
A short guide to exponential Krylov subspace

time integration for Maxwell’s equationsI

Mike A. Botchev

Department of Applied Mathematics and MESA+ Institute for Nanotechnology,

University of Twente, P.O. Box 217, NL-7500 AE Enschede, the Netherlands,

mbotchev@na-net.ornl.gov.

Abstract

The exponential time integration, i.e., time integration which involves the
matrix exponential, is an attractive tool for solving Maxwell’s equations in
time. However, its application in practice often requires a substantial knowl-
edge of numerical linear algebra algorithms, in particular, of the Krylov
subspace methods. This note provides a brief guide on how to apply ex-
ponential Krylov subspace time integration in practice. Although we con-
sider Maxwell’s equations, the guide can readily be used for other similar
time-dependent problems. In particular, we discuss in detail the Arnoldi
shift-and-invert method combined with recently introduced residual-based
stopping criterion.

Two of the algorithms described here are available as MATLAB codes
and can be downloaded from the website http://eprints.eemcs.utwente.
nl/ together with this note.

Keywords: matrix exponential, Maxwell’s equations, Krylov subspace
methods, exponential time integration, shift-and-invert, stopping criterion
2008 MSC: 65F60, 65F30, 65N22, 65L05, 35Q61

1. Introduction

Efficient numerical solution of Maxwell’s equations, and their time in-
tegration in particular, remains a challenging task. This is due to both an
increasing complexity of the electromagnetic models and a frequent need

IThis work was partially supported by Russian federal program “Scientific and
scientific-pedagogical personnel of innovative Russia”.

Preprint submitted to Journal of Computational Physics September 26, 2012

http://eprints.eemcs.utwente.nl/
http://eprints.eemcs.utwente.nl/

to couple them with other models relevant for the process under considera-
tion. An important aspect in the numerical solution of Maxwell’s equations
is their space–time field geometric structure: to be successful a numerical
solution procedure has to respect it. Examples of such mimetic space dis-
cretization schemes for Maxwell’s equations are the well-known Yee cell [69]
and the edge–face Whitney–Nédélec vector finite elements [48, 49, 6, 46].

Once a proper space discretization is applied, one is left with a large
system of ordinary differential equations (ODEs) to integrate in time. On
one hand, a good time integration scheme has to accurately resolve the
wave structure of the equations. On the other hand, it has to cope with
possible time step restrictions due to, for instance, a locally refined space
grid or large conduction terms. The exponential time integration schemes
seem to be especially well suited in this context, as they combine excellent
(unconditional) stability properties with ability to produce a very accurate
solution even for relatively large time step sizes.

The aim of this note is to provide a short introduction to the exponen-
tial time integration methods based on the Krylov subspace methods for
Maxwell’s equations. Within the electromagnetic engineering community,
exponential methods seem to slowly but surely gain acceptance and popu-
larity over the last years [17, 43, 11, 59, 9].

Nevertheless, there are some recent developments in the Krylov subspace
methods which significantly increase the efficiency of the exponential time
integration but seem to be up to now overlooked by physicists and engineers.
Such developments are the shift-and-invert (SAI) techniques, restarting and
residual-based stopping criteria [64, 24, 29, 7, 8]. For instance, we are un-
aware of any single electromagnetics paper where the Krylov SAI exponential
methods are employed to solve Maxwell’s equations. This note aims at fill-
ing this gap by providing a relatively self-contained guide for some of these
methods.

We consider Maxwell’s equations in the form

µ∂tH = −∇×E,

ε∂tE = ∇×H − σE + J ,
(1)

where H = H(x, y, z, t) and E = E(x, y, z, t) are vector functions denoting
respectively magnetic and electric fields, µ = µ(x, y, z) is magnetic per-
meability, ε = ε(x, y, z) is electric permittivity, σ = σ(x, y, z) is electric
conduction and J = J(x, y, z, t) is the electric current. We assume that
the space variables (x, y, z) vary within a domain Ω ⊂ R

3 and that suitable
initial and boundary conditions are set for system (1).

2

A chosen finite difference or (vector) finite element space discretization
then yields an ODE system

Mµh
′ = −Ke+ jh,

Mεe
′ = KTh−Mσe+ je,

(2)

where h = h(t) : R → R
nh and e = e(t) : R → R

ne are vector functions,
whose components are time-dependent degrees of freedom associated with
the magnetic and electric fields, respectively. Furthermore, Mµ ∈ R

nh×nh

and Mε,Mσ ∈ R
ne×ne are the mass matrices and K ∈ R

nh×ne is the dis-
cretized curl operator. Finally, jh = jh(t) : R → R

nh , je = je(t) : R → R
ne

are the source functions containing contributions of the discretized current
function J and possibly also from the discretized boundary conditions. If
the standard Yee cell space discretization is used then nh is the total number
of the cell faces in the space grid, where the discrete values of H are defined,
and ne is the total number of the edges in the space grid, where the values
of E are defined. In this case Mµ, Mε and Mσ are simply diagonal matrices
containing the grid values of µ, ε and σ, respectively. For details on how
an edge–face vector finite element discretization leads the ODE system of
type (2) see e.g. [54, 10].

Putting h(t) and e(t) into one vector function y = y(t) : R → R
n,

n = nh + ne, we can cast (2) into an equivalent form

y′(t) = −Ay(t) + g(t), (3)

with

y(t) =

[
h(t)
e(t)

]
, A =

[
0 M−1

µ K

−M−1
ε KT M−1

ε Mσ

]
, g(t) =

[
M−1

µ jh(t)

M−1
ε je(t)

]
.

Here, unless the mass matrices are diagonal, one does not need to compute
their inverses. The algorithms considered in this paper avoid the explicit
use of the inverse mass matrices. However, we need to compute the action
of the inverses on given vectors. This can be done by computing a sparse
Cholesky factorization for each of the mass matrices once and applying it
every time the action of the inverse is needed. If the problem is too big,
so that the sparse Cholesky is not possible, then the action of the inverses
can be computed by solving the linear systems with the mass matrix by a
preconditioned conjugate gradient (PCG) method, see e.g. [3, 66, 56].

If ε and σ are constant1 then the eigenvalues of A can be determined

1More exactly, it is sufficient to assume that ε and σ are such that M−1

ε Mσ = αI, with
α ∈ R and I the identity matrix.

3

analytically. In this case system (2) can be uncoupled by an orthogonal
transformation into a set of harmonic oscillators, see [10, Section 2.1].

The paper is organized as follows. In the next section some basic ex-
ponential time integration methods for Maxwell’s equations are briefly dis-
cussed. Section 3 provides a short introduction to Krylov subspace methods
for the matrix exponential and presents in detail a simple algorithm of this
class. In Section 4 we discuss the Krylov subspace Arnoldi/SAI method and
its implementation. A numerical example coming from the field of electro-
magnetic imaging is presented in Section 5 and conclusions are drawn in the
last section. Throughout the paper, unless indicated otherwise, the norm
sign ‖·‖ denotes the standard Euclidean vector 2-norm or the corresponding
operator (matrix) norm.

2. Exponential time integration

A standard second order method to integrate (2) reads

Mµ

hk+1/2 − hk−1/2

τ
= −Kek + (jh)k,

Mε
ek+1 − ek

τ
= KThk+1/2 −

1

2
Mσ(ek+1 + ek) +

1

2

(
(je)k + (je)k+1

)
,

(4)
where τ is the time step size and the subscript k refers to the time level,
e.g. (je)k = je(kτ). We refer to this method as CO2 (composition order 2)
method because it can be seen as a symplectic second order composition [10]
often used in the geometric time integration [30]. The method employs
the explicit staggered leapfrog time stepping for the curl terms −Kek and
KThk+1/2. It coincides with the classical Yee scheme for the Yee cell finite
difference space discretization and σ ≡ 0. The conductivity and the source
terms, i.e., −1

2Mσ(ek+1+ek)+
1
2((je)k+(je)k+1), are treated by the implicit

trapezoidal rule (ITR), also known as the Crank–Nicolson scheme. The
scheme is thus implicit–explicit. Note that (4) can be rewritten as

Mµ

hk+1/2 − hk

τ/2
= −Kek + (jh)k,

Mε
ek+1 − ek

τ
= KThk+1/2 −

1

2
Mσ(ek+1 + ek) +

1

2
((je)k + (je)k+1),

Mµ

hk+1 − hk+1/2

τ/2
= −Kek+1 + (jh)k.

(5)

4

The equivalence with (4) can be seen by combining the first formula above
with the third formula for the previous step k − 1. The form of CO2 given
by (5) is actually the form the CO2 scheme is derived by the composition
approach [10], and it can also be used in practical computations at the first
and last time steps. In the vector finite element context, paper [54] discusses
a closely related leapfrog scheme which differs from CO2 (4) in the way the
source term is treated.

The CO2 scheme is second accurate and conditionally stable with the
sufficient stability condition

τ 6
2√

maxψ
,

where ψ denote the eigenvalues of the matrix M−1
ε KTM−1

µ K. This matrix
can be shown to be positive semidefinite [10], which justifies the expression√
maxψ. If σ ≡ 0 then the inequality in the stability condition above has to

be strict to provide stability. Implementation of CO2 involves solution of a
linear system with the symmetric positive definite matrix Mε +

τ
2Mσ. The

solution can be efficiently carried out by a sparse direct Cholesky solver or
by PCG, see e.g. [3, 66, 56].

Another scheme which can be used for time integration of Maxwell’s
equations is the ITR or Crank-Nicolson scheme. When applied to (3), it
reads

yk+1 − yk
τ

= −1

2
A(yk + yk+1) +

1

2
(gk + gk+1). (6)

The scheme is second order accurate and unconditionally stable. At each
time step a linear system with the matrix I+ τ

2A has to be solved. This is a
computationally expensive task, much more expensive than solving a linear
system with a mass matrix (as e.g. in the CO2 scheme) [67]. The matrix
I + τ

2A is (strongly) nonsymmetric and its sparsity structure is much less
favorable for a sparse direct solver than it is in a mass matrix. Moreover,
standard preconditioners may not be efficient and a choice of a proper pre-
conditioned iterative solver is far from trivial, see [67] for a discussion and
numerical results in a vector finite element setting.

On the other hand, even if an efficient direct sparse or preconditioned
iterative solution of the ITR linear system is possible, it is often advisable to
use another type of scheme, namely, an exponential time integration scheme
(see also Section 5 in this note).

To solve the linear system with the matrix I + τ
2A in the context of a

5

finite element discretization, we can rewrite the matrix as

I +
τ

2
A = I +

τ

2
M−1

∗
A∗ =M−1

∗
(M∗ +

τ

2
A∗),

with A∗ =

[
0 K

−KT Mσ

]
, M∗ =

[
Mµ 0
0 Mε

]
.

(7)

Thus, one does not need to form the inverse mass matrices explicitly.
For a more detailed discussion of regular time integration methods for

Maxwell’s equations see e.g. [38]. We now give a short discussion of the
exponential time integration. A complete review on this subject can hardly
be given in this brief note, as it is an active field of research [36, 4, 5, 44, 51].
Instead, here we only give some basic ideas. First, note that the solution of
the initial value problem (IVP) with A ∈ R

n×n

y′(t) = −Ay(t), y(0) = v, t > 0, (8)

can be written as
y(t) = exp(−tA)v, t > 0, (9)

where exp(−tA) ∈ R
n×n is a matrix called the matrix exponential [26, 27,

45, 32, 23, 33]. Note also that to compute y(t) for several specific values of
t with (9) we only need to compute the action of the matrix exponential
on the vector v, note the matrix exponential itself. In the next section, we
discuss how this action on a vector can be computed.

Consider an IVP with a constant inhomogeneous term g0 ∈ R

y′(t) = −Ay(t) + g0, y(0) = v, t > 0. (10)

Assuming for the moment that A is invertible, we can rewrite the ODE
system y′(t) = −Ay(t) + g0 as

(y(t)−A−1g0)
′ = −A((y(t)−A−1g0),

which is a homogeneous ODE of the form (8). Hence, its solution satisfying
initial condition y(0) = v reads

y(t)−A−1g0 = exp(−tA)(v −A−1g0). (11)

Let us now introduce functions ϕj , j = 0, 1, . . . , which are extensively used
in exponential time integration:

ϕ0(x) = exp(x), ϕj(x) =
ϕj−1(x)− ϕj−1(0)

x
, j = 1, 2,

6

Note that ϕj(0) = 1/j! and that, in particular,

ϕ1(x) =
exp(x)− 1

x
= 1 +

x

2!
+
x2

3!
+
x3

4!
+

The expression (11) can be modified as

y(t) = exp(−tA)v + tϕ1(−tA)g0
= v + tϕ1(−tA)(−Av + g0), t > 0.

(12)

Since the functions ϕj(x) are smooth for all x ∈ C, the last relations hold
for any, not necessarily nonsingular A. The first expression for y(t) in (12)
is instructive as it shows the effect of the inhomogeneous constant term
on the solution (cf. (9)), whereas the second one can be preferably used
in computations. Indeed, the second formula requires evaluation of just a
single matrix function times a vector and this can be computed similarly to
the evaluation of the matrix exponential (see the next section).

For ODE system (3) with general, non-constant source term g(t), its
solution satisfying initial condition y(0) = v can be expressed with the help
of the so-called variation-of-constants formula:

y(t) = exp(−tA)v +
∫ t

0
exp

(
−(t− s)A

)
g(s)ds, t > 0. (13)

This formula is a backbone for exponential time integration, it often serves
as a starting point for derivation of exponential integrators. Note that, as
soon as g(t) = g0 = const(t), (12) can be obtained directly from (13) by
evaluating the integral term. Similarly, if g(t) is assumed to be constant for
t ∈ [tk, tk + τ], i.e, g(t) = gk, we can write

yk+1 = exp(−τA)yk + τϕ1(−τA)gk = yk + τϕ1(−τA)(−Ayk + gk), (14)

which is known as the exponentially fitted Euler scheme, see e.g. [35]. The
method is first order accurate when applied to (3) with general, time depen-
dent g(t) and exact for any τ > 0 as soon as g = const(t). The method is
unconditionally stable in the sense of A-stability2.

2A-stability of a method means that the method applied to the so-called Dahlquist
scalar test problem y′ = λy yields a bounded solution for any time step size as soon as
λ ∈ C has a negative real part. All exponential methods considered in this note are exact
for this test problem and, thus, are A-stable.

7

We now give an example of second-order accurate exponential time in-
tegrator, called EK2, exponential Krylov scheme of order 2, see [67]:

yk+1 = yk+τ(−Ayk+gk)+ τϕ2(−τA)
(
−τA(−Ayk+gk)+gk+1−gk

)
. (15)

This method, which goes back to [13, 42], can be derived by interpolating
the function g under the integral in (13) linearly and evaluating the integral.
This approach is sometimes refered to as exponential time differencing [14,
53] and is closely related to a class of exponential Runge–Kutta–Rosenbrock
methods [37].

It should be emphasized that, as we see, exponential time integrators
considered in this section can be applied in two essentially different settings.
In the first one, just a few actions of matrix functions are required to compute
solution at any time t of interest, t ∈ [0, T]. This is possible when the source
term is zero or (almost) constant, cf. (9),(12). In the second setting, we have
a time stepping procedure, where actions of matrix functions are required
every time step, see (14),(15). In our limited experience, exponential time
integrators are computationally efficient for Maxwell’s equations primarily
in the first setting. For instance, the CO2 scheme appears to be much more
efficient than EK2 in the experiments from [67], eventhough some promising
results with exponential integration are reported in [9]. A possible approach
to reduce the number of matrix function actions and, hence, to increase
efficiency of the exponential integration is presented in [8].

We now describe a way to compute exp(−tA)v or ϕk(−tA)v for a given
vector v ∈ R

n.

3. Computing the matrix exponential action by Krylov subspaces

There are several ways to compute the action of the matrix exponential
exp(−tA) (or the related matrix functions ϕk(−tA)) of a large matrix A on
a given vector v. These methods include Krylov subspace methods [65, 19,
40, 25, 55, 20, 34, 35, 21], the Chebyshev polynomials, scaling and squaring
with Padé or Taylor approximations and other methods [62, 17, 58, 12,
2]. Here, we describe only one group of the methods, namely, the Krylov
subspace methods. We choose to restrict ourselves to these methods because
they seem to combine versatility and efficiency. The Chebyshev polynomials
are mostly used for computing the matrix functions of symmetric or skew-
symmetric matrices, whereas the matrix A from (3) is in general neither
of both. Computing matrix functions with the Chebyshev polynomials for
general matrices is possible but not trivial [41]. For σ ≡ 0 the Maxwell

8

matrix A can be transformed into a skew-symmetric matrix and, hence, its
exponential can be computed via the Chebyshev polynomials, see e.g. [17].

3.1. Computing action of exp(−tA)
In Krylov subspace methods an orthogonal basis {v1, . . . , vm} of the

Krylov subspace

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

is built and stored as the columns of a matrix Vm = [v1, . . . , vm] ∈ R
n×m.

The matrix Vm is usually computed with the help of the Arnoldi process
(outlined below in Figure 1) and satisfies the so-called Arnoldi decomposi-
tion [66, 56]

AVm = Vm+1Hm+1,m, Hm+1,m ∈ R
m+1,m. (16)

The matrix Hm+1,m is upper-Hessenberg, which means that its entries hi,j
are zero as soon as i > j + 1. Denoting by Hm,m the matrix composed of
the first m rows of Hm+1,m, we can rewrite (16) as

AVm = VmHm,m + vm+1hm+1,me
T
m, (17)

where em = [0, . . . 0, 1]T ∈ R
m is the last canonical basis vector in R

m. The
last relation basically says that A times any vector of the Krylov subspace
is again a vector from the same subspace plus a multiple of the next Krylov
basis vector vm+1. Krylov subspace methods are usually successful if this
last term vm+1hm+1,me

T
m turns out to be, for some m, small. This means

that the Krylov subspace is close to an invariant subspace of A.
To compute y(t) = exp(−tA)v for a given v ∈ R

n, we set the first Krylov
basis vector v1 to be the normalized vector v (β := ‖v‖, v1 := v/β), and,
once Vm and Hm,m are computed, obtain an approximation ym(t) to y(t) as

y(t) = exp(−tA)v = exp(−tA)(Vmβe1)
≈ ym(t) = Vm exp(−tHm,m)βe1︸ ︷︷ ︸

um(t)

. (18)

Here e1 = [1 , 0, . . . 0]T ∈ R
m is the first canonical basis vector in R

m. The
rational behind (18) is that if A times a Krylov subspace vector is approxi-
mately again a Krylov subspace vector, then so is exp(−tA) times a Krylov
subspace vector. This is true because exp(−tA), as any matrix function of
A, is a polynomial in A. Computing ym(t) in (18) is much cheaper than

9

computing y(t) because we hope to have m ≪ n and usually m does not
exceed several hundreds. The exponential of −tHm,m then can be computed
by any suitable scheme for matrices of a moderate size, see e.g. [32, Chap-
ter 10] and [61, 4]. Note that software packages MATLAB and Mathematica
use the scaling and squaring algorithm of [31].

An algorithm for computing y(t) = exp(−tA)v for a given v ∈ R
n by the

just described Krylov subspace method is shown in Figure 1. The algorithm
is based on the Arnoldi process and uses the fact that the Krylov subspace is
scaling invariant, i.e., tA and A produce the same Krylov basis matrix Vm.
The essential parts of the algorithm are the orthogonalization of the newly
computed Krylov basis vector w with the modified Gram-Schmidt process
(lines 16–19), computation of the vector um(t) from (18) and a residual-
based stopping criterion (lines 22–28) which we adopt from [18, 39, 7].

The stopping criterion is based on controlling the residual of the approx-
imation ym(t) from (18) with respect to the ODE (8), i.e., the exponential
residual is defined as

rm(t) ≡ −Aym(t)− y′m(t). (19)

Indeed, with (17) and (18) it is not difficult to see that [18, 7]

rm(t) = −(hm+1,me
T
mum(t))vm+1, ‖rm(t)‖ = |hm+1,me

T
mum(t)|. (20)

The value resnorm computed by the algorithm is the residual norm relative
to the norm β of the initial vector v,

resnorm =
‖rm(t)‖

β
.

Since rm(t) is a time dependent function it is possible that ‖rm(t)‖ ≈ 0
occasionally at some specific points t only. Ideally, one might want to com-
pute the L2 norm

∫ t
0 ‖rm(s)‖2ds. In practice it seems sufficient to compute

the residual norm at several time moments s ∈ (0, t], this is done in the
lines 23–27. For more detail and discussion on the relation to other possible
stopping criteria we refer to [7].

At line 25 of the algorithm at Figure 1, the exponential of exp(−tHm,m)
is computed with a function expm, a built in function available in both
Octave and MATLAB. Both the Octave and MATLAB implementations of
expm, based respectively on papers [68] and [31], are the scaling and squaring
algorithms combined with Padé approximations. We should emphasize that
the costs for computing exp(−tHm,m) are usually negligible with respect

10

1 function y = expm_Arnoldi(A,v,t,toler,m)

2 % y = expm_Arnoldi(A,v,t,toler,m)

3 % computes $y = \exp(-t A) v$

4 % input: A (n x n)-matrix, v n-vector, t>0 time interval,

5 % toler>0 tolerance, m maximal Krylov dimension

6

7 n = size (v,1);

8 V = zeros(n ,m+1);

9 H = zeros(m+1,m);

10

11 beta = norm(v);

12 V(:,1) = v/beta;

13

14 for j=1:m

15 w = A*V(:,j);

16 for i=1:j

17 H(i,j) = w’*V(:,i);

18 w = w - H(i,j)*V(:,i);

19 end

20 H(j+1,j) = norm(w);

21 e1 = zeros(j,1); e1(1) = 1;

22 ej = zeros(j,1); ej(j) = 1;

23 s = [0.01, 1/3, 2/3, 1]*t;

24 for q=1:length(s)

25 u = expm(-s(q)*H(1:j,1:j))*e1;

26 beta_j(q) = -H(j+1,j)* (ej’*u);

27 end

28 resnorm = norm(beta_j,’inf’);

29 fprintf(’j = %d, resnorm = %.2e\n’,j,resnorm);

30 if resnorm<=toler

31 break

32 elseif j==m

33 disp(’warning: no convergence within m steps’);

34 end

35 V(:,j+1) = w/H(j+1,j);

36 end

37 y = V(:,1:j)*(beta*u);

Figure 1: An Octave/MATLAB implementation of the Krylov subspace method to com-
pute y(t) = exp(−tA)v for a given v ∈ R

n based on the Arnoldi process.

11

to the other costs of the algorithm. These are dominated by the matrix–
vector products with A and Gram-Schmidt orthogonalization (lines 15–19
of the algorithm). Therefore, if m is not too large, the choice of method to
compute exp(−tHm,m) hardly influences the total performance. When im-
plementing the algorithm in languages other than MATLAB/Octave, where
expm is not available, to compute exp(−tHm,m) one could use C/C++ em-
beddable FORTRAN codes from the EXPOKIT package [61], in particular
the dgpadm.f subroutine.

3.2. Computing action of ϕ1(−tA)
The solution of IVP (10) can be written as y(t) = v + tϕ1(−tA)(−Av +

g0), cf. (12). The Krylov subspace method described above can be easily
adapted to compute the action of ϕ1(−tA). First of all, the initial vector v1
of the Krylov subspace is defined as

β = ‖ −Av + g0‖, v1 =
1

β
(−Av + g0) (21)

and the approximate Krylov subspace solution now reads

ym = v + Vm tϕ1(−tHm,m)βe1︸ ︷︷ ︸
um(t)

, (22)

with the familiar Arnoldi matrices Vm and Hm,m defined as above. Note
is that um(t) is not the same as one from (18) and satisfies inhomogeneous
projected IVP

u′m = −Hm,mum + βe1, um(0) = 0, t > 0. (23)

If we now introduce the residual of ym as

rm(t) ≡ −Aym(t)− y′m(t) + g0, (24)

it is straightforward to show that ‖rm(t)‖ can be computed as given by (20)
with the new um from (23).

The code given in Figure 1 should then be adjusted accordingly. The
matrix function ϕ1(−tHm,m) can be computed with the help of the freely
available code phipade [4].

12

1 function y = expm_ArnoldiSAI(A,v,t,toler,m)

2 % y = expm_ArnoldiSAI(A,v,t,toler,m)

3 % computes $y = \exp(-t A) v$

4 % input: A (n x n)-matrix, v n-vector, t>0 time interval,

5 % toler>0 tolerance, m maximal Krylov dimension

6 n = size (v,1);

7 V = zeros(n ,m+1);

8 H = zeros(m+1,m);

9 gamma = t/10; I_gammaA = speye(n,n)+gamma*A;

10 [L,U,P,Q] = lu(I_gammaA);

11

12 beta = norm(v); V(:,1) = v/beta;

13 for j=1:m

14 w = Q*(U\(L\(P*V(:,j))));

15 for i=1:j

16 H(i,j) = w’*V(:,i);

17 w = w - H(i,j)*V(:,i);

18 end

19 H(j+1,j) = norm(w);

20 e1 = zeros(j,1); e1(1) = 1;

21 ej = zeros(j,1); ej(j) = 1;

22 invH = inv(H(1:j,1:j));

23 Hjj = (invH-eye(j,j))/gamma;

24 C = norm(I_gammaA*w);

25 s = [1/3, 2/3, 1]*t;

26 for q=1:length(s)

27 u = expm(-s(q)*Hjj)*e1;

28 beta_j(q) = C/gamma * (ej’*(invH*u));

29 end

30 resnorm = norm(beta_j,’inf’);

31 fprintf(’j = %d, resnorm = %.2e\n’,j,resnorm);

32 if resnorm<=toler

33 break

34 elseif j==m

35 disp(’warning: no convergence within m steps’);

36 end

37 V(:,j+1) = w/H(j+1,j);

38 end

39 y = V(:,1:j)*(beta*u);

Figure 2: An Octave/MATLAB implementation of the Krylov subspace method to com-
pute y(t) = exp(−tA)v for a given v ∈ R

n based on the Arnoldi/SAI process.13

4. Krylov subspace Arnoldi shift-and-invert (SAI) method

4.1. Computing action of exp(−tA) with Arnoldi/SAI

A well-known problem with the Krylov subspace methods for evaluat-
ing the matrix exponential is their slow convergence for matrices with stiff
spectrum, i.e., with the eigenvalues of both relatively small and large mag-
nitude. The eigenvalues of the matrix Hm,m tend to better approximate
the large eigenvalues of A, whereas the components corresponding to these
eigenvalues are not important for the matrix exponential (due to the expo-
nential decay). To emphasize the important small eigenvalues, the so-called
rational Krylov subspace approximations can be used [24, 28, 29]. A simple
representative of this class of methods is the shift-and-invert (SAI) Krylov
subspace method [47, 64]. The idea is to build up the Krylov subspace for
the transformed, shifted and inverted matrix A, namely, for (I + γA)−1.
Here γ is a parameter which in this note is set to 0.1t, with t being the
time interval from exp(−tA)v. For more detail on the choice of γ see [64,
Table 3.1].

The resulting algorithm is refered to as Arnoldi/SAI and proceeds as
follows. The Krylov subspace built up for (I + γA)−1 gives, cf. (17),

(I + γA)−1Vm = Vm+1H̃m+1,m

= VmH̃m,m + vm+1h̃m+1,me
T
m.

(25)

The approximation ym(t) ≈ exp(−tA)v is then obtained by (18), with

Hm,m =
1

γ
(H̃−1

m,m − I). (26)

Here we, in fact, apply the inverse SAI transformation on the projected
matrix. To implement the Arnoldi/SAI algorithm, we can follow the lines
of the regular Arnoldi algorithm, Figure 1. An important point is that the
matrix (I+γA)−1 does not have to be available, only its action on vectors is
needed. Of course, in many real life problems, including three-dimensional
Maxwell’s equations, obtaining (I + γA)−1 would not be possible. More
precisely, the step w := Avj of the standard Arnoldi method (line 15 at
Figure 1) transforms into w := (I + γA)−1vj in the Arnoldi/SAI method.
To compute the vector w we then solve a linear system (I + γA)w = vj .
This can be done either by a direct or a preconditioned iterative solver,
similarly to implicit time integration schemes. In the former case, a (sparse)
LU factorization of I + γA can be computed once at the beginning of the
algorithm and reused every time a new vector w has to be computed. In

14

practice, the Arnoldi/SAI method often converges fast so that additional
work to solve the SAI systems is paid off.

If a preconditioned iterative solver is used to solve (I + γA)w = vj , then
we have to know when to stop the iterations. Too many iterations would be
a waste of computational work, too few iterations could be harmful for the
accuracy of the method. The question of a proper stopping criterion was
analyzed in [64]: we do not have to solve the SAI system (I+γA)w = vj very
accurate and the tolerance to which it is solved can be relaxed as the Arnoldi
iterations j converge. More precisely, the iterations in the inner SAI solver
should be stopped as soon as the SAI residual vector rSAI

(i) = vj−(I+γA)w(i)

satisfies
‖rSAI

(i) ‖
‖vj‖

= ‖rSAI
(i) ‖ 6

toler

resnorm+ toler
, (27)

where ‖vj‖ = 1 due the Gram-Schmidt orthonormalization, i is the iteration
number in the inner SAI solver, w(i) is the approximate solution at iteration
i, toler is the required tolerance for the vector ym(t) ≈ exp(−tA)v and
resnorm is the exponential residual norm, cf. (19), evaluated at step j.
Note that the SAI stopping criterion proposed in [64] slightly differs from
the one we propose here in (27), namely, [64] uses an error bound rather
than the exponential residual norm.

The resulting Arnoldi/SAI algorithm to compute y(t) = exp(−tA)v for
a given v ∈ R

n is presented in Figure 2. The algorithm solves the SAI linear
system (I + γA)w = vj by the sparse LU factorization PAQ = LU , where
P and Q are permutation matrices (PAQ is A with permuted rows and
columns). This sparse factorization is provided by the UMFPACK pack-
age [16, 15] (and adopted in both Octave and MATLAB as the lu function).
It is crucial for the computational performance that the factorization is com-
puted once and reused every Krylov step.

The algorithm at Figure 2 has the same structure as the Arnoldi algo-
rithm from Figure 1, i.e., the Gram-Schmidt orthogonalization of the new
Krylov basis vector w is followed by computing um(t) (cf. (18)) and the
residual norm check. The main costs of the algorithm are the solution of
the linear system (I+γA)w = vj and the Gram-Schmidt orthogonalization.

Computing the residual (19) in the Arnoldi/SAI method is slightly more
involved than in the Arnoldi method. The Arnoldi/SAI decomposition (25)
can be transformed into

AVm = VmHm,m − h̃m+1,m

γ
(I + γA)vm+1e

T
mH̃

−1
m,m.

15

Then

rm(t) = −y′m −Aym = (VmHm −AVm) exp(−tHm,m)(βe1)

=
h̃m+1,m

γ
(I + γA)vm+1

[
eTmH̃

−1
m,mum(t)

]
,

(28)

where the expression in the square brackets is a scalar value, namely the
last component of the vector H̃−1

m,mum(t), with um(t) defined in (18). The
value resnorm computed by the algorithm at Figure 2 is again the relative
residual norm resnorm = ‖rm(s)‖/β computed for several values s ∈ (0, t].

4.2. Computing action of ϕ1(−tA) with Arnoldi/SAI

The described Arnoldi/SAI method can be easily applied to compute the
action of ϕ1(−tA) as well. The starting Krylov vector v1 should be defined
according to (21) and the approximate solution ym(t) is given by (22),(23).
It is easy to show that the residual of ym(t), defined for ϕ1(−tA) as rm(t) =
−Aym(t)− y′m(t) + g0, satisfies (28), namely,

rm(t) =
[
eTmH̃

−1
m,mum(t)

]
,

where um(t) is defined in (23).

5. A numerical example

This numerical test comes from the field of electromagnetic imaging and
fault detection in gas-and-oil industry [60]. Maxwell’s equations (1) are
posed in a cubical physical domain [−20, 20]3 (the size is given in meters),
which is divided by the plane x = 10 into two regions, where the conductivity
is defined as

σ =

{
0.1 S/m, x 6 10,

0.001 S/m, x > 10,
(29)

and µ = µ0, ε = ε0 in the whole domain. In the larger region x 6 10 a coil of
a square shape is placed connecting four points, whose coordinates (x, y, z)
are (−2,−2, 0), (−2, 2, 0), (2, 2, 0) and (2,−2, 0). The boundary conditions
are the far field conditions (homogeneous Dirichlet) and the initial conditions
are zero for the both fields. At the initial time t = 0 s a current in the
coil is switched on and increases linearly to reach 1A at the time moment
t = 10−6 s. The current remains constant for 10−4 s, is switched off at t =
1.01× 10−4 s and decays linearly to reach its zero value at t = 1.02× 10−4 s.

16

Table 1: Results for the test runs on the 20×20×20 mesh, n = 55 566. The CPU timings
are made in MATLAB and thus give only an indication of the actual performance. The
results for Arnoldi/SAI, T = 750 are given for two different tolerance values.

scheme T # time CPU rel. Krylov
steps time, s error dimension

CO2 100 4000 18 4.6e−07 —
Arnoldi 100 1805 > 1 000 1.0e−03a restart 300

Arnoldi/SAI 100 1 6.5 1.5e−10 25
ITR 100 400 31 2.7e−05 —

EXPOKIT 100 — 143 1.1e−10b 100
CO2 750 30 000 142 2.2e−07 —

Arnoldi/SAI 750 4 7.3 2.7e−05 17,12,5,8
Arnoldi/SAI 750 4 9.8 2.1e−08 31,16,8,6
a a higher accuracy can be reached if necessary
b provided by the EXPOKIT error estimator

After that the current remains zero until the final time 2.02 × 10−4 s is
reached.

We solve Maxwell’s equations in a dimensionless form, which is obtained
by the introducing the dimensionless quantities as

x =
1

L
xs (similarly for y, z), t =

c0
L
ts,

E =
1

H0Z0
Es =

1

H0 · 120π
Es, J =

L

H0
Js,

(30)

where the subindex ·s is used to indicate the values in the SI units, L = 40m
is the typical length, H0 = 1A/m is the typical magnetic strength, c0 =
1/
√
µ0ε0 ≈ 3 × 108m/s is the speed of light in vacuum, Z0 =

√
µ0/ε0 =

120πΩ is the free space intrinsic impedance. Note that the dimensionless
scaling introduces the factor Z0L = 4800π in the conductivity values (29),
which makes the problem mildly stiff. We discretize the problem in space
by the standard Yee finite differences.

The tests are carried out in MATLAB on a powerful Linux computer
with two “quad core” 2.40GHz CPU’s, each with 48 Gb memory. The
results of the test runs are presented in Tables 1 and 2. Several methods are
compared there: the CO2 scheme (4), the Crank–Nicolson ITR scheme (6),
an exponential scheme phiv.m of the EXPOKIT package [61], the Arnoldi

17

Table 2: Results for the test runs on the 40×40×40 mesh, n = 413 526. The CPU timings
are made in MATLAB and thus give only an indication of the actual performance. The
results for Arnoldi/SAI, T = 750 are given for two different tolerance values.

scheme T # time CPU rel. Krylov
steps time, s error dimension

CO2 100 8000 130 1.2e−07 —
Arnoldi 100 2318 > 3 000 3.0e−01a restart 300

Arnoldi/SAI 100 1 133 2.1e−08 20
ITR 100 400 903 3.9e−05 —

EXPOKIT 100 — 2673 1.7e−10b 100
CO2 750 60 000 1142 5.6e−08 —

Arnoldi/SAI 750 4 203 4.7e−05 17,10,5,8
Arnoldi/SAI 750 4 225 1.2e−07 28,14,10,6
a a higher accuracy can be reached if necessary
b provided by the EXPOKIT error estimator

and Arnoldi/SAI methods. The runs are done for two time intervals [t0; t0+
T], with the initial (dimensionless) time t0 = 765 (the moment when the coil
current has become zero) and either T = 100 or T = 750. In the latter case
the dimensionless time 1515 corresponds to the physical time 2.02× 10−4 s,
the final time of interest. The initial values for t0 = 765 and the reference
solution for t0 + T are obtained by running the CO2 scheme with a tiny
time step and extrapolating the results. The relative error with respect to
the reference solution yref is computed as ‖y − yref‖/‖yref‖, with y being
the numerical solution vector containing all the degrees of freedom for both
fields.

The CO2 scheme is run with roughly a maximal allowable time step size
(increasing the time step size by a factor of two leads to an instability). As
we see from Tables 1 and 2, the regular Arnoldi method is not efficient. The
method has been used in combination with restarting after every 300 Krylov
steps. The restarting is similar to the restarting for linear system Krylov
solvers, e.g. for GMRES(m) [57], and means that at most m = 300 Krylov
vectors have to be stored. There are different restarting strategies for Krylov
subspace matrix exponential methods [63, 1, 22, 28, 50], the one we used is
the residual based restarting from [7] which seems to be well suited for the
matrix exponential. Taking a restart value different than 300 does not help.

The Arnoldi/SAI method is used with the UMFPACK sparse LU solver

18

Table 3: CPU time needed to compute the sparse LU factorization of the matrix I + γA

versus the τ ≡ 10γ values. The 40×40×40 mesh is used (n = 413 526). The fill-in factors
are approximately 250 for τ 6 200 and 1000 for τ = 400.

τ ≡ 10γ 50 100 200 400

CPU time, s 152.7 148.9 153.8 3989

(the lu function in MATLAB), which provides the LU factorization as dis-
cussed in Section 4. This sparse solver uses strategies with compromise
between the sparsity in the triangular factors and numerical stability of the
LU factorization. Increasing the time interval τ leads at some point to a
very off-diagonal-dominant matrix I + γA, γ = τ/10, and, hence, to a dra-
matic increase in the CPU time to compute its sparse LU factorization, see
Table 3. For this reason we use the Arnoldi/SAI method with the time step
τ = 200 at most. For the time interval T = 750, the method carries out
four time steps, 3 × 200 + 1 × 150, and uses the same LU factorization for
all four steps. For this reason, the CPU timings for Arnoldi/SAI are not
proportional to the time interval T . Note that using the LU factorization
computed for τ = 200 for the last time step τ = 150 means that we effec-
tively change the value of γ. This is not a problem because, as observed
in [64] and confirmed in our experiments, the Arnoldi/SAI is known to be
not very sensitive to the choice of γ.

It is important to realize that a similar, efficient performance could be
achieved with Arnoldi/SAI method combined with an efficient precondi-
tioned iterative solver, if one was available. However, standard precon-
ditioners appear not to be efficient for this problem, see [67] for possible
iterative solution strategies in the context of Maxwell’s equations.

Of course, once a sparse LU factorization is affordable, one can use a
fully implicit scheme such as ITR. The scheme computes the same (as used
for the SAI system) sparse LU factorization once and keeps on using it all
the time steps. However, the CPU timings of the scheme are much higher
than for Arnoldi/SAI due many more time steps needed.

This numerical example with ITR seems to be rather instructive. Indeed,
assume a more complex problem is solved, when the source function g(t)
in (3) is not constant and, hence, the simple evaluation ym(t) ≈ exp(−tA)v
or ym(t) ≈ ϕ1(−tA)v does not suffice to get a solution. The test shows that
an exponential time integration scheme, such as EK2 (15), combined with
the Arnoldi/SAI method will likely not be more efficient than CO2. Indeed,

19

one would need to make many more time steps (and many more matrix
function evaluations). These arguments are confirmed by the tests reported
for EK2 in [67]. Thus, for general time dependent g(t) we need exponential
time integration methods which would allow (a) very large steps without
an accuracy loss and (b) reusing numerical linear algebra work as much as
possible. An example of such a scheme is presented in [8].

The EXPOKIT package [61] is able to compute the action of a large
exponential or the ϕ1 matrix function on a given vector, this can be done
with the help of the phiv function of EXPOKIT. This function employs
an Arnoldi method, where the time interval is divided into subintervals to
facilitate convergence (this approach is recently extended in [51]). In the
tests reported in Tables 1 and 2 EXPOKIT’s phiv was run with maximal
Krylov dimension increased to 100 (the default EXPOKIT’s value is 30).

6. Conclusions

We have presented some recent numerical techniques for computing the
action of the matrix exponential of a big matrix in the context of time
dependent Maxwell’s equations. In particular, a Krylov subspace Arnoldi
method, combined with the shift-and-invert (SAI) technique and a residual-
based stopping criterion, is shown to be a very competitive tool for the test
problem.

Due to the more work per time step than in conventional schemes, the
exponential methods seem to be efficient only for sufficiently large time steps
or when the additional numerical linear algebra work can be reused through
the time stepping (see numerical results and discussion in Section 5 and
in [67]). An attractive feature of the schemes is that their accuracy can
often be retained for very large time steps.

A closely related issue is the efficiency of the SAI system solvers. Al-
though formally the time step size may not be bounded, as the exponential
schemes discussed here are unconditionally stable and exact for any step,
in practice the time step size can often be bounded by the solver. Indeed,
solving the SAI system for very large time steps may become very expensive.

Furthermore, the presented experiments show superiority of the expo-
nential schemes with respect to the standard implicit schemes in cases when
both types of schemes can be implemented efficiently.

In overall, the efficient solution of the SAI systems seems to be very
important. Therefore it is advisable to concentrate a further research on
development of (parallel) preconditioned iterative solvers, possibly including
the so-called Krylov subspace recycling [52].

20

The MATLAB functions expm_Arnoldi and expm_ArnoldiSAI described
in Sections 3 and 4 can be downloaded together with this note from http:

//eprints.eemcs.utwente.nl/.

Acknowledgments

The author would like to thank Oleg Nechaev for his kind advise con-
cerning the implementation of the test problem.

References

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel. Implementa-
tion of a restarted Krylov subspace method for the evaluation of matrix
functions. Linear Algebra Appl., 429:2293–2314, 2008.

[2] A. H. Al-Mohy and N. J. Higham. Computing the action of the ma-
trix exponential, with an application to exponential integrators. SIAM
J. Sci. Comput., 33(2):488–511, 2011. http://dx.doi.org/10.1137/

100788860.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. A. van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, Philadelphia, PA, 1994. Available at
www.netlib.org/templates/.

[4] H. Berland, B. Skaflestad, and W. M. Wright. EXPINT—a MATLAB
package for exponential integrators. ACM Trans. Math. Softw., 33(1),
Mar. 2007. http://www.math.ntnu.no/num/expint/.

[5] S. Blanes, F. Casas, J. A. Oteo, and J. Ros. The magnus expansion
and some of its applications. Physics Reports, 470(5–6):151–238, 2009.
http://dx.doi.org/10.1016/j.physrep.2008.11.001.

[6] A. Bossavit. Computational electromagnetism. Variational formula-
tions, complementarity, edge elements. Electromagnetism. Academic
Press Inc., San Diego, CA, 1998.

[7] M. A. Botchev. Residual, restarting and Richardson iteration for the
matrix exponential, revised. ArXiv e-prints, Dec. 2011. http://arxiv.
org/abs/1112.5670.

21

http://eprints.eemcs.utwente.nl/
http://eprints.eemcs.utwente.nl/
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/100788860
www.netlib.org/templates/
http://www.math.ntnu.no/num/expint/
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://arxiv.org/abs/1112.5670
http://arxiv.org/abs/1112.5670

[8] M. A. Botchev. A block Krylov subspace time-exact solution method
for linear ODE systems. Memorandum 1973, Department of Applied
Mathematics, University of Twente, Enschede, January 2012. http:

//eprints.eemcs.utwente.nl/21277/.

[9] M. A. Botchev, D. Harutyunyan, and J. J. W. van der Vegt. The
Gautschi time stepping scheme for edge finite element discretizations
of the Maxwell equations. J. Comput. Phys., 216:654–686, 2006. http:
//dx.doi.org/10.1016/j.jcp.2006.01.014.

[10] M. A. Botchev and J. G. Verwer. Numerical integration of damped
Maxwell equations. SIAM J. Sci. Comput., 31(2):1322–1346, 2009.
http://dx.doi.org/10.1137/08072108X.

[11] K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili. A
Krylov-subspace based solver for the linear and nonlinear Maxwell equa-
tions. Phys. Stat. Sol. (b), 244(10):3479–3496, 2007.

[12] M. Caliari and A. Ostermann. Implementation of exponential
Rosenbrock-type integrators. Appl. Numer. Math., 59(3-4):568–581,
2009.

[13] J. Certaine. The solution of ordinary differential equations with large
time constants. In K. E. A. Ralston, H.S. Wilf, editor, Mathematical
Methods for Digital Computers, pages 128–132. Wiley, New York, 1960.

[14] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff
systems. J. Comput. Phys., 176(2):430–455, 2002.

[15] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-
pattern multifrontal method. ACM Trans. Math. Software, 30(2):196–
199, 2004.

[16] T. A. Davis. A column pre-ordering strategy for the unsymmetric-
pattern multifrontal method. ACM Trans. Math. Software, 30(2):167–
195, 2004.

[17] H. De Raedt, K. Michielsen, J. S. Kole, and M. T. Figge. One-step
finite-difference time-domain algorithm to solve the Maxwell equations.
Phys. Rev. E, 67:056706, 2003.

[18] V. Druskin, A. Greenbaum, and L. Knizhnerman. Using nonorthogonal
Lanczos vectors in the computation of matrix functions. SIAM J. Sci.
Comput., 19(1):38–54, 1998.

22

http://eprints.eemcs.utwente.nl/21277/
http://eprints.eemcs.utwente.nl/21277/
http://dx.doi.org/10.1016/j.jcp.2006.01.014
http://dx.doi.org/10.1016/j.jcp.2006.01.014
http://dx.doi.org/10.1137/08072108X

[19] V. L. Druskin and L. A. Knizhnerman. Two polynomial methods of
calculating functions of symmetric matrices. U.S.S.R. Comput. Maths.
Math. Phys., 29(6):112–121, 1989.

[20] V. L. Druskin and L. A. Knizhnerman. Krylov subspace approximations
of eigenpairs and matrix functions in exact and computer arithmetic.
Numer. Lin. Alg. Appl., 2:205–217, 1995.

[21] V. L. Druskin and L. A. Knizhnerman. Extended Krylov subspaces:
approximation of the matrix square root and related functions. SIAM
J. Matrix Anal. Appl., 19(3):755–771 (electronic), 1998.

[22] M. Eiermann, O. G. Ernst, and S. Güttel. Deflated restarting for matrix
functions. SIAM J. Matrix Anal. Appl., 32(2):621–641, 2011. http:

//dx.doi.org/10.1137/090774665.

[23] A. Frommer and V. Simoncini. Matrix functions. In W. H. A. Schilders,
H. A. van der Vorst, and J. Rommes, editors, Model Order Reduction:
Theory, Research Aspects and Applications, pages 275–304. Springer,
2008.

[24] A. Frommer and V. Simoncini. Stopping criteria for rational matrix
functions of Hermitian and symmetric matrices. SIAM J. Sci. Comput.,
30(3):1387–1412, 2008.

[25] E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations
by Krylov approximation methods. SIAM J. Sci. Statist. Comput.,
13(5):1236–1264, 1992.

[26] F. R. Gantmacher. The Theory of Matrices. Vol. 1. AMS Chelsea
Publishing, Providence, RI, 1998. Translated from the Russian by K.
A. Hirsch, Reprint of the 1959 translation.

[27] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore and London, third edition, 1996.

[28] S. Güttel. Rational Krylov Methods for Operator Functions. PhD
thesis, Technischen Universität Bergakademie Freiberg, March 2010.
www.guettel.com.

[29] S. Güttel. Rational Krylov approximation of matrix functions: Nu-
merical methods and optimal pole selection. Preprint submitted for
publication, March 2012. www.guettel.com.

23

http://dx.doi.org/10.1137/090774665
http://dx.doi.org/10.1137/090774665
www.guettel.com
www.guettel.com

[30] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integra-
tion. Structure-preserving algorithms for ordinary differential equations.
Springer-Verlag, Berlin, second edition, 2006.

[31] N. J. Higham. The scaling and squaring method for the matrix expo-
nential revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[32] N. J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[33] N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta
Numer., 19:159–208, 2010.

[34] M. Hochbruck and C. Lubich. On Krylov subspace approximations to
the matrix exponential operator. SIAM J. Numer. Anal., 34(5):1911–
1925, Oct. 1997.

[35] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators
for large systems of differential equations. SIAM J. Sci. Comput.,
19(5):1552–1574, 1998.

[36] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Nu-
mer., 19:209–286, 2010.

[37] M. Hochbruck, A. Ostermann, and J. Schweitzer. Exponential
Rosenbrock-type methods. SIAM J. Numer. Anal., 47(1):786–803,
2008/09. http://dx.doi.org/10.1137/080717717.

[38] R. Horváth, I. Faragó, and W. Schilders. Investigation of numerical
time-integrations of Maxwell’s equations using the staggered grid spa-
tial discretization. Int. J. Numer. Model., 18:149–169, 2005.

[39] L. Knizhnerman and V. Simoncini. A new investigation of the extended
Krylov subspace method for matrix function evaluations. Numer. Lin-
ear Algebra Appl., 2009. To appear.

[40] L. A. Knizhnerman. Calculation of functions of unsymmetric matri-
ces using Arnoldi’s method. U.S.S.R. Comput. Maths. Math. Phys.,
31(1):1–9, 1991.

[41] V. I. Lebedev. Explicit difference schemes for solving stiff systems of
ODEs and PDEs with complex spectrum. Russian J. Numer. Anal.
Math. Modelling, 13(2):107–116, 1998.

24

http://dx.doi.org/10.1137/080717717

[42] J. Legras. Résolution numérique des grands systèmes différentiels
linéaires. Numer. Math., 8:14–28, 1966.

[43] X. Ma, X. Zhao, and Y. Zhao. A 3-d precise integration time-domain
method without the restraints of the Courant-Friedrich-Levy stability
condition for the numerical solution of Maxwell’s equations. Microwave
Theory and Techniques, IEEE Transactions on, 54(7):3026–3037, july
2006.

[44] B. V. Minchev and W. M. Wright. A review of exponential integrators
for first order semi-linear problems. Technical Report 2/05, Department
of Mathematics, NTNU, Norway, April 2005. http://www.ii.uib.no/

~borko/pub/N2-2005.pdf.

[45] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49,
2003.

[46] P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford
University Press, 2003.

[47] I. Moret and P. Novati. RD rational approximations of the matrix
exponential. BIT, 44:595–615, 2004.

[48] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–
341, 1980.

[49] J.-C. Nédélec. A new family of mixed finite elements in R3. Numer.
Math., 50(1):57–81, 1986.

[50] J. Niehoff. Projektionsverfahren zur Approximation von Matrixfunktio-
nen mit Anwendungen auf die Implementierung exponentieller Integra-
toren. PhD thesis, Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf, December 2006.

[51] J. Niesen and W. M. Wright. Algorithm 919: A Krylov subspace algo-
rithm for evaluating the ϕ-functions appearing in exponential integra-
tors. ACM Trans. Math. Softw., 38(3):22:1–22:19, Apr. 2012.

[52] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti.
Recycling Krylov subspaces for sequences of linear systems. SIAM J.
Sci. Comput., 28(5):1651–1674, 2006.

25

http://www.ii.uib.no/~borko/pub/N2-2005.pdf
http://www.ii.uib.no/~borko/pub/N2-2005.pdf

[53] P. G. Petropoulos. Analysis of exponential time-differencing for FDTD
in lossy dielectrics. IEEE transactions on antennas and propagation,
45(6):1054–1057, 1997.

[54] G. Rodrigue and D. White. A vector finite element time-domain
method for solving Maxwell’s equations on unstructured hexahedral
grids. SIAM J. Sci. Comput., 23(3):683–706, 2001.

[55] Y. Saad. Analysis of some Krylov subspace approximations to the
matrix exponential operator. SIAM J. Numer. Anal., 29(1):209–228,
1992.

[56] Y. Saad. Iterative Methods for Sparse Linear Systems. Book out of
print, 2000. www-users.cs.umn.edu/~saad/books.html.

[57] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7(3):856–869, 1986.

[58] T. Schmelzer and L. N. Trefethen. Evaluating matrix functions for expo-
nential integrators via Carathéodory-Fejér approximation and contour
integrals. Electron. Trans. Numer. Anal., 29:1–18, 2007/08.

[59] W. Schoenmaker. Speeding-up transient EM-TCAD using matrix ex-
ponential forms. Presentation at the European Conference for Mathe-
matics in Industry, ECMI2012, July 2012. Lund, Sweden.

[60] E. P. Shurina, A. V. Gelber, M. A. Gelber, and M. I. Epov. Mathemat-
ical modelling of non-stationary electromagnetic fields of defectoscope
of casings. Computational technologies, 7(6):114–129, 2002. In Russian.
www.ict.nsc.ru/jct/annotation/346?l=eng.

[61] R. B. Sidje. Expokit. A software package for computing matrix expo-
nentials. ACM Trans. Math. Softw., 24(1):130–156, 1998. www.maths.
uq.edu.au/expokit/.

[62] H. Tal-Ezer. Spectral methods in time for parabolic problems. SIAM
J. Numer. Anal., 26(1):1–11, 1989.

[63] H. Tal-Ezer. On restart and error estimation for Krylov approximation
of w = f(A)v. SIAM J. Sci. Comput., 29(6):2426–2441 (electronic),
2007.

26

www-users.cs.umn.edu/~saad/books.html
www.ict.nsc.ru/jct/annotation/346?l=eng
www.maths.uq.edu.au/expokit/
www.maths.uq.edu.au/expokit/

[64] J. van den Eshof and M. Hochbruck. Preconditioning Lanczos approxi-
mations to the matrix exponential. SIAM J. Sci. Comput., 27(4):1438–
1457, 2006.

[65] H. A. van der Vorst. An iterative solution method for solving f(A)x = b,
using Krylov subspace information obtained for the symmetric positive
definite matrix A. J. Comput. Appl. Math., 18:249–263, 1987.

[66] H. A. van der Vorst. Iterative Krylov methods for large linear systems.
Cambridge University Press, 2003.

[67] J. G. Verwer and M. A. Botchev. Unconditionally stable integration
of Maxwell’s equations. Linear Algebra and its Applications, 431(3–
4):300–317, 2009.

[68] R. C. Ward. Numerical computation of the matrix exponential with
accuracy estimate. SIAM J. Numer. Anal., 14(4):600–610, 1977.

[69] K. S. Yee. Numerical solution of initial boundary value problems in-
volving Maxwells equations in isotropic media. IEEE Trans. Antennas
Propagat., 14(3):302–307, March 1966.

27

