
The precautionary principle in a world of

digital dependencies

Wolter Pieters and André van Cleeff
University of Twente, Enschede, The Netherlands

Abstract

According to the Jericho forum, security in information technology
can no longer be achieved by building a digital fence around the
organisation. We investigate the consequences of this “de-perimeter-
isation” for software engineering ethics. “Being in control” is no
longer feasible for certain types of risk, and therefore software en-
gineering ethics cannot only be based on foreseeable consequences.
Instead, ethics could be based on the precautionary principle, which
states that lack of certainty shall not be used to postpone cost-
effective measures. We translate this principle from the domain of
safety to the domain of security, in which we are interested in pre-
caution with respect to people’s actions rather than natural disas-
ters. Following the example of Napster as well as recent results in
philosophy of technology, we present a guideline for ethical software
development, focused on inviting desirable use.

1 Introduction

Traditionally, protection of information has been directed at securing an
organisation at the perimeter of its systems and network, typically in the
form of a firewall. The implicit assumption behind this approach is that the
inside of the security perimeter is more or less trusted, whereas the outside
is not. Due to changes in technologies, business processes and their legal
environments this assumption is not valid anymore. Many organisations
are outsourcing part of their IT processes, and employees demand that they
can work from home. Business are collaborating on an unprecedented scale,
forming complex networks around the globe and putting more trust in third
parties than in their own networks. Mobile devices can access data from
anywhere, smart buildings are being equipped with small microchips that
constantly communicate with each other (and their headquarters). With

1



so-called cloud computing, organisations can rent virtual PCs by the hour.
This leads to even more complicated systems, or systems of systems, which
span the boundaries of multiple parties and cross the security perimeters
that these parties have put in place for themselves.

Following the Jericho Forum [1], we call this process de-perimeterisation:
the disappearing of boundaries between systems and organisations, which
are becoming connected and fragmented at the same time. The most obvi-
ous problem of de-perimeterisation is how to re-organise our security. But
de-perimeterisation implies not only that the border of the organisation’s
IT infrastructure becomes blurred, but thereby also that the border of the
organisation’s accountability fades. If an organisation outsources its data-
processing, who is morally responsible for maintaining the privacy of its
customers? And if an organisation insources another organisation’s pro-
cesses, how can it be sure that it meets all the obligations?

In this paper, we investigate the consequences of de-perimeterisation,
the disappearing of boundaries between systems and organisations, for soft-
ware engineering ethics. The discussion is on the level of ethics of system
design. We take inspiration from the lawsuits against the peer-to-peer net-
work Napster to discuss responsibilities for indirect consequences, based
on the so-called precautionary principle. This principle has mainly been
applied in environmental ethics, to be on the safe side with respect to
environmental damage caused by new technologies. But what if a par-
ticular design decision, somewhere in the chain of technologies enabling
electronic health records, invites employers to check people’s health be-
fore hiring them? And what if Internet voting slowly undermines the idea
of the secret ballot? These examples give some intuition of the relevance
of precaution in information technology as well. In the following, we will
investigate the idea more systematically.

2 Accountability in a de-perimeterised world

De-perimeterisation has consequences for moral and legal accountability
of people and organisations that develop software. In a complex chain of
events or systems, many people will have had a share in an action that
leads to undesirable consequences. As such many people will also have had
the opportunity to prevent these consequences, and therefore no-one can be
held responsible. This has been described as “the problem of many hands”
[2].

This is certainly the case if IT systems are developed that depend on
other systems, which in turn depend on other systems, et cetera. In fact,
making this possible – or actively promoting it – is the design philosophy

2



behind the service-oriented architecture (SOA) and the associated SOA
governance, where all functionality consists of services which can be aggre-
gated into larger applications performing functions to end-users. In such
cases, the networked organisational and technological structure makes it
difficult to determine who is responsible if the final result turns out to be
wrong. And could we have known at all that something undesirable might
happen? An ethics requiring that consequences can be unambiguously at-
tributed to a single person or organisation is bound to be useless in such
a situation. This is illustrated by the lawsuits against Napster, which we
will discuss later: the responsibility for copyright infringement is shared
between Napster and its users.

Worse, it is not only unclear where the border of accountability lies, it is
even unclear what influence the organisation has and therefore what it can
accomplish in terms of consequences. If the organisation makes a decision
to apply a certain data protection policy in its software, the data may in
fact be managed by a different organisation. How will the organisation
that actually manages the data implement this? And how can this be
verified? If the accountability becomes unclear, so do the consequences of
the organisation’s own actions. This means that the organisation will have
to deal with the risks in a different way. Apart from the problem of many
hands, de-perimeterisation also leads to the issue of uncertain risk.

If we develop a service, we may not know exactly which other services
we are dependent on. Conversely, we may not know exactly which other
services will start using our service. We cannot make reasonable estima-
tions of probabilities of unwanted events in such a case. As an example,
consider Skype, which went off-line for some time in 2007, following an
automatic update from Microsoft. The update caused many Skype’s cus-
tomers to re-login at the same time, leading to a denial-of-service. The main
direct dependency, i.e. Skype running on Windows, seems to be trivial, and
must have been known in the design phase. But before the incident, it
was unknown to both Microsoft and Skype that there was also this indirect
dependency between their two applications, in this case related to the tim-
ing of the updates. Where direct dependencies are part of the design, the
complex structure of services may also cause such indirect dependencies.

Traditional approaches of risk assessment have focused on the prob-
ability of failure and the severity of the consequences of failure, usually
expressed in terms of costs. This approach has been criticised for various
reasons [3, 4]. Most importantly, it assumes that the probabilities of events
and the costs associated with them are known or at least objectively deter-
minable. This is usually not the case when we have the many dependencies
of a de-perimeterised setting.

In order to address these issues, we need to be more precise about what

3



we mean with risk. In a recent publication [5], the Dutch Scientific Council
for Government Policy (WRR) distinguishes between four types of risk
problems:

1. simple risk problems: problems that can be addressed by standard
risk assessment and risk management procedures;

2. complex risk problems: problems in which the relations between
causes and effects are subject to scientific discussion;

3. uncertain risk problems: problems in which there is a lack of knowl-
edge about possible effects;

4. ambiguous risk problems: problems in which the desirability of effects
is subject to discussion.

According to the WRR, the third and fourth type of problems require a
different approach than classical risk management. When the effects them-
selves are unknown, risk management, according to the Council, should be
based on the so-called precautionary principle. Risks in software develop-
ment in a de-perimeterised world, as we have shown, are at least uncertain,
possibly even ambiguous. The precautionary principle may therefore help in
ethically designing networked services, since a) it does not assume that the
risks can be objectively assessed and b) it does not focus on consequences
directly attributable to the action of a single person or organisation. In
the following, we discuss how to define and implement the precautionary
principle for software engineering ethics.

3 The precautionary principle

The precautionary principle is a moral and political principle stating that
a) parties should refrain from actions in the face of scientific uncertainties
about serious or irreversible harm to public health or the environment pos-
sibly caused, and b) the burden of proof for assuring the safety of an action
falls on those who propose it (adapted from [6]). In the Rio Declaration
on Environment and Development from 1992 this is formulated as follows:
“Where there are threats of serious or irreversible damage, lack of full sci-
entific certainty shall not be used as a reason for postponing cost-effective
measures to prevent environmental degradation.”

The usefulness of the precautionary principle depends on two conditions.
Firstly, there must exist a resource which can be damaged beyond repair.
If there is no such resource, there is no reason to apply the principle. In
that case, if a policy fails it can be changed with limited cost and its effect

4



reversed. Secondly, the usage of the resource is compulsory: it cannot be
substituted. If it could be substituted, it would be possible to switch to the
backup resource in case of damage, or to avoid using it in the first place.

In the European Union, the principle has been adopted in the Maas-
tricht Treaty in Article XVI-130r from 1992. One of the areas in which the
principle has been used is for decision making about genetically modified
organisms. The EU has delayed the introduction of genetically modified
corn from the United States for several years, fearing that it would be
unsafe and would lead to pollution of the corn reserves.

The precautionary principle has been extensively criticised. Among
the major objections are that it is unscientific and/or impractical, and
that it does not take the costs of missed opportunity into account. The
EU has also been criticised for applying it opportunistically, to protect its
agricultural industry from the US. Despite these criticisms, it still is one of
the cornerstones of European environmental law.

The precautionary principle incorporates the unknown into the ethics of
risk assessment. The principle has been related to the legal concept “duty
of care” [7], which implies that one can be liable for damages if one fails
to exercise care in relation to other people or their properties. Care is thus
a central issue in the precautionary perspective. Rather than demanding
control, the concept of care points to relations and dependencies, which
is precisely what we have to deal with in a de-perimeterised information
society.

4 The precautionary principle in IT

For the precautionary principle to apply, threats of serious or irreversible
damage need to be present, and there should be no possibility of substitu-
tion. By now, substituting the world’s digital resources would be next to
impossible. Although small, independent systems may easily be replaced,
the increasing amount of dependencies reduces the number of systems that
can effectively be called “small”. That serious damage can be done by
software to assets both inside and outside the digital world need not be
explained in today’s world of bugs, worms and patches. That this damage
can be harmful to humans or other moral subjects follows from our depen-
dency on digital assets. Showing that damage in the digital world can be
irreversible on a large scale, however, is not so trivial. Although serious
damage by itself would justify precaution, it is helpful to understand how
digital irreversibility can happen.

Obviously, the digital world of the Internet is not a physical space, it
holds no living beings that can fall ill or die because of pollutants. As

5



such the “infosphere” does not resemble nature’s biosphere. Still, there
are good reasons for considering them in a similar way. We see families of
systems, that produce “offspring”: new systems that resemble the old ones.
Programs called viruses roam the Internet and can infect these systems;
anti-virus software is needed to protect them. Just as in nature, mono-
cultures can be dangerous, because it makes them easier prey for viruses.
The many dependencies may lead to propagation of problems to other dig-
ital “species”. In short, the digital world is a complex of dependencies
similar to nature, and small disturbances at one point may have major and
irreversible consequences at others.

An important source of irreversibility is the so-called function creep.
Even if a system is initially being developed for a limited purpose, chances
are that requirements and uses will grow over time: a system that is de-
signed for one purpose, may be judged to be very useful for another, even
if that other purpose was explicitly indicated as undesirable when the sys-
tem was first designed. For example, a database with biometric data of
citizens may be designed for authentication purposes, but may then turn
out to be very helpful for crime investigation. Society may then become so
dependent on this mechanism that un-implementing the system is not an
option. The speed in which such dependencies develop increases with the
de-perimeterisation of systems and organisations. Because services depend
on each other, it is hard to remove a service once it is up and running.

Thus, IT satisfies both the conditions of serious or irreversible dam-
age and lack of possibilities for substitution. If it is justified to apply the
precautionary principle to IT, which we have argued here, the question
becomes how the principle can be applied in an effective way, and which
specific characteristics of IT demand adaptation of the principle for this
domain. A major difference between IT and the common application ar-
eas of the precautionary principle is that the principle has mainly been
applied in contexts of safety. This means that the probabilities of damage
occurring are determined by nature, or by unintentional human error. If a
genetically modified organism spreads in the environment and wipes out a
native species, there was probably nobody that actively tried to promote
this effect.

However, in IT many of the threats are related to people’s intentions,
be it the intention to illegally copy an MP3 file or the intention to make
a server unreachable. In the context of security, where we have to deal
with active adversaries, the situation is therefore different: in this case, the
probability that a problem occurs does not only depend on natural causes,
but also on the intentions and perseverance of people that have access to
the system. This does not only include hackers, but also for example the
users of Napster, who may change their behaviour based on the design of

6



environmental safety digital security
environment nature and health society and information
origin of risk nature and human error intentional human actions

solution safety engineering anticipating human be-
haviour

Table 1: Differences between the traditional and new application domain
of the precautionary principle

the system. What does this mean for the precautionary principle?
Here, the precautionary principle is not only about preventing acciden-

tal unintended effects. It is also about unintended effects that are caused by
other people’s intentions. Therefore, the precautionary principle in software
engineering should not only address issues similar to keeping a drug off the
market as long as there is no scientific certainty about possible side-effects.
It should also cover keeping a drug off the market because people may use
it for undesirable purposes, such as recreational or terrorist ones. Although
safety is important in IT as well (as in the Skype example), the security
dimension makes it impossible to implement the precautionary principle
unmodified. An overview of the differences between the traditional appli-
cation area (environmental safety) and the target area (digital security) is
given in table 1.

Thus, the de-perimeterised context of software development leads us
to apply the precautionary principle to software engineering ethics. Since
damage in the digital world can be serious and irreversible, this application
is justified. However, to account for a context in which people rather than
nature play the main roles, we have to take their intentions into account.
After discussing a practical case, we will develop a terminology for this
specific context.

5 The Napster case

In some examples, the ethical responsibility of software developers is rather
straightforward. If your software damages assets of customers due to bad
design or programming, you are morally responsible for the consequences,
even if it has been legally asserted that the software is provided without any
warranty. This is just ethics of consequences: if you would have designed
the software better, the damage would not have happened.

A different type of responsibility occurs if you willingly put assets of your
customers at risk, for example by designing software in such a way that you

7



damage these assets for your own good. This trivially applies to writing
viruses, but in some cases the issue is more subtle. For example, when Sony
included DRM software on their audio CDs and put the users at risk to
certain attacks on their computer, was this a case of bad programming or
of intentional misuse? Especially relevant is the informed consent question:
did Sony really install the software even if the customer declined the licence
agreement? [8]

The examples above have clear boundaries between responsibilities: if
the designer’s action leads to damage and the designer could have prevented
the damage, the designer is morally, if not legally, responsible. Here, the
effects are directly caused by the software, developed by a clearly defined
organisation. The effects also do not involve intentional actions by others.
Responsibilities for such issues can be relatively easily covered by traditional
risk management and associated ethics, even though the duty of care may
still apply.

What happens with de-perimeterisation is that the boundaries between
responsibilities become blurred. The trail of actions leading to a partic-
ular service may be such that several people or organisations could have
prevented the damage, and hold each other responsible.

In such a case, the precautionary principle may help to establish ac-
countability. The major example in which the precautionary principle has
already been applied in practice concerns the lawsuits against peer-to-peer
network applications. Using such software, both legal and illegal content
can be shared between computer users. In case the content is illegal, it may
be argued that serious damage can ensue, both to the copyright owner and
to the enforceability of intellectual property rights in general. The question
is whether the designers of such an application are responsible for what
people do with it.

The first lawsuit concerning peer-to-peer software occurred in 2000
against Napster. Later, other organisations such as Grokster were sued
as well, for similar reasons. What was at stake is what is called indirect lia-
bility [9] for copyright infringement. Were the users themselves responsible
for their unlawful behaviour, or could the provider be held liable because
of indirect impact on the actions? In the latter case, it would be much
easier to enforce the copyright, by a lawsuit against the provider rather
than against individual users. Could the provider successfully point to the
many hands that contributed to the infringement to counter the charge of
liability?

Under US doctrine, third parties may be indirectly liable for copyright
infringement if a) they knowingly contribute to the infringement (contrib-
utory infringement) or b) have control over the infringer and enjoy direct
financial benefit from the infringement (vicarious liability). Peer-to-peer

8



software fits in the former category. The questions that determine liabil-
ity in the peer-to-peer case are therefore a) whether the company has a
meaningful capacity to prevent or discourage illegal use and b) whether
there is substantial possibility for non-infringing use. In the end, Napster
was held liable, because information about the shared files was centrally
available, so that Napster could have known about and even prevented the
infringements.

With the lessons of Napster in mind, other peer-to-peer operators made
sure that information about shared files was decentralised and the data
streams between the nodes were encrypted. In effect, their solution was to
make accountability more difficult. Since neither the company providing
the solution nor the ISPs could know about the infringements, there was no
easy way to block the application any more, apart from targeting individual
users. This is not merely a matter of refusing to implement measures to
prevent certain behaviour of users, which may be a justifiable point of
view; it is intentionally designing the technology in such a way that these
measures are hard to implement. Apparently, the current moral and legal
framework makes avoiding accountability more attractive than including
ethics in system design.

What the example of peer-to-peer applications shows, is that in a de-
perimeterised situation, people or organisations may be held accountable
for consequences that would not have occurred if others had acted differ-
ently. This is necessary to keep accountability in situations where multiple
actors contribute to an action. Thus, even though the action cannot be
attributed to the person or the organisation, the fact that the action was
made possible or likely is sufficient to be held accountable. This account-
ability follows the reasoning of the precautionary principle, in the sense that
precaution against unintended and undesirable use is demanded. In a de-
perimeterised setting, chains of contributory actions may be much longer,
for example when many services depend upon each other and collectively
cause damage. We can demand precaution there as well, but the conse-
quence of organisations intentionally limiting accountability may need to
be avoided.

A question raised by the example is how indirect liability or the de-
mand of precaution can be prevented from inhibiting innovation and the
development of new services. If I may be held liable for selling a new type
of technology because other people use it for illegal purposes, I may be
tempted not to invest in developing the technology at all. For copyright is-
sues, this problem was addressed by the Digital Millennium Copyright Act
(DMCA), passed in 1998. No matter what one thinks about the contents
of the law, which have been subject to controversy, it illustrates how pre-
caution can be applied without asking the impossible of designers. Specific

9



requirements are laid down in this law, such that if a company meets these
requirements, it is safeguarded against indirect liability. The requirements
focus on acting upon knowledge or notification of infringement. Such prac-
tical legal requirements can form the basis for a generalised application of
the precautionary principle in IT. In order to do so, we first need some
terminology to describe the precautionary approach.

6 A philosophical vocabulary

The fundamental challenge of de-perimeterisation is one that has already
been acknowledged by philosophy: actions, and therefore morality, cannot
be ascribed to a single person or organisation, but only to a complex net-
work of cooperating entities [10]. In such a network, each actor’s behaviour
may influence the behaviour of others, and can as such contribute to the
morality of the whole network’s actions. The classical case here is the
weapon: if someone shoots someone else, this may not have happened if he
would not have had a gun. In this sense, the gun can be held partly respon-
sible for the action, since it invited the action of shooting. Whether this
is merely a metaphor or something more substantial will not be discussed
here.

In such a network of cooperating entities, the design of technology plays
a crucial role. Technology, in modern philosophy of technology, is neither
just a simple instrument used by humans for their own purposes, nor an
unmanageable force that is taking over society, as traditional philosophies
by for example Jacques Ellul and Martin Heidegger have argued. Instead,
technology may invite people to act in a certain way, or, conversely, inhibit
people from acting in certain ways, and can be designed to do so. Techno-
logical artifacts come with their own implicit “invitations to action”, called
scripts [11]. For example, if you drive more slowly because of a speed bump,
the reason that you do something ethically desirable is not only your own,
but also the speed bump’s. In the same sense, the reason that people reveal
privacy-sensitive information on social networking sites such as Facebook is
partly due to the design of the application inviting such behaviour (which
allows it to sell very precisely targeted advertisements).

This role of technology in desirable or undesirable actions is called tech-
nological mediation and has been developed in the context of a so-called
postphenomenological approach to philosophy of technology [12]. Instead
of considering actions as completely determined by either the people or
the technology, technology may invite or inhibit actions of people. These
notions of cooperative action come with their counterparts in cooperative
experience: technology may amplify or reduce certain aspects of people’s

10



desirable undesirable
amplify experiences that are + -
reduce experiences that are - +

invite actions that are + -
inhibit actions that are - +

Table 2: Using postphenomenology for software engineering ethics. Pluses
indicate what should be encouraged, minuses what should be discouraged.

experience. Just as binoculars amplify part of the world while preventing
you from seeing the remainder, a social networking site may amplify certain
aspects of friendship and reduce face-to-face contact in the experience of
its users.

From a postphenomenological perspective, the following questions need
to be asked when applying the precautionary principle to security domains
such as software (see table 2):

• does your design amplify or reduce aspects of people’s experience? are
those desirable or undesirable?

• does your design invite or inhibit certain actions? are those desirable
or undesirable?

Which experiences of actions are considered desirable or undesirable will
depend on moral consensus in society; the precautionary principle only
argues for precaution with respect to these values.

This terminology allows us to formulate the precautionary principle for
software engineering ethics. Apart from accountability in terms of program-
ming errors that cause safety or security issues, the precautionary principle
allows us to define accountability for impacting people’s intentions. This is
essential for the combination of precaution and dealing with people rather
than nature. As in the case of peer-to-peer applications, one can no longer
focus on direct consequences of action in software engineering ethics. In-
stead of asking whether you did something morally wrong, the question be-
comes whether you or your design invited someone to do something wrong
or inhibited someone from doing something ethically desirable.

A Dutch voting advice website (Stemwijzer) turned out to log the IP
addresses of potential voters, along with their political preference. There
is not much doubt that this constituted a violation of privacy. But what
if a social networking website includes a field “political preference” in your
profile? It looks like there is the choice not to provide the information, but
it certainly constitutes an invitation. In the Napster case, the question that

11



can be asked is whether a peer-to-peer system invites copyright-infringing
behaviour. If this is the case, then a software engineer may choose to add
measures to the system that limit this invitation.

Just as the hotel manager will have to attach bulky rings to the keys to
make sure that her guests return them, the software engineer will have to
add measures to her application that invite morally sound use and inhibit
undesirable or controversial actions. More concretely, the software engineer
will be responsible for implementing measures that actually mediate the
interaction of the software with other entities in such a way that the other
entities will be discouraged from performing morally undesirable actions.

Apart from asking whether your service invites or inhibits actions, the
question should also be asked whether your service amplifies or reduces
aspects of experience. For example, in the case of DRM, making copies for
use by the owner may not be possible either, thus reducing the desirable
experience of enjoying the music in the car. An Internet voting system may
reduce the desirable experience of voting as a public ritual. This may be
compensated by creating a similar public environment online, in which the
voting can take place.

The preceding analysis leads us to propose the following definition:

Definition 1: The precautionary principle for de-perimeterised software
design states that lack of certainty about the use of software shall not
be used to refrain from implementing measures in software design that
invite desirable behaviour, inhibit undesirable behaviour, amplify desirable
experiences and reduce undesirable experiences of users.

7 Operationalising the principle

When the precautionary principle is applied to software engineering, the
most important issue is how much effort should be put in identifying the
invitations, inhibitions, amplifications and reductions. How much are we
able to do to establish precaution in the face of uncertainty? When an
organisation could have known about the undesirable effects, it may be
held morally responsible, but how does one determine if that is the case?

Researchers have pointed out that problems in information security arise
mainly because issues were not known or even knowable at the time of
design. These issues have sometimes been termed “unknown unknowns”
or “monsters”. This might imply that many of the mediating effects of a
software system may be unknowable at the time of design. How, then can
the precautionary principle be applied?

12



First of all, only awareness of the principle will already lead to better
identification of possible effects. If software engineers focus on indirect
consequences of their technology next to direct effects such as damage due
to bugs, many of the indirect effects may be identified in an early stage. This
may even become a success factor when legislators would extend indirect
liability, which is not that unlikely in a de-perimeterised setting.

Secondly, conceptual tools need to be developed to support reasoning
about indirect consequences in terms of invitation, inhibition, amplifica-
tion and reduction. Such tools can help software engineers traverse the
social context in which their design will operate, thereby enabling them
to identify how the script of their technology may interact with the users’
intentions. The tools may be an operationalisation of the notion of “could
have known”, in the sense that if they are used appropriately, this may
limit ethical and legal responsibility for unexpected indirect consequences.
This is analogous to the provisions of the Digital Millennium Copyright
Act, in which companies cannot be held indirectly liable if they follow the
appropriate procedures. Drawing up such procedures for the precautionary
principle in general requires extensive future research, and may draw upon
work in the areas of logic and policy specification.

8 Conclusions

As organisations become de-perimeterised from the perspective of infor-
mation security, this also requires a new paradigm in software engineering
ethics. One can no longer rely on an ethics of consequences, as consequences
may not be foreseeable, their desirability may not be unambiguously as-
sessable, and they cannot be directly ascribed to actions of a single person
or a single organisation. Instead, the precautionary principle allows for a
more extensive moral framework for software engineers. The Napster case
showed that this principle has already been around in the form of indirect
liability, and that specific legal requirements can be put in place to clearly
specify the requested amount of precaution. In this paper, we showed how
a postphenomenological vocabulary from philosophy of technology can be
applied to implement the precautionary principle in software engineering
ethics. Using this framework, the focus is not on identifying direct conse-
quences, but rather on identifying what kind of actions the software to be
designed invites or inhibits. This approach can complement traditional risk
management procedures.

13



References

[1] Jericho Forum. Jericho whitepaper. Jericho Forum, The Open Group,
2005.

[2] H. Nissenbaum. Computing and accountability. Communications of
the ACM, 37(1):73–80, 1994.

[3] S. Jasanoff. The political science of risk perception. Reliability Engi-
neering and System Safety, 59:91–99, 1998.

[4] D. Gotterbarn and S. Rogerson. Responsible risk analysis for software
development: Creating the software development impact statement.
Communications of the Association for Information Systems, 15:730–
750, 2005.

[5] Wetenschappelijke Raad voor het Regeringsbeleid. Onzekere veiligheid:
verantwoordelijkheden voor fysieke veiligheid. Amsterdam University
Press, Amsterdam, 2008.

[6] C. Raffensperger and J.A. Tickner. Protecting public health and the
environment: implementing the precautionary principle. Island Press,
1999.

[7] M.D. Rogers. Scientific and technological uncertainty, the precaution-
ary principle, scenarios and risk management. Journal of Risk Re-
search, 4(1):1–15, 2001.

[8] J.A. Halderman and E.W. Felten. Lessons from the Sony CD DRM
episode. In Security 06: 15th USENIX Security Symposium, pages
77–92, 2006.

[9] W. Landes and D. Lichtman. Indirect liability for copyright in-
fringement: Napster and beyond. Journal of Economic Perspectives,
17(2):113–124, 2003.

[10] B. Latour. Reassembling the social: an introduction to actor-network
theory. Oxford University Press, Oxford, 2005.

[11] M. Akrich. The de-scription of technical objects. In W. Bijker and
J. Law, editors, Shaping Technology - Building Society, pages 205–224.
MIT Press, Cambridge, MA, 1992.

[12] P.P.C.C. Verbeek. What things do: Philosophical Reflections on Tech-
nology, Agency, and Design. Pennsylvania State University Press,
2005.

14



Biographies

Wolter Pieters is a postdoc researcher in the DIstributed and Embedded
Security group as well as the Information Systems group at the University of
Twente. He is working in the VISPER project on de-perimeterisation. His
research focuses on access control and social aspects of de-perimeterisation.
Contact him at w.pieters@utwente.nl.

André van Cleeff is a PhD student in the Information Systems group at
the University of Twente. He is working in the VISPER project on de-
perimeterisation. His research focuses on cloud computing and virtualisa-
tion. Contact him at a.vancleeff@utwente.nl.

Acknowledgements

This research is supported by the research program Sentinels (www.sentinels.nl).
Sentinels is being financed by Technology Foundation STW, the Nether-
lands Organization for Scientific Research (NWO), and the Dutch Ministry
of Economic Affairs. The authors wish to thank Roel Wieringa and Eric
Luiijf for very helpful comments.

15


	Introduction
	Accountability in a de-perimeterised world
	The precautionary principle
	The precautionary principle in IT
	The Napster case
	A philosophical vocabulary
	Operationalising the principle
	Conclusions

