
Energy-Efficient Data Acquisition By Adaptive
Sampling for Wireless Sensor Networks

Yee Wei Law∗ Supriyo Chatterjea† Jiong Jin∗ Thomas Hanselmann∗ Marimuthu Palaniswami∗
∗Department of EEE, The University of Melbourne, Parkville, VIC 3010, Australia

Email: {y.law, j.jin, t.hanselmann, m.palaniswami}@ee.unimelb.edu.au
†Faculty of EEMCS, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

Email: supriyo@cs.utwente.nl

Abstract—Wireless sensor networks (WSNs) are well suited
for environment monitoring. However, some highly specialized
sensors (e.g. hydrological sensors) have high power demand,
and without due care, they can exhaust the battery supply
quickly. Taking measurements with this kind of sensors can
also overwhelm the communication resources by far. One way
to reduce the power drawn by these high-demand sensors is
adaptive sampling, i.e., to skip sampling when data loss is
estimated to be low. Here, we present an adaptive sampling
algorithm based on the Box-Jenkins approach in time series
analysis. To measure the performance of our algorithms, we
use the ratio of the reduction factor to root mean square error
(RMSE). The rationale of the metric is that the best algorithm
is the algorithm that gives the most reduction in the amount of
sampling and yet the the smallest RMSE. For the datasets used in
our simulations, our algorithm is capable of reducing the amount
of sampling by 24% to 49%. For seven out of eight datasets, our
algorithm performs better than the best in the literature so far
in terms of the reduction/RMSE ratio.

I. INTRODUCTION

In many monitoring applications, WSNs are often used to
sample environment variables of unknown distributions, i.e.,
if we denote one such environment variable by Zt, a function
of time, then Pr[Zt = z] is unknown for all possible t’s
and z’s. One practical problem is that some sensors, e.g. the
EXCELL salinity sensor by Falmouth (http://www.falmouth.
com/products), consume so much energy that if the sampling
frequency is set too high, the sensor nodes would de depleted
of energy too soon.

One option is to set the sampling frequency low but this is
not always possible. The Nyquist-Shannon sampling theorem
states that if a function f(t) contains no frequencies higher
than ω, it is completely determinable by a sampling process
of frequency 2ω, i.e., the Nyquist frequency. Since it is
impossible to determine the Nyquist frequency of an unknown
function, the sampling frequency has to be set high.

An alternative approach is adaptive sampling, i.e., to let the
sensors skip sampling whenever, based on existing samples,
we can estimate the future readings we intend to skip accu-
rately enough (to avoid confusion henceforth, we use samples
to mean samples in the normal statistical context, and readings
to mean the samples collected by a sensing process, but still
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use the continuous verb sampling to refer to the action or
process of sensing). There are two issues to consider in the
preceding proposal: (1) how do we estimate the samples that
we intend to skip, and (2) how can we be sure we can estimate
the samples accurately enough? These are the two problems
we address in this paper.

Our contribution is an adaptive sampling algorithm that is
capable of reducing the amount of sampling by 24% to 49%
for the datasets used in our simulations. Our algorithm is based
on the Box-Jenkins approach in time series analysis [1], and
some heuristic improvements that might be useful for guiding
the development of future adaptive sampling algorithms. To
measure the performance of our algorithms, we use the ratio
of the reduction factor to root mean square error (RMSE).
The rationale of the metric is that the further the amount of
sampling is reduced and the smaller the RMSE, the better an
algorithm is. For seven out of eight datasets, our algorithm
performs better than the best in the literature so far in terms
of the reduction/RMSE ratio.

The rest of the paper is organized as follows. Section II
discusses related work. Section III elaborates on the problem
statement and outlines our solution. Section IV lays out the
essential definitions for later sections. Section V describes the
algorithm and its improved variants in detail. Section VI gives
the simulation results. Finally Section VII concludes.

II. RELATED WORK

An important energy conservation technique for WSNs is
to approximate the time series captured by a sensor and
synchronize the approximation with the sink. This is useful for
answering queries, because instead of streaming back raw data,
precious bandwidth and energy can be saved by sending back
approximations. For example, a scheme by Olston et al. [2]
answers queries by bounded approximate answers, which are
essentially real-value pairs [L, H] in which the exact answers
are guaranteed to lie. Other approximation techniques include
using Kalman filters to compute Markovian transition models
of the time series [3], and deriving relatively coarse piecewise
constant approximations of the time series [4]. The idea behind
Jain et al.’s dual Kalman filter scheme [5] is to execute a
Kalman filter at the sink, and another Kalman filter at a remote
sensor. Both filters are used to predict future samples, and
when the remote filter fails to predict a future sample within a



certain precision constraint, an update is sent to the sink so that
the sink-side filter can be updated accordingly. This scheme is
probably the first known instance of the paradigm called dual
prediction [6]. The potential drawback of dual Kalman filter is
that a-priori knowledge about the time series is required. Chu
et al. [7] extend Jain et al.’s idea by taking spatial correlation
into account. Like dual Kalman filter, a Markovian model
is maintained at the sink, and another is distributed in the
network (not in a single node). The pair of Markovian models
are synchronized whenever a reading deviates significantly
from its forecast. Later advances focus on what model and how
the model can be built. AR(3) models [8] [9], ARIMA models
(coupled with a custom model selection criterion) [10] and
least-mean-squre adaptive filtering have been proposed [11]. In
a recent work, the racing algorithm [12] has been suggested as
an efficient way of selecting the best among AR(p) (1 ≤ i ≤ 5)
models that describe a time series [6].

The problem addressed here, namely the problem of adap-
tive sampling, is different from the problem addressed by dual
prediction. Dual prediction is aimed at reducing the transmis-
sions of readings to the sink, while the readings are acquired
at full sampling rate. Adaptive sampling is about reducing the
amount of sampling independent of the dual prediction scheme
employed. Adaptive sampling is important as some sensors are
very demanding in terms of power consumption. Moreover,
many sophisticated sensors used for environmental monitoring
also have long start-up and sampling duration, thereby com-
pounding the importance of reducing the amount of sampling.
We elaborate on the difference between dual prediction and
adaptive sampling from a data viewpoint. Dual prediction
works by collecting readings, comparing the readings with the
forecasts, and if the forecasts differ enough from the readings,
updating the model. Our problem – and we cannot stress
this enough – is to determine when the forecasts might
deviate significantly from the readings without actually
acquiring the readings. Due to the uncertainty involved with
not having actual readings to compare the forecasts with, the
problem we are addressing invariably requires some level of
heuristics.

The first proposal of an adaptive sampling scheme is
probably by Chatterjea et al. [13]. Their scheme, written
in pseudocode and labeled Algorithm 0 for ease of later
discussion, is as follows:

Algorithm 0
Comment: CSSL = CurrentSkipSampleLimit, SS = SkipSamples,
MSSL = MaximumSkipSamplesLimit
Collect b samples
CSSL← SS ← 0
repeat {

Acquire 1 reading
Use this new reading and the previous reading to interpolate

samples skipped in the previous round, if any
Make 1 forecast
if (|reading - forecast| < ε)

SS ← CSSL← min(CSSL + 1, MSSL)
else

SS ← CSSL← 0

while (SS > 0) {
Skip 1 reading
SS ← SS − 1
}
}

The justification of this algorithm is completely heuristic, that
is, if after SS readings have been skipped, and the next
reading is close to the next forecast, then the next SS + 1
readings can be skipped (but at most MSSL readings should
be skipped); otherwise, we should resume acquiring every
reading until the reading and the forecast are close to each
other again. The algorithms we propose in this paper are built
on a firmer theoretical foundation, although not without some
minor heuristic adjustments.

III. PROBLEM STATEMENT AND SOLUTION OUTLINE

As pointed out earlier, the two problems addressed by
this paper are: (1) how do we estimate the samples that
we intend to skip, and (2) how can we be sure that we
can estimate the samples accurately enough? Note that we
do not consider the problem of “how accurate is accurate
enough” an issue because the required level of accuracy is
often dependent on the requirements of domain experts, and
it is usually represented by a user-specified error tolerance
threshold, denoted ε.

To solve the first problem, we need to estimate future
samples, based on existing samples. This is a problem of
time series forecasting. The standard workflow consists of
model identification, parameter estimation, model selection
and forecasting. In the model identification phase, several
candidate models are identified. Then for each candidate
model, the parameters of the model are estimated. Lastly, the
model among these candidates that satisfies some specified
criteria best is selected to provide forecasts of future samples.

Besides time series, a rich variety of tools exist at our
disposal. Table I lists some of the most well-known methods
to date, their advantages and disadvantages. We choose to use
the method of time series analysis – the Box-Jenkins approach
in particular – because it has relatively low complexity and
resource requirement, and having a long history, it is probably
the best understood by time series analysts among the listed
methods.

We now discuss how we use the Box-Jenkins approach.
Let us denote the l-step ahead forecast of sample Zn+l by
Ẑn(l) (for the discussion henceforth, the symbols in Table II
will be used). We mentioned that when |Zn+l − Ẑn(l)| < ε,
we can skip sampling for Zn+l. The problem is of course
that, without actually knowing Zn+1, we would not really
know if |Zn+l − Ẑn(l)| < ε. However, for every Ẑn(l)
(l ≥ 1), an associated confidence interval can be calculated. A
confidence interval for Ẑn(l) is a random interval, calculated
from the samples, that contains Zn+l with some specified
probability. For example, we are interested in the confidence
interval for Ẑn(l) that contains Zn+l at a probability of 90%.
Intuitively, the further ahead in time we forecast, the bigger



TABLE I
TIME SERIES FORECASTING METHODS

Method Advantages Disadvantages
Time series analysis Relatively low complex-

ity and resource require-
ment

No incremental update
mechanism

State space methods Numerical stability; in-
sensitivity to small speci-
fication errors, statistical
properties of parameter
estimates; ease of han-
dling for vector-valued
or nonstationary time se-
ries [14, p9]

Relies on parameters
whose identification
proves to be difficult in
settings where no a-priori
knowledge on the signals
is available [6]

Adaptive filters Some of the most used
approaches, e.g. Kalman
filters, recursive least
square filters

Stability is difficult to
prove for arbitrary input
sequence, but for practi-
cal applications they of-
ten work well

Support vector machines
(classified by some au-
thors under neural net-
works)

Quick for small
to moderate-size
problems; simple to
use; optimization of
constraint quadratic
function with global
minima

For large-scale problems,
special tricks need to be
applied to have tractable
algorithms; query times
depend on the number of
support vectors

Neural networks Many variants of algo-
rithms; easy to use on
difficult problems with-
out much prior knowl-
edge; quick query times

Training in general prob-
lem difficult as cost func-
tion is non-convex in
general; many local min-
ima; slow to train; large
data sets are often re-
quired

TABLE II
PARTIAL LIST OF SYMBOLS

Symbol Semantics Symbol Semantics
Zt Time series Zn Sample at time t = n

l Forecasting horizon, or lead
time

Ẑn(l) Forecast of sample Zn+l

based on Zn, Zn−1, ...
ε User-specified error toler-

ance threshold
Φ Unit normal survival func-

tion
Nα/2 Φ−1(α/2) b Buffer size
pmax Specified maximum value

of p in ARIMA(p, d, q)
qmax Specified maximum value

of q in ARIMA(p, d, q)

the confidence interval will be, i.e., the less we can be certain
of the forecasted value. When the confidence interval is less
than 2ε (2ε, because the forecast can either be lower or higher
than the actual value), it is probably safe to skip sampling;
otherwise, sampling should be continued or resumed.

Naturally, if the model used for forecasting is not accurate
enough, we may never get a confidence interval that is actually
smaller than ε. Hence, it is vital that the model used for
forecasting is identified as accurately as possible under the
physical constraints of the sensor nodes. Futhermore, the more
samples we skip, the less actual data we will end up using
to update the model, so with time, the confidence interval
becomes only a heuristic indicator of when sampling can be
skipped.

At this point, we have sketched the answers to the problems:
(1) how we can estimate the future samples that we are intend
to skip, and (2) how we can be sure that we can estimate
the samples accurately enough. Namely, in a nutshell, we
use the Box-Jenkins approach to forecast the next sample we
intend to skip, and if the confidence interval of our forecast
is less than 2ε, we deem the forecast accurate enough, skip

acquiring the next reading and take the forecast as the next
sample; otherwise, we proceed to acquire the next reading as
usual. More detailed description of the algorithm is given in
Section V.

IV. PRELIMINARIES

This section is intended to give a brief introduction to the
components of time series analysis that are used in this paper.

A series of samples {Zt} is called a time series. {Zt} is
covariance-stationary, or weakly stationary, or simply station-
ary, when (1) the mean E[Zt] = µ is constant for all values
of t, and (2) the jth covariance E[(Zt − µ)(Zt−j − µ)] = γi

only depends on j. Stationary series can be modeled using
autoregressive (AR) models or moving average (MA) models,
but a lot of time series in the real world are nonstationary by
nature. For these time series, autoregressive integrated moving
average (ARIMA) models can be applied. We now introduce
ARIMA models via the following series of definitions.

Definition 1: A backward shift or lag operator, denoted B,
when applied to Zt j times, gives BjZt = Zt−j

Definition 2: A pth-order autoregressive process, AR(p), is
characterized by

φp(B)(Zt − µ) = at,

where φp(B) = 1 − φ1B − φ2B
2 − ... − φpB

p, µ is a
constant, and {at} is a zero-mean white noise process (i.e.,
at ∼ N(0, σ2) and E[aiaj ] = 0,∀i 6= j).

Definition 3: A qth-order moving average process, MA(q),
is characterized by

Zt − µ = θq(B)at,

where θq(B) = 1− θ1B− θ2B
2− ...− θqB

q, µ is a constant,
and {at} is a zero-mean white noise process.

Definition 4: An ARIMA(p,d,q) process is characterized by

φp(B)(1−B)dZt = θ0 + θq(B)at,

where φp(B), θq(B), at are defined as before, d is the order
of differencing, and θ0 is called the deterministic trend term
when d ≥ 1.

ARIMA(p,1,q) can be used to model series whose
level is continuously updated by random shocks, whereas
ARIMA(p,2,q) processes can be used to model series whose
level and slope are continuously updated by random shocks.
In practice, differencing a series twice (d = 2) is more than
enough to transform a nonstationary series to a stationary
series [15].

Definition 5: Let σ2
e = Var(Ẑn(l)) and Nα/2 = Φ−1(α/2).

If we assume the random variable Zn+l to be normally
distributed, then the confidence interval for Ẑn(l) is given by

[Ẑn(l)−Nα/2σe, Ẑn(l) + Nα/2σe]

To measure how our algorithm performs, we need a distance
measure to quantify the distance between the original time
series Zt and the time series Z ′

t that is the output of our
algorithm. For this purpose, we use the conventional root mean
square error (RMSE).



V. THE ALGORITHM AND ITS IMPROVED VARIANTS

As outlined in Section III, we use the Box-Jenkins approach
to forecast the next sample we intend to skip, and if the
confidence interval of our forecast is less than 2ε, we deem the
forecast accurate enough, skip acquiring the next reading and
take the forecast as the next sample; otherwise, we proceed to
acquire the next reading as usual. The result of refining upon
this sketch is Algorithm 1:

Algorithm 1

Initialize system parameters: b, pmax, qmax, l, ε
Collect samples Z ← {Z1, Z2, ..., Zb}
Let n← b
repeat {

Let Z′′ ← (1−B)2Z
Identify the best ARIMA(p, 2, q) model for Z′′, where

0 ≤ p ≤ pmax, 0 ≤ q ≤ qmax, and q 6= 0 when p = 0

Make l forecasts {Ẑn(1), ..., Ẑn(l)} with corresponding
confidence intervals {τ1, ..., τl}

Z′′ ← {Z′′, Ẑn(1), ..., Ẑn(l)}
Z ← (1−B)−2Z′′

I Comment: Determine how many future readings we can skip
I skip← 0
I for i = 1 to l {
I if (τi < 2ε) skip++
I else break
I }

Discard the first skip and the last (l − skip) members of Z s.t.
|Z| = b

Skip acquiring skip samples

Comment: For as many readings we have skipped,
we should collect that many more readings again
if (skip > 0) noskip← skip
else noskip← l

? Discard the first noskip members of Z s.t. |Z| = b− noskip
? Collect samples {Zn+skip+1, ..., Zn+skip+noskip}
? Z ← {Z, Zn+skip+1, ..., Zn+skip+noskip}
? n← n + skip + noskip
}

The user-configurable parameters are b, pmax, qmax, l and
ε. b is the buffer size, or equivalently the number of samples
in a time series. As dictated by majority of the experience
reported in the literature, b should be set to 50 or more. The
other parameters are sufficiently explained in Table II.

The salient features of Algorithm 1 are:

1) The time series is always differenced twice to be
converted from a potentially nonstationary series to a
stationary one. The number of differencing is fixed at
two because this is what is needed for most time series,
and superfluous differencing does not do any harm [16].

2) Instead of making just one forecast, we make l forecasts,
and if for skip out of l forecasts, the corresponding con-
fidence intervals are smaller than 2ε, we skip acquiring
the next skip readings, and use the skip forecasts as the
next skip samples.

3) After skipping skip readings, we compensate for the
loss of actual data by acquiring skip more readings. As
such, 50% is the asymptotic upper limit of the reduction
in sampling. This intentional limitation is meant to be
an insurance against over-aggressive reduction.

However, Algorithm 1 may not work for rapidly changing
time series, in which case the confidence interval may be large
– intuitively, the more rapidly a time series changes, the less
confident we would be in forecasting future values – and easily
larger than the user-specified ε, resulting in no reduction in
sampling. To overcome this weakness, we apply a heuristic
rule whereby if the very first confidence interval is larger
than 2ε, we set ε to half of that confidence interval, in effect
increasing our tolerance for uncertainty. We only look at the
very first confidence interval, because this confidence interval,
being based on the largest number of actual readings in the
time series, is of the highest quality. This heuristic addition
results in Algorithm 1a, which is now capable of handling
rapidly changing time series:

Algorithm 1a
... Same as Algorithm 1 ...

I Comment: Determine how many future readings we can skip
I if (n == b and ε < τ1/2) ε← τ1/2
I skip← 0
I for i = 1 to l {
I if (τi < 2ε) skip++
I else break
I }

... Same as Algorithm 1 ...
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Fig. 1. (a) Example of spikes due to bad forecasts by Algorithm 1 and
Algorithm 1a; (b) the smoothening effect of Algorithm 1b results in smaller
RMSE. Note: black curves represent the original time series, whereas blue
curves represent the time series generated by Algorithm 1 or 1a.

While Algorithm 1a can now handle rapidly changing time
series, a weakness shared by both Algorithm 1 and Algorithm
1a is that spikes may arise due to bad forecasts (Figure 1(a)).
To remedy this situation, we add another heuristic rule to
Algorithm 1a to smoothen out these spikes. The smoothen-
ing device we use is interpolation, that is, we override the
forecasted samples in the time series with values interpolated



from (1) the sample immediately before the skip, and (2) the
sample immediately after the skip. The result is Algorithm 1b,
the smoothening effect of which can be seen in Figure 1(b).

Algorithm 1b
... Same as Algorithm 1a ...

? Discard the first noskip members of Z s.t. |Z| = b− noskip
? Collect samples {Zn+skip+1, ..., Zn+skip+noskip}
? if (skip > 0) {
? (x0, x2)← (|Z| − skip, |Z|+ 1)
? (y0, y2)← (Z[x0], Zn+skip+1)
? for x1 = |Z| − skip + 1 to |Z|
? Z[x1]← y0 + (x1 − x0)(y2 − y0)/(x2 − x0)
? }
? Z ← {Z, Zn+skip+1, ..., Zn+skip+noskip}
? n← n + skip + noskip

... Same as Algorithm 1a ...

VI. SIMULATION

TABLE III
DATASETS AND THE CORRESPONDING VALUES OF ε USED IN THE

SIMULATIONS

Dataset ε Dataset ε
Olga [17] 0.3 41001h2007WSPD [18, wind speed] 0.3
Intel1 [19, temperature] 0.3 41001h2007GST [18, gust speed] 0.3
Intel2 [19, humidity] 0.3 41001h2007WVHT [18, wave height] 0.3
Intel3 [19, light] 3.0 41001h2007PRES [18, pressure] 1.0

There are two metrics by which the performance of the
algorithms can be measured: reduction factor and RMSE.
Reduction factor measures the fraction of sampling that can
be avoided, whereas RMSE measures the discrepancy between
the actual time series and the adaptively sampled time series.
Instead of looking at the two metrics separately, we use
the ratio reduction/RMSE to measure the performance of the
algorithms. When there is no reduction, RMSE is 0, in which
case we set reduction/RMSE to 0. Conversely, when RMSE is
0, there is almost always no reduction, in which case we also
set reduction/RMSE to 0.

We compare Algorithms 1, 1a and 1b with Algorithm
0 (Section II). We parameterize Algorithm 1 (also 1a and
1b) according to the values of pmax and qmax. For exam-
ple, Algorithm 1b(3,0) refers to an instantiation of Algo-
rithm 1b that chooses the best model among ARIMA(1,2,0),
ARIMA(2,2,0) and ARIMA(3,2,0). We choose (pmax, qmax) ∈
{(1, 0), (3, 0), (5, 0), (3, 3), (4, 4)} because the first three com-
binations are reported in the literature [13] [8] [9] [6], and the
last two combinations are meant to provide new perspectives
on how using ARIMA instead of purely AR models might
improve forecasting. In our simulations, we choose the model
that gives the lowest value of Akaike’s Information Criterion
(AIC) [20] as the best model, although the racing algorithm [6]
should give better efficiency. We set b = 50 and l = 5 for
all simulations. We vary ε according to the datasets as listed
in Table III. Our simulations are scripted in R, and for each

simulation, 5000 samples are processed. Figure 2 shows the
result.

TABLE IV
COMPARISON OF ALGORITHM 0 AND ALGORITHM 1B(1,0) IN DETAIL

Dataset Algorithm 0 Algorithm 1b(1,0)
Reduc. RMSE Reduc.

RMSE Red. RMSE Reduc.
RMSE

Olga 0.49 0.15 3.37 0.49 0.17 2.93
Intel1 0.80 4.09 0.20 0.47 2.03 0.23
Intel2 0.72 1.50 0.48 0.37 0.75 0.49
Intel3 0.62 5.26 0.12 0.24 0.18 1.36
41001h2007WSPD 0.20 0.34 0.59 0.43 0.59 0.73
41001h2007GST 0.17 0.37 0.46 0.49 0.81 0.61
41001h2007WVHT 0.62 0.12 2.32 0.28 0.06 2.60
41001h2007PRES 0.57 0.25 2.32 0.43 0.17 2.60

An analysis of the result follows. As shown in Figure 2,
Algorithm 1 fails to reduce the amount of sampling for
41001h2007WSPD and 41001h2007GST at all. The reason
is discovered to be that the confidental intervals turn out
to be constantly larger than ε. Algorithm 1a rectifies this
shortcoming by taking the first confidence interval as ε, if
the first confidence interval is larger than ε. As a result,
the reduction factor improves. Algorithm 1b further improves
on Algorithm 1a by smoothening out the spikes. Figure 3
shows how closely the curves generated by Algorithm 1b
approximate the original curves of 41001h2007WSPD and
41001h2007GST.

(a) 41001h2007WSPD

Time

W
in

d 
sp

ee
d

100 200 300 400 500

0
5

10
15

reduction=0.427029
rmse=0.586165

(b) 41001h2007GST

Time

G
us

t s
pe

ed

100 200 300 400 500

0
5

10
15

20
25

reduction=0.489004
rmse=0.806885

Fig. 3. Algorithm 1b(1,0) produces a curve that closely approximates the
curve of (a) 41001h2007WSPD and (b) 41001h2007GST. Without the im-
provement introduced by Algorithm 1b, Algorithm 1 cannot reduce sampling
at all. Note: black curves represent the original time series, whereas blue
curves represent the time series generated by Algorithm 1b(1,0).

We see that for most cases, providing more models to
choose from (e.g., (pmax, qmax) = (5, 5) compared with
(pmax, qmax) = (1, 0)) does not necessarily improve the re-
duction/RMSE ratio of the algorithm. One explanation is
that due to the smoothening effect of Algorithm 1b(1,0), the
contribution of Zn−2, Zn−3, ... to Zn is greatly diminished
compared to the contribution of Zn−1 to Zn. In fact, with
respect to all these datasets except Olga, Algorithm 1b(1,0)
emerges as the best overall performer, and notably better than
the benchmark Algorithm 0. The above observation can be
gleaned from Table IV, which also shows that Algorithm
1b(1,0) is capable of reducing the amount of sampling by 24%
to 49% for these particular datasets.
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VII. CONCLUSION AND FUTURE WORK

We have developed an adaptive sampling algoritm based on
the Box-Jenkins approach in time series analysis. After observ-
ing some shortcomings of the base algorithm with respect to
the rigidity of the error tolerance threshold and the existence
of undesirable spikes, we have incorporated some heuristic
adjustments that drastically improve the base algorithm. The
final best overall performer, Algorithm 1b(1,0), for seven out
of eight datasets used in the simulations, performs better than
the best in the literature so far in terms of the reduction/RMSE
ratio. Algorithm 1b(1,0) is capable of reducing the amount of
sampling by 24% to 49%, with respect to all the datasets.

There are still a host of other methods (Table I) to explore.
For the near future work, compressive sensing [21] is next
on our agenda. Another near future work is to integrate dual
prediction with adaptive sampling in a seamless architecture
that conserves energy not only in sampling but also in com-
munication. We also have not addressed the issue of outliers
in adaptive sampling. Some existing work in robust regression
analysis [22] could be carried over without much difficulty but
this has yet to be investigated.
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