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Abstract

This paper studies an inventory policy for a retailer who orders his products
from a supplier whose deliveries only partially satisfy the quality require-
ments. We model this situation by an infinite-horizon periodic-review model
with binomial random yield and positive lead time. We propose an order-
up-to policy based on approximating the inventory model with unreliable
supplier by a model with a reliable supplier and suitably modified demand
distribution. The performance of the order-up-to policy is verified by com-
paring it with both the optimal policy and the safety stock policy proposed
in [11]. Further, we extend our approximation to a dual sourcing model
with one slow, unreliable and one fast, fully reliable supplier. Compared to
the dual-index order-up-to policy for the model with full information on the
yield, the proposed approximation gives promising results.

Keywords: Inventory management, Yield uncertainty, Order-up-to policy

1. Introduction

Rising with the prevalence of outsourcing activities, supply risk has re-
cently attracted great attention from the OR research community. One
important type of risk in outsourcing processes is the uncertainty in the
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order quantities that turn out to be usable at the buyer companies. This
uncertainty is often referred to as yield uncertainty in the literature. There
are many reasons that may lead to yield uncertainty. When goods are trans-
ported from a global supplier or transported goods are delicate parts, yield
uncertainty is often related to damage during transportation due to humid-
ity, collision and other reasons. Part of the goods received may also fail the
quality inspection of the buyers. For example, in the semiconductor indus-
try, the yield rate may drop below 50% due to strict requirements on quality
[6]. Yield uncertainty is also encountered in industries where production is
influenced by exogenous factors, like weather and diseases. [12] reports that
in agriculture, yield rate can be as low as 30%.

Yield uncertainty significantly increases the difficulty of inventory man-
agement. Numerous papers have studied optimal or heuristic policies for
inventory systems with uncertain yield. However, few have taken into ac-
count the effect of lead time. Lead time refers to the time span between the
moment an order is placed by the buyer and the moment when ordered goods
are delivered. It consists of the order processing time, production time and
transportation time and is sometimes as long as several months. In practice,
lead times can hardly be neglected especially in the case of global sourcing.
In this paper, we study the inventory system of a retailer with positive lead
time and yield uncertainty. The retailer has a global supplier whose deliv-
eries only partially satisfy the quality requirements. We study the case in
which failure of different units in an order is uncorrelated and each unit has
the same probability of failing. This is often the situation if the uncertain
yield is caused by damage during transportation or failure at quality inspec-
tion. The retailer checks his inventory level periodically and decides the
quantity to order based on his inventory control policy. Unsatisfied demand
is fully backlogged. The number of usable units in an order becomes known
only when the order physically arrives at the retailer. The total inventory
costs of the retailer consist of the holding cost, penalty (backlogging) cost
and ordering cost. Inventory holding costs are incurred for the items in in-
ventory at the end of a period. On the other hand, penalty costs are incurred
when there is not enough inventory to satisfy customer demand. For this
model, we propose a simple order-up-to policy (the OPMD heuristic) based
on the optimal policy in an approximate model with a modified demand dis-
tribution and a reliable supplier. We then consider the case where the risk
posed by the unreliable supplier is mitigated by ordering a part of the units
from a more expensive and reliable supplier. To the best of our knowledge,
this model has not been previously discussed in the OR literature. For this
model, we propose a dual-index order-up-to policy (the DOPMD heuristic)



based on an approximate model with two reliable suppliers and modified
demand distribution.

The remainder of the paper is organized as follows. In Section 2, we give
a brief review of the related literature. In Section 3, we formulate the single
sourcing model with positive lead time and yield uncertainty. Subsequently,
we propose a simple order-up-to heuristic and derive the optimal order-up-
to level based on a reduction to a model with full returns. An extension
of our heuristic to a dual sourcing model with general lead times and yield
uncertainty is presented in Section 4. In Section 5, we present numerical re-
sults on the performance of the proposed heuristics. For the single sourcing
model, we compare our heuristic with the optimal policy and a recently pro-
posed heuristic [11]. In the case of dual sourcing, we compare the proposed
heuristic and the dual-index order-up-to policy for the model with perfect
yield information (perfect information DOP).

2. Literature Review

Yield uncertainty has drawn extensive attention in inventory manage-
ment research in the past several decades. There are three types of ran-
dom yield that have been considered in the literature: binomial yield [11],
stochastically proportional yield [7, 1, 4, 10, 13, 8, 11] and interrupted geo-
metric yield [11]. Binomial yield is used when failures of different units in a
batch are uncorrelated and occur with the same probability. Stochastically
proportional yield is on the other hand, used to characterize the situation in
which a random process affects whole batches and the proportion of usable
units in an order is a random variable. Models using interrupted geomet-
ric yield assume that good items are generated independently with a fixed
probability until a failure occurs and thereafter all items are defective.

Most papers consider the effect of random yield under the assumption
of zero lead time. [7] is among the first to study the structure of opti-
mal policies in single-sourcing periodic review systems with random yield.
They show that, despite the existence of a reorder point, the optimal or-
der quantity is not linear in the inventory position. [4] and [10] revisit this
problem and prove that the infinite-horizon periodic-review model can be
reduced to a newsvendor problem. However, the distribution of the key
variable in the newsvendor problem depends on the order quantity in each
period. They therefore propose several myopic heuristics. [13] finds upper
and lower bounds for the optimal reorder point and order quantity in an
infinite-horizon model and gives valuable insights into the structure of the
optimal policies.



Among the well performing heuristics proposed for the inventory opti-
mization problem with one unreliable supplier, many fall into the class of
linear inflation rules’. ’Linear inflation rules’ restrict the order quantity
to a linear function of inventory position with two parameters, called the
‘order-up-to level” and the ’inflation factor’. Some of the myopic heuristics
proposed by [4] fall into this class. [8] finds the optimal policy within this
class and proves that the average total cost is convex in the order-up-to level
for any given inflation factor. [11] is one of the few that considers the effect
of positive lead time. The authors capture the two sources of uncertainty,
i.e. yield and demand uncertainty, by the safety stock variable. Under the
assumption that safety stock follows a normal distribution, they find the
optimal safety stock levels for three different types of random yield. [9]
proposes two approaches to derive the optimal and near-optimal values for
the order-up-to level for a given inflation factor. The first approach models
the on-hand inventory by a Markov chain and is exact for zero lead time.
For general lead time, the approximate approach is analyzed by assuming a
standard or gamma distribution of the on-hand inventory.

Dual sourcing is often used for balancing cost and service level. [17]
proves that for periodic review models and difference in leadtime between
the two suppliers equal to one, the optimal policy is a dual-index order-up-
to policy (DOP). However, when the difference between lead times is larger
than one, the optimal policy is hard to derive. Therefore several heuristics
have been proposed in the literature. [16] shows that DOP performs well in
dual sourcing models with general lead times and proves that for any given
difference between the order-up-to levels, the optimal expedited order-up-to
level can be found by solving a specific newsvendor problem. However, for
finding the distribution of the demand in the newsvendor problem, they rely
on simulation. [3] proposes an approximation of this distribution, which is
exact when the difference between the order-up-to levels is one or approaches
infinity. [14] generalizes DOP and proposes three new policies for the same
model, namely the vector base-stock policy, the weighted DOP and the de-
mand allocation policy. The first two policies use an order-up-to rule for the
expedited supplier and the state information for deciding the regular order
quantities. The last policy uses an order-up-to rule for the regular supplier
and allocates demand between the two suppliers based on myopic costs. The
authors show numerically that the three policies outperform on average the
optimal DOP in either cost saving or computational time. Besides DOP,
other types of heuristics have also been proposed. [15] considers an order-
up-to policy which places regular orders periodically to restore the inventory
position to the target level and emergency orders only when the likelihood



of a stockout is very high. [2] studies a continuous review inventory model
with two suppliers and proposes a tailored base-surge policy for this model.
The cheap, offshore supplier is considered as the "base’ from which the buyer
replenishes at a constant rate while the responsive, nearshore supplier acts
as the ’surge’ from which the buyer replenishes only when on-hand inventory
is below a certain level. They present bounds on the optimal cost and an
asymptotically optimal policy for a high volume system. A simple 'square-
root’ formula is presented which gives valuable insight into how to allocate
orders between the two sources.

Statement of contribution: The contributions of this paper to the litera-
ture can be summarized as follows. First, we develop a simple order-up-to
heuristic (the OPMD heuristic) for a single sourcing model with positive lead
time and binomial yield. The proposed order-up-to level is found based on
an approximating inventory model with modified demand distribution and
reliable supplier. We show that our heuristic performs well by comparing it
with the optimal policy and the heuristic proposed in [11]. Second, we con-
sider the model in which an expedited, reliable supplier is used for mitigating
the risk posed by the unreliable supplier. To the best of our knowledge, this
model has not been previously studied by the OR community. To solve it,
we propose a dual-index order-up-to policy (the DOPMD heuristic), based
on an approximate model with two reliable suppliers and modified demand
distribution. When compared to the optimal dual-index-order-up-to policy
for the model with perfect yield information, our heuristic gives promising
results.

3. The Single Sourcing Inventory Model with Unreliable Supplier

We consider an infinite-horizon periodic-review model with an unreliable
supplier. For each order X placed with the supplier, only a binomial ran-
dom portion B(X,p) is returned, where 0 < p < 1 is the long-run average
fraction of orders being returned. We assume that p is known in advance.
Demand in different periods, denoted as D,, n = 1,2,---, is assumed to
be independent and identically distributed, with E(D) < co. Revealed de-
mand is fulfilled from on hand inventory I and unsatisfied demand is fully
backlogged. Ordered items are delivered after a positive lead time [. The
exact number of units returned remains unknown until delivery. The retailer
pays a variable ordering cost ¢ for each ordered unit. We assume zero fixed
ordering cost. Backlogged demand is charged a penalty cost b per unit per



period while inventory carried at the end of a period is charged a holding
cost h per unit per period.

The sequence of events in each period is as follows. First, on-hand in-
ventory is observed. Second, an order is placed according to the inventory
control policy that is applied. Third, a binomial random portion of the or-
der placed [ periods in the past arrives. Fourth, demand of this period is
revealed and fulfilled or backlogged.

We are interested in finding an efficient inventory control policy that

N
minimizes the long-run average total cost given by limpy, o Z”:]{,TC”, with

TCyn = Xy + hl} + bl
where X,, and I, are the order placed and the on hand inventory in period
n respectively, a™ = max(a,0) and ¢~ = max(—a,0).

Notations used in this paper are summarized in Table 1.

Table 1: Notations and Descriptions

Notations | Descriptions Notations | Descriptions
n Period index c Per unit ordering cost
I, On-hand inventory in period h Inventory holding cost per
n unit per period
1P, Inventory position in period b Penalty cost per unit per pe-
n riod
Xn Order placed in period n l lead time
D, Demand in period n P Success rate of the Binomial
yield distribution
fu Probability density function Fy Cumulative distribution
of random variable U function of random variable
U

An order-up-to policy with modified demand (OPMD)

The optimal policy for the single-sourcing model with yield uncertainty
can in principle be found by using Markov decision process. Due to state
space explosion of the underlying Markov chain, this approach is computa-
tionally intractable for large lead times. We therefore propose an order-up-to
heuristic with optimal order-up-to levels decided based on an approximate
inventory model with full returns.

Without loss of generality, we assume that the system starts with zero
item in transit, in other words, Xy = 0.



To motivate our approximation, consider the single-sourcing inventory
model described above with the order X,,41 in period n + 1 defined by

Xn+1 = B(anla 1-— p) + D,. (1)

Lemma 1 The sequence of orders X,,, n = 1,2, 3, ... has a limiting distribu-
tion.

Proof By using iteratively (1), we obtain

XnJrl =D, + B(Dn—l—la 1- p) + B(Dn—Zl—2a (1 - p)2) +e
L5
= Z Rn,ka
k=0

with Ry, = B(Dp_g41), (1 — p)¥). Note that since demand in different
periods is i.i.d., the distribution of R,,  does not depend on n. For simplicity,
we will hereafter omit the index n and refer to R,, ;, as Rj. We will show that
Sm = > ey R converges almost surely, which implies that X, converges
almost surely.

The probability generating function Ry, of Ry, is given by RAk(z) = D(qpz+
(1 —qy)), where gz = (1 — p)* and D is the probability generating function
of D. Since

P(Ru1 > ) =1 P(Rus =0)
—1- D1 (1-p)")
— (1—p)" E(D) + o((1 - p)"*)

E(D) < oo and 0 < p < 1, based on Borel Cantelli lemma (Proposition 2.8,
[5]), we can conclude that S,, converges almost surely. O

Let F be the limiting distribution of X,,. Consider a sequence of inde-
pendent variables Y,,, n = 1,2, ..., distributed according to F,. We approx-
imate the model with uncertain yield with a model with full returns and
demand in period n given by

D), = B(Y,,1—p)+ D,.

We call D/, the virtual demand in the model with full returns. Observe that
although the variables B(X,,1—p)+ D,, n = 1,2, ... are dependent, by our
choice of Y,,, the variables D], n = 1,2,... are independent.



Remark In the model with full returns, the next recursion holds
In-‘rl =I,+ D;L—l—l - D7/17
whereas in the model with binomial return, we have

In—i—l = In + B(Xn—lap) - Dn
=D+ Xp — {B(Xn—lv 1 —P) =+ Dn]

When n +— oo, X,,—; has the same limiting distribution as D] _, ; and
B(X,-1,1 —p) + D,, the same limiting distribution as DJ,.

It is well known that in the classic model with full returns, the order-
up-to policy is optimal and that in each period, the order placed is equal to
the demand in the previous period. Therefore the next equation holds

In=2—(D,_y +D} ;+---+Dj )

where z is the order-up-to level. So the optimal order-up-to-level in the
approximate system can be found by solving a newsvendor problem, i.e.

b
* -1
A— FD/<Z+1>(b+ h)’
where Fy 41y is the cumulative distribution function of 22:0 D!, for all
n.

The performance of the proposed heuristic (OPMD) in the original prob-
lem will be tested in Section 5 by comparing it with the optimal policy

derived by dynamic programming and the safety stock policy proposed by
[11].

4. The Dual-Sourcing Inventory Model with Unreliable Supplier

In this section, we consider the inventory system of a retailer who sources
from two suppliers, a regular (r) and an expedited (e) supplier. The lead
time [, of the regular supplier is longer than the lead time I, of the expedited
supplier, while the the ordering cost ¢, of the regular supplier is lower than
the cost ¢, of the expedited one. Moreover, the regular supplier has binomial
random yield, which means that, out of an order X, placed with him in
period n, only a random portion B(X, p) turns out to be usable when the
order is delivered in period n+1l,. On the other hand, if an order X is placed
with the expedited supplier in period n, the whole order will be delivered in



period n + .. To the best of our knowledge, this model seems not to have
been studied before in the literature.

For the case with two reliable suppliers, [16] shows that the performance
of a dual-index order-up-to policy (DOP) is close to that of the optimal
policy. Therefore, in this section, we focus on finding the optimal DOP for
the model with two suppliers one of which is unreliable.

A DOP is characterised by two order-up-to levels: one for the expe-
dited supplier, z., and one for the regular supplier, z.. In each period
n > ., there are [, regular and [, expedited orders in pipeline, denoted by
<X e Xpoy > and < XD, XE >, respectively. The expedited
inventory position in period n, I Py, is comprised of on-hand inventory and
all the orders due to arrive in the next [, periods, while the regular inventory
position I P is comprised of on-hand inventory and all the orders that will
arrive in the next [, periods. More precisely,

IP; =T+ (Xy )+ 4+ X )+ (X +. + X))
TP = Iy + (XS 4+ X))+ (XD, 4+ X0 )

where [ =1, — [.

In each period n, the following sequence of events takes place. First,
an expedited order X? is placed, to restore the inventory position IPS to
the value z.. Observe that when the size of X is decided, X} _; enters
the information horizon. Thus, one first checks if there is a surplus, i.e.,
whether IP; + X, > z.. If this is the case, no expedited order is placed.
Otherwise, an expedited order equal to the deficit X = 2. — (IP5 + X))
is placed. Then the expedited order X! is added to the inventory position
of the regular supplier, IP) and a regular order X, = z. — (IP) + X{) is
placed. Finally, the orders due to arrive in this period, X , and X[
arrive. Note that since the regular supplier is unreliable, only B(X], p) units
are usable. Finally, demand D,, is revealed and satisfied from the on-hand
inventory if available. Unsatisfied demand is back-ordered. The inventory
level is then updated and holding or penalty costs are incurred.

In the literature, the quantity O, = (IPS + X! |, — z.)" is known as
the overshoot. The overshoot and the inventory positions of the regular and
expedited supplier satisfy the following equations

IPS+ X)) |+ X =z +0, (2)
IP! + X6+ X! = 2,. (3)



Substracting (2) from (3), we obtain

-1
ZXZ;_,C =2 — 2. — Oy
k=0

and
-1
ZE( n—k) = 2r = Ze — E(On).
k=0

The optimal DOP can be found by formulating the problem as a Markov
decision process. However, since a state contains all the pipeline information,
for large l,, the optimization problem becomes intractable. In the next
section, we propose a dual-index order-up-to heuristic that can be used for
large values of [,.

A dual-index order-up-to policy with modified demand (DOPMD)
As in the single sourcing case, we propose to approximate the dual sourc-
ing model with uncertain yield with a model with full returns, but with
modified demand distribution.
Note that in the dual sourcing model with uncertain returns, the follow-
ing recursion holds

In+1 =1I,+ Xz_le + B(X;—l,-vp) — Dy
— I, + X, + X, —(Dn+B(X_,,1-p)).

n—I,

If the variables D, +B(X],_; ,1—p) were independent and their distribu-
tion easy to calculate, we could reduce the model with uncertain returns to a
model with full returns and demand defined as D;, = D, + B(X},_; , 1 —p).
However, a regular order depends on the orders placed in the previous I,
periods, making thus the distribution of X difficult to find. Therefore we
propose to use the following approximation.

Let Y,, be a random variable distributed according to F, the limiting
distribution of the orders in a system where the only supplier is the regular
supplier. Observe that in the dual sourcing model, X is usually smaller
than Y,,, since part of the orders are delivered by the expedited supplier.
We assume that X! = B(Y,,«), with a € [0,1]. Thus, each unit that
would be ordered from the regular supplier if he was the only supplier is
now ordered with probability 1 — « from the expedited supplier. To find
an appropriate «, recall that Zi;lo E(X] ;) = z — 2z — E(O,). Since
E(Oy,) > 0 and E(X]) = aFE(Y,), it holds that alE(Y,) < 2z, — z.. We
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therefore propose to choose o = mln{l BY, 1} where A = z, — z.. Since
the cumulative distribution function of Yn is Fo(+), E(Yy) = EDn) and

P
o= mm{lE(D , 1}

We are now able to describe the approximate dual sourcing model with
full returns. In the approximate model, both retailers are assumed reliable.
Their costs and lead times are as in the initial model. We define the demand
in period n as

D!, = D,, + B(Yy,a(1 — p)). (4)
where a = Il’lll’l{lE 1} Since the variables Y,, are independent and
identically dlstrlbuted so are the variables D/, n =1,2,-

It has been proven that for any fixed A, the optimal expedited order-up-
to level in the dual sourcing model with full returns can be found by solving
a newsvendor problem [16], i.e

b

FD "(le+1) _ (b + h)

where Fyu41)_ is the cumulative distribution function of 22:0 D;hk -
Op—; for all n. As in [16], for each A, we derive the distribution of O,, by
simulation and then determine the optimal expedited order-up-to level and
the optimal total cost. Subsequently, we use one-dimensional search to find
the optimal value for A. Note that, in order to reduce computation times,
the distribution of O,, could also be approximated as described in [3]. This
is, however, not the focus of this paper.

In Section 5, we testify the performance of the DOPMD heuristic by
comparing it with DOP under perfect information about the returned order
quantities.

5. Numerical Results

In this section, we present numerical results on the performance of the
proposed heuristics for the single and dual sourcing models.

5.1. Performance of the OPMD heuristic for the single sourcing model

To study the influence of the parameters on the performance of the
OPMD heuristic, we construct 74 different scenarios. We start with a base
case in which the parameters take the values h =5, c=150,1 =2, p = 0.8,
b = 495 and D ~ U{0,1,--- ,4}!. Subsequently, we vary the values of

'U{0,1,--- ,n} denotes the discrete uniform distribution on {0, 1, ---, n}
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one or two parameters and keep the others as in the base case. The optimal
order-up-to level for the OPMD heuristic is found by solving the newsvendor
problem in the approximate model with full returns. The average total cost
for given optimal order-up-to level is calculated as the long run average
cost of the underlying Markov chain. For small instances, we compare the
OPMD heuristic with both the optimal policy and the safety stock policy
proposed in (author?) [11]. The optimal policy is derived by using dynamic
programming. For large instances, we only compare the OPMD heuristic
with the safety stock policy.

In Section 5.1.1 to 5.1.4, we study the impact of lead time, yield rate,
penalty cost and demand distribution on the performance of t respectively.
To keep the dynamic program tractable, we focus on discrete demand dis-
tributions with bounded support. As b, h > 0, we restrict the backlogs and
on-hand inventory to [0, [(Hl)#ﬂ, where D,,,, denotes the maximum
demand and [x] denotes the minimum integer that is larger than or equal

to x. Notice that the probability of backlog being larger than [W}

is smaller than (Pr(D = Dyuae))?*Y) and that of on-hand inventory being
larger than [M#} is smaller than (Pr(D = 0))*1). The order quantity

is restricted to [0, (QD%H Note that since every ordered unit is returned
with probability p, the expected number of units needed to be ordered to get

one unit returned is %. Hence the probability of order quantity exceeding

[w%} is very small. Moreover, in all our numerical experiments, the order

quantities in the optimal policy did not exceed [%]

5.1.1. Impact of Yield Rate

Next we examine the performance of the OPMD heuristic under different
yield rates. We vary p € {0.4,0.6,0.8,1} and D ~ U{0,1,--- ,n}, n = 2,4
and compare the performance of the OPMD heuristic, the optimal policy
and the safety stock policy. The results are shown in Table 2. The average
relative difference between the OPMD heuristic and the optimal policy is
0.97% and the maximum difference is 2.35%. As shown in column 4 of
Table 2, the performance of the OPMD heuristic improves when the yield
rate increases. This is due to the fact that the OPMD heuristic assumes
independent virtual demands, which holds if orders from different periods are
independent. When the yield rate is high, the unreturned order quantities
are relatively small, which leads to less correlation among orders.

On the other hand, the performance of the safety stock policy improves
when the yield rate decreases, which can be seen in column 5 of Table
2. The average and maximum difference between the safety stock and the

12



Table 2: Impact of yield rate
(h=5, 1=2, b=495, ¢=150)

Optimal policy OPMD heuristic | Safety stock policy

p | Demand dist. | Average total cost | % above optimal | % above optimal
0.4 U{0,1,2} 400.08 2.35 0.31
06| U{0,1,2} 273.01 1.53 0.76
08 | U{0,1,2} 208.11 0.71 1.06

1 U{0,1,2}] 165.00 0.00 3.86
0.4 | U{0,1,2,34} 789.94 1.68 0.52
0.6 | U{0,1,2,34} 537.07 1.11 0.85
0.8 | U{0,1,2,3,4} 408.87 0.40 1.50

1 U{0,1,2,3,4} 329.00 0.00 2.00

optimal policy are 1.36% and 3.86% respectively. As the results in Table
2 indicate, when the yield rate is relatively high, our heuristic performs
better than the safety stock policy. The reverse seems to hold for low yield
rates. The same patterns hold for larger instances shown in Table 3, where
D ~U{0,1,...,8}, 1 € {2,4,8,20} and p € {0.1,0.3,0.5,0.7,0.9}. Note that
for these instances, since the state space of the dynamic program grows too
large, we only compare the OPMD heuristic with the safety stock policy.

5.1.2. Impact of Lead Time

To study the impact of lead time on the performance of the OPMD
heuristic, we first compare it with the optimal and the safety stock pol-
icy in small instances. For this, we modify the base case by first taking
D ~ U{0,1,2} and I € {1,2,4,6,7} and then D ~ U{0,1,2,3,4} and
1 €{1,2,4,6}. For larger lead times, due to state space explosion, it is com-
putationally intensive to find the optimal policy by dynamic programming.
Therefore we only compare the OPMD heuristic with the safety stock policy
for these instances. The results are summarized in Table 3 and Table 4 .

The average and maximum difference (over all 9 scenarios in Table 4)
between the OPMD heuristic and the optimal policy is 0.49% and 0.89%
respectively. We observe that the OPMD heuristic deviates slightly less from
the optimal policy when lead time increases. To explain this, recall that the
OPMD heuristic assumes independent virtual demands, hence, independent
order quantities in the original model. Since an order depends only on the
orders placed k(I + 1) periods in the past, with k& > 1, the larger the lead
time, the less is the correlation among different orders. Moreover, we notice
that the performance of the OPMD heuristic seems insensitive to changes
in lead time. On the other hand, as column 5 in Table 4 shows, the safety

13



Table 3: Impact of yield rate and lead time
(h=5,b=495,c=150,D ~ U{0,1,--- ,8})

OPMD heuristic Safety stock policy

1 P Average total cost | % above proposed heuristic
2 0.1 6171.94 -1.46
2 0.3 2101.52 -1.06
2 0.5 1278.58 -0.09
2 0.7 922.49 1.07
2 0.9 723.02 2.21
4 0.1 6216.61 -1.85
4 0.3 2129.63 -1.46
4 0.5 1301.46 -0.46
4 0.7 942.59 0.72
4 0.9 743.11 1.73
8 | 0.1 6273.50 -2.25
8 0.3 2174.27 -2.14
8 | 0.5 1336.58 -0.97
8 | 0.7 973.78 0.20
8 0.9 771.22 1.14
20 | 0.1 6405.41 -3.23
20 | 0.3 2263.68 -3.22
20 | 0.5 1409.05 -1.84
20 | 0.7 1036.35 -0.38
20 | 0.9 827.79 0.55

stock policy performs significantly better for larger lead times.

To examine the performance of the OPMD heuristic for larger lead times,
we refer to the rows corresponding to [ € {8,20} in Table 3. As column 4 in
Table 3 indicates, the safety stock policy outperforms our heuristic for large
lead times and relatively low yield rates. The reverse seems to hold for large
lead times and high yield rates (p = 0.9).

5.1.8. Impact of Penalty Cost
In order to study the influence of the penalty cost, we set b € {5,15,95,495}.

Note that the penalty cost influences the optimal order-up-to level through
the optimal fractile in the newsvendor problem in the model with full re-
turns. For h = 5, the optimal fractile H_Lh € {0.5,0.75,0.95,0.99}. Moreover,
we vary the value of the ordering cost in ¢ € {5, 10,50, 150}. As can be seen
in Table 5, in general the deviation of the OPMD heuristic from the opti-
mal policy increases when the penalty cost (the optimal fractile) increases.
However, when the penalty cost is much lower than the ordering cost, e.g.
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Table 4: Impact of lead time

(h=>5, p=0.8, b=495 and c=150)

Optimal policy OPMD heuristic | Safety stock policy
1 | Demand dist. | Average total cost | % above optimal % above optimal
1] U{0,1,2} 203.56 0.89 2.00
2 U{0,1,2} 208.11 0.71 1.06
4| U{01,2} 214.76 0.60 0.98
6 U{0,1,2} 220.04 0.47 0.29
7 U{0,1,2} 222.37 0.44 0.32
1| U{0,1,2,3,4} 401.62 0.36 1.82
2 U{0,1,2,3,4} 408.87 0.40 1.50
4| U{0,1,2,3,4} 419.92 0.28 1.26
6 | U{0,1,2,34} 428.68 0.24 0.51

Table 5: Impact of penalty cost
(h=>5, 1=2, p=0.8 and D ~ U{0,1,2,3,4})

Optimal policy OPMD heuristic | Safety stock policy

b c Average total cost | % above optimal | % above optimal
5 5 23.29 1.15 6.06

15 5 29.65 1.39 8.11

95 5 39.62 1.78 13.01
495 5 46.37 3.46 14.70

5 10 35.79 0.85 2.76

15 10 42.15 1.08 5.65

95 10 52.12 1.44 9.88
495 10 58.87 2.69 12.00

5 50 65.00 109.38 111.12

15 50 142.15 0.32 0.89

95 50 152.12 0.49 3.85
495 | 50 158.87 0.90 4.40

5 150 65.00 493.05 498.63

15 150 195.00 101.01 102.66

95 150 402.12 0.03 1.43
495 | 150 408.87 0.40 1.50

b =5,¢c = 50,150 and b = 15,¢ = 150, the OPMD heuristic leads to a
large deviation from the optimal policy. This phenomenon can also be seen
when the safety stock policy is applied. The reason is that the optimal
policy is influenced by the ordering costs, while both the OPMD heuristic
and the safety stock policy are not. When the ordering cost is much higher
than the penalty cost, it is more cost efficient to backlog demand and incur
penalty cost than to order. Neither of the heuristics takes this aspect into
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account. If we exclude the three exceptional cases, the average deviation of
the OPMD heuristic from the optimal policy is 1.20% with the maximum
being 3.46%, while the average deviation of the safety stock policy is 6.36%
with the maximum being 14.70%. The OPMD heuristic outperforms the
safety stock policy in all cases shown in Table 5.

5.1.4. Impact of Mean, Variance and Skewness of Demand Distribution

In this section, we examine the influence of the demand distribution
on the performance of the OPMD heuristic, by varying its mean, variance
and skewness. In order to study the impact of mean, we choose demand
distributions with the same variance and skewness but different means. For
k,n € Zy and k < n,let U{n—k,n,n+k} denote the distribution given by
Pr(D=n—k)=Pr(D=n)=Pr(D=n+k)=1/3. The skewness of this
distribution is equal to 0. When k = 1, the variance of the distribution is %
and when k = 2, the variance of the distribution equals %. Table 6 contains
the detailed results for this demand distribution. the OPMD heuristic seems
robust under changes in mean demand, with an average deviation from the
optimal policy of 0.41% and a maximum deviation of 0.67%. Moreover,
the performance of the OPMD heuristic slightly improves when the mean
demand increases.

Table 6: Impact of Mean Demand
(h=>5, b=495, c=150, 1=2 and p=0.8)

Optimal policy OPMD heuristic | Safety stock policy
Demand dist. | Mean | Variance | Average total cost | % above optimal % above optimal
U{0,1,2} 1 2/3 208.15 0.66 0.92
U{1,2,3} 2 2/3 400.77 0.49 1.79
U{2,3,4} 3 2/3 588.73 0.26 0.37
U{3,4,5} 4 2/3 778.60 0.23 0.27
U{0,2,4} 2 8/3 412.33 0.59 0.17
U{1,3,5} 3 8/3 601.52 0.44 0.08
U{2,4,6} 4 8/3 790.80 0.34 0.05
U{3,5,7} 5 8/3 979.96 0.27 0.08

Next we change the variance of the demand distribution while keeping

the mean and the skewness constant. The results shown in Table 7 testify
that the performance of the OPMD heuristic is also robust against demand
variability. The average deviation from the optimal policy is 0.45% and
the maximum deviation is 0.88%. In our experiments, the OPMD heuristic
outperforms the safety stock policy for small demand variances (var(D) €
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{0,2/3}), while the safety stock policy gives better results for larger demand
variability (var(D) > 1).

Table 7: Impact of Variance of Demand
(h=>5, b=495, ¢c=150, 1=2 and p=0.8)

Optimal policy OPMD Safety stock policy

Demand dist. | Mean | Variance | Average total cost | % above optimal % above optimal
U{1} 1 0 198.11 0.88 435
U{0,1,2} 1 2/3 208.15 0.66 0.92
U{0,2} 1 1 210.79 0.75 0.21
U{2} 2 0 391.01 0.49 0.85
U{1,2,3} 2 2/3 400.77 0.49 1.79
U{0,1,2,3,4} 2 2 408.87 0.37 0.15
U{0,2,4} 2 8/3 412.33 0.44 0.08
U{0,4} 2 4 417.00 0.46 0.28
U{3} 3 0 582.12 0.23 1.32
U{2,3,4} 3 2/3 588.73 0.26 0.37
U{1,2,3,4,5} 3 2 598.22 0.29 0.15
U{1,3,5} 3 8/3 601.52 0.44 0.07
U{1,5} 3 4 605.45 0.65 0.27
U{0,6} 3 9 621.57 0.76 0.72
U{4} 4 0 772.56 0.16 0.76
U{3,4,5} 4 2/3 778.60 0.23 0.27
U{2,3,4,5,6} 4 2 787.56 0.28 0.14
U{2,4,6} 4 8/3 790.80 0.35 0.03
U{2,6} 4 4 795.01 0.44 0.13

In the end, we examine the influence of the skewness of demand dis-

tribution by choosing D ~ NB(r,q), where NB(r,q) denotes the negative
binomial distribution with r being the number of failures until the exper-
iment stops and ¢ being the probability of success for each trial. In our
experiments, we vary r € {1,2,4,6} and g € {0.2,0.4}. In order to acquire
distributions with different skewness, we truncate N B(r,0.2) to take values
in [0,7] and NB(r,0.4) to take values in [0,47/3]. The skewness for the
truncated distributions is shown in column 2 of Table 8. As can be seen in
column 4, the performance of OPMD is robust against changes in the skew-
ness of demand distribution. The average deviation in average total costs
from the optimal policy is 0.33% while the maximum deviation is 0.70%.
Compared with the safety stock policy, OPMD performs better when the
skewness is negative and has a large absolute value. When skewness is pos-

itive and has a small absolute value, the safety stock policy outperforms
OPMD.
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Table 8: Impact of Skewness of Demand
(h=>5, b=495, ¢c=150, 1=2 and p=0.8)

Optimal policy OPMD Safety stock policy
Demand dist. | skewness | Average total cost | % above optimal % above optimal
NB(1,0.2) -23.44 163.45 0.34 0.51
NB(2,0.2) -34.91 364.90 0.39 0.81
NB(4,0.2) -159.86 761.98 0.17 0.40
NB(6,0.2) -934.14 1148.30 0.18 0.52
NB(1,0.4) 0.87 162.21 0.70 0.86
NB(2,0.4) 0.11 363.86 0.32 0.26
NB(4,0.4) 0.02 772.82 0.29 0.08
NB(6,0.4) 0.01 1177.3 0.25 0.12

5.2. Performance of the DOPMD heuristic for the dual sourcing model

In this section, we study the performance of the DOPMD heuristic by
comparing it with the dual-index order-up to policy for the model with
perfect information on yield in which we assume that the returned quantities
are known immediately after the orders are placed. We call this policy
the perfect information DOP. The reason for using it as a benchmark is
twofold: first, deriving the optimal policy for the dual sourcing model with
general lead times and random yield is computationally intensive even for
small lead times and demand; second, DOP has been proven to have a near
optimal performance in dual sourcing models with general lead times [16].
Note that in the model with perfect information, one can directly work
with the yield quantities of the regular orders and find the optimal dual-
index order-up to policy by applying the solution procedure proposed in
[16]. Since in the model with an unreliable regular supplier, on average 1
units need to be ordered to get one unit of yield, in the model with perfect
information we take the regular ordering cost as <. For our heuristic, the
order-up-to levels are found by applying the solution procedure proposed
in [16] to a dual sourcing model with full returns and modified demand
defined by equation (4). When the optimal 2. takes negative values, we set
z; = 0. The average total costs, corresponding to these order-up-to levels,
are derived by simulation. We run the simulation till the 95% confidence
intervals for the expected order quantities, the expected on-hand inventory
and the expected backlog are smaller than 0.02. One could also derive the
average costs from the underlying Markov process, however, since the state
space includes information on both regular and expedited orders in transit,
the dynamic program becomes computationally intractable. Since we rely
on simulation, occasionally, the average total costs obtained by the heuristic

18



are slightly smaller than those obtained by the perfect information DOP.

As in Section 5.1, we start with a base case and construct 35 scenarios by
modifying one or two of its parameters. In the base case, we choose [, = 1,
Iy =2, ¢, =100, ce =150, h =5, b =495, p = 0.8 and D ~ Pois(2), where
Pois()\) denotes the Poisson distribution with mean A\. We fix the values of
h, ce and [, in all instances and study the impact of ¢,, p, [, b and demand
on the performance of the DOPMD heuristic respectively. The parameter
values used in this section are summarised in Table 9.

Table 9: Parameter Values in the Dual Sourcing Model

Parameter Values
fp Poisson(A), A € {2,4,6,8,10}
L 2,4, 6,8, 10
Cr 10, 40, 70, 100, 130
b 5,7.5,9,12, 15, 95, 495
P 0.6, 0.7, 0.8, 0.9, 1

5.2.1. Impact of Yield Rate

We begin by examining the impact of yield rate on the performance of the
DOPMD heuristic by taking p € {0.6,0.7,0.8,0.9,1}, I, € {2,4} and all the
other parameters as in the base case. The results can be found in Table 10.
As can be seen in column 4, the maximum deviation of the DOPMD heuristic
from the perfect information DOP is 2.73%, while the average deviation is
1.11%. Moreover, when p increases from 0.6 to 1, the performance of the
DOPMD heuristic first worsens and then improves. When p = 0.6, the
expected ordering cost for each unit of yield from the regular supplier is %
(note that ¢, = 100) which is higher than 150 (i.e. ¢.). Therefore, both
the DOPMD heuristic and the perfect information DOP derive that single
sourcing from the expedited supplier is optimal in this situation and lead
to the same order-up-to levels. For large values of p (i.e. p € {0.9,1}),
the system we study approaches the dual sourcing system with full returns
(see equation 4) for which the DOPMD heuristic is the same as the perfect
information DOP.

The deviation of the average total costs obtained by the DOPMD heuris-
tic from those of the perfect information DOP for p € {0.7,0.8} can be
explained as follows. Recall that in the DOPMD heuristic, the regular or-
der is taken as B(Y,«a), where Y is the order quantity in a system with
one unreliable supplier and o = min{%, 1}. Hence, for large values of
Ap, a = 1, in which case the modified demand in period n is equal to
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D, +B(Y,,1—p). For p € {0.7,0.8}, the modified demand is too large, as it
assumes unreturned quantities equal to those in a model with one unreliable
supplier (and no expedited supplier). On the other hand, for the perfect in-
formation DOP, the unreturned quantity is smaller, as it takes into account
the orders placed with the expedited supplier.

Table 10: Impact of yield rate
(h=5,lc=1,c,=150,¢,=100,b=495,D ~ Pois(2))

Perfect info. DOP DOPMD heuristic
lr p | Average total cost | % above perfect info. DOP
2 | 0.6 309.48 -0.01
2 107 301.19 2.73
2 108 268.14 1.92
2 109 241.42 1.12
2 1 219.92 0.09
4106 309.48 0.00
4 107 303.70 1.83
4108 273.40 2.36
4109 248.17 1.07
4 1 227.56 0.00

5.2.2. Impact of Regular Lead Time

To analyze the influence of the regular lead time, we take I, € {2,4,6, 8,10},
b € {95,495} and the other parameters as in the base case. The results are
reported in Table 11. As can be seen in column 4, changing [, does not
have a significant effect on the relative performance of the DOPMD heuris-
tic compared with the perfect information DOP. The maximum deviation
of the DOPMD heuristic is 2.64%, while the average deviation is 2.03%.

5.2.8. Impact of Penalty Cost

In this section, we study the influence of the penalty cost as well as
the optimal fractile on the performance of the DOPMD heuristic. For
this we take b € {5,7.5,12,15,95,495}, which results in an optimal fractile
bJ%h € {0.5,0.6,0.75,0.95,0.99} for the newsvendor problem in the approxi-
mate model with full returns. Recall that the optimal fractile influences the
expedited order-up-to level as z} = Fg,l(le T O(bJ%h). The results are shown
in Table 12. As we can see, the performance of the DOPMD heuristic is ro-
bust under different values of b. Compared to the perfect information DOP,
the proposed heuristic has an average deviation of 1.03% and a maximum
deviation of 1.92%. In most cases, the relative performance of the DOPMD
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Table 11: Impact of regular lead time
(h=>5,le=1,c.=150,¢,=100,p=0.8,D ~ Pois(2))

Perfect info. DOP DOPMD heuristic
b I, | Average total cost | % above perfect info. DOP
495 2 268.14 1.92
495 | 4 273.39 2.36
495 | 6 275.51 2.64
495 | 8 276.91 2.47
495 | 10 277.83 2.39
95 2 262.77 1.50
95 4 268.04 1.73
95 6 270.57 1.60
95 8 271.91 1.91
95 | 10 272.83 1.82

heuristic worsens when penalty cost increases. A higher penalty cost results
in a higher optimal fractile, which implies that the optimal z. is equal to
a larger percentile of the distribution of D't — 0. This distribution is
obtained by simulation as in [16]. Since it is more difficult to estimate the
probabilities at the tails of the distribution function, the bad performance
of the DOPMD heuristic could be caused by the difficulty in estimating the
distribution of D'(e+1) — O,

Table 12: Impact of penalty cost
(h=5,le=1,l,=2,c,=150,¢,=100,p=0.8,D ~ Pois(2))

Perfect info. DOP DOPMD heuristic
b Average total cost | % above perfect info. DOP
5 249.18 0.28
7.5 251.13 0.45
12 253.22 1.07
15 254.47 0.66
95 262.84 1.58
495 268.08 1.92

5.2.4. Impact of Regular Ordering Cost

To examine the impact of the regular ordering cost on the performance
of the DOPMD heuristic, we vary in the base case ¢, € {10,40, 70,100,130}
and b € {95,495}. The results can be found in Table 13. As can be seen
in column 8, the average deviation of the DOPMD heuristic from the per-
fect information DOP is 3.59% while the maximum deviation is 11.36%.
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Moreover, the relative performance of the DOPMD heuristic improves sig-
nificantly as ¢, increases. Based on columns 3, 4, 6 and 7, the order-up-to
levels of both the DOPMD heuristic and the perfect information DOP are
not influenced by the change in ¢, when ¢, € {10, 40, 70,100}. Therefore, in
these cases, the absolute differences between the average total costs of the
DOPMD heuristic and the perfect information DOP do not change, which
leads to a decreasing relative difference. When b = 495, both the DOPMD
heuristic and the perfect information DOP order from both suppliers in or-
der to achive a high service level and avoid the large penalty cost. When
b = 95, the DOPMD heuristic switches to single sourcing from the regular
supplier while the perfect information DOP allocates more order quanti-
ties to the expedited supplier. When ¢, = 130, the regular supplier becomes
more expensive than the expedited one and both policies prefer single sourc-
ing from the expedited supplier, in which case they derive the same policy.
The large deviation, i.e. 11.36% and 8.36%, only occurs when ¢, < ¢./10
which is less than one tenth of ¢.. This situation rarely exists in practice.

Table 13: Impact of regular ordering cost
(h=>5,le=1,l,=2,c,=150,p=0.8,D ~ Pois(2))

Perfect info. DOP DOPMD heuristic
b cr | ze | zr | Average total cost | ze | zr | % above perfect info. DOP
495 | 10 3 |11 51.39 3 |13 11.36
495 | 40 3 |11 129.32 3|13 4.59
495 | 70 3 |11 195.89 3 |13 2.93
495 | 100 | 3 | 11 268.14 8 | 13 1.92
495 | 130 | 8 8 309.48 8 8 0.00
95 10 5 9 46.11 0 | 11 8.36
95 40 5 9 118.36 0 | 11 3.31
95 70 5 9 190.60 0 | 11 1.97
95 | 100 | 5 9 262.84 0 | 11 1.44
95 | 130 | 7 7 306.52 7 7 -0.01

5.2.5. Impact of Demand Distribution

To examine the robustness of the DOPMD heuristic under different de-
mand distribution, we change in the base case D ~ Pois(\), A € {2,4,6,8,10}.
We focus on Poisson distribution because it is commonly used in the litera-
ture and is considered as a good approximation of the demand processes in
practice. The results are shown in Table 14. As can be seen in column 3, the
maximum and average deviation of the DOPMD heuristic from the perfect
information DOP is 1.92% and 1.11% respectively. Moreover, the relative
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performance of the DOPMD heuristic seems to improve when A increases.

Table 14: Impact of demand distribution
(h=5,l.=1,l,=2,c.=150,¢,=100,p=0.8,b=495)

Perfect info. DOP DOPMD heuristic
A | Average total cost | % above perfect info. DOP
2 268.08 1.92
4 540.24 1.20
6 805.20 0.98
8 1066.20 0.79
10 1325.00 0.65

6. Conclusions and Discussion

In this paper, we study both the single-sourcing and dual-sourcing inven-
tory models with positive lead times and random yield. Yield uncertainty
has rarely been considered in models with positive lead times and never in
the dual-sourcing model with general lead times, which is the contribution of
this paper. For both models, we propose simple order-up-to heuristics. The
optimal order-up-to levels are derived based on approximate models with full
returns and modified demand distributions. Numerical results show that the
performance of the proposed heuristic in the single sourcing model is close
to that of the optimal policy. Compared to the safety stock policy recently
proposed by [11], our heuristic seems to perform better than the safety stock
policy when yield rate is high or lead time is small. For the dual sourcing
model, the numerical results indicate that the proposed heuristic gives, in
most cases, results close to the DOP for the model with perfect yield infor-
mation. Moreover, the performance is robust with respect to changes in the
main parameters.
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