= 0.

Coefficients in terms of roots

In this subsection, we discuss how xk, k = 0, . . . , g − 1, depend on the roots
of (8). First, we state the following theorem, its detailed proof is given in the
Appendix.

Theorem 1. If z 6= w and z, w ∈ D̄1 = {z : |z| 6 1}, then

zB(w) 6= wB(z).

Corollary. Equation z = B(z) has only one root in D̄1, namely 1.

Remark 1. Without loss of generality, we may assume that A(0) 6= 0. To see
this, consider the case when A(0) = 0. In this case, we can reduce the complexity
in the following way. Note that A(z) = znA0(z) for some n ∈ N and A0(z) that
is analytic in the same disk D1+ε as A(z), A0(0) 6= 0. Then the function A0(z)
is a pgf. According to the stability assumption, A′(1) = n + A′

0(1) < g, and,
hence, n < g. Therefore, the multiplicity of z1 = 0 as a root of the equation (8)
is equal to n. Using the analyticity of X(z) we conclude that 0 is also a zero of
multiplicity n of the numerator (7). Since f(0) = f(z1) 6= 0, point 0 is a zero of

multiplicity n of the function
∑g−1

k=0 xkz
k(B(z))g−1−k.

By induction, one can check that the coefficients xk, k = 0, . . . , n − 1, are
equal to zero. We explain the basis of the induction, i.e., x0 = 0. Indeed, sup-
pose x0 6= 0, then the series representation of the function

∑n−1
k=0 xkz

k(B(z))g−1−k

6



starts with power z0 with coefficient x0B(0)g−1 6= 0. Hence, the numerator is
not equal to zero in 0. Here we used that B(0) 6= 0. This follows from the
second part of the stability assumption, i.e., B′(1) < 1. Similarly, using the
fact that xj = 0 for all j = 0, . . . , n − 1 one can prove that xk = 0. Therefore,
whenever A(z) = 0, we can reduce the complexity of the system changing g to
g − n, xk−n to xk for k > n and A(z) to A0(z). Note that all assumptions,
namely 4 and 5, still hold. Thus, we assume from now on that A(0) 6= 0.

Let yk = B(zk)
zk

for k = 0, . . . , g − 1. Since we know that A(0) 6= 0, then
zk 6= 0 for each k = 0, . . . , g − 1. According to Theorem 1, yk 6= yl if zk 6= zl.
Rewrite X(z) in the following way:

X(z) =

∑g−1
k=0 xk

(

B(z)
z

)g−1−k

zg −A(z)
f(z)zg−1.

As we know zk 6= 0 and f(zk) 6= 0 for k = 1, . . . , g − 1. The numerator is also
equal to 0 for z = zk, k = 1, . . . , g − 1. Thus,

g−1
∑

l=0

xly
g−1−l
k = 0,

where k = 1, . . . , g − 1. Consider the following polynomial

h(y) =

g−1
∑

l=0

xly
g−1−l =

g−1
∑

l=0

xg−1−ly
l.

The function h(y) is a polynomial of degree g − 1 and yk for k = 1, . . . , g − 1
are zeros of this polynomial. Note that whenever zk is a multiple root of the
equation zg = A(z), yk is a multiple root of the polynomial h(y) with the same
multiplicity. Thus, h(y) can be written as

h(y) = x0

g−1
∏

k=1

(y − yk). (9)

By applying Vieta’s formulas (see [10]) to the polynomial h(y), we get that

xk

x0
= (−1)kσk(y1, . . . , yg−1), (10)

where, for k = 1, . . . , g − 1,

σk(y1, . . . , yg−1) = σk =
∑

16i1<···<ik6g−1

yi1 . . . yik

are elementary symmetric polynomials. Here for notational convenience we
assume

σ0(y1, . . . , yg−1) = σ0 = 1.

This gives us xk up to a normalization constant, which we derive from the
assumption that X(1) = 1:

X(1) =
h(1)

g −A′(1)
f ′(1) =

∑g−1
k=0 xk

g −A′(1)
f ′(1) = 1. (11)
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Figure 1: An example of curve γ. The roots of the equation z529 = (z+1)9 are
represented as bold points.

Coefficients in terms of contour integrations

Using (10), we can find the coefficients xk if we know the values of elementary
symmetric polynomials σk. We will represent these symmetric polynomials as
functions of the following symmetric polynomials:

ηk = ηk(y1, . . . , yg−1) =

g−1
∑

l=1

ykl

for k = 1, . . . , g − 1. To find ηk, consider a curve γ that embraces all zeros zk,
k = 1, . . . , g − 1 but does not embrace any other roots of (8). For example, the
curve that embraces the unit disk without 1, see Figure 1. In section 3.1, we
elaborate on how to choose this curve. Note that the following lemma holds:

Lemma 1. Consider a function g(z) that is analytic in a neighbourhood of zk,

where k = 1, . . . , g − 1. Then the residue of function gzg−1−A′(z)
zg−A(z) g(z) at zk is

equal to mzkg(zk), where mzk is the multiplicity of the zero zk.

Using this lemma and the residue theorem, we get that

ηk =
1

2πi

∮

γ

gzg−1 −A′(z)

zg −A(z)

(

B(z)

z

)k

dz −
1

2πi

∮

Sδ

gzg−1 −A′(z)

zg −A(z)

(

B(z)

z

)k

dz,

(12)
where Sδ is the circle with radius δ > 0 around the origin. The parameter δ

should be chosen in such way that there are no roots of (8) in D̄δ = {z : |z| 6 δ}.
The following lemma provides a way how to find σk, k = 1, . . . , g−1, using ηk,

k = 1, . . . , g − 1. We omit the proof of this lemma since it requires only careful
computation of the monomials’ coefficients in the right side of the equation (13).
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Lemma 2. The following recurrence equation holds:

σk =
1

k

k
∑

l=1

(−1)l+1σk−lηl (13)

for each k = 1, . . . , g − 1.

Thus, we can use formulas (10), (11) and (12) together with Lemma 2 to
find the coefficients xk, k = 0, . . . , g − 1.

Expectation in terms of the roots

Now consider X ′(1). In case of FCTL model it represents the expected overflow
queue.

X ′(1) =

(

∑g−1
k=0 xkz

k(B(z))g−1−k

zg −A(z)
f(z)

)′∣
∣

∣

∣

∣

z=1

=

=
f ′(1)

g −A′(1)
·

(

h

(

B(z)

z

)

zg−1

)′
∣

∣

∣

∣

∣

z=1

+ h(1) ·

(

f(z)

zg −A(z)

)′
∣

∣

∣

∣

∣

z=1

=

=
f ′(1)

g −A′(1)

(

h′(1)(B′(1)−1)+(g−1)h(1)
)

+h(1)
f ′′(1)(g −A′(1))− f ′(1)(g(g − 1)−A′′(1))

2(g −A′(1))2
.

Now we can plug in h(1) from (11).

X ′(1) = (B′(1)− 1)
h′(1)

h(1)
+ g− 1+

f ′′(1)(g −A′(1))− f ′(1)(g(g − 1)−A′′(1))

2(g −A′(1))f ′(1)
.

(14)

The remaining term we need to find here is h′(1)
h(1) . By using representation (9),

we get that

h′(1)

h(1)
=

(

∏g−1
k=1(y − yk)

)′

∏g−1
k=1(y − yk)

∣

∣

∣

∣

∣

∣

∣

y=1

=

g−1
∑

k=1

1

1− yk
.

Thus, in terms of roots we have that

X ′(1) = (B′(1)− 1)

g−1
∑

k=1

zk

zk −B(zk)
+ g− 1 +

f ′′(1)

2f ′(1)
−

g(g − 1)−A′′(1)

2(g −A′(1))
. (15)

Expectation in terms of a contour integration

We can use a contour integral to find
∑g−1

k=1
zk

zk−B(zk)
. Let γ be as above, then

g−1
∑

k=1

zk

zk −B(zk)
=

1

2πi

∮

γ

gzg−1 −A′(z)

zg −A(z)

z

z −B(z)
dz. (16)

By the Corollary, we know that there are no roots of the equation z = B(z)
inside D̄1 except 1. Thus, we do not need to subtract any other residues of the
function inside the integral.

It is also possible to find the variance of the queue length in the same way,
but since it is a lengthy expression, we omit it here.
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Figure 2: Circle S1+ε such that there are no roots of the equation (8) in D̄1+ε \
D̄1. The roots of the equation z529 = (z + 1)9 are represented as bold points.

Computational remarks

In this section, we give several computational remarks and present the algo-
rithms.

Choice of curve γ

The main computational issue in our method is how to choose γ. The curve γ

that we suggested before is computationally inconvenient. Hence, we suggest to
take integrals over circle S1+ε, where ε > 0. We want ε to be small such that
there are no roots of the equation (8) in D̄1+ε \ D̄1, see Figure 2. This circle
is easily parametrizable, but 1 is inside the circle. Therefore, the integrals (12)
and (16) along γ and along circle S1+ε differs by the residue at 1. In case of the
expectation, this residue is

res1 =
1

1−B′(1)

(

1 +
B′′(1)

2(1−B′(1))
+

g(g − 1)−A′′(1)

2(g −A′(1))

)

. (17)

and in case of ηk the residue is equal to 1.
We parametrize S1+ε by z(ϕ) = (1 + ε)eiϕ. Then dz = izdϕ and

∮

S1+ε

g(z)dz = i

∫ π

−π

g(z(ϕ))z(ϕ)dϕ. (18)

From a complex integral to real integrals

In this subsection, we give a suggestion how to compute the required complex
integrals. We need to compute a complex integral, so we need to compute the
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imaginary and real parts of the integral (18). It is equivalent to computing the
following integrals:

∫ π

−π

Re(g(z(ϕ))z(ϕ))dϕ,

∫ π

−π

Im(g(z(ϕ))z(ϕ))dϕ.

However, in the applications the performance indicators are real values. Note
that in this case the imaginary part vanishes, and we need to compute only one
integral.

Choice of δ

In (12) we use the parameter δ such that there are no roots of the equation
(8) in D̄δ = {z : |z| 6 δ}. Let us find an analytic value for it. Consider
A(z) =

∑∞
j=0 ajz

j , since aj > 0 and
∑∞

j=0 aj = 1

|A(z)−A(0)| =

∣

∣

∣

∣

∣

∞
∑

j=1

ajz
j

∣

∣

∣

∣

∣

6

∞
∑

j=1

aj |z|
j
6 (1−A(0))|z|.

Note that a0 = A(0) > 0, since A(0) 6= 0. Therefore, for z such that |z|(2 −
A(0)) < A(0) we get

A(z) > A(0)− |A(z)−A(0)| > A(0)− (1−A(0))|z| > |z| > |z|g.

Thus, there are no roots of the equation (8) in D̄δ for δ <
A(0)

2−A(0) .

Note that if g > 1 and A(0) 6= 1, A(0)
2−A(0) < 1, and, thus, for each z with

|z|(2 − A(0)) = A(0) we have |z| > |z|g. Hence, there are no roots of (8) in

D̄δ for δ = A(0)
2−A(0) . So, in almost all cases δ = A(0)

2−A(0) is an appropriate value.

However, such δ can be too small, and, thus, computational errors will arise.
In case of very small analytical value δ, it may be better to use the following
method.

Consider the integral

∮

Sδ

gzg−1 −A′(z)

zg −A(z)
dz = i

∫ π

−π

gzg − zA′(z)

zg −A(z)
dϕ, (19)

where z in the last integral stands for z(ϕ) = δeiϕ. By Lemma 1 and the residue
theorem, the value of this integral is equal to the amount of roots of the equation
(8) inside the disk D̄δ multiplied by 2π. Therefore, if this integral is equal to
zero, δ is correct.

Choice of ε

The choice of ε may be done in the same way as the choice of δ by computing
contour integrals. However, one can prove using Rouche’s theorem that there
are no roots of equation (8) in D̄1+ε \ D̄1 for 1 + ε < z−1, where z−1 is the
(only) root of equation (8) on the open ray (1,∞). Thus, if a lower bound on
z−1 is known or it is easy to compute numerically, one can use any point on
(0, z−1 − 1) as ε. However, the smaller the ε the bigger the computational error
for the integral, so we suggest to take ε = z−1−1

2 . In this way, we stay far enough
from the roots of the equation (8).
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Zero-free case

From Theorem 1, it follows that the function B(z) has at most one zero in D1.
It is possible that the function B(z) has no zero in D1. For example, if B(z)
is the pgf of a Poisson random variable. We will show here how to simplify
computation in this case. Then, we will give a simple test how to check if B(z)
is zero-free in D1.

Consider ỹk = zk
B(zk)

. In the same manner as before, we can get formulas for

η̃k =
∑g−1

j=1 ỹ
k
j that do not contain any integrals along Sδ. More specifically, we

consider

h̃(y) =

g−1
∑

k=0

xky
k.

Thus, h̃
(

z
B(z)

)

(B(z))g−1 = h
(

B(z)
z

)

zg−1. We conclude that ỹk are zeros of

h̃(y), and, thus,

h̃(y) = xg−1

g−1
∏

k=1

(y − ỹk).

Using the same argument as in subsection 2.1, we get

xg−1−k

xg−1
= (−1)kσk(ỹ1, . . . , ỹg−1) = (−1)kσ̃k. (20)

Note that, if B(z) does not have zeros in D̄1, then

η̃k =
1

2πi

∮

γ

gzg−1 −A′(z)

zg −A(z)

(

z

B(z)

)k

dz. (21)

So, we do not need to compute 2 integrals. As before, we can change integral
to integral along the circle S1+ε. Then, we need to subtract the residue. It will
be equal to 1 in this case.

The necessary and sufficient condition for B(z) to be zero-free in D1 is given
by the following lemma.

Lemma 3. The pgf B(z) is zero-free in D1 if and only if B(−1) > 0.

Proof. Suppose that B(−1) > 0 and there is a zero t of B(z) in D1. Since
B(z) is a real function, this zero is on the real line. Also t should be a zero of
multiplicity at least 2. Therefore, B(t) = B′(t) = tB′(t) = 0. Consider function
C(z) = B(z) − zB′(z) and the Taylor expansion

∑∞
j=0 bjz

j of the function B

at zero. Note that bj > 0 for all j. Hence, C(t) = b0 −
∑∞

j=2(j − 1)bjt
j >

b0 −
∑∞

j=2(j − 1)bj = C(1) = 1−B′(1) > 0, and t is not a multiple zero of B.
The rest of the proof follows from the fact that B(z) is a continuous function

and B(1) > 0. Indeed, if B(−1) 6 0, then the intermediate value theorem states
that there is a zero of function B in the segment [−1, 1].

Algorithms

In this subsection, we give our full algorithms to compute X ′(1) and the coeffi-
cients xk, respectively. First, let us consider X

′(1).
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Algorithm 1 (Computation of X ′(1)).

1. Using one of two ways described in subsection 3.4, find such ε > 0 that
there are only g roots of the equation (8) in the disk D̄1+ε.

2. Compute (the real part of) the integral

I =

∫ π

−π

gzg − zA′(z)

zg −A(z)

z

z −B(z)
dϕ,

where z(ϕ) = (1 + ε)eiϕ.

3. Compute X ′(1) by

X ′(1) =
(B′(1)− 1)

2π
I +

B′′(1)

2(1−B′(1))
+ g +

f ′′(1)

2f ′(1)
. (22)

Note that (22) differs from (15) and (16) due to the residue (17) at one. Now
we give an algorithm to find the unknown variables xk:

Algorithm 2 (Computations of xk, k = 0, . . . , g − 1).

1. Using one of two ways described in subsection 3.4, find such ε > 0 that
there are only g roots of the equation (8) in the disk D̄1+ε.

2. Check if there is a zero of B(z) in D̄1 = {z : |z| 6 1}. If there is a zero,
use one of two ways described in subsection 3.3 to find such δ > 0 that
there are no roots of the equation (8) in the disk D̄δ.

3. Compute ηk (or η̃k if there is no root of B(z) in D̄1) using

ηk = −1+
1

2π

∫ π

−π

gzg − zA′(z)

zg −A(z)

(

B(z)

z

)k

dϕ−
1

2π

∫ π

−π

gwg − wA′(w)

wg −A(w)

(

B(w)

w

)k

dϕ

(

η̃k = −1 +
1

2π

∫ π

−π

gzg − zA′(z)

zg −A(z)

(

z

B(z)

)k

dϕ

)

,

where for convenience z = z(ϕ) = (1 + ε)eiϕ, w = w(ϕ) = δeiϕ.

4. Compute σk (or σ̃k) by (13) using ηk (or η̃k).

5. Compute xk, k = 0, . . . , g − 1, using (10) (or (20)) together with (11).

Our method applied to the models

In this section, we apply our method to the models of section 1. For these models
we first specify A(z), B(z), f(z) and xk. Then, we check that Assumptions 4
and 5 hold. Finally, we apply the proposed method and present formulas for
the queue length expectation.
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FCTL model

In the FCTL model, we take A(z) = (Y (z))c, B(z) = Y (z), f(z) = z−Y (z) and
xk = qk. Note that by the Corollary f(z) = 0 inside and on the unit circle only
for z = 1. Thus, f(zk) 6= 0 for each root zk of (8), k = 1, . . . , g − 1. We need
to assume that Y (z) is an analytic function in the disk D1+ε for some ε > 0.
Then the analyticity assumption holds. Since we are considering only stable
systems, we assume that g > cY ′(1) = A′(1), and, thus, B′(1) = Y ′(1) < 1, so
the stability assumption holds.

One can prove, see, e.g., [3], that the expected overflow queue EXg = X ′
g(1)

and the expected queue length at an arbitrary point during the cycle are con-
nected in the following way:

ELfctl =
r

c(1− Y ′(1))
X ′

g(1) +
r2Y ′(1)

2c(1− Y ′(1))
+

r(Y ′′(1) + Y ′(1)− (Y ′(1))2)

2c(1− Y ′(1))2
.

(23)
In this case, we can rewrite (22) as

X ′
g(1) =

(Y ′(1)− 1)

2π
I + g, (24)

where

I =

∫ π

−π

gzg − zc(Y (z))c−1Y ′(z)

zg − (Y (z))c
z

z − Y (z)
dϕ (25)

and z = z(ϕ) = (1 + ε)eiϕ.
Plugging (24) in (23) gives after rearrangement:

ELfctl = −
r

2πc
I +

gr

c
+

r(c+ g + 1)Y ′(1)

2c(1− Y ′(1))
+

rY ′′(1)

2c(1− Y ′(1))2
. (26)

FCTL model with the one-vehicle assumption

In the case of the one-vehicle assumption, we take A(z) = (Y (z))c, B(z) = Y (z),
f(z) = (z − 1)Y (0) and xk = qk. Here, since f(z) is a polynomial of degree 1,
it has only one root, namely 1. Using the same arguments as in the previous
subsection, we get that if our system is stable, then the stability assumption
holds. Thus, we can use our method for a stable system with a function Y (z)
that is analytic in some disk D1+ε.

In this model, one can check that the expected queue length at an arbitrary
point during the cycle is given by the following formula:

EL1v =
r

c(1− Y ′(1))
X ′

g(1) +
r(r + 1)

2c

Y ′(1)

1− Y ′(1)
+

Y ′′(1)

2(1− Y ′(1))
,

where X ′
g(1) is the expected overflow queue.

Now consider X ′
g(1). From (22) we get

X ′
g(1) =

(Y ′(1)− 1)

2π
I + g +

Y ′′(1)

2(1− Y ′(1))
, (27)

where I is given in (25). Finally, we get

EL1v = −
r

2πc
I+

r(r + 1)

2c

Y ′(1)

1− Y ′(1)
+

gr

c(1− Y ′(1))
+

rY ′′(1)

2c(1− Y ′(1))2
+

Y ′′(1)

2(1− Y ′(1))
.

(28)
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By comparing (27) with (24) and (28) with (26), we see that the difference

between straight and turning directions queues is just Y ′′(1)
2(1−Y ′(1)) for both the

overflow queue and the expected queue length during the cycle. This is not a
coincidence. In fact, for each k = 0, . . . , c− 1:

Xk,1v(z) = Xk,fctl(z)Xdif (z),

where

Xdif (z) =
(1− Y ′(1))(z − 1)

z − Y (z)
,

Xk,fctl(z) and Xk,1v(z) are pgfs in the beginning of the kth time-interval for
the FCTL and one-vehicle models. This equation is a simple corollary of the
equations (2), (3), (4), (5) and the fact that the zeros of the numerator are the

same for both models. Note that Xdif (1) = 1 and X ′
dif (1) =

Y ′′(1)
2(1−Y ′(1)) . Note

also that Xdif (z) is independent of g and c.
Consider the case g = c = 1. In the case of the FCTL assumption the queue

is always empty after it becomes empty once since there is no red time, during
which vehicles can form a queue. Therefore, in case of stability, i.e., Y ′(1) < 1,
we get X0,fctl(z) = 1. Thus, we get X0,1v = Xdif (z), i.e., Xdif (z) is the pgf
of the queue with g = c = 1 and arrivals Y (z). Hence, we get the following
decomposition result:

Theorem 2. For arbitrary g 6 c the queue with the one-vehicle assumption
can be considered as a sum of two independent queues: the FCTL queue with
the same g, c and the one-vehicle queue with g = c = 1.

Note that Xdif (z) can be also viewed as a pgf of the queue length in a
bottleneck, e.g., when part of the road has small speed limit and all the vehicles
decelerate before this place.

We can as well change the model to allow more than one vehicle, but not
all, to pass the junction if the queue is empty. Then the changes will be only
in the function f(z), and we can easily use our method if Assumptions 4 and 5
hold. For the same reason, there would be a similar decomposition result. The
expected queue length in this new case will be less than the expected queue
length in case of the one-vehicle assumption but more than the expected queue
length in case of the FCTL assumption.

Discrete bulk-service model

From the first glance the pgf of the queue length for this system (6) does not
have our kind of form, but we can rearrange it as follows:

Xb(z) =

∑g−1
k=0 qk(z

g − zk)

zg −Ab(z)
Ab(z) =

∑g−1
l=0

(
∑l

k=0 qk

)

zl

zg −Ab(z)
(z − 1)Ab(z).

Hence, we take A(z) = Ab(z), B(z) = 1, f(z) = (z− 1)Ab(z) and xk =
∑k

l=0 ql.
Note that qk = xk − xk−1, k = 2, . . . , g − 1, and q1 = x1. In case Ab(0) = 0,
we can reduce the complexity as before, since ql, as the probability to have
l customers in the queue, is zero for l = 0, . . . , n − 1, where n is the least
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possible amount of customers that arrive in one time slot. Thus, we suppose
that Ab(0) 6= 0. Hence, zk 6= 0 for every k = 1, . . . , g − 1 and

f(zk) = Ab(zk)(zk − 1) = z
g
k(zk − 1) 6= 0.

If the system is stable, then A′(1) = A′
b(1) < g. Since B′(1) = 0 < 1, the

stability assumption holds. Therefore, we can use our method if Ab(z) is analytic
in the disk D1+ε for some ε > 0.

From (22), we get that the expected queue length is given by the following
formula:

X ′
b(1) = −

I

2π
+ g +A′

b(1), (29)

where I is given by

I =

∫ π

−π

gzg − zA′
b(z)

zg −Ab(z)

z

z − 1
dϕ (30)

and z = z(ϕ) = (1 + ε)eiϕ. Note that (29) and (30) are equivalent to the
following formula:

X ′
b(1) = A′

b(1)−
1

2π

∫ π

−π

gzg − zA′
b(z)

zg −Ab(z)

1

z − 1
dϕ.

Generalizations of the FCTL model

In this section, we consider several possible realistic situations that are not
included in the FCTL model:

1. pedestrian and/or bicycle traffic lights have an actuated control;

2. just after intersection there is a bridge or a railway and a part of the green
times may be lost;

3. another lane on the intersection does not have a fixed length of the green
time due to an actuated control;

4. times between departures differ due to driver distraction and/or vehicle
condition, length;

5. the arrivals during the cycle are heterogeneous.

Even though the first three situations differ a lot they can be modelled in the
same way. Namely, by assuming that the green and the red times consist of a
random number of time-intervals. Thus, we first consider this model and these
three cases. Then, we discuss a way to model the distraction of the drivers. In
the end, we present the case for which we can use our method even though the
arrivals during different time-intervals are not identically distributed.
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Random green and red times

Suppose we know that with probability θr,g the red time consists of r time-
intervals and the green time after this red time consists of g time-intervals,
r, g ∈ N ∪ {0}, r + g 6= 0. Thus, cycles start with a red time, followed by a
green time. The length of the red time and the green time are independent of
the lengths of red and green times before this cycle. We assume that the length
of the green time is at most N , i.e.,

∑∞
k=0

∑∞
l=N+1 θk,l = 0. For simplicity, we

consider the smallest such N , so
∑∞

k=0 θk,N > 0. As before in each time-interval
Y vehicles arrive with pgf Y (z). We also use the FCTL assumption. One can
easily alter the formulas in case of the one-vehicle assumption.

Let X(z) be the pgf of the overflow queue. With probability θr,g the pgf of
the queue-length in the beginning of the next red time will be

X(z)
(Y (z))g+r

zg
+

(

1−
Y (z)

z

) g−1
∑

k=0

pk,r,g

(

Y (z)

z

)g−1−k

,

where pk,r,g is the probability to have an empty queue in the beginning of the
kth green time-interval in case of a cycle with r red and g green time-intervals.
Therefore, the pgf of the overflow queue satisfies the following equation:

X(z) =
∑

r,g

θr,g

(

X(z)
(Y (z))g+r

zg
+

(

1−
Y (z)

z

) g−1
∑

k=0

pk,r,g

(

Y (z)

z

)g−1−k
)

.

Gathering all uses of the function X(z) in the left side gives us

X(z) =

∑

r,g θr,g

(

1− Y (z)
z

)

∑g−1
k=0 pk,r,g

(

Y (z)
z

)g−1−k

1−
∑

r,g θr,g
(Y (z))g+r

zg

.

After multiplying both numerator and denominator by zN and making some
rearrangement, we get

X(z) =

∑N−1
k=0 qk(Y (z))kzN−1−k

zN −A(z)
(z − Y (z)),

where qk =
∑

r,g θr,gpg−1−k,r,g and A(z) =
∑

r,g θr,g(Y (z))g+rzN−g. As we see
we can apply our method if A(z) and Y (z) are analytic in some disk D1+ε,
A′(1) < N and Y ′(1) < 1.

Note that if the summation Ω1(z) =
∑

r,g θr,g(g + r)(Y (z))g+r−1zN−g con-
verges at some point a > 1, then Ω1(z), Ω1(z)Y

′(z), A(z) and

Ω2(z) =
∑

r,g

θr,g(Y (z))g+r(N − g)zN−g−1

converge absolutely in Da. Then, if the function Y (z) is analytic in Da, the
function A(z) is also analytic in Da and A′(z) = Ω1(z)Y

′(z) + Ω2(z). For
applications, A(z) is always a finite sum, so it is analytic if Y (z) is analytic.
Note that

A′(1) =
∑

r,g

θr,g((g + r)Y ′(1) + (N − g)) = E(G+R)Y ′(1) +N − EG,
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where G and R are random variables of the length of the green and red times
during a cycle. Thus, if A′(1) < N , we get E(G+R)Y ′(1) < EG. It immediately
follows that Y ′(1) < 1. We see once again that the stability assumption holds
in the case of a stable system.

Now we give three examples of possible applications of this model.

Interruption by pedestrians and/or cyclists

Let us focus on one line and, for simplicity, on one source causing interruptions.
Suppose that with probability p there is an arrival of a cyclist during a cycle.
Suppose that we need tc green time-intervals for switching on and off the cyclists
green time. The green time for pedestrians and cyclists can be given from green
time g of this lane or can be added as extra time for cycle time c = g + r. In
the first case, we have θr,g = 1 − p, θr+tc,g−tc = p, and in the second case, we
have θr,g = 1− p, θr+tc,g = p.

Interruption by trains and boats

This case is more or less the same as the previous one. The only difference is
in the length of interruption. We assume that interruption happens during a
cycle with probability p. We also assume that if it happens, then all green time
is effectively red. Therefore, θr,g = 1− p, θc,0 = p.

Vehicle-actuated control on another lane

Suppose that another lane has a vehicle-actuated control, and, thus, the length
of its green time is not deterministic. In this case, to find an approximation for
the queue length on the considered lane we assume that the lengths of red times
during different cycles are independent of each other. Then, if we know the
distribution of the green time for the other lane, we get a distribution of the red
time for the considered lane. Let θr,g = pr, where pr is the distribution of the
red time length and g is fixed. In the case of a fixed cycle, we take θr,c−r = pr.

Remark 2. The analysis of the actuated-controlled lane is complicated due to
the fact that the arrival and service processes are connected. We leave this
problem for the future research.

Uncertain departure time

In this subsection, we consider the following extension of the FCTL model.
Suppose that during a green time-interval the driver of the departing vehicle may
be distracted with fixed probability p ∈ [0, 1]. Therefore, during the green time,
even in case of a non-empty queue, vehicles do not depart each time-interval.
Then, each driver has a geometrically distributed amount of tries to depart from
the queue. This can be modelled using the FCTL model in the following way.
Suppose that during the green time there is an extra arrival with probability
p. In this way, we compensate for the uncertainty in the departures. The
distribution of the queue length in this model will be the same as distribution
in our new model. So we consider the case that the amount of the arrivals
during the green time has pgf Y (z)(pz+(1− p)). However, during the red time
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we have still Y (z) arrivals. Hence, the pgf of the overflow queue is given by the
following formula:

Xg(z) =

∑g−1
k=0 qkz

k(Y (z)(pz + 1− p))g−1−k

zg − (Y (z))c(pz + 1− p)g
(z − Y (z)(pz + 1− p)).

Using the same argumentation as in Subsection 4.1, one can see that the pgf
is of the general form, described in Section 2. Thus, it is possible to use the
same techniques in case when Y (x) is analytic in some D1+ε, and the system is
stable, i.e., cY ′(1) + gp < g.

Generally, we can consider any arrivals during the red time. Let us introduce
the weak-independence assumption:

Assumption 6 (Weak-independence assumption). The arrivals Yn,m are in-
dependent of m and of the arrivals during other cycles. The arrivals Yk,m for
k = 0, . . . , g− 1 are identically distributed, independent of each other and of the
arrivals during the red time. The arrivals during one red time are distributed
identically for each cycle.

Note that the arrivals during the red time may be dependent on each other
and have a different distribution than the arrivals during the green time. Denote
the pgf of all arrivals during the red time as Ar(z). If Assumption 1 holds, the
pgf Ar(z) is just (Y (z))r.

In case of Assumption 6 the pgf of Xg(z) in FCTL model does not change
much and has the following form:

Xg(z) =

∑g−1
k=0 qkz

k(Y (z))g−1−k

zg −Ar(z)(Y (z))g
(z − Y (z)), (31)

where qk is the probability of an empty queue in the beginning of the kth time-
interval in a cycle. These variables qk, in general, have different value from qk
in (3). In this case the system is stable if g > gY ′(1) +A′

r(1).
Note that in case of the one-vehicle assumption, we will get

Xg(z) =

∑g−1
k=0 qkz

k(Y (z))g−1−k

zg −Ar(z)(Y (z))g
(z − 1)Y (0),

with the same stability condition.
One can check that equations (24) and (27) do not change except of I, which

will be given by the following formula:

I =

∫ π

−π

gzg − zg(Y (z))g−1Y ′(z)Ar(z)− z(Y (z))gA′
r(z)

zg − (Y (z))gAr(z)

z

z − Y (z)
dϕ,

where z = z(ϕ) = (1 + ε)eiϕ. We do not give formulas for the expected queue
length during the cycle, since they depend on the arrivals during the red time.

Bernoulli case

In this subsection, we discuss the case of non-identically distributed arrivals
during the green time. This happens for a tandem of intersections. Suppose
that Yk(z) is the pgf of the arrivals during the kth time-interval, k = 0, . . . , c−1.
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We assume that arrivals during different time-intervals are independent of each
other. We admit that this assumption is debatable for a tandem of intersections,
but we can use it to construct an approximation. One can check that (2) changes
to

Xn+1(z) =
Xn(z)− qn

z
Yn(z) + qn for n = 0, . . . , g − 1,

Xn+1(z) = Xn(z)Yn(z) for n = g, . . . , c− 2,

X0(z) = Xc−1(z)Yc−1(z),

(32)

where qn, as before, denotes the stationary probability to have an empty queue
in the beginning of the nth time-interval during a cycle. By putting everything
together we get

Xg(z) =

∑g−1
k=0 qkz

k
∏g−1

l=k+1 Yl(z)(z − Yk(z))

zg −
∏c−1

l=0 Yl(z)
. (33)

Consider the case of Bernoulli arrivals, i.e., Yk(z) = λkz + (1 − λk). Thus,
z − Yk(z) = (1− λk)(z − 1) and we can rewrite (33) as

Xg(z) =

∑g−1
k=0 qkz

k
∏g−1

l=k+1 Yl(z)(1− λk)

zg −
∏c−1

l=0 Yl(z)
(z − 1). (34)

Note that the numerator is a polynomial in z of degree g− 1. As in our general
case we know that zk, k = 1, . . . , g − 1, are zeros of the numerator, and, thus,
we can find a relation between qk and zk.

Remark 3. Without loss of generality we can assume that λk 6= 1 for all k =
0, . . . , c− 1. To see this, consider first the case when λk = 1 for some k 6 g− 1.
This means that during this green time-interval there is always an arrival. Thus,
if there is a queue in the beginning of this time-interval, it will decrease by 1
and, then, increase by 1, i.e., it will be the same. If there is no queue in the
beginning of the green time-interval, there will be no queue in the beginning
of the next time-interval. Thus, we see that the queue length does not change
during this time-interval. Hence, we can delete this time-interval and consider
a system with less amount of the green time-intervals.

Now consider the case when λk = 1 for some k > g. This means that there
is always an arrival during the red time. Therefore, during the first green time-
interval there is always a queue (thus, q0 = 0) and there is always a departure.
Hence, if we take away the kth time-interval and make the first green time-
interval red, we will get the same distribution of the queue length after new red
time-interval as it was in the original model after the first green time-interval.
Therefore, in both cases, such a type of arrival decreases the green time and the
complexity of the system.

Note that the above procedures do not influence the overflow queue, but
they do influence the average queue length during the cycle. Therefore, we use
this reduction only to find this pgf, and after finding it we need to return to the
original model to be able to consider the average queue length during the cycle.
In what follows we assume that λk 6= 1 for each k = 0, . . . , c− 1.

Let rk be the coefficient of zk in the numerator. Then

g−1
∑

k=0

qkz
k(1− λk)

g−1
∏

l=k+1

Yl(z) =

g−1
∑

k=0

rkz
k = rg−1

g−1
∏

k=1

(z − zk).
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Table 1: The considered types of the arrival process.

Type of arrivals Pgf Y (z) Variance

Bernoulli λz + (1− λ) λ− λ2

Binomial
(

λ
n
z + 1− λ

n

)n
λ− λ2

n

Poisson eλ(z−1) λ

Negative binomial
(

n
n+λ−λz

)n

λ+ λ2

n

So, as before, the coefficients rk depends on the roots in a symmetric way:

rk

rg−1
= σg−1−k(z1, . . . , zg−1).

The only problem is to find qk from rk. One can check, by finding the coefficients
of zn, n = 0, . . . , g − 1, in each summand of the numerator that

rn =

n
∑

k=0

qn−k(1− λn−k)σk

(

λn−k+1

1− λn−k+1
, . . . ,

λg−1

1− λg−1

) g−1
∏

l=n−k+1

(1− λl).

By setting q̄k = qk
∏g−1

l=k (1−λl) and changing the coefficient of summation from
k to j = n− k, we can rewrite the later equation in a more compact way

rn =

n
∑

j=0

q̄j σn−j

(

λj+1

1− λj+1
, . . . ,

λg−1

1− λg−1

)

.

As we see rn depends only on qk for k = 0, . . . , n. Hence, the dependence matrix
is triangular, and it is easy to find qk from rn.

Numerical results

In this section, we present numerical results on the following cases. We consider
the impact of the variability of the arrival process, the difference between the
FCTL assumption and the one-vehicle assumption, the impact of the traffic
interruptions, caused by cyclists, trains or uncertain departure time. We end
this section by comparing three types of green time allocation.

The variability of the arrival process

In this subsection, we show the impact of the variability of the arrival process
on the queue length for FCTL model. In what follows λ denotes the arrival rate
per time-interval, i.e., λ = Y ′(1). In Table 1 we summarize pgfs and variances
of the considered arrival processes.

Note that Bernoulli arrivals have the least possible variance for a fixed λ.
Indeed, the variance of an arbitrary arrival process with rate λ is equal to
Y ′′(1)+Y ′(1)− (Y ′(1))2 > λ−λ2. In what follows the parameter n of binomial
and negative binomial distribution is set to be equal to 2.
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Table 2: The differences (in seconds) in the expected delay for different types
of arrival process, c = 60 and load x = 0.98(3).

Difference g = 5 g = 15 g = 30 g = 40

EDnegbin − EDpois 29.1472 28.6778 28.1833 27.7916
EDpois − EDbinom 29.1369 28.6156 28.0097 27.5466
EDbinom − EDbern 29.1258 28.5392 27.7332 27.0498

First, we focus on the expected delay per vehicle for different types of arrivals.
The expected delay is computed using Little’s law ED = EL

λ
, where EL = ELfctl

is computed by (26). In Figure 3, the expected delay is plotted as a function of
the load x = cλ

g
for c = 60 and g = 5, 15, 30, 40. The expected delay is given

in seconds instead of time-intervals, one time-interval is set to be equal to 2
seconds.

Our first remark is that for arrivals with higher variability the expected delay
is higher, but for each green time g the difference is really important only for a
load higher than 0.8. As we can see for high load, the relative difference between
expected delays for different types of arrivals is increasing with the green time.
However, the absolute difference is decreasing. For load at x = 0.98(3) (the
highest load in the figures) the absolute difference is given in Table 2. In the
table we use EDbern, EDbinom, EDpois, EDnegbin for the expected delay in case
of Bernoulli, binomial, Poisson and negative binomial arrivals respectively.

From the table we see that the absolute difference is decreasing with the
green time. In many approximations, see [6] and [8], the dependence on the
variance is set to be linear for the fixed arrival rate, green and cycle times.
However, we see that this difference increases for higher variance.

Next we consider the probabilities for queue to be empty qk for k = 0, . . . , g−
1. In Figure 4, for g = 10, c = 20 and λ = 0.2, 0.3, 0.4, 0.45 these probabilities
are plotted as functions of k. For the fixed g, c and λ the sum of probabilities
is the same for different type of arrivals, but the distribution of this sum is
different.

As we see for all rates of arrivals, in the beginning of the green time the
probability for queue to be empty is lower for the arrival processes that have
lower variability and in the end of green time the situation is reverse. For small
arrival rate, the graphs are concave, but for high load the graphs are convex.
Also for low load the difference between graphs for different arrival types is
smaller than for higher load.

Comparing the FCTL and one-vehicle assumptions

Let us first consider X ′
dif (1), i.e., the expected difference in the queue length

between FCTL and one-vehicle models. We plot it as a function of arrival rate
λ = Y ′(1) in Figure 5.

Note that if on an intersection there are at least two conflicting “main”
phases, then both of them has less than half of the cycle time. Thus, in case of
stable system, the arrival rate is not bigger than 0.5. If we consider, for example,

Poisson arrivals, the expected extra delay is λ2

2(1−λ) 6
1

2(1−λ) 6 1 time-interval,

i.e., not more than 2 seconds. Therefore, for most of the cases the extra delay
will be very small.
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Figure 3: The expected delay as a function of load for Bernoulli, binomial,
Poisson and negative binomial arrivals with c = 60, n = 2. For: a) g = 5 b)
g = 15 c) g = 30 d) g = 40.
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Figure 4: The probabilities qk for queue to be empty, k = 0, . . . , g−1, for g = 10,
c = 20, n = 2. For: a) λ = 0.2, b) λ = 0.3, c) λ = 0.4, d) λ = 0.45.
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Figure 5: The expected extra delay due to the one-vehicle assumption as com-
pared to the FCTL assumption.

Next we consider the distribution of Xdif (z), i.e., the distribution of the
queue length in a bottleneck. It is plotted in Figure 6 for rate λ = 0.3, 0.5, 0.7, 0.9
vehicles per time-interval. As we see, the queue with higher variance of the
arrival process has a thicker tail than the queue with lower variance. The
difference between distributions increases with the arrival rate.

As we derived, the absolute difference between FCTL and one-vehicle models
is quite small. However, it is also interesting to know the relative difference. For
the same settings as in Figure 3 we plot the relative difference of the expected
queue length in Figure 7. For smaller green time the delay of FCTL model
is already very high and the expected difference X ′

dif (1) is small. Thus, the
relative difference is very small. For larger green time the delay is smaller and
the arrival rate is bigger, so the relative difference is bigger. As we see for
g = 40, this relative difference reaches 10% for negative binomial arrivals with
n = 2.

Disruption of the traffic

In this subsection, we consider two types of a traffic disruption. The first one is
the pedestrian/cyclist disruption and the second one is the ship/train disruption.
Suppose that cyclists need 5 time-intervals, i.e., 10 seconds, to cross the road.
There are two ways to provide the required green time. We can either shorten
the green time of one lane, or, alternatively, extend the total cycle time and,
hence, add extra red time to all lanes. Let p be the probability of cyclists arrival
during the cycle. In Figure 8, we plot the overflow queue as a function of the
rate for different p and g and fixed c = 60. Each graph we plot only up to load
x = 0.975. The arrival process is assumed to be Poisson. As we see, the first
way to deal with cyclists is highly disadvantageous for the lane. It significantly
decreases the capacity of the lane and increases the overflow queue. The effect
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Figure 6: Distribution of Xdif (z) for a) λ = 0.3, b) λ = 0.5, c) λ = 0.7 and d)
λ = 0.9.
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Figure 7: The relative difference (in %) of the expected delay in the FCTL
and one-vehicle models as a function of load for binomial, Poisson and negative
binomial arrivals for c = 60, n = 2 and a) g = 5 b) g = 15 c) g = 30 d) g = 40.
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is stronger for smaller green time. The conclusion is that it is better, if possible,
to increase the cycle time.

As we also see from the Figure, the system with uncertainty, i.e., 0 < p <

1, has a larger overflow queue than the system without uncertainty for the
same load. Consider two systems: one has no uncertainty, and another has
uncertainty. Suppose that both the average green time and average cycle time
are the same for these systems. Then the second system will have a bigger
overflow queue, as shown in Figure 9.

Let us now consider the interruption by trains/ships. We assume that with
probability p all green time during the cycle is effectively red. If the probability
is p = 0.0(3), c = 60, then on average there is one lost green time during an
hour. In Figure 10, we plot the overflow queue as a function of the arrival rate.
We see that the impact on busy lanes (with bigger green time) is larger than for
lanes with short green time. Also even for small rate on both lanes the overflow
queue is non-zero, as it is in the case of cyclists interruption.

Uncertain departure times

Consider the FCTL model with uncertain departure times that was presented in
subsection 5.2. In Figure 11, we plot the expected overflow queue as a function
of the arrival rate for different probability of departure. We suppose that, on
average, a vehicle departs in 2 seconds. The length of the time-interval is set to
be equal to τ = 2p seconds. The arrival process is assumed to be Poisson. We
fixed the cycle time (in seconds) and consider two different green times.

The uncertainty in departure times does not influence the capacity of the
system but only increases the the overflow queue and, consequently, the delay.
The increase in the overflow queue seems to be the same. In fact, it is a bit
bigger (about 0.1 difference) for the lane with smaller green time. However, this
lane has a bigger overflow queue, and the relative difference for it is smaller.

Green time allocation problem

In this subsection, we consider the green time allocation problem. In [11],
Webster proposed to provide each lane with a part of the total green time
proportional to the arrival rate, i.e., such that the load is the same for each
lane. On the one hand, as we see in Figure 3, the lane with the smallest green
time, i.e., with the smallest arrival rate, in this case faces the greatest delay.
On the other hand, this delay is experienced by a small part of the vehicles.
Let us consider an example. Suppose we have three lanes with rates’ ratio
λ1 : λ2 : λ3 = 5 : 15 : 30 = 1 : 3 : 6. Suppose also that we assign to them, in
total, 50 green time-intervals out of 60 time-intervals in a cycle. We consider
the following ways to assign green time:

• green time is proportional to the arrival rate,

• green time is allocated by minimizing the expected total queue length,

• green time is allocated by minimizing the maximum expected delay per
lane.

Due to the computational efficiency of our method we minimize queue length
or delay by using a simple exhaustive search.
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Figure 8: The overflow queue in case of cyclists as function of arrival rate. The
cycle time is c = 60. The green time in figures a) and b) is g = 15 and on c)
and d) g = 30. In figures a) and c) the green time for cyclists (5 time-intervals)
is given from the green time of the lane. In figures b) and d) the extra time is
added to the cycle.
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Figure 9: First four graphs represent overflow queue with fixed green time
g = 14, 13, 12, 11. Last four graphs represent the overflow queue in case of cy-
clists. The cycle time is c = 60, g = 15. With probabilities p = 0.2, 0.4, 0.6, 0.8
the cyclists arrive and the green time is smaller by 5 time-intervals. The corre-
sponding expected green time is E(g) = 14, 13, 12, 11.
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Figure 10: The overflow queue for FCTL model with train disruption. The cycle
time c = 60, the green times are a) g = 5 and b) g = 30.
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Figure 11: The overflow queue for FCTL model with uncertain departure times.
The cycle time is 120 seconds, the green times are a) 10 and b) 60 seconds.

Let the total load be equal to x = 0.9. The results for Bernoulli and Poisson
cases are given in Table 3. In the table, the total delay is a sum of average delays
per lane. Even though it has no physical meaning, it measures the change in
the expected delays.

Note that for both types of arrivals all three ways of the green time allocation
give similar results. However, the difference in the delay between different ways
is significant, especially for the first lane. So, as we see, the proportional green
time is the most beneficial for the busiest lane but very unfair for the lane
with the smallest rate. Using either minimal total delay or minimal delay per
lane policy improves significantly (2 times) the situation for the lane with the
smallest rate but increases the delay for the busiest lane.

For smaller load these three ways of the green time allocation work com-
pletely different. For the same settings c = 60, total red time equal to 10 and
arrivals’ rates proportional as 5 : 15 : 30, we consider our three ways of allo-
cation for different total loads. The result can be found in the figures 12 and
13. In the first one, the delay per lane in each type of allocation is plotted as
a function of load. The second shows the allocated green time. The arrival
process is assumed to be Poisson.

As we see, the minimum delay per lane policy suggests almost equal green
time allocation for low total load, while the minimum total queue length policy
suggests to give the largest part (more than proportional 30 time-intervals) of
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Table 3: The comparison of the expected delay and queue length for different
green time allocation policies. The delay is given in seconds and the green time
in time-intervals. A time-interval is set to be equal to 2 seconds.

Bernoulli arrivals Poisson arrivals

Lane 1 Lane 2 Lane 3 Total Lane 1 Lane 2 Lane 3 Total
Arrival rate λ 0.075 0.225 0.450 0.750 0.075 0.225 0.450 0.750

Proportional green time
Green time 5 15 30 5 15 30
Delay 139.626 61.731 31.752 233.109 147.906 68.992 37.909 254.807
Queue length 5.236 6.945 7.144 19.325 5.546 7.762 8.529 21.838

Minimal total queue length
Green time 6 15 29 6 15 29
Delay 68.881 61.731 38.096 168.708 71.097 68.992 48.670 188.759
Queue length 2.583 6.945 8.572 18.099 2.666 7.762 10.951 21.378

Minimal delay per lane
Green time 7 15 28 6 15 29
Delay 56.267 61.731 55.355 173.354 71.097 68.992 48.670 188.759
Queue length 2.110 6.945 12.455 21.510 2.666 7.762 10.951 21.378
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Figure 12: The delay per lane and the total queue length as function of total
load for different ways of green time allocation. Figures a), b) and c) represent
delay on lanes with low, medium and high arrivals’ rates. Figure d) is the graph
of the total queue length.
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green time to the third lane with the highest arrival rate. The difference in
delay for different policies is clearer for the lowest and highest arrival rate lanes.
We also see that the total queue length for proportional policy and minimum
total length are almost the same. However, we already saw from the table how
significant the difference in the delay is (especially for the first lane).

For lanes 1 and 2 (low and medium rate) the minimum delay per lane policy
is the most beneficial, while for the third lane it is the most disadvantageous.
The minimum total length policy is conversely the most beneficial for the busiest
lane and the most disadvantageous for the first two lanes. However, for higher
load it gives smaller delay than the proportional policy.

Conclusions

We presented in this paper a new method to calculate the expectation and
distribution of the queue length for a number of discrete-time queueing systems.
We applied this method to the FCTL model and several of its extensions.

First, we studied the impact of arrival variability. The numerical results
show that higher variance of the arrival process results in higher average delay,
but the difference is noticeable only for a load higher than 0.8.

We compared the FCTL and one-vehicle assumptions. The absolute differ-
ence is quite small for many relevant applications, however the relative difference
can be quite big. Additionally, we proved the decomposition rule for the one-
vehicle model.

Comparing different disruptions of the traffic we found several interesting
results. For example, the green time for cyclists or pedestrians is better to
add to the cycle length than to give from the green time of one of the lines.
Also the disruptions caused by trains and ships have a serious impact on the
expected overflow queue and, consequently, the average delay. This kind of
disruption causes the increase in the overflow queue even for a low load, while
the disruption by cyclists and the uncertainty in departure time result in a
overflow queue that is close to zero for low load. The uncertainty in departure
times has the smallest impact on the overflow queue among considered types of
disruption. It does not influence the stability of the system and the change in
the overflow queue is relatively small.

Finally, we compared different green time allocation policies and concluded
that the proportional policy may be extremely disadvantageous for the lanes
with small arrival rate. The minimal total queue length policy may give too
much priority to the busiest lanes, while the minimal delay per lane policy
favours the lanes with lowest arrival lane. The choice of policy heavily depends
on the goals of control.

The future work will be on extending this method to a wider range of models.
For example, for the actuated control of an intersection.

Appendix. The proof of Theorem 1

Recall that we need to prove that zB(w) 6= wB(z) for z 6= w, z, w ∈ D̄1. Con-
sider Taylor expansion

∑∞
j=0 bjz

j of B(z) around zero. Let B̃(z) =
∑∞

j=2 bjz
j .

Then, it is equivalent to prove that z(b0 + B̃(w)) 6= w(b0 + B̃(z)) for z 6= w,
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z, w ∈ D̄1. Now, we can reformulate the theorem in the following way: there is
not more than one root of the equation z = a(b0 + B̃(z)) in D̄1 for each a ∈ C.
Number a here represents the value w

b0+B̃(w)
for some w ∈ D̄1. To make such a

reformulation we need to show that b0 + B̃(w) 6= 0 for all w ∈ D̄1.
First we show it for w = 1. Consider the derivative of B̃(z) at 1. On one

hand, according to the stability assumption, we get that B̃′(1) = B′(1) − b1 <

1− b1 = B̃(1) + b0. On the other hand, bk > 0 for k ∈ N, and, thus,

B̃′(1) =

∞
∑

j=2

jbj >

∞
∑

j=2

2bj = 2B̃(1).

Finally, we get that 2B̃(1) 6 B̃′(1) < B̃(1) + b0. Therefore, b0 > B̃(1).
Now, we need to use the following small lemma:

Lemma 4. Consider an analytic function C(z) =
∑∞

j=0 cjz
j in Dr+δ, where

r ∈ R, δ > 0. Suppose that cj > 0 for all j ∈ N ∪ {0}, then the absolute value
of C(z) reaches the maximum value in r, i.e., |C(z)| 6 C(r) for each z ∈ D̄r.

Proof. Since the function C(z) is analytic in disk Dr+δ, Taylor series converges
absolutely. Therefore, |C(z)| 6

∑∞
j=0 cj |z|

j 6
∑∞

j=0 cjr
j = C(r).

As a corollary we get that |B̃(z)| < b0 for each z ∈ D̄1, and, consequently,
there are no solutions of the equation b0+B̃(z) = 0 in D̄1. Hence, it is sufficient
to prove that equations

z = a(b0 + B̃(z)) (35)

has not more than one root in D̄1 for each a ∈ C.
If a = 0, we have the simple equation z = 0 that has not more than one

solution. If a 6= 0, we can uniquely represent it as teiϕ, where 0 6 ϕ < 2π,
t > 0. We want to prove, for a fixed value of ϕ, that the amount of roots inside
the unit disk does not increase when t increases. To do so, we consider our
roots as functions of t and prove that the absolute value of the root increases
as t increases. Suppose z(t) is a root of the equation (35) inside the unit disk.
Consider its derivative:

dz

dt
=

d

dt
(teiϕ(b0 + B̃(z))) = eiϕ(b0 + B̃(z)) + teiϕB̃′(z)

dz

dt
.

Rearranging and plugging z

t(b0+B̃(z))
instead of eiϕ give us

t
dz

dt
=

z

1− zB̃′(z)

b0+B̃(z)

.

Thus, the derivative of the |z(t)|2 is equal to

d(zz̄)

dt
=

dz

dt
z̄ +

dz̄

dt
z = 2Re

(

dz

dt
z̄

)

=
2|z|2

tRe
(

1− zB̃′(z)

b0+B̃(z)

) .

To prove that this derivative is positive we only need to prove the following
lemma.
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Lemma 5. There is some δ > 0 such that for each z ∈ D1+δ

Re

(

1−
zB̃′(z)

b0 + B̃(z)

)

> 0. (36)

Proof. First of all, it is sufficient to prove that (36) holds for each z ∈ D̄1.
Indeed, if for some point z inequality (36) holds, then for some neighbourhood
of z it also holds. Since D̄1 is compact, if (36) holds in D̄1, it also holds for
small neighbourhood D1+δ, δ > 0.

Now note that inequality (36) is equivalent to the following inequality:

Re
(

(b0 + B̃(z))(b0 + B̃(z̄))− zB̃′(z)(b0 + B̃(z̄))
)

> 0.

It can be rewritten as b20 > Re
(

b0(zB̃
′(z)− B̃(z)− B̃(z̄)) + (zB̃′(z)− B̃(z))B̃(z̄)

)

.

Since Re(B̃(z̄)) = Re(B̃(z)), we finally get that (36) is equivalent to

b20 > Re
(

b0(zB̃
′(z)− 2B̃(z)) + (zB̃′(z)− B̃(z))B̃(z̄)

)

. (37)

Note that Re(z) 6 |z| for each z ∈ C, and, thus,

Re
(

b0(zB̃
′(z)− 2B̃(z)) + (zB̃′(z)− B̃(z))B̃(z̄)

)

6 b0|zB̃
′(z)−2B̃(z)|+|zB̃′(z)−B̃(z)|·|B̃(z)|.

Since functions zB̃′(z)−2B̃(z), zB̃′(z)− B̃(z) and B̃(z) are analytical and have
positive coefficients in their Taylor expansion at 0, we can use lemma 4. This
gives us that

Re
(

b0(zB̃
′(z)− 2B̃(z)) + (zB̃′(z)− B̃(z))B̃(z̄)

)

6

6 b0(B̃
′(1)− 2B̃(1))+ (B̃′(1)− B̃(1)) · (B̃(1)) < b0(b0− B̃(1))+ b0B̃(1) = b20.

Here we used that B̃′(1) < B̃(1)+b0. Thus, we proved for each z ∈ D̄1 inequality
(37), which is equivalent to (36).

We proved that d|zz̄|
dt

> 0 for each z = z(t) ∈ D1+δ \{0}. Since b0+B̃(0) 6= 0,
we get that z(t) 6= 0. Therefore, any root of the equation (35) for t > 0 goes
outside D̄1+δ. Hence, the amount of roots inside D1 decreases when t increases.
But for small t > 0 we can use Rouche’s theorem to show that there is only one
root of the equation (35). Thus, we have proved Theorem 1.
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tion of rouché’s theorem in queueing theory. Operations Research Letters,
34(3):355–360, 2006.

[2] N. T. Bailey. On queueing processes with bulk service. Journal of the Royal
Statistical Society. Series B (Methodological), pages 80–87, 1954.

[3] J. Darroch. On the traffic-light queue. The Annals of Mathematical Statis-
tics, 35(1):380–388, 1964.

32



[4] A. J. Janssen and J. S. van Leeuwaarden. Analytic computation schemes for
the discrete-time bulk service queue. Queueing Systems, 50(2-3):141–163,
2005.

[5] D. R. McNeil. A solution to the fixed-cycle traffic light problem for com-
pound poisson arrivals. Journal of Applied Probability, 5(3):624–635, 1968.

[6] A. J. Miller. Settings for fixed-cycle traffic signals. OR, pages 373–386,
1963.

[7] G. F. Newell. Approximation methods for queues with application to the
fixed-cycle traffic light. Siam Review, 7(2):223–240, 1965.

[8] M. S. van den Broek, J. van Leeuwaarden, I. J. Adan, and O. J. Boxma.
Bounds and approximations for the fixed-cycle traffic-light queue. Trans-
portation Science, 40(4):484–496, 2006.

[9] J. S. van Leeuwaarden. Delay analysis for the fixed-cycle traffic-light queue.
Transportation Science, 40(2):189–199, 2006.
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Figure 13: The green time allocated to each lane for a) minimum delay per lane
policy and b) minimum total queue length. Lanes 1, 2, 3 correspond to the
lanes with low, medium and high arrival rate.
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