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Abstract

A new water wave model has been derived which is based on variational techniques and combines
a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model
facilitates the further restriction of the vertical profile of the velocity potential to n-th order polyno-
mials or a finite element profile with a small number of elements (say), leading to a framework for
efficient modelling of the interaction of steepening and breaking waves near the shore with a large-
scale horizontal flow. The equations are derived from a constrained variational formulation which
leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the
potential flow water wave equations and the shallow-water equations are recovered in the relevant
limits. Approximate shock relations are provided, which can be used in numerical schemes to model
breaking waves.

1 Introduction

It is always fascinating to watch waves near the shore line. They approach the shore, steepen as the water
becomes more shallow, break upon further approach, and run up and down the beach or dike. In Fig. 1,
wave trains are seen to approach the shore. Far from the shore, we see that no wave breaking occurs.
Upon reaching the shore, part of the wave starts breaking while part of the same wave has steepened
significantly without breaking. Finally, waves very near to the shore will break along their entire crest,
and subsequently enter the swash zone where the waves run up and down the beach or (rocky) shore.

In hydrodynamics and coastal engineering, depth-averaged shallow water modelling is, and has been,
very successful (e.g. [Salmon 1998]). Due to the depth-averaging, the full three-dimensional fluid dy-
namical (multiphase, Navier-Stokes or Euler) equations of motions are reduced in complexity. Only
dependence on horizontal coordinates and time is then retained. The vertical coordinate z is aligned
opposite to the acceleration of gravity g, and wave breaking implies that the free surface becomes multi-
valued. The free surface lies at z = h(x, y, t) + b(x, y) relative to z = 0, with water depth h = h(x, y, t)
and fixed bottom topography b = b(x, y) a function of the horizontal coordinates x and y, and time t.
A defining sketch is given in Fig. 2. Wave breaking within such a shallow water model is commonly ap-
proximated by using line discontinuities in the horizontal, leading to the well-known bores and hydraulic
jumps (see [Stoker 1957]).

Breaking waves emerge in various forms [Peregrine 1983]: plunging breakers are multivalued when
viewed along the direction of gravity before the free surface at z = h + b breaks apart, while spilling
breakers remain single-valued before the free surface breaks apart. When the free surface breaks apart
into spray and foam during wave breaking, the topology of the domain changes, many times. Bores
or hydraulic jumps in depth-averaged shallow water modelling are a straightforward approximation of
these breaking waves as localized discontinuities, and when viewed from above these discontinuities form
horizontal lines (of finite length). Mass and momentum are conserved across a bore or jump, while kinetic
and potential energy are not. Mathematically speaking, these bores and jumps are akin to shocks in gas
dynamics where mass, momentum and total energy conservation is combined with entropy increase. In
contrast, energy is lost in shallow water bores. After all the dependence on internal energy and entropy in
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(a)

(b)

Figure 1: (a) A steepening wave with partly broken and unbroken crest is approaching the shoreline. (b)
Two different waves with broken and steepening crests approach the shore line. Phoyograph: D. Howell
Peregrine.
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Figure 2: a) A sketch is given to define the coordinates x, y and z as well as the free water surface, the
acceleration of gravity g, depth h = h(x, y, t) and bottom topography b = b(x, y). b) An example of a
triple-valued function of the depth h(x, y, t), and c) its bore approximation wherein a line discontinuity
is seen, of finite horizontal extent; the vertical face of the bore is patterned; and, the overturning wave
approximated is still outlined with a dashed line.

compressible fluids is lost due to the assumed incompressibility of water. While the mathematical theory
for gas shocks and hydraulic jumps is the same, the physics in both cases is different.

The simplicity of such a shallow water model is also its pitfall. Internal wave dispersion is lost as
vertical velocity profiles across the depth have been ignored. Boussinesq models are therefore useful, in
the coastal engineering community, because they include internal wave dispersion to a higher degree of
accuracy [Peregrine 1967, Agnon et al. 1999]. Generally, Boussinesq models are derived from the three-
dimensional potential flow water wave equations, which describe internal water wave dispersion fully
(in the absence of vorticity). Disadvantages of (most) Boussinesq models are threefold. First, dispersion
always seems to beat nonlinearity such that wave overturning as the precursor or first stage of wave break-
ing is always prevented. This is unphysical: waves are observed to break in nature and also do overturn
within the potential flow water wave model. Second, Boussinesq models tend to be derived from the “par-
ent” water wave model under the potential flow assumption, in which case the vertical (component of)
vorticity is eliminated from the outset. This contrasts with the derivation of the classical depth-averaged
shallow water model, which contains vertical vorticity consistently from its derivation of the (hydrostatic)
incompressible Euler equations. Moreover, in depth-averaged shallow water models wave breaking along
non-uniform bores leads to the generation of potential vorticity anomaly [Pratt 1983, Peregrine 1998,
Peregrine and Bokhove 1998, Peregrine 1999, Bühler 2000, Ambati and Bokhove 2007, Tassi et al. 2007].
Sometimes, vertical vorticity is added a posteriori to Boussinesq models derived from parent potential
flow water wave equations. It is unclear whether this is formally justified. Third, Boussinesq models do
not always conserve the geometric structure of the parent equations. Hence, preservation of the original
variational and Hamiltonian structure with its associated conservation of mass, momentum, and energy
is then lost. The variational Boussinesq model of [Klopman et al. 2007] is a notable exception, but is
based on the potential flow Ansatz. Other notable exceptions are the Green-Naghdi(-type) models in
which the dependence on the vertical coordinate can be approximated in variational principles, within the
Lagrangian [Miles 1985, Salmon 1988a] or Eulerian [Camassa et al. 1997] framework; vertical vorticity
and slaved horizontal components of the vorticity are then included in these latter cases, but the wave
dispersion is in principle of lower order than in the model of [Klopman et al. 2007]. As a consequence,
wave dispersion appears to be stronger than nonlinearity and wave overturning is never achieved.

Finally, fully three-dimensional numerical models are in use but computational power is too limited
for them to be wave resolving over large areas. Wave forecasting is therefore generally based on statistical
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wave modelling. Near the shore for tens of kilometers along the coast and one to two kilometers off the
coast, deterministic wave and current modelling is required to forecast longshore currents and wave run-
up and run-down for flood forecasting. Regions of such size appear feasible for numerical Boussinesq
models and shallow water models, but not for fully three-dimensional ones.

Consequently, our aims are to overcome these various shortcomings. Our aims are to derive a simplified
water wave model with accurate dispersion, nonzero vertical (component of) vorticity, and a bore model
for wave breaking. Our derivation will be based on variational techniques: an immediate consequence is
that the geometric structure of the parent incompressible Euler equations will be preserved. Conservation
of mass, momentum and energy is therefore guaranteed. To illustrate our technique, we will show in
passing that Luke’s and Miles’ variational principles [Luke 1967, Miles 1985] for potential flow water wave
equations follow by a constraint approximation of the parent variational principle for the incompressible
Euler equations. Our model with water wave dispersion and vertical vorticity is able to describe the wave
steepening and breaking, as seen in Fig. 1 and Fig. 3, in an advanced treatment of the bore approximation.
The broken wave will be modelled as a discontinuity or shallow water bore as sketched in Fig. 3(a). Our
model could then also be applied to the propagation of undular bores on rivers, in which dispersion and
nonlinearity are balanced in the deeper mid channel, while wave breaking occurs in shallowing water near
the shore lines, along the same wave crest. This steepening and wave breaking behavior is clearly seen
on the Mascaret bore in Fig. 3(b), and the Severn bore in Fig. 4.

The outline of our paper is as follows. In §2, our starting point, the variational principle of the
parent incompressible Euler equations, is investigated. To illustrate our manipulations, Luke’s and Miles’
variational principles are rederived in a perhaps novel way from this starting principle in §3. Our new
model is derived and analyzed in §4. We conclude with a summary and discussion in §5.

2 Parent equations —three-dimensional incompressible flow

2.1 Variational principle

A Lagrangian variational principle for the three-dimensional Euler equations with a free surface is sum-
marized next. It forms the foundation for our subsequent approximations of this “parent” variational
principle. We start as usual with the construction of a Lagrangian density, L, by taking the difference
between the kinetic and potential energy density

L =
1

2
D|u|2 − gDz, (1)

in which g is the acceleration of gravity, D = D(x, y, z, t) is a (scaled) density, u = u(x, y, z, t) = (u, v, w)T

is the fluid velocity vector with horizontal coordinates (x, y) and vertical coordinate z, and t is time (see
Fig. 2). The density D is the Jacobian between Eulerian coordinates (x, y, z) and Lagrangian label
coordinates l = (l1, l2, l3)

T ∈ R3 for the fluid parcel, such that D dxdy dz = dl1 dl2 dl3. The fluid resides
in a domain Ω with solid domain walls ∂Ωw and a free surface at ∂Ωs, such that ∂Ω = ∂Ωw ∪ ∂Ωs. The
solid walls consist of bottom topography at z = b(x, y) and possibly vertical walls. The free surface resides
at the vertical position z = b(x, y) + h(x, y, t); we restrict attention to this single-valued free surface.

Define the flow map χ such that x = χ(l, t). Hence, the time derivative ∂t ≡ ∂/∂t and variation of
χ, i.e.,

∂tχ = u ◦ χ ≡ u(χ, t) and δχ = w ◦ χ ≡ w(χ, t), (2)

are the Eulerian velocity and displacement variation mapped back into the Lagrangian label framework.
A commonly used initial condition is χ(l, 0) = l such that the labels l and fluid parcel positions x = χ(l, t)
coincide initially, i.e., at time t = 0.

We introduce a Lagrange multiplier p = p(x, y, z, t) to enforce the constraint

D − 1 = 0. (3)

The constrained variational principle then has Lagrangian density L + p(1 − D), and reads

0 = δ

∫ T

0

L[χ, χ̇] dt =δ

∫ T

0

∫

Ω

1

2
D|u|2 − g D z + p (1 − D) dxdy dz dt, (4)

spanning a time interval from initial time t = 0 to t = T , in which variations in D and u are related to
the Eulerian variation of the label displacements w(x, y, z, t), e.g., [Holm et al. 1998]. Manipulation of
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(a)

(b)

Figure 3: (a) In the undular bore on the Severn River the competition between dispersion and nonlinearity
is clearly seen. Part of the wave is broken, in the shallower water near the shore, on the left in the
picture, and part is not. Photograph: D. Howell Peregrine. The black line added indicates where the
bore discontinuity would be, and the dashed line a cross section of the free surface approximation of
such a bore. (b) The Mascaret on the Risle, a small tributary of the Seine River at Pont-Audemer,
shows the same breaking and non-breaking features on one wave crest. Photograph: J.J. Malandain
[Malandain 1988]. The arrow indicates where wave breaking starts. Arrows and lines are added by the
authors.
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Figure 4: This “maths makes waves” poster features an undular bore on the Severn River; the competition
between dispersion and nonlinearity is clearly seen. Part of the wave is broken on the left, in the shallower
water near the shore, and part is not. Photograph: D. Howell Peregrine. Poster design copyright: Andrew
Burbanks.

(2) and use of the chain rule yields the variation of the velocity to be

δu = ∂tw + (u · ∇)w − (w · ∇)u. (5)

Density D obeys the conservation law

∂tD + ∇ · (uD) = 0, (6)

and by analogy its variation relates to the displacement flow w as follows

δD + ∇ · (wD) = 0. (7)

The kinematic condition at the free surface F (x, y, z, t) = z −
(
h(x, y, t) + b(x, y)

)
= 0 is

∂th + (vs · ∇)(h + b) − ws = 0 (8)

with the suffix indicating evaluation at the free surface, e.g., us = u(x, y, z = h + b, t) = (vs, ws); and,
v = (u, v, 0)T . Likewise we find the variation

δh + (ws · ∇)(h + b) − ws = 0 (9)

with ws = (ws1, ws2, 0)T the horizontal components of w evaluated at the surface, and ws = w3 the
vertical component of w evaluated at the free surface. It is possible to rework (8) and (9) using a

horizontal depth-averaged velocity ū = ū(x, y, t) =
∫ b+h

b
(u, v)T dz/h and corresponding label variation

w̄ = w̄(x, y, t) = (w̄1, w̄2)
T . The results are

∂th + ∇ ·
(
hū

)
=0 and δh + ∇ ·

(
hw̄

)
= 0, (10)

in which the gradient is effectively horizontal. The above expressions (5)–(10) are derived in Appendix A.
Relations (5), (7) and (9) are used to evaluate variations in (4), such that we obtain a Lagrangian
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density L as functional of l, ∂tl, and p; or, w and p:

0 =δ

∫ T

0

L[l, ∂tl, p] dt (11a)

=δ

∫ T

0

∫

Ω

1

2
D|u|2 − g D z + p (1 − D) dxdy dz dt (11b)

=

∫ T

0

∫

Ω

Du · δu +
(1

2
|u|2 − g z − p

)
δD + (1 − D) δp dxdy dz dt

+

∫ T

0

∫

∂Ωs

Ds B−s δh dxdy dt (11c)

=

∫

Ω

D u · w dxdy dz
∣∣∣
T

0

−

∫ T

0

∫

Ω

w · ∂t(Du) + Du(w · ∇)u + (D − 1)δp + w∇ · (Duu) − Dw · ∇B− dxdy dz dt

+

∫ T

0

∫

∂Ωs

Ds(n̂s · us us ·ws − n̂s · wsB−s) ds dt

+

∫ T

0

∫

∂Ωs

Ds B−s δh − Ds us ·ws ∂th dxdy dt (11d)

= −

∫ T

0

∫

Ω

(
∂t(Du) + ∇ · (Duu) + ∇(p + gz)

)
·w + (D − 1) δp dxdy dz dt

+

∫ T

0

∫

∂Ωs

DsB−s

(
δh + ws − ws · ∇(h + b)

)

− Ds us · ws

(
∂th + vs · ∇(h + b) − ws

)
dxdy dt, (11e)

where the label displacements are free subject to boundary conditions at fixed side and bottom walls,
and where we have used the endpoint condition w|t=T

t=0 = 0 and no normal flow conditions at solid walls.
In addition, the function

B− =
1

2
|u|2 − g z − p

was used, the outward normal n̂s at the free surface with surface element ds, and n̂s · us ds = (ws −
vs · ∇(h + b)) dxdy. Note that the label displacements w are free, and directly related to the label
variations δl (see expression (63) in Appendix A). Condition (9) yields the vanishing of the first boundary
term in (11e). The arbitrariness of the variation δp yields D = 1, which together with (6) yields the
incompressibility condition, as follows:

∂tD + ∇ · (uD) = 0 and D = 1 together yield ∇ · u = 0. (12)

The arbitrariness of ws, or (δl)s, yields the kinematic condition (8). The latter follows therefore separately
from the variational principle. In turn, the arbitrariness of w in the interior of the fluid gives via D = 1
the momentum equations. Hence, we find:

w : ∂tu + u · ∇u + ∇(p + gz) =0 and δp : D = 1=⇒∇ · u = 0, (13)

as well as (8). Note that the multiplier p can be interpreted as the pressure field. The incompressibility
constraint is maintained in time by taking the time derivative of ∇ · u = 0 in (13) and imposing this
consistency condition, ∂t∇ · u = 0, in the gradient of the momentum equation. It leads to a Poisson
equation for the pressure p.

In this paper, our aim is to develop reduced models that impose a specified vertical profile for the
velocity u, following the methodology of [Klopman et al. 2007, Ambati et al. 2008], whilst preserving
vertical vorticity and the variational structure. In general, the above methodology does not permit
the restriction of the vertical profile, unless one assumes that the horizontal components of veloc-
ity are depth-independent (columnar motion), in which case one obtains the Green-Naghdi equations
[Green et al. 1974] (for a description of the above variational process restricted to columnar velocity
profiles, see [Percival et al, 2008, for example]). The reason that the Green-Naghdi equations cannot be
extended to more general polynomial profiles is that it is not possible to find a subgroup of the group

7



of flow maps (diffeomorphisms) χ that satisfies (2). In this paper we pursue an alternative direction:
we start from an equivalent formulation without the implicit constraints (5), and replace them with
the explicit constraint (enforced by Lagrange multipliers) that particle labels (the initial conditions for
Lagrangian particles, for example) are advected by the velocity u. An additional constraint that the
density D satisfies (6) is also required. In [Salmon 1988a] and [Cotter et al. 2007], it was shown that
formulations of this type are equivalent to formulations of the type described above. For the case of the
three-dimensional incompressible Euler equations discussed above, the variational principle becomes

0 =δL[l, π, u, p, D, φ, h, λ] (14a)

=δ

∫ T

0

∫

Ω

1

2
D|u|2 − g D z + p (1 − D) + D π · (∂tl + (u · ∇)l)︸ ︷︷ ︸

labels term

+φ (∂tD + ∇ · (uD)) dxdy dz

+

∫

∂Ωs

λ
(
∂th + vs · ∇(h + b) − ws

)
dxdy dt, (14b)

where in conjunction to particle labels l(x, t), π(x, t) ∈ R3 is the vector of Lagrange multipliers con-
straining the labels to be advected by the velocity field u; φ is the Lagrange multiplier that constrains
the density D to satisfy equation (6); and, λ imposes the kinematic boundary condition (8) as constraint.
The kinematic boundary condition (8) can either by explicitly enforced via this Lagrange multiplier λ,
or be retained implicitly. As shown in [Cotter et al. 2007], this variational principle results in the same
equations (13). We note that removing the indicated “labels term” from the action principle still results
in the same equations but restricts the velocity u to potential (vorticity-free) flow u = ∇φ: the labels are
required for velocity fields with non-zero vorticity, and a total of three dynamical constraints are required
for the most general flows with non-zero helicity. We actually have four constraints in (14), the three
components of the labels l = (l1, l2, l3) and the density equation constraint, which is more than is strictly
necessary, but this keeps the formulation tidy.

In section 3, we shall see that this potential-flow condition leads to Luke’s variational principle for the
case of water waves. In section 4 we shall reintroduce vertical vorticity into this formulation by replacing
the labels term by a modified constraint that the horizontal components of the particle labels should be
advected by the vertically-averaged velocity. This allows a model with dispersive non-hydrostatic waves
and vertical vorticity.

3 Luke’s variational principle as constrained formulation

Our aim is to derive water wave equations with accurate dispersion and vertical vorticity from the parent
variational principle (14). The irrotational water wave equations include full dispersion of free-surface
gravity waves. We therefore first (re)derive Luke’s variational principle as a constrained formulation from
our parent equations. The constraint concerns the potential flow Ansatz for the velocity. Our derivation
appears to be novel; more importantly it defines the methodology we use. Luke’s principle, however,
is only valid for water waves under potential flow, in which there is no vertical vorticity. We lift this
restriction later in our new water wave model.

We start by removing the labels term from the variational principle (14), and obtain

0 = δ

∫ T

o

L[u, p, D, φ, h, λ] dt (15a)

= δ

∫ T

0

∫

Ω

1

2
D|u|2 − gDz + p(1 − D) + φ

(
∂tD + ∇ · (uD)

)
dxdy dz

+

∫

∂Ωs

λ
(
∂th + vs · ∇(h + b) − ws

)
dxdy dt. (15b)

A Legendre transform in u then shows that the potential flow Ansatz follows:

1. use the variational principle to obtain an equation for u and λ, and then

2. eliminate u from the action principle; finally, take variations to obtain the water wave dynamics.
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Taking (unconstrained) variations of (15) in u gives

0 = δ

∫

Ω

1

2
D |u|2 + φ∇ · (D u) dxdy dz + δ

∫

∂Ωs

λ
(
∂th + vs · ∇(h + b) − ws

)
dxdy

=

∫

Ω

D δu · (u −∇φ) dxdy dz +

∫

∂Ωs

(
Ds φs (δu)s − λ δ(us)

)
· n̂s ds

and we obtain
δu : u = ∇φ and (δu)s : λ = Ds φs,

since δ(us) = (δu)s + (∂u/∂z)sδh. Using this expression, we eliminate u and λ from the action principle
(15), use Gauss’ theorem in space on the term φ∇ · (uD), and derive the following

0 =δ

∫ T

0

L[p, D, φ, h] dt (16a)

=δ

∫ T

0

∫

Ω

1

2
D|∇φ|2 − gDz + p(1 − D) + φ

(
∂tD + ∇ · (D∇φ)

)
dxdy dz

+

∫

∂Ωs

Dsφs

(
∂th + (∇Hφ)s · ∇(h + b) − (∂zφ)s

)
dxdy dt (16b)

=δ

∫ T

0

∫

Ω

−
1

2
D|∇φ|2 − gDz + p(1 − D) + φ∂tD dxdy dz +

∫

∂Ωs

Dsφs ∂th dxdy dt (16c)

with horizontal gradient ∇H = (∂x, ∂y)T . Making use of

d

d t

∫

Ω

Dφdxdy dz =

∫

Ω

∂t(Dφ) dxdy dz +

∫

Ωs

∂th Dsφs dxdy, (17)

variational principle (16) becomes

0 =δ

∫ T

0

L[D, φ, h] dt (18a)

=δ

∫ T

0

∫

Ω

D∂tφdxdy dz + H dt (18b)

≡δ

∫ T

0

∫

Ω

D∂tφ +
1

2
D|∇φ|2 + gDz + p(D − 1) dxdy dz dt, (18c)

with Hamiltonian H, provided we consider
∫
Ω Dφdxdy dz as a global constant in time. The latter integral

constraint determines φ, which would otherwise be fixed up to a constant. Variation of (18) with respect
to density D yields the Bernoulli condition

δD : ∂tφ = −
δH

δD
= −

(1

2
|∇φ|2 + g z + p

)
(19)

throughout the fluid. It defines the pressure. The other variations yield

δp : D =1 (20a)

δφ : ∂tD =
δH

δφ
= −∇ ·

(
D∇φ) (20b)

δh : (∂tφ)s = −
δH

δh
= −

(1

2
|∇φ|2s + g(h + b)

)
(20c)

(δφ)s : ∂th =

(
δH

δφ

)

s

= (∂zφ)s − (∇Hφ)s · ∇H(h + b). (20d)

Using the constraint D = 1 in the elliptic equation gives Laplace’s equation (20b) for φ. The classical
water wave equations thus emerge. Furthermore, by combining Bernoulli’s equation at the free surface
z = h + b and the dynamic boundary condition, the boundary condition for the pressure at the free
surface explicitly follows as p|z=h+b = 0.
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It is also possible to view w and w̄ defined in (7) and (10) as independent variations rather then δD
and δh. Hence, further evaluations using Gauss’ and Green’s laws are required. The regular momentum
equations and equations for free surface dynamics then emerge:

w : D∇
(
∂tφ +

1

2
|∇φ|2 + g z + p

)
=0 (21a)

w̄ : h∇H

(
(∂tφ)s +

1

2
|∇φ|2s + g(h + b)

)
=0. (21b)

The former three equations are the momentum equations in potential flow form; and the latter equations
are important for deriving weak solutions for hydraulic jumps and bores as will be discussed later.

Finally, we notice that the incompressibility constraint ∇ · u = 0 drops out of the formulation if we
eliminate the term p(1 − D) by substituting D = 1 in the variational principle. Hence, we obtain Luke’s
variational principle [Luke 1967]:

0 =δ

∫ T

0

L[φ, h] dt = δ

∫ T

0

∫

Ω

∂tφ +
1

2
|∇φ|2 + gz dxdy dz dt, (22)

which action is the pressure p. Variation of (22) gives

0 =

∫ T

0

−

∫

Ω

∇2φ δφdxdy dz

+

∫

∂Ωs

(
∂tφ +

1

2
|∇φ|2 + g(h + b)

)
s
δh +

(
ws − ∂th − (∇φ)s · ∇(h + b)

)
(δφ)s dxdy dt. (23)

These lead to the “classical” water wave equations under the assumption of potential flow:

δφ : ∇2φ =0 (24a)

δh : (∂tφ)s +
1

2
|∇φ|2s + g(h + b) =0 (24b)

(δφ)s : ∂th + (∇φ)s · ∇(h + b) − (∂zφ)s =0. (24c)

This justifies the substitution of D = 1 a posteriori, but without provision of Bernoulli’s equation (19)
in the interior. Luke’s principle does therefore not provide an explicit expression for p, even though we
indirectly know its action to be the pressure.

Luke’s variational principle can be rewritten in another form by using (17) with D = 1, leading to
Miles’ variational principle [Miles 1985]:

0 = δ

∫ T

0

L[φ, h] dt = δ

∫ T

0

∫

Ω

1

2
|∇φ|2 + gz dxdy dz −

∫

∂Ωs

φs∂th dxdy dt. (25)

4 Constrained variational principle: water waves with vorticity

4.1 Variational principles

Our next step is to simplify the labels constraint and derive a new water wave model with both the
irrotational water wave model and the depth-averaged shallow water equations as limiting forms. We
therefore limit the labels to be horizontal l(x, y, t) ∈ R2 and from the onset constrain these to depend
on the horizontal coordinates only. This contrasts with the general case considered in §2. In essence, the
resulting labels are advected by a depth and density weighted horizontal velocity, that is

1

h

∫ h+b

b

D dz ∂tl +
1

h

∫ h+b

b

D udz · ∇l = 0. (26)

Similar to the fully 3D formulation in section 2, we shall see that adding the constraint that both compo-
nents of the labels are advected by the vertically-averaged velocity field gives rise to an overdetermined
system. However, as we shall describe, this is more convenient than only constraining one component.
Throughout we use slip flow boundary conditions at fixed walls.

After multiplication by depth h, these advected constrained labels are enforced by additional Lagrange
multipliers π = π(x, y, t) ∈ R2, also independent of z. We anticipate that D can be set to unity later
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given our derivation of Luke’s principle. Hence, the variational principle, either (14) or (15), is changed
to

0 =δ

∫ T

0

∫

Ω

1

2
D|u|2 − gDz + p(1 − D) + φ (∂tD + ∇ · (uD)) − D π ·

(
∂tl + u · ∇l

)
dxdy dz dt. (27)

This time we chose to include the kinematic condition (8) implicitly instead of explicitly, but either route
suffices. A similar calculation as before for the u-variation yields

u ≡ ∇φ(x, y, z, t) + v(x, y, t) ≡ ∇φ(x, y, z, t) +
(
∇l(x, y, t)

)T
π(x, y, t), (28a)

adopting the notation [
(∇l)T π

]
ij

= (∂xi
lj)πj . (28b)

Such a splitting does not uniquely determine ∇φ, since v can in general have a non-zero divergent
component. This degeneracy can be removed by only including the constraint for one component l1 of
the labels l, but the use of two labels ensures that v can point in any (horizontal) direction. In the
following, we shall see that we retain v in the reduced form, which determines φ exactly from a Poisson
equation.

We substitute equation (28) into action principle (27) to get:

0 =δ

∫ T

0

L[l, π, p, D, φ, h] dt = δ

∫ T

0

∫

Ω

1

2
D|∇φ + v|2 − gDz + p(1 − D) + φ

(
∂tD + ∇ · (D(∇φ + v))

)

− D π · (∂tl + (∇φ + v) · ∇l) dxdy dz dt (29a)

= − δ

∫ T

0

∫

Ω

1

2
D|∇φ + v|2 + gDz + p(D − 1) + D π · ∂tl − φ∂tD dxdy dz +

∫
Dsφs∂th dxdy dt,

(29b)

in which the vector v lies in the x–y-plane and is a shorthand defined in (28b) and not an independent
variable. Making use of (17) and the corresponding integral constraint, and then changing the sign of
the variational principle yields

0 =δ

∫ T

0

L[l, π, D, φ, h] dt (30a)

=δ

∫ T

0

∫

Ω

D∂tφ + D π · ∂tl +
1

2
D|∇φ + v|2 + gDz + p(D − 1) dxdy dz dt (30b)

≡δ

∫ T

0

∫

Ω

D∂tφ + D π · ∂tl dxdy dz + H dt (30c)

which defines the Hamiltonian H. Variation of (30) yields:

δD : ∂tφ = −
δH

δD
= −

(1

2
|∇φ + v|2 + gz + p −

∫ b+h

b

D(∇φ + v) dz · v/(hD̄)
)

(31a)

δφ : ∂tD =
δH

δφ
= −∇ ·

(
D(∇φ + v)

)
(31b)

δh : Ds(∂tφ)s = −
δH

δh
= −

(
1

2
D|∇φ + v|2 + gD(h + b) + p(D − 1)

− Ds

∫ b+h

b

D(∇φ + v) dz · v/(hD̄)

)

s

(31c)

(δφ)s : Ds∂th =

(
δH

δφ

)

s

= Ds

(
ws − vs · ∇(h + b)

)
(31d)

δ(hD̄π) : ∂tl = −
δH

δ(hD̄π)
= −

(∫ b+h

b

D(∇φ + v) dz · ∇l
)
/(hD̄) (31e)

δl : ∂t(hD̄π) =
δH

δl
= −∇ ·

(∫ b+h

b

D(∇φ + v) dzπ
)

(31f)

δp : D − 1 =0. (31g)
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This includes an extended Bernoulli’s relation for the variation with respect to D. The variation is chosen

with respect to hD̄π with hD̄ =
∫ b+h

b
D dz to obtain (nearly) canonical equations. Finally, we include

incompressibility by setting D = 1 in (30) to obtain the extended variational principle

0 =δ

∫ T

0

L[l, π, φ, h] dt (32a)

=δ

∫ T

0

∫

Ω

∂tφ +
1

2
|∇φ + v|2 dxdy dz +

∫

∂Ωs

h π · ∂tl +
1

2
g
(
(h + b)2 − b2

)
dxdy dt. (32b)

Variation of (32) gives

0 =

∫ T

0

∫

Ω

(∇φ + v) · (∇δφ + δv) + ∂tδφdxdy dz

+

∫ T

0

∫

∂Ωs

(
∂tφ +

1

2
|∇φ + v|2 + g (h + b) + π · ∂tl

)
s
δh + h δπ · ∂tl + h π · ∂tδl dxdy dt (33a)

= −

∫ T

0

∫

Ω

(∇2φ + ∇ · v)δφdxdy dz +

∫

Ω

δφ|t=T
t=0 dxdy dz

+

∫ T

0

∫

∂Ωs

(
∂tφ +

1

2
|∇φ + v|2 + g (h + b) + π · ∂tl

)
s
δh + h δπ · ∂tl + h π · ∂tδl

+
(
δφ)s(us · (−∇H(h + b), 1)T − ∂th

)
+ h ū · δv dxdy dt (33b)

= −

∫ T

0

∫

Ω

(∇2φ + ∇ · v)δφdxdy dz

+

∫ T

0

∫

∂Ωs

(
∂tφ +

1

2
|∇φ + v|2 + g (h + b) + π · ∂tl

)
s
δh

+ h δπ ·
(
∂tl + ū · ∇l

)
−

(
∂t(h π) + ∇ · (hūπ)

)
· δl

+
(
δφ)s(ws − vs · ∇(h + b) − ∂th

)
dxdy dt +

∫

Ωs

hπ · δl|t=T
t=0 dxdy, (33c)

where the horizontal (rotational) velocity vector v and the depth-averaged horizontal velocity vector ū

were used:

v = (∇l)T π and hū =

∫ b+h

b

uH dz. (34)

End-point conditions used are δl|t=T
t=0 = 0 and δφ|t=T

t=0 = 0, whence terms involving these expressions in
(33) vanish. The dynamics arising from (33) are therefore

δφ : ∇2φ + ∇ · v =0 (35a)

δh : (∂tφ)s +
1

2
|∇φ + v|2s + g (h + b) + π · ∂tl =0 (35b)

δπ : ∂tl + ū · ∇l =0 (35c)

(δφ)s : (∂zφ)s − ((∇Hφ)s + v) · ∇H(h + b) − ∂th =0 (35d)

δl : ∂t(h π) + ∇ · (hūπ) =0 (35e)

together with (34). The system (35) equals system (31), after excluding the extended Bernoulli equation
in the interior of the fluid. It justifies, a posteriori, the direct substitution of constraint D = 1 in
the variational principle. The above system can be expressed in terms of v, instead of π and l, by
multiplication of (35c) by π and elimination of π · ∂tl in (35b), and by evaluation of ∂t(hv̄). In addition,
we can rewrite (35d). The reformulated system becomes more familiar and reads

∇2φ + ∇ · v =0 (36a)

(∂tφ)s +
1

2
|(∇φ)s + v|2 + g (h + b) − v · ū =0 (36b)

∂th + ∇ · (h ū) =0 (36c)

∂t(h v) + ∇ · (hūv) + hv∇ū =0 (36d)

hū =

∫ b+h

b

∇Hφdz + hv. (36e)
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It is seen to be a modification of the water wave equations under the potential flow condition; it includes a
component of the horizontal momentum hv which has a layer-averaged vertical component of the vorticity.

Momentum equations for the depth averaged flow emerge by manipulating (36). Taking the sum of
the horizontal gradient of (36b), multiplied thereafter by h, and (36d), while using definition (36e), gives:

∂t(hū) + ∇ · (h ū ū +
1

2
g h2) + g h∇b + h

(
∇(∂tφ)s − ∂t∇Hφ

)

+
1

2
h∇(|us|

2 − |ū|2) + h (ū ∇∇Hφ − ū · ∇∇Hφ) =0 (37)

with the depth-averaged horizontal velocity vector ū, the three-dimensional velocity vector us evaluated

at the free surface, velocity potential φ, depth h, and ∇Hφ ≡ (1/h)
∫ b+h

b
∇Hφ dz. The last two terms

concern a rotational component, which is nonzero due to the averaging. The underline indicates terms
extra compared to the depth-averaged shallow-water equations.

4.2 Conservation laws

Following the methodology described in [Cotter et al. 2007], we note that the variational principle (32)
has relabelling symmetries of the type:

δl = ξ(l), δπ = −(∇ξ(l))T π, (38)

for any smooth vector field ξ. These are the infinitesimal symmetries obtained from transformations
l 7→ φ(l), where φ is a relabelling diffeomorphism (change of coordinates) of the horizontal domain.

Noether’s theorem then implies the conservation law

∂

∂t
(hπ · ξ(l)) + ∇ · (ūπ · ξ(l)h) = 0, (39)

for the solutions of equations (36). When this is combined with the continuity equation (36c), we obtain

( ∂

∂t
+ ū · ∇

)
(π · ξ(l)) = 0. (40)

Following [Salmon 1988a, Cotter et al. 2007], if we choose a closed loop C(t) in the horizontal plane,
advected by the horizontally averaged velocity ū, and take ξ to be tangent to the loop at t = 0 with
|ξ| = 1, then

ξ · dx = (∇l) · dx (41)

for all times. Hence, we obtain the horizontal circulation conservation law

d

d t

∮

C(t)

(
(π · ∇)l

)
· dx = 0. (42)

Recalling that v = π · ∇l, Stokes’ theorem gives a potential vorticity equation for the total velocity
u = ∇φ + v instead of the depth-averaged one:

∂tq + ū · ∇q = 0 (43)

with potential vorticity q = ∇ × u/h = ∇ × v/h. Thus equations (32) describe the vertical vorticity
advected by the vertically-averaged velocity inside the fluid, coupled to z-dependent potential flow in the
interior of the fluid, and connected to the free surface. The variational principle (32) is also invariant
under translations in time, and so it has a locally-conserved energy |u|2/2 + gz.

4.3 Water wave and shallow water limit

The system (36) reduces to the water wave equations under potential flow (24) when we either take
v = 0 or v = ∇Hϕ. In the latter case, the equation for the time evolution of v can be written as the
horizontal gradient of a Bernoulli-type function. This then recombines with the dynamic condition at
the free surface such that the total potential becomes φ + ϕ. Replacement of φ + ϕ by φ notationally
then yields the desired result, and similarly Poisson’s equation reduces to Laplace’s equation.
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+

Figure 5: A sketch is given of a vertical cross section of the domain with an overturned wave and its bore
approximation.

The shallow water limit is reached when we restrict φ = φ(x, y, z, t) to φs = φs(x, y, t) in the variational
principle (32). The result is:

∂tφs +
1

2
|ū|2 + g (h + b) + π · ∂tl =0 (44a)

∂tl + ū · ∇l =0 (44b)

−∇H · (h ū) − ∂th =0 (44c)

∂t(h π) + ∇ · (hūπ) =0. (44d)

This shallow water system can be rewritten as

∂th + ∇ · (h ū) =0 (45a)

∂tφs +
1

2
|ū|2 + g (h + b) − v · ū =0 (45b)

∂tv + ū · ∇v + v∇ū =0 (45c)

ū =∇Hφs + v. (45d)

The time derivative of ū then gives the depth-averaged shallow water momentum equation

∂tū + ū · ∇ū + g∇(h + b) = 0. (46)

Alternatively, note that the last (underlined) terms in (37) vanish in the shallow water limit, when u

and φ evaluated at the surface equal their depth-averaged counterparts, whence (37) becomes the regular
shallow water momentum equation in nearly conservative form.

4.4 Weak formulation: extended hydraulic jump relations

A weak formulation is sought such that overturning of the free surface is approximated by a local discon-
tinuity. In the shallow water limit the resulting hydraulic jump or bore relations across the discontinuity
should reduce to those for the shallow water equations. Consequently, the depth h and the depth-averaged
velocity will be single-valued except for local line discontinuities in the horizontal. In addition, a new
boundary condition for φ is required for the elliptical equation (36a) along the jump. A sketch of a
domain with an overturning wave and the approximation with one jump is given in Fig. 5.

The candidate equations for the weak formulation followed by rewriting (35) into:

∂th + ∇ · (h ū) =0 (47a)

∂t(hū) + ∇ · (h ū ū +
1

2
g h2) + g h∇b + h

(
∇(∂tφ)s − ∂t∇Hφ

)

+
1

2
h∇H(|us|

2 − |ū|2) + h (ū ∇∇Hφ − ū · ∇∇Hφ) =0 (47b)
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with the depth-averaged horizontal velocity vector ū, the three-dimensional velocity vector us eval-
uated at the free surface, velocity potential φ, and depth h. There is a theory for hyperbolic sys-
tems with nonconservative products [Dal Maso 1995] and numerical applications thereof [Parés 2006,
Rhebergen et al. 2008]. The term h∇b is an example of an intrinsic nonconservative product, also when
we consider the shallow water limit. This matters when b contains jumps, either in its definition or its
numerical approximation. It is intrinsic because the term cannot be brought in conservative form without
destroying the conservative structure in the remaining shallow water momentum equations. The under-
lined terms are also nonconservative terms but the theory of Dal Maso [Dal Maso 1995] does not directly
apply, because our extended water wave system is a coupled elliptic-hyperbolic system. The theory of
hyperbolic systems with nonconservative products shows that the extended Rankine-Hugoniot or shock
relations depend on the path chosen in the calculation. Besides the strict nonapplicability of this theory
for our coupled elliptic-hyperbolic system, the choice of path is open. In many cases, Rhebergen et al.
[Rhebergen et al. 2008] show numerically that a linear path suffices as a reasonable choice.

Without a derivation of an extended theory for elliptic-hyperbolic systems and non-conservative prod-
ucts, two approximations may be reasonable. First, the additional underlined terms in (47b) are ignored
at leading order, and the jump relations for the shallow water equations can be used as a crude approx-
imation. Second, this theory of nonconservative products can be applied in a heuristic manner while
using a linear path. In simplified terms, generalized Rankine-Hugoniot relations emerge by consideration
of (47) in space time. Upon using Gauss’ theorem in horizontal space time, the weak formulation across
the shock surface in space time amounts to [Rhebergen et al. 2008]:

−Sn

∫ 1

0

∂τ h̃(τ ; U−, U+) dτ +

∫ 1

0

∂τ (̃hū)(τ ; U−, U+) · n̂ dτ (48)

for the continuity equation where we use a vector (−Sn, nx, ny)
T parallel to the space time normal vector,

the space normal n̂ = (nx, ny)T in the horizontal plane, and the shock speed Sn. The variables with a tilde
depend on the states of the variables, denoted by U−, U+ across the shock, on τ , and the path between
τ = 0 and τ = 1, with U = (h, hū, b, φ). Furthermore, h̃(0; U−, U+) = h− and h̃(1; U−, U+) = h+, and
so forth. However, due to its conservative form expression (48) is immediately integrable and leads to
the classic jump relation, expressing mass conservation across the shock:

[h (ū · n̂− Sn)] = 0 (49)

with [U ] = U+ − U− denoting the jump across. Similarly, for the momentum equations we find:

− Sn

∫ 1

0

∂τ (̃hū)(τ ; U−, U+) dτ +

∫ 1

0

∂τ

˜
(hūū +

1

2
g h2)(τ ; U−, U+) n̂ dτ

+

∫ 1

0

gh̃(τ ; U−, U+) ∂τ b̃(τ ; U−, U+) n̂ dτ + Sn

∫ 1

0

h̃(τ ; U−, U+) ∂τ∇̃Hφ(τ ; U−, U+) dτ

+

∫ 1

0

h̃(τ ; U−, U+) ∂τ (̃∂tφ)s(τ ; U−, U+) n̂ dτ +
1

2

∫ 1

0

h̃(τ ; U−, U+) ∂τ
˜(|us|2 − |ū|2)(τ ; U−, U+) n̂ dτ

+

∫ 1

0

(
h̃ ū(τ ; U−, U+) ∂τ∇̃Hφ(τ ; U−, U+) − h̃ ū(τ ; U−, U+) · ∂τ∇̃Hφ

)
n̂ dτ (50a)

= [hū(ū · n̂− Sn)] + [
1

2
g h2]n̂

+

∫ 1

0

gh̃(τ ; U−, U+) ∂τ b̃(τ ; U−, U+) n̂ dτ + Sn

∫ 1

0

h̃(τ ; U−, U+) ∂τ∇̃Hφ(τ ; U−, U+) dτ

+

∫ 1

0

h̃(τ ; U−, U+) ∂τ (̃∂tφ)s(τ ; U−, U+) n̂ dτ +
1

2

∫ 1

0

h̃(τ ; U−, U+) ∂τ
˜(|us|2 − |ū|2)(τ ; U−, U+) n̂ dτ

+

∫ 1

0

(
h̃ ū(τ ; U−, U+) ∂τ∇̃Hφ(τ ; U−, U+) − h̃ ū(τ ; U−, U+) · ∂τ∇̃Hφ(τ ; U−, U+)

)
n̂ dτ = 0. (50b)

Note that we have integrated by parts in τ for some terms, such that
∫ 1

0 h∂τQ dτ = [hQ]−
∫ 1

0 [h] Q dτ for
some function Q depending on the variables, and that a linear path is chosen for h and the product hū.
The first terms are conservative and integrable for any path function, and lead to the well-known jump
condition for the shallow water momentum equations, while we need to choose or determine a path for
the remaining terms. We choose a linear path U = U− + τ (U+ −U−) based on the generally weak path
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dependence observed in [Rhebergen et al. 2008]. Hence, we obtain the approximated jump relation for
our extended system:

[hū(ū · n̂ − Sn)]

+
[1

2
g h2 + g{h}b

]
n̂ +

[
Sn h∇Hφ + h (∂tφ)s +

1

2
h (|us|

2 − |ū|2) + h
(
ū∇Hφ − ū · ∇Hφ

)]
n̂

−

∫ 1

0

{
Sn [h] ∇̃Hφ(τ ; U−, U+) + [h] (̃∂tφ)s(τ ; U−, U+)

+
1

2
[h] ˜(|us|2 − |ū|2)(τ ; U−, U+) +

(
[h ū]∇̃Hφ(τ ; U−, U+) − [h ū] · ∇̃Hφ(τ ; U−, U+)

) }
n̂ dτ = 0 (51)

with mean {U} = (U− + U+)/2 and [{U}b] = {U}[b]. The last term with |ū|2 can be integrated directly,
but the others need to be determined numerically or approximated further, e.g., by using a linear path

in τ for us, (∂tφ)s, (1/h)
∫ b+h

b
∇Hφdz, et cetera. When we approximate [h] = [H ] for some (constant)

mean depth H when the topography is flat, then the last terms disappear. The momentum equations
are conservative in this (inconsistent) small amplitude limit, which merely illustrates that the remaining
terms are as expected.

In a vertical plane the new water wave model has no circulation, since (u1, u3) = (∂xφ+v(x, y, t), ∂zφ).
The jump conditions are therefore considered in a vertical plane under pure potential flow conditions
with v = 0 and thus ū = ∂xφ. The horizontal momentum equation arising from (21b) and the continuity
equation read

h∂x

(
(∂tφ)s +

1

2
|∇φ|2s + g(h + b)

)
= 0 and ∂th + ∂x(hū) = 0, (52)

or after some reworking

∂t(hū)+∂x(hū2+
1

2
gh2)+gh∂xb+h

(
∂x(∂tφ)s−∂tū

)
+

1

2
h∂x

(
|∇φ|2s−ū2

)
= 0 and ∂th+∂x(hū) = 0 (53)

with ∇ = (∂x, ∂z)
T in a vertical plane. Formulation of the weak formulation directly from (53), or

simplification to one dimension, from (51) yields




[h(S − ū)] = 0
−S[hū] + [hū2 + gh2/2] + [{h}]

[
g{h}b + h((∂tφ)s + Sū) + 1

2h
(
|∇φ|2s − ū2

)]

−[h]
∫ 1

0
˜((∂tφ)s + Sū)(τ ; U−, U+) + 1

2
˜(|(∇φ)s|2 − |ū|2)(τ ; U−, U+) dτ = 0

(54)

⇐⇒





[h(S − ū)] = 0[
h(S − ū2) + gh2/2 + g{h}b + h((∂tφ)s + Sū) + 1

2h
(
|∇φ|2s − ū2

)

−h
∫ 1

0
˜((∂tφ)s + Sū)(τ ; U−, U+) + 1

2
˜(|(∇φ)s|2 − |ū|2)(τ ; U−, U+) dτ

]
= 0.

(55)

Consider the simple case with constant depths h±, h− > h+, and depth-averaged velocities ū± on
either side of a steady jump, localized at x = 0 and over a flat bottom b = 0. The underlined terms
then cancel and the shallow water bore relations remain. Hence, φ± = ū± x plus a dependence on z
which is zero as follows from Laplace’s equation and the bottom boundary condition w = ∂zφ± = 0.
The conditions on φ at x = 0 are therefore Dirichlet as φ is continuous below the vertical jump face:
0 < z < h+; and, Neumann on the vertical jump face: (∂xφ)− = ū− − S = ū− as the jump is assumed to
be steady.

This simple example shows what the extra boundary conditions become at the vertical face. In general,
the condition is that the horizontal velocity normal to the jump equals the ”upstream” depth-averaged
velocity in the frame of reference of the jump: ū− · n̂ − Sn = (n̂, 0)T · (∇φ + v)− for the case with
h− > h+. Finally, we re-emphasize that these results are somewhat heuristic because we applied a theory
of weak solutions for hyperbolic equations with non-conservative products to coupled hyperbolic-elliptic
equations.

4.5 Linear waves

Linearization of (36) around a state of rest and over a flat bottom yields v = 0. Hence, the dispersion
relation for the classical water wave equations holds again for our extended water wave equations. For
linear flows over non-uniform topography the dispersion relation will be an extension of both the water
wave results under potential flow and the shallow water equations.
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5 Summary and discussion

The aims laid out in the introduction have been reached nearly completely. We have derived a reduced
model with accurate surface water wave dispersion and vertical vorticity. It is derived systematically
via a simplification of the variational principle of the three-dimensional incompressible Euler equations
with free surface dynamics. We noted that associated conservation laws follow from the symmetries of
our new variational principle. Mass, momentum, and energy conservation and material conservation of
depth-averaged potential vorticity are thus guaranteed. The model is reduced, or simplified, because
it contains only the depth-averaged vertical vorticity combined with the full three-dimensional velocity
potential. On the one hand our new model reduces to the classical depth-averaged shallow water equations
in the shallow water limit, and on the other hand it reduces to the classical potential flow water wave
equations in the irrotational limit. Breaking waves can be included in our new model by extension of
the classical bore relations in the usual depth-averaged shallow water equations. The multivalued free
surface of an overturning wave is therefore limited locally to a vertical face. The advanced jump relations
are based on the continuity equation and an analysis of the depth-averaged part of the momentum
equations. It is an heuristic extension of the theory of shocks in hyperbolic equations with nonconservative
products. Nonetheless, these extended shock relations clearly reduce to the classical bore relations for
depth-averaged shallow water equations in the shallow water limit. Further analysis needs to sort out
what the associated loss of energy and possibly some momentum is. For flow over a flat bottom, linear
waves in our new model coincide with those for the irrotational water wave equations.

It is important to stress that the preservation of the geometric structure in an Eulerian model is non-
trivial. Our usage of the combination potential flow plus the depth-averaged vortical velocity component
is special because it allows the preservation of the relabelling symmetry with its associated potential
vorticity conservation material or integral laws [Salmon 1988a, Cotter et al. 2007]. The following remains
an outstanding research question: Can we preserve the geometric (Hamiltonian) structure in Eulerian
variables for higher order discretizations of the vorticity vector as function of vertical coordinate z? It
goes without saying that conservation of energy and perhaps momentum is locally broken through a
hydraulic jump or bore.

Two issues we aimed at have not yet been resolved. The first unresolved issue is that the new
model is still quite complex as it contains the full three-dimensional potential flow component. The
derivation of our new model with this potential-flow dependence was necessary to pinpoint the coupling
between the potential flow part and the vortical part. Further approximations of the velocity potential
(e.g., by a quadratic polynomial in the vertical z-direction) and subsequent substitution thereof in the
variational principle immediately leads to a Boussinesq-type model, with high order accurate dispersion
and vertical vorticity. Any such substitution and evaluation within the variational principle is permissible
and straightforward; and, it guarantees preservation of the conservative strucure. In essence, it constitutes
a discretization in the vertical direction only; the three-dimensional Laplace equation emerging in the
water wave part of our model is then discretized in the vertical and replaced by an elliptical equation
in the horizontal coordinates with non-constant depth-dependent coefficients. Such a simplification to
Boussinesq-type models follows immediately from work of [Klopman et al. 2007] which, however, only
applies consistently to potential flows. Furthermore, it may be easier to recombine the potential and
vortical part in a formulation with a depth-averaged velocity after such an additional Boussinesq-type
simplification has been made. The second unresolved issue concerns the analysis of generation of potential
vorticity for bores in which energy is dissipated in a non-uniform manner along the breaking wave crest.
Such an analysis is available for the depth-averaged shallow water equations [Pratt 1983, Peregrine 1998],
and should be made for our new model.

Future work will also involve discontinuous Galerkin finite element discretizations (DGFEM) of our
new model, or Boussinesq versions thereof. It will combine our research on shallow water ocean models
[Cotter et al. 2009], on (numerical) generation of potential vorticity by non-uniform bores [Ambati and Bokhove 2007,
Tassi et al. 2007] and on flooding and drying [Bokhove 2005]. Our DGFEM discretization based on a
Luke’s variational principle [Ambati 2008, Ambati et al. 2008] will be used herein as a building block.
In addition, we aim to explore exact solutions, inspired by [Constantin 2001]. Finally, the Lagrangian
(14) for the three-dimensional incompressible Euler flow and the one for our new wave model (30) are
singular. In both cases the constraint D−1 = 0 (of density being constant) has as consistency constraint
the corresponding incompressibility condition. Consistency of the latter then leads to an elliptic equa-
tion for the pressure. Dirac’s theory of constraint Lagrangians ([Dirac 1950]) would explicitly establish
a formulation of the dynamics on the constraint manifold. In [Salmon 1988b], an example is given for
shallow water flow constrained to constant depth and incompressibility, which may be extended to the
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free surface case both for the three-dimensional parent model and our new water-wave model. Bokhove
[Bokhove 2002] also offers an alternative view, with similar results as Dirac’s theory, based on slaved
Hamiltonian dynamics. The latter could be more appealing given the free surface boundary conditions,
compared with the approach followed in [Salmon 1988b].
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A Variational preliminaries

First consider the connection (5), in the main text, between the variation of the velocity δu and the
displacement w; it arises from (56), to wit

∂tχ = u ◦ χ ≡ u(χ, t) and δχ = w ◦ χ ≡ w(χ, t). (56)

Equating the variation of the first and the time derivative of the second equation in (56) yields

δ(ui ◦ χ) = ∂t(wi ◦ χ) ⇐⇒ (δui) ◦ χ + δχj · ∇jui ◦ χ = (∂tw)i ◦ χ + ∂tχj · ∇jwi ◦ χ, (57)

where we superfluously added indices for clarity. Hence, by rearranging (57) one finds that (5) follows:

(δui)◦χ = (∂tw)i◦χ+∂tχj ·∇jwi◦χ−δχj ·∇jui◦χ =⇒ δui = ∂twi+uj ·∇jwi−wj ·∇jui· (58)

Second, consider the Jacobian J between Eulerian x = (x1, x2, x3)
T and Lagrangian coordinates

l = (l1, l2, l3)
T , defined as:

J =




∂xl1 ∂yl1 ∂zl1
∂xl2 ∂yl2 ∂zl2
∂xl3 ∂yl3 ∂zl3


 . (59)

The determinant of this Jacobian is

ǫijk(∂xi
l1)(∂xj

l2)(∂xk
l3) (60)

with indices i, j, k = 1, 2, 3 and permutation symbol ǫijk such that ǫ123 = 1 and likewise for cyclic shifts,
and ǫ321 = −1 and likewise for cyclic shifts, and ǫijk = 0 when at least two indices coincide. Hence, the
variation of the determinant yields:

δD =∂xi

(
ǫijk(∂xj

l2)(∂xk
l3)δl1 + ǫjik(∂xj

l1)(∂xk
l3)δl2 + ǫkji(∂xk

l1)(∂xj
l2)δl3

)
(61)

≡− ∂xi

(
wiD

)
. (62)

The last definition of w defines the link between the variation of χ and δl, as follows

w = −J−1 δl. (63)

Likewise, one can show that u = −J−1 ∂tl. Alternatively, this link can be established in an integral way
as

δD(x, y, z, t) =δ

∫

Ω′

D(x′, y′, z′, t)δ
(
x − x′

)
dx′ dy′ dz′ (64a)

= −

∫

Ω′

∇δ
(
x − χ(l1, l2, l3, t)

)
· δχ(l1, l2, l3, t) dl1 dl2 dl3 (64b)

=

∫

Ω′

∇
′δ

(
x − x′

)
· w(x′, y′, z′, t)D(x′, y′, z′, t) dx′ dy′ dz′ (64c)

= −

∫

Ω′

δ
(
x − x′

)
∇

′ ·
(
w(x′, y′, z′, t)D(x′, y′, z′, t)

)
dx′ dy′ dz′

+

∫

∂Ω′

δ
(
x − x′

)
D(x′, y′, z′, t)w(x′, y′, z′, t) · n̂ ds′ (64d)

= − ∇ ·
(
wD

)
, (64e)

since δ
(
x − x′

)
= 0 on ∂Ω in the interior of the fluid, and with the primes indicating evaluation at

x′ = (x′, y′, z′)T . With some care of the treatment at the free surface, a similar derivation and relation
hold at the free surface. It is then important to note and use that δ(Ds) = (δD)s + (∂zD)sδh. Thus, we
have proven expression (7) in two ways.

Finally, consider a general representation F = F (x, y, z, t) = 0 of the free surface. The variation of
the position of the fluid parcel should be zero at the free surface, just like the time variation on the free
surface following the fluid parcel remains zero. Hence,

0 = δF = (δF )s + (w · ∇F )s. (65)
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For the restrictive particularization F = z − (h + b) used so far, we thus find (9), i.e.:

0 = −δh − ws · ∇H(h + b) + ws. (66)

Likewise, one finds the kinematic condition (8).
Integration of (64) over depth, usage of (66), and free slip boundary conditions at fixed walls yields

a version
δ(hD̄) + ∇H · (hDw) = 0 (67)

with a depth integrated density and horizontal label variations

hD̄ =

∫ b+h

b

D dz and hDw =

∫ b+h

b

D(w1, w2)
T dz. (68)

Likewise, a depth-averaged continuity equation can be derived. For incompressible flows with D = 1
these depth-averaged equations yield (10) in the main text.

The above calculations reveal why it is useful to use w instead of δl: it is a concise Eulerian repre-
sentation of δχ significantly economizing notations and interpretations.
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