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Abstract. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE),
a user secret key is associated with a set of attributes, and the ciphertext
is associated with an access policy over attributes. The user can decrypt
the ciphertext if and only if the attribute set of his secret key satisfies
the access policy specified in the ciphertext. Several CP-ABE schemes
have been proposed, however, some practical problems, such as attribute
revocation, still needs to be addressed. In this paper, we propose a medi-
ated Ciphertext-Policy Attribute-Based Encryption (mCP-ABE) which
extends CP-ABE with instantaneous attribute revocation. Furthermore,
we demonstrate how to apply the proposed mCP-ABE scheme to securely
manage Personal Health Records (PHRs).

1 Introduction

Modern distributed information systems require flexible access control models
which go beyond discretionary, mandatory and role-based access control. Re-
cently proposed models, such as attribute-based access control, define access
control policies based on different attributes of the requester, environment, or
the data object. On the other hand, the current trend of service-based informa-
tion systems and storage outsourcing require increased protection of data includ-
ing access control methods that are cryptographically enforced. The concept of
Attribute-Based Encryption(ABE) fulfills the aforementioned requirements. It
provides an elegant way of encrypting data such that the encryptor defines the
attribute set that the decryptor needs to posses in order to decrypt the cipher-
text. Since Sahai and Waters [1] proposed the basic ABE scheme, several more
advanced schemes have been developed, such as most notably Ciphertext-Policy
ABE schemes (CP-ABE) [2,3]. In these schemes, a ciphertext is associated with
an access policy and the user secret key is associated with a set of attributes.
A secret key holder can decrypt the ciphertext if the attributes associated with
his secret key satisfy the access policy associated with the ciphertext. For exam-
ple, consider a situation when two organizations, a Hospital and a University,
conduct research in the field of neurological disorders. The Hospital wants to
allow access to their research results to all staff from the University who have
the role Professor and belong to the Department of Neurology (DN). To en-
force the policy, the Hospital encrypts the data according to the access policy



τResults=(University Professor ∧ Member of DN). Only users who have a secret
key associated with a set of attributes ω=(University Professor, Member of DN)
can satisfy the access policy τResults and be able to decrypt the ciphertext.
The state-of-the-art CP-ABE schemes provide limited support for revocation
of attributes, a feature, which is becoming increasingly important in modern
access control systems. In general, attribute revocation may happen due to the
following reasons: 1) an attribute is not valid because it has expired, for instance,
the attribute ”project manager-January 2009 ” is valid until January 2009, or 2)
a user is misusing her secret key associated with a set of attributes, for instance,
Alice might give a copy of her secret key to Bob who is not a legitimate user.
In particular, attribute revocation is an important requirement in the domain of
access control to personal health data, which is our application field for attribute-
based encryption.
Contribution. In this paper, we propose a new scheme for attribute revoca-
tion in CP-ABE called mediated Ciphertext-Policy Attribute-Based Encryption
(mCP-ABE). Previous CP-ABE systems proposed to use a system where at-
tributes are valid within a specific time frame [4]. However, the drawback of this
approach is that there is no way to revoke an attribute before the expiration
date. In our scheme the secret key is divided into two shares, one share for the
mediator and the other for the user. To decrypt the data, the user must contact
the mediator to receive a decryption token. The mediator keeps an attribute
revocation list (ARL) and refuses to issue the decryption token for revoked at-
tributes. Without the token, the user cannot decrypt the ciphertext, therefore
the attribute is implicitly revoked. In our scheme we assume that each user has
a unique identifier Iu (in CP-ABE the user is identified only with a set of at-
tributes) and may have many attributes. The identifier is used by the mediator
to check if there are revoked attributes related to Iu. Different users having dif-
ferent identifiers, may have the same attribute set. For example, Alice with an
identifier IAlice, and Bob with an identifier IBob, may have the same attribute set
ω = (att1, att2). The technique of splitting the attribute components of the se-
cret key into two shares, and the technique of using an identifier Iu for each user,
helps us to achieve the following attribute revocations: i) revoking an attribute
from a single user without affecting other users, and ii) revoking an attribute
from the system where all users are affected.
We also define a security model for the proposed scheme which formalizes the
security attacks and provide a security proof under the generic group model.
Finally, we demonstrate the applicability of the proposed scheme to securely
manage Personal Health Records (PHRs).

1.1 Related Work

Attribute-Based Encryption. Sahai and Waters in their seminal paper [1] intro-
duce the concept of ABE. There are two types of ABE schemes: Key-Policy ABE
schemes (KP-ABE) [5] and Ciphertext-Policy ABE schemes (CP-ABE) [2,3]. In
KP-ABE, a ciphertext is associated with a set of attributes and a user secret



key is associated with an access policy. A secret key holder can decrypt the ci-
phertext if the attributes associated with the ciphertext satisfy the access policy
associated with the secret key. Related to KP-ABE is the technique of searching
on encrypted data [6,7,8,9]. In CP-ABE the idea is reversed. A ciphertext is
associated with an access policy and the user secret key is associated with a set
of attributes. A secret key holder can decrypt the ciphertext if the attributes
associated with the secret key satisfy the access policy associated with the ci-
phertext.
Mediated Cryptography. Boneh et al.[10,11] introduce a method for fast revoca-
tion of public key certificates and security capabilities in a RSA cryptosystem
called mediated RSA (mRSA). The method uses an online semi-trusted medi-
ator (SEM) which has a share of each users secret key, while the user has the
remaining share of the secret key. To decrypt or sign a message, a user must first
contact SEM and receive a message-specific token. Without the token, the user
cannot decrypt or sign a message. Instantaneous user revocation is obtained by
instructing SEM to stop issuing tokens for future decrypt/sign requests. Thus,
in mediated cryptography the Trusted Authority (TA) responsible to generate a
user key pair, does not deliver the full decryption key to users, but it delivers only
a share of it. This method achieves faster revocation of user’s security capabilities
compared to previous certification techniques such as Certificate Revocation List
(CRL) and Online Certificate Status Protocol (OCSP). Libert and Quisquater
[12] show that the architecture for revoking security capabilities can be applied
to several existing public key encryption schemes including the Boneh-Franklin
scheme, and several signature schemes including the GDH scheme. Nali et al. [13]
present a mediated hierarchical identity-based encryption and signature scheme.
The hierarchical nature of the schemes and the instant revocation capability of-
fered by the SEM architecture allows to enforce access control cryptographically
in hierarchically structured communities of users whose access privileges change
dynamically. Nali et al. [14] also show how to extend the Libert and Quisquater
mediated identity-based cryptographic scheme to allow the enforcement of role-
based access control (RBAC).
Revocation. Credential revocation is a critical issue for access control systems.
For ABE systems, Pirretti et al. [4] propose to use user attributes for a limited
time period. After a specific time period the attribute would become invalid.
However, in such systems an attribute cannot be revoked before the expiration
date. This approach also requires the list of keys that correspond to attributes
to be updated regularly, which would also require the users secret keys to be
updated regularly. Boldyreva et al. [15] proposes a revocable IBE scheme. The
proposed idea for the revocation is based on binary tree data structure, proposed
previously in the PKI setting [16,17]. Boldyreva approach is an improvement to
Boneh and Franklin [18] idea, however, when the number of revoked users in-
creases, then the advantage of the proposed scheme is lost over that proposed
by Boneh and Franklin, especially when the number of revoked users r becomes
close to to the total number of users n in the system. Even if r is less than n,
still the key update complexity is bounded by O(r log(n

r )) while in a realistic



solution, the key update complexity should depend on the number of revoked
users. Ostrovsky et al.[19] proposes a Key-Policy Attribute-Based Encryption
scheme, where the user secret key may be associated with a non-monotonic ac-
cess policy. The non-monotonic access policy can be represented by a boolean
formula such as AND, OR, NOT, and Out Of (threshold) operations. The main
drawback of the scheme is that the size of attributes in the ciphertext is fixed,
which restricts the expressivity of the scheme. We note that the concept of re-
voking an attribute is similar to the concept of revoking an identity. Hence, one
can revoke an identity of the user instead of revoking an attribute in an access
structure. In this paper we propose a mediated CP-ABE scheme which is not
limited to the fixed size of attributes which can be revoked.

Organization. The rest of this paper is organized as follows. Section 2 pro-
vides background information. In Section 3 we give a formal definition of the
mCP-ABE scheme. Section 4 describes the construction of mCP-ABE scheme.
In Section 5 we apply the mCP-ABE scheme and describe a general architecture
for secure management of Personal Health Records (PHRs). The last section
concludes the paper.

2 Background

In this section, we briefly review the basics of bilinear pairing and the security
proof in the generic group model, and give a formal definition of CP-ABE.

2.1 Bilinear Pairing

Let G0 and G1 be two multiplicative groups of prime order p, and let g be a
generator of G0. A pairing (or bilinear map) ê : G0 × G0 → G1 satisfies the
following properties [20]:

1. Bilinear: for all u, v ∈ G0 and a, b ∈ Z∗p, we have ê(ua, vb) = ê(u, v)ab.
2. Non-degenerate: ê(g, g) 6= 1.

G0 is said to be a bilinear group if the group operation in G0 and the bilinear map
ê : G0 ×G0 → G1 can be computed efficiently. Note that the map is symmetric
since ê(ga, gb) = ê(g, g)ab = ê(gb, ga).

2.2 Security in the Generic Group Model

We prove the security of the scheme based on the generic group model, intro-
duced by Shoup [21]. A proof in the generic group model is based on the fact that
the discrete logarithm and the Diffie-Hellman problem are hard to solve as long
as the order of the group is a large prime number. The same applies to a group
with bilinear pairing where finding the discrete logarithm is a hard problem. In
the generic group model group elements are encoded as unique random strings,
in such a way that the adversary cannot test any property other than equality.



We prove the security of the mCP-ABE scheme based on the argument that no
adversary that acts generally on the groups can break the security of our scheme.
This means that if there is an efficient adversary who can discover vulnerabilities
in our scheme, then these vulnerabilities can be used to exploit mathematical
properties of groups used in the scheme. In the generic model, the adversary has
access to the oracles that compute group operations in G0, G1, and to the oracle
that performs non-degenerate paring ê, while the adversary can test the equality
by itself. While it is preferred to prove the security of the scheme by reducing
the problem of breaking the scheme to a well studied mathematical problem, a
proof in the generic model gives high confidence in the security of the scheme.

2.3 Formal Definition of CP-ABE

The building block of our construction is a CP-ABE scheme. In CP-ABE a
message is encrypted under an access policy τ over the set of possible attributes,
and a user secret key skω is associated with an attribute set ω. A secret key
skω can decrypt the message encrypted under the access policy τ , if and only if
the user attribute set ω satisfies the access policy τ . CP-ABE scheme consists
of two entities: a trusted authority (TA) and users. The four algorithms: Setup,
Keygen, Encrypt and Decrypt are defined as follows [2]:

– Setup(k): run by the TA, this algorithm takes as input a security parameter
k and outputs the public key pk and a master key mk.

– Keygen(ω, mk): run by the TA, this algorithm takes as input the master
key mk and a set of attributes ω. The algorithm outputs a secret key skω

associated with ω.
– Encrypt(m, τ, pk): run by the encryptor, this algorithm takes as input a public

key pk, a message m, and an access policy represented by an access tree τ .
The algorithm returns the ciphertext cτ such that only users who have the
secret key shares associated with attributes that satisfy the access tree τ will
be able to decrypt the message.

– Decrypt(cτ , skω): run by the decryptor, this algorithm takes as input a ci-
phertext cτ , a secret key skω associated with ω, and it outputs a message
m, or an error symbol ⊥ when the attribute set ω does not satisfy the access
tree τ .

3 Mediated Ciphertext-Policy Attribute-Based
Encryption (mCP-ABE)

In this section, first, we give a formal definition of our proposed scheme, and
later we give the security model in which our scheme is proven to be secure.

3.1 Formal Definition of mCP-ABE

The mCP-ABE scheme consists of three entities: a trusted authority (TA), a
mediator and users. The TA uses the master key to generate a user secret key,



which is then divided into two shares such that the first share of the user secret
key is sent to the mediator and the second share of the user secret key is sent to
a user. The mediator has to stay online all the time, while the TA can be put
off-line once it has generated secret keys for all users. The mCP-ABE scheme
consists of five algorithms: Setup, Keygen, Encrypt, m-Decrypt, and Decrypt (the
Setup and Encrypt algorithms are same as in CP-ABE scheme):

– Keygen(mk, ω, Iu): run by the TA, this algorithm takes as input the master
key mk, the user attribute set ω, and the user identifier Iu. The algorithm
outputs two secret key shares associated with ω and Iu : skωIu,1 and skωIu,2.
The first share of the secret key skωIu,1 is delivered to the mediator, and
the second share of the secret key skωIu,2 is delivered to the user. The secret
key shares are delivered through a secure channel to the mediator and to the
user.

– m-Decrypt(cτ , Ii, skωIi,1) : run by the mediator, this algorithm takes as input
a ciphertext cτ , the identifier Ii and the secret key skωIi,1, and outputs a
message ĉτ , or an error symbol ⊥ when the non-revoked attributes from the
set ω do not satisfy the access tree τ .

– Decrypt(ĉτ , skIiω,2): run by the message receiver, this algorithm takes as
input a ciphertext ĉτ , and a secret key skIiω,2, and outputs a message m, or
an error symbol ⊥ when the non-revoked attributes from the set ω does not
satisfy the access tree τ .

In practice, there might be multiple entities acting as mediators, and a global
entity acting as TA. For example, a healthcare organization may choose Proxy1

as its mediator and a government organization may choose Proxy2 as its me-
diator, where each mediator has the first share of the secret key for registered
users in the hospital organization, respectively in the government organization.
Vanrenen et al. [22] propose the use of peer-to-peer networking (P2P) which
would allow users to require a decryption token from every mediator, such as
the mediator either tries to compute a decryption token by itself, or forwards
the request to its neighbors.

3.2 Security Model

In our scheme the TA is a fully trusted entity which stores securely the master
key. We skip discussions about the key escrow problem, since different existing
threshold schemes [23,24] can be applied to solve this problem. A mediator is
a semi-trusted entity, namely, it should issue decryption tokens to users, but
it is not trusted in the sense that it should not obtain information about the
plaintaixt.
We define semantic security of mCP-ABE scheme following the security model of
Libert and Quisquater [12]. For an encryption scheme to be semantically secure
the adversary must not learn anything about the plaintext when the ciphertext
and the public key used to create the ciphertext are given. In the security game,
the challenger simulates the game and answers adversary A queries as follows:



1. Setup. The challenger runs the Setup algorithm to generate (pk, mk) and
gives the public key pk to the adversary A.

2. Phase1. A performs a polynomially bounded number of queries:
– Keygen1(ω, Iu). A asks for a secret key for the attribute set ω and iden-

tifier Iu, and receives the mediator share of the secret key skωIu,1.
– Keygen2(ω, Iu). A asks for a secret key for the attribute set ω and iden-

tifier Iu, and receives the user share of the secret key skωIu,2.
3. Challenge. A sends to the challenger two messages m0,m1, and the challenge

access policy τ∗, such that none of the full secret keys skωIu (both skωIu,1 and
skωIu,2) generated from the interaction with Keygen1 and Keygen2 oracles
satisfies τ∗. The challenger picks a random bit b ∈ (0, 1) and returns cτ∗ =
Encrypt(mb, τ

∗, pk).
4. Phase2. A can continue querying with the restriction that none of the full

secret keys skωIu generated from the interaction with Keygen1 and Keygen2

oracles satisfies τ∗.
5. Guess. A outputs a guess b′ ∈ (0, 1).

Definition 1. The mCP-ABE scheme is said to be semantically secure if any
polynomial-time adversary has only a negligible advantage in the security game,
where the advantage is defined to be |Pr[b′ = b]− 1

2 |.

Note that the security game formally captures the following security require-
ments:

– Resistance against secret key collusion, where different users cannot combine
their attribute sets to extend their decryption power. For example, suppose
there is a message encrypted under the access tree τ = (a1 ∧ a2 ∧ a3).
Suppose Alice has a secret key skωAIA

associated with an attribute set
ωA = (a1, a2), and Bob has a secret key skωBIB

associated with an at-
tribute set ωB = (a3, a4). Neither Alice’s secret key, nor Bob’secret key
satisfies the access tree τ . But, if Alice and Bob combine their attribute sets
ωA ∪ ωB = (a1, a2, a3, a4), then the combined attribute sets satisfies the ac-
cess tree τ . Therefore in the security game we allow the adversary to make
secret key queries associated with different attribute sets, say ω1 and ω2,
such that neither ω1, nor ω2 alone can satisfy the challenge access policy τ∗,
but ω1 ∪ ω2 can satisfy τ∗.

– Resistance against malicious cooperation between the mediator and some
users to decrypt the ciphertext associated with an access policy, when the
users secret key does not satisfy the access policy. For example, even if a user
with attribute set ω = (a1, a2) collude with the mediator, the user should
not be capable to decrypt a ciphertext encrypted under a challenge access
policy τ∗ = (a1 ∧ a2 ∧ a3), since ω does not satisfy τ∗. Therefore in the
security game the adversary is allowed to ask the mediator share (first share
of the secret key skωIu,1) and the user share of a secret key (second share of
the secret key skωIu,2) for any set of attributes which does not satisfy the
challenge access policy τ∗.



4 mCP-ABE scheme

In this section, we give a description of the access policy associated with the
ciphertext, and then we give the construction of the scheme. We analyze the
security of the scheme and describe how to revoke user attributes. Finally, we
show how to extend the proposed scheme to a multi-authority setting.

4.1 Access Policy

In mCP-ABE scheme, an access policy is represented by an access tree τ , in
which inner nodes are either ∧ (and) or ∨ (or) boolean operators, and leaf nodes
are attributes. The access tree τ specifies which combination of attributes the
decryptor needs to posses in order to decrypt the ciphertext. Figure 1 presents
an example of an access tree τ representing an access policy: (a1∧a4)∨(a3∨a5).

∨

~~}}
}}

}}
}}

ÃÃA
AA

AA
AA

A

∧

²²}}||
||

||
||

∨

²² !!B
BB

BB
BB

B

a1 a4 a3 a5

Fig.1. Access tree τ = (a1 ∧ a4) ∨ (a3 ∨ a5)

To decrypt an encrypted message under the access tree τ , the decryptor must
possess a secret key which is associated with the attribute set which satisfies τ .
Attributes are interpreted as logic variables, and possessing a secret key associ-
ated with an attribute makes the corresponding logical variable true. There are
several different sets of attributes that can satisfy the access tree τ presented in
Figure 1, such as the attribute set (a1, a4), the attribute (a3), or the attribute
(a5). In our scheme, we assume that attributes are ordered in the access tree e.g
index(a1)=1, index(a4)=2, index(a3)=3 and index(a5)=4.

4.2 Main Construction

1. Setup(k) : On input of the security parameter k, the algorithm generates
a group G0 of prime order p with a generator g and a bilinear map ê :
G0 × G0 → G1. The algorithm generates the system attribute set Ω =
(a1, a2, . . . an), for some integer n, and for each aj ∈ Ω chooses a random
elements tj ∈ Zp. Let y = ê(g, g)α, where α is chosen at random from Zp,
and {Tj = gtj}n

j=1. The public key is published as:

pk = (g, y, {Tj}n
j=1)

The master secret key consists of the following components:

mk = (α, {tj}n
j=1)



2. Keygen(mk, ω, Iu) : To generate a secret key for the user with an attribute
set ω and an identifier Iu, the Keygen algorithm performs as follows:
(a) Compute the base component of the secret key: d0 = gα−uid where

uid ∈R Zp (for each user with an identifier Iu a unique random value
uid is generated).

(b) Compute the attribute component of the secret key. For each attribute

aj ∈ ω, choose uj ∈R Zp and compute dj,1 = g
uj
tj and dj,2 = g

uid−uj
tj .

The secret key of the form: skωIu,1 = {dj,1}aj∈ω is delivered to the mediator,
and the secret key of the form: skωIu,2 = (d0, {dj,2}aj∈ω) is delivered to the
user.

3. Encrypt(m, τ, pk) : To encrypt a message m ∈ G1 the algorithm proceeds as
follows:
– Select a random element s ∈ Zp and compute:

c0 = gs

c1 = m · ys = m · ê(g, g)αs

– Set the value of the root node of τ to be s, mark all nodes as un-assigned,
and mark the root node assigned. Recursively, for each assigned non-leaf
node, suppose its value is s, do the following.
• If the symbol is ∧ and its child nodes are marked un-assigned, let

n be the number of child nodes, set the value of each child node,
except the last one, to be si ∈R Zp, and the value of the last node
to be sn = s−Σn−1

i=1 si mod p (i represents the index of an attribute
in the access tree). Mark this node assigned.

• If the symbol is ∨, set the values of its child nodes to be s. Mark this
node assigned.

– For each leaf attribute aj,i ∈ τ , compute cj,i = T si
j .

Return the ciphertext cτ = (τ, c0, c1, {cj,i}aj,i∈τ ).
4. m-Decrypt(cτ , skωIi,1, Ii): when receiving the ciphertext cτ , the recipient Ii

firstly chooses the smallest set ω′ ⊆ ω that satisfies τ and forwards to the me-
diator (cτ , ω′, Ii). The mediator checks the Attribute Revocation List (ARL)
if any aj ∈ ω′ is revoked either from system attribute set Ω or from the user
attribute set ω.
(a) If an attribute is revoked, the mediator returns an error symbol ⊥ and

does not perform further computations.
(b) If no attribute is revoked, the mediator computes ĉτ as follows:

ĉτ =
∏

aj∈ω′
ê(T si

j , g
uj
tj )

= ê(g, g)
∑

aj∈ω′ ujsi

Sends ĉτ to the recipient.
5. Decrypt(ĉτ , skωIi,2) : To decrypt the ciphertext the recipient proceeds as

follows:



(a) compute:

c′′τ =
∏

aj∈ω′
ê(T si

j , g
uid−uj

tj )

=
∏

aj∈ω′
ê(gtjsi , g

uid−uj
tj )

= ê(g, g)
∑

aj∈ω′ (uid−uj)si

(b) compute:

ê(c0, d0) · ĉτ · c′′τ = ê(gs, gα−uid) · ê(g, g)
∑

aj∈ω′ ujsi · ê(g, g)
∑

aj∈ω′ (uid−uj)si

= ê(gs, gα−uid) · ê(g, g)uids

= ê(gs, gα)

(c) return m, where

m =
c1

ê(gs, gα)

=
m · ê(g, g)αs

ê(gs, gα)

Efficiency. Our scheme is similar to the work of Cheung and Newport [3] on
ciphertext-policy attribute-based encryption, however we make major changes
in the Key Generation phase, Encryption phase and Decryption phase in order
to improve the expressivity of the scheme ( the scheme in [3] supports only access
policies with logical conjunction), and we improve the efficiency of the scheme
(in [3] the size of the ciphertext and secret key increases linearly with the total
number of attributes in the system). In our proposed scheme, the size of the
shares of the secret key skωIu,1 and skωIu,2 depend on the number of attributes
the user has and consists of |ω|+ 1 group elements in G0 (|ω| is the cardinality
of a set ω). The size of the ciphertext cτ depends on the size of the access policy
τ and has |τ | + 1 group elements in G0, and one group element in G1. In the
m-Decrypt phase, the mediator has to compute ω′ pairing operations, where
ω′ ⊆ ω is the attribute set which satisfies the access policy τ . In the decryption
phase, to reveal the message, the user has to compute ω′+ 1 pairing operations.
For the sake of simplicity, we mentioned only access policies which consist of
∧ (and) and ∨ (or) nodes. Note that our scheme, in addition to ∧ (and) and
∨ (or) nodes, can support threshold nodes or Out Of nodes. For example, the
encryptor may specify the access policy 2 Out Of (a1, a2, a3), which implies that
the user must have at least two attributes in order to satisfy the access policy
and be able to decrypt. If the access policy contains threshold nodes, then the
attribute shares si can be generated using threshold secret sharing techniques
e.g. using Shamir’s secret sharing technique. This would require, to use Lagrange
basis polynomials in the decryption phase in order to reconstruct the value s.



4.3 Security Analysis

We give a brief discussion about the security of the proposed scheme. A full
formal security proof using the generic group model is given in Appendix A. To
decrypt a ciphertext without satisfying the access policy, the adversary has to
construct ê(gs, gα), and then divide c1 with ê(gs, gα) to obtain m. To obtain
ê(gs, gα), the adversary must first obtain ê(g, g)suid , which can be calculated

by pairing the components of the secret key g
uid−uj

tj with the components of
the ciphertext gtjsi , and then multiply the result with the decryption token
ê(g, g)

∑
aj∈ω′ ujsi received from the mediator. However, ê(g, g)suid can be com-

puted only if the adversary has enough attributes which satisfy the access policy,
otherwise this would not be possible. Also note that, if a user acting as an adver-
sary is revoked, then the user will not get the decryption token ê(g, g)

∑
aj∈ω′ ujsi

from the mediator, and as a result of this the user cannot reconstruct ê(g, g)suid

even if the user has a secret key with attributes which satisfy the access policy.
If we assume that the adversary is able to compromise the mediator, then the
adversary will be able to learn the mediator share of user secret key skωIu,1,
and be able to compute the decryption token ê(g, g)

∑
aj∈ω′ ujsi . However, the

decryption token will not help the adversary to decrypt ciphertext which are
satisfied by a set of attributes ω. The reason is because the adversary does not
know the second share of the user secret key skωIu,2.
The very important security of mCP-ABE scheme is a collusion resistance of
user secret keys - it should not be possible for different users to combine their
secret keys in order to extend their decryption power. Therefore, to prevent
collusion, the Keygen algorithm of our scheme generates a random value uid for
each user, which is embedded in each component of the user secret key. Users
cannot combine components of the secret key since different users have different
random value in their secret keys.

4.4 Attribute Revocation

As already mentioned in section 1, there can be many reasons why an attribute
can be revoked. We assume that the mediator maintains an Attribute Revocation
List (ARL) which simply has information about attributes revoked from the
system attribute set Ω, and attributes revoked from user attribute set ω.
The basic idea is that, when an attribute aj is revoked from the system attribute
set Ω, the TA removes aj from the system attribute set, and notifies the media-
tor to stop performing decryption tasks for all users whose attribute secret key
involves aj . When an attribute is revoked from a specific user Iu, the trusted
authority notifies the mediator to stop helping the user Iu to perform decryp-
tion tasks for the attribute aj . Therefore, the attribute revocation is achieved
immediately after the revocation decision is made.
We assume that there is a policy of revocation authorization maintained by the
mediator that describes who is responsible to revoke system or user attributes.
At least, the TA should be able to revoke the system and user attributes, and



the owner of the attribute should be able to revoke its attribute because the
owner may be the first to notice the compromise of her secret key.

4.5 Multi-Authority mCP-ABE

Ideally, we would like to have multiple independent authorities which would
manage user attributes and distribute secret keys. Assume that the Attribute
Authority (AA) from Hospital A manages the attribute set ΩHospitalA, and that
the AA from Hospital B manages the attribute set ΩHospitalB . In the multi-
authority setting, the encryptor has the flexibility to chose different attributes
from different authorities in the access policy of the ciphertext, such that only
users who have attributes from the given authority can decrypt the ciphertext.
For instance, a patient may want to encrypt her health data, such that a user who
has the attribute General Practitioner received from Hospital A or the attributes
General Practitioner and Pediatrician received from Hospital B can decrypt the
ciphertext.
Chase [25] gives the construction of the first multi-authority attribute-based
encryption (ABE), which allows multiple independent authorities to monitor
user attributes. We can apply the same idea to extend the scheme presented in
section 4.2 to support multi-authority mCP-ABE. The main requirement that
we have is that each AA should use the same function which takes as input
Iu and outputs uid, where uid is used to connect the base component of the
secret key with the attribute component of the secret key. The component of
the master secret key α is part of the base component of the secret key but is
not included in the attribute component of the secret keys, therefore, there is
no need for attribute authorities to know α. However, there should be an entity
who will manage with α. Thus, in addition to AA, a central authority (CA) is
needed. We extend the single-authority mCP-ABE scheme presented in section
4.2 to a multi-authority mCP-ABE as follows (only changes from the scheme in
section 4.2 are presented):

1. Setup :
(a) Central Authority: Generates a group G of prime order p with a generator

g and a bilinear map ê : G0×G0 → G1. Set the component of the master
secret key α ∈R Z∗p, and the component of the public key ê(g, g)α.

(b) Attribute Authority(AA)−l : Generate the attribute set Ωl = (al,1, al,2...al,n).
For each al,j ∈ Ωl set the attribute secret key: tl,1...tl,n, and the attribute
public key {Tl,j = gtl,j}n

j=1.
2. Keygen

(a) Central Authority : Compute the base component of the secret key: d0 =
gα−uid

(b) Attribute Authority(AA)−l : Suppose a user with an identifier Iu applies
for the set of attributes ω to the AA l. The AA l computes the attribute

secret key as follows: for each al,j ∈ ω, compute dl,j,1 = g
ul,j
tl,j and dl,j,2 =

g
uid−ul,j

tl,j , where ul,j ∈R Zp.



5 Applying mCP-ABE in Practice

In this section we describe an application of mCP-ABE. We propose to use mCP-
ABE to securely manage Personal Health Records (PHRs). This application
demonstrate the practicality and usefulness of our scheme.

5.1 Using mCP-ABE to Securely Manage PHRs

Issues around the confidentiality of health records are considered as one of the
primary reason for the lack of the deployment of open interoperable health record
systems. Health data is sensitive: inappropriate disclosure of a record can change
a patient’s life, and there may be no way to repair such harm financially or
technically. Although, access to health data in the professional medical domain
is tightly controlled by existing legislations, such as the U.S. Health Insurance
Portability and Accountability Act (HIPAA) [26], private web PHR systems
stay outside the scope of this legislation. Therefore, a number of patients might
hesitate to upload their sensitive health records to web PHR systems such as
the Microsoft Health Vault, Google Health or WebMD. The scheme presented
in this paper allows patients to store their sensitive health records on web PHR
systems in an encrypted form, while still giving them control to share their
data with healthcare providers and/or with their family members. The reason
is because the data is encrypted according to an access policy, and the policy
moves with the encrypted data. Thus, even if the server which stores health
records gets compromised, the confidentiality of the data is preserved since the
data is encrypted, and the attacker cannot decrypt the encrypted data without
having a secret key. Figure 2 illustrates a general architecture of a PHR system
that uses mCP-ABE. The architecture consists of a publishing server, a data
repository that includes a security mediator (Proxy), a trusted authority and
several data users. The publishing server can be implemented on a home PC
of the data source (a patient) or as a trusted service. Its role is to protect and
publish health records. The data repository stores encrypted health records,
while Proxy is used in the data consumption phase for revocation. The TA is
used to set up the keys. Note that the TA and the publishing server do not
have to be always online (the TA is needed only in the set-up phase while the
publishing server can upload the protected data in an ad-hoc way). There are
three basic processes in the management of PHRs:

1. Setup: The steps of this phase are depicted with number 1 in Figure 2. In
this phase, the TA distributes the keys to the patients, users and Proxy.

2. Data protection (upload of data to the PHR): When a patient wants to
upload protected data to the repository, she contacts the TA to check which
attributes are allowed to be used as a policy. Then she creates her access
control policy and encrypts the data with the keys corresponding to that
policy. Then the data is uploaded to the repository. If she wants to change
the policy she can re-encrypt the data and update the repository. All this
can be done by a publishing server on behalf of the patient who specifies the
access control policy.
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3. Data consumption (doctor’s request-response) and revocation: When a user
wants to use patient data he contacts the PHR repository and downloads
encrypted data. The user makes a request to Proxy for a decryption token.
The request contains the encrypted data and a set of user attributes which
satisfy the access policy associated with the encrypted data. Proxy checks if
any attribute from the user request is not revoked, and, if so, Proxy generates
the decryption token and send it to the user. After receiving the decryption
token the user decrypts the patient data using the keys corresponding to the
appropriate attributes which satisfy the access tree. The steps of this phase
are depicted with number 3 in Figure 2.

An addition advantage of an online semi-trusted mediator (Proxy) is that the
mCP-ABE scheme can be used to enforce context attributes such as: system
date and time or the location from where the request comes from. This is useful
for healthcare applications which require context-aware access control where
access to patients data depends not only on user roles, but also on the context
information. Suppose there is an access policy τ = (Location = Hospital ∧
(A ∧ B)) which says that a doctor (we assume that a doctor is identified with
attributes A and B) can view patients health records only if doctor’s request
comes from inside the hospital. Outside the hospital, no user should be able to
decrypt the ciphertext encrypted under the access tree τ , even if the user may
own a secret key associated with the attributes (A,B). Using mCP-ABE scheme,
the enforcement of τ , which contain context attributes, is done as follows:

– a patient encrypts her health record according to the access policy (A∧B),
and then uploads his data to a PHR repository. Hence, part of the access
policy is enforced in the Encryption phase by the patient.



– a doctor download encrypted data and request from Proxy a decryption
token.

– Proxy checks the context attribute inside τ and issues decryption token only
if the request comes from inside the hospital (e.g. only if the request comes
from a specific IP address), therefore the context attribute is enforced by
Proxy in the m-Decrypt phase.

Note that the involvement of an online semi-trusted mediator (Proxy) plays
a crucial role in the enforcement of context attributes, as it is very hard or
rather impossible to enforce these attributes without the involvement of an online
component.
The mCP-ABE scheme can also support the off-line use of data. Then the ar-
chitecture is slightly changed in a way that Proxy is distributed to the users or
their domains within which the data will be used. As a consequence there will be
a number of proxies which will be coordinated by the central Proxy. The above
defined process will not fundamentally change, except that the central Proxy
will update the local ones and that in the data consumption phase, the user will
contact only the local Proxy.

6 Conclusion

We propose a mediated Ciphertext-Policy Attribute-Based Encryption (mCP-
ABE) scheme that supports revocation of user attributes. If an attribute is re-
voked, the user cannot use it in the decryption phase. The scheme allows the
encryptor to encrypt a message according to an access policy over a set of at-
tributes, and only users who satisfy the access policy and whose attributes are
not revoked can decrypt the ciphertext. Furthermore, we demonstrate how to
use the proposed scheme to solve very important problems in managing Per-
sonal Health Records (PHRs). A possible extension to this work would be to
provide a scheme which would have a security proof under standard complexity
assumptions.
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A Security Proof

Theorem 1. Let γ0 be a random encoding for group G0 (generic bilinear group),
and a γ1 be a random encoding for group G1. A random encoding map elements
of additive group Zp into a bit strings. The advantage of the adversary in the
security game issuing at most q queries to the oracles for group operation in G0

and G1, to the oracle for computing pairing operation ê, to the oracle for key
generation, and to the oracle for encryption is bounded by O( q2

p ).

Proof. Consider groups G0 and G1, and generators g of group G0, and a gen-
erator ê(g, g) of group G1. In generic group model, group elements are encoded
as unique random strings, in such a way that the adversary can not test any
property other than equality. In our proof, we use γ0 as a random encoding for
group G0 (generic bilinear group), and γ1 as a random encoding for group G1.
Thus, for example, the group element gs ∈ G0 will be encoded as γ0(s), and the
group element ê(g, g)α ∈ G1 will be encoded as γ1(α). Each random encoding is
associated with a rational function f = ξ

$ over the variables:

Υ = {α, s, si, uid, {uj}aj∈ω, {tj}n
j=1}

where each variable is an element picked at random in the scheme.
We now give the simulation of the security game. Following the proof from [2],
in the simulation we modify slightly the security game given in section 3.2, and
simulate a game in which the c1 component of the challenge phase is either
γ1(αs) or γ1(θ), where θ ∈R Zp, and the adversary has to decide whether c1 =
γ1(αs) or c1 = γ1(θ). It can be easily shown that if there is no adversary who
has non-negligible advantage in a modified game, then there is no adversary
who has non-negligible advantage in the security game given in section 3.2.
The simulator maintains a table L1 to store information about values generated
from the interaction of the adversary with the Keygen1 and Keygen2 oracles. The
security game is simulated as follows:

– Setup. The simulator chooses a group G0 of prime order p with a generator
g and a bilinear map ê : G0 × G0 → G1, a random value α ∈ Zp, and for
each attribute aj ∈ Ω, chooses random values tj ∈ Zp. In addition to that,
the simulator chooses two encoding functions γ0 and γ1, and two oracles for
computing group operations in G0 and G1, and one oracle for computing
pairing ê. The following encodings are sent to the adversary:



1. γ0(1) representing the generator g.
2. γ1(1) representing the generator ê(g, g).
3. γ1(α) representing ê(g, g)α.
4. {γ0(tj)}n

j=1 representing {Tj = gtj}n
j=1.

– Phase1. A performs a polynomially bounded number of queries:
-Keygen1(ω, Iu). A makes request for the first share (mediator share) of the
secret key for an attribute set ω and an identifier Iu. The simulator checks
whether L1 already contains a record for the attribute set ω and the identifier
Iu. If such record exists, the simulator fetches dj,1 from the record and sends
the encoding of skωIu,1 = ({dj,1}aj∈ω) to the adversary A. If such record
does not exist, the simulator chooses a random value uid ∈ Zp, and for
each aj ∈ ω chooses a random value uj ∈ Zp. The simulator generates the
following encodings:
1. γ0(α− uid) representing d0 = gα−uid .

2. {γ0(
uj

tj
)}aj∈ω representing {dj,1 = g

uj
tj }aj∈ω.

3. {γ0(
uid−uj

tj
)}aj∈ω representing {dj,2 = g

uid−uj
tj }aj∈ω.

The simulator sends the encoding of skωIu,1 = ({dj,1}aj∈ω) to A, and inserts
a new record with the encoding of skωIu = (d0, {dj,1, dj,2}aj∈ω) into L1.
- Keygen2(ω, Iu). A makes request for the second share (user share) of the
secret key for an attribute set ω and an identifier Iu. The simulator checks
whether L1 already contains a record for the attribute set ω and the iden-
tifier Iu. If such entry exists, the simulator sends the encoding of skIuω,2 =
(d0, {dj,2}aj∈ω) to the adversaryA. If such entry does not exist, the simulator
calculates the encodings of d0, dj,1, and dj,2 as explained under Keygen1(Iu, ω)
and updates the table L1 with the new encoding of skωIu = (d0, {dj,1, dj,2}aj∈ω).

– Challenge. The adversary submits two messages m0, m1∈ G1 and the chal-
lenge access policy τ∗. The adversary is not allowed to ask for a challenge
access policy τ∗ such that one of the full secret keys issued in Phase1 satisfies
τ∗.
The simulation chooses a random s ∈ Zp, and for each aj,i ∈ τ∗ it constructs
a value si as explained in section 4.2. The following encodings are sent to
the adversary:
1. γ0(s) representing c0 = gs.
2. γ1(θ) representing c1 = ê(g, g)θ.
3. {γ0(tjsi)}aj,i∈τ∗ representing {cj,i = gtjsi}aj,i∈τ∗ .

– Phase2. A can continue querying with the restriction that non of the full
secret keys generated from the interaction with Keygen1 and Keygen2 oracles
satisfies τ∗.

The adversary uses the group elements received from the interaction with the
simulator to perform generic group operations and equality tests. The simulator
provides the adversary with two oracles to compute group operation in G0, and
G1 and one oracle to compute pairing operations ê. The adversary can make
queries to perform group operations as follows:



– Queries to the oracles for group operation in G0 and G1: The adversary asks
for multiplying or dividing group elements represented with their random
encodings, and associated with a rational function. The oracle returns γ0(a+
b) or γ1(a + b) when the adversary asks for multiplying γ0(a) and γ0(b),
respectively γ1(a) and γ1(b) , and returns γ0(a − b) or γ1(a − b) when the
adversary asks for dividing γ0(a) and γ0(b), respectively γ1(a) and γ1(b).

– Queries to the oracle for computing pairing operation ê. The adversary asks
for pairing of group elements represented with their random encoding, and
associated with a rational function. The oracle returns γ1(ab) when the ad-
versary asks for pairing γ1(a) and γ1(b).

We show that the adversary can distinguish with probability O( q2

p ) the simu-
lation of the game where the challenge ciphertext is set c1 = γ1(θ), with the
simulation of the game where the challenge ciphertext would have been set
c1 = γ1(αs).
Firstly, we show what the adversaries view is when the challenge ciphertext is
γ1(θ). The adversaries view can change when an unexpected collision happen due
to the random choice of the formal variables Υ = {α, s, si, uid, {uj}aj∈ω, {tj}n

j=1}
chosen uniformly from Zp. A collision happen when two queries corresponding to
two different rational functions map to a same string representation. Following
the security proof from [2] it can be calculated that for any two distinct queries
the probability of such collision happen is at most O(q2/p), where q is the total
number of queries done by the adversary. We ignore this situation, since the
probability of such collision is negligible.
Secondly, we show what the adversaries view would have been if the challenge
ciphertext had been set γ1(θ), when θ = αs. The adversary view can change
when a collision happen, such that the values of two different encodings coincide.
Note that the adversary cannot pair γ1(θ) with other elements (since γ1 is the
encoding for G1) and the most the adversary can do is to make oracle queries
to perform group operation in G1. Therefore the adversary can ask to multiply
θ for δ times, and obtain δθ = δαs. Let v1 = δ1θ and v2 = δ2θ. If we subtract
v2 from v1 we have the following equation:

v1 − v2 = (δ1 − δ2)θ = δ′θ = δ′αs

Therefore we say that the adversary can make a query δ′αs. But, we will show
that if the adversary does not have sufficient set of attribute to satisfy the
challenge access policy τ∗, the adversary cannot make a polynomial query which
would be equal to δ′αs (thus the collision cannot happen), and thus we prove
the theorem through a contradiction.
In table 1 we list possible values that the adversary can get using group elements
received from interaction with the simulator in the security game. The adversary
can get these values by querying the oracle for computing pairing operation ê.
First we observe that the adversary can get αs − suid by pairing α − uid and
s. Thus, the adversary can make a query to the oracle which perform group
operation in G1 to get δ′αs− δ′suid, for some δ′. To get only δ′αs, the adversary
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Table 1. Possible pairing operations

has to combine group elements received from the interaction with the simulator
and from the generic group oracles in order to cancel δ′suid. From the table 1
we can see that the adversary can construct a query polynomial of the form:

δ′αs︸︷︷︸
A

− δ′suid︸ ︷︷ ︸
B

+ δ′
∑
aj∈ω

ujsi

︸ ︷︷ ︸
C

+ δ′
∑
aj∈ω

(uid − uj)si

︸ ︷︷ ︸
D

for some δ′.
The term B (δ′suid) can be cancelled only if the sum of the term C and the term
D is equal to δ′suid. Therefore, the adversary must have all necessary secret
key components (uid−uj)

tj
to pair them with tjsi , and all secret key component

uj

tj
to pair them with tjsi and later obtain suid, or δ′suid for some constant δ′.

However, this is not possible since in the Phase1 and Phase2 the adversary is not
allowed to make queries to Keygen1 and Keygen2 oracles such that the full secret
key generated skω,Iu does satisfy the challenge access policy τ∗ (there must be
at least one siuid which the adversary cannot compute). Thus, the sum of terms
C and D cannot be used to construct δ′suid. Therefore the adversary cannot
cancel term B, and as a result of this the adversary cannot construct a query of
the form δ′αs.
We conclude the proof by making the following analyzes:

– Firstly, we analyze the case when the adversary has a share of a user secret
key which satisfies the access policy and his attribute is in the revoked list
(the adversary does not receive a decryption token

∑
aj∈ω ujsi from the

mediator). We make the following observation:

• Since in Phase1 and Phase2 the adversary is allowed to make a user
share secret key queries which satisfy the challenge access policy (note
that the adversary is not allowed to make a query for a full user secret
key which satisfies the challenge access policy), the adversary can make
a polynomial query which has the form:



δ′αs︸︷︷︸
A

− δ′suid︸ ︷︷ ︸
B

+ δ′
∑
aj∈ω

(uid − uj)si

︸ ︷︷ ︸
D

= δ′αs︸︷︷︸
A

− δ′suid︸ ︷︷ ︸
B

+ δ′suid︸ ︷︷ ︸
D1

− δ′
∑
aj∈ω

ujsi

︸ ︷︷ ︸
D2

From this we can see that the adversary can cancel terms B and D1 . However
the adversary cannot cancel term D2, since the adversary needs to have
the decryption token

∑
aj∈ω ujsi. As a result, the adversary cannot make a

polynomial query which has the form δ′αs.
– Secondly, we analyze the case when the adversary corrupts the mediator and

obtains the mediator share of the user secret key (the adversary can compute
the decryption token) while the adversary does not have the user share of
the secret key. We make the following observation:
• Since in Phase1 and Phase2 the adversary is allowed to make a mediator

share secret key queries which satisfy the challenge access policy (note
that the adversary is not allowed to make a query for a mediator share
of a secret key query if it has made a request for a user share of a secret
key), the adversary can make a polynomial query which has the form:

δ′αs︸︷︷︸
A

− δ′suid︸ ︷︷ ︸
B

+ δ′
∑
aj∈ω

ujsi

︸ ︷︷ ︸
C

As we can see the adversary cannot cancel terms B and C, since the user
share of the secret key

∑
aj∈ω(uid−uj)si is missing. As a result, we conclude

that the adversary cannot make a polynomial query which has the form δ′αs.
¤


