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A simple route to determine the boundary tension of Ising models is
proposed. As pointed out by Onsager, the boundary tension is an important
quantity since it vanishes at the critical temperature and can thus be used to
determine the critical temperature. Here we derive expressions for the boundary
tension along various high symmetry directions of the anisotropic square and
triangular lattices. The exact results by respectively Onsager (Phys. Rev. 65, 117
(1944)) for the anisotropic square lattice and by Houtappel (Physica 16, 435
(1950)) for the anisotropic triangular lattice are reproduced. Subsequently, we
will apply our method to Ising models that have not been exactly solved yet.
Valuable results are obtained for the 2D square Ising lattice with nearest and
weak next-nearest neighbour interactions as well as for the strongly anisotropic

3D Ising lattice.

PACS numbers: 64.60.-1, 64.60.De



The square Ising lattice with nearest-neighbour interactions has been
exactly solved by Onsager in 1944 [1]. A few years later Houtappel solved the
anisotropic triangular lattice [2]. These two-dimensional Ising models have
served as a cornerstone for critical-point theory and as a playground for many
approximate theoretical models. However, if an applied magnetic field or next-
nearest neighbour interaction is included these models can no longer be solved
exactly with presently available theoretical techniques.

Since Onsager’s contribution there has been a substantial activity in the
field of two-dimensional Ising models having interactions that go beyond nearest
neighbours or involve different symmetries, since it is predicted that all these
planar models fall in the same universality class. Despite the fact that these
models are defined simply, most of them exhibit rather rich phase diagrams.

The square Ising model with nearest- and next-nearest neighbour
interactions has been investigated by various techniques: series expansion [3],
Monte Carlo [4,5], renormalization group [6], Monte Carlo renormalization [7]
and finite-size scaling [8,9]. The available theoretical data have resulted in a
global phase diagram of this Ising model [10,11]. In ref. [10] closed-form
empirical expressions are given that represent the phase boundaries between the
various phases (ferromagnetic, antiferromagnetic, superantiferromagnetic and
paramagnetic) rather well.

Here we put forward a simple method to determine the phase boundaries
between the different phases in the phase diagram. The method relies on the
derivation of an expression for the domain wall free energy also referred as
boundary tension that separates regions with the “right” spin ordering from

regions with the “wrong” spin ordering [12-17]. In case of the anisotropic square



and triangular lattices with nearest neighbour interactions this method leads to
the well-known exact results obtained by Onsager [1] and Houtappel [2]. The
obtained phase diagram of the square lattice with nearest and next-nearest
neighbour interactions is not exact, but it is astonishingly accurate in the
parameter region where the nearest neighbour coupling is stronger than the
next-nearest neighbour coupling. For a vanishing next-nearest neighbour
interaction the obtained result is even asymptotically exact.

The boundary tension method is also applicable to the cubic 3D Ising
lattice. Although this approach only leads to a lower bound for the critical
temperature of the isotropic 3D Ising model, it gives an asymptotically exact
result for the anisotropic lattice, where the coupling constant in one direction is

much stronger than the coupling constants in the other two directions.

1. The boundary tension method and some exact results.

We start with the derivation of the boundary tension (or boundary free

energy) along the high symmetry [10] direction, Fq), of a square 2D Ising model

with crossing bonds. For the sake of simplicity we will restrict ourselves here to a
simple square 2D lattice with isotropic ferromagnetic nearest neighbour
interactions (J>0). The next-nearest-neighbour interaction (Jq) can either be
ferromagnetic or antiferromagnetic. We consider a boundary running along the
[10] direction that separates two regions with opposite spins. At zero
temperature the boundary is kinkless and the formation energy per unit spin or

unit length is given by, Eqg) =2J+4Jyq. With increasing temperature the

formation of kinks in the boundary allows the boundary to wander (see Fig. 1).



This wandering increases the entropy and thus lowers the free energy of the
boundary. However, the creation of kinks in the boundary costs energy and thus
increases the energy of the boundary. The formation energy of a kink with length

n (measured in spins) in a [10] boundary is given by, Ep 19y =2nJ+4(n-1Jyq

[18]. In Fig.1 the various pathways that we have taken into account are depicted.

The partition function of the [10] boundary per spin is then,
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where we have summed over all possible configurations of an elementary
boundary segment. The boundary free energy per spin or boundary tension can

be derived from the expression, Fqq) =-kgT In[Z(lo) J We find

(2)
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For the square 2D Ising lattice with anisotropic nearest neighbour and isotropic

next-nearest neighbour couplings we find,

(3a)

F(lO) = 2Jy + 4Jd - kBT In 1+

1_ o (2Ix+43q)TkgT

and
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F(Ol) = ZJX + 4‘]d - kBT In 1+ (3b),

for the [10] and [01] directions, respectively. The critical temperature can be
found by setting Eq. 3(a) or 3(b) equal to zero.
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For a vanishing next-nearest-neighbor interaction the original result of Onsager,

-2J [kRT
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ie. Fio01) =2Jy,x —kgTIn , is recovered. This is intriguing since

we have ignored overhangs and inclusions in the partition function (see Fig. 1).
Despite this severe limitation the boundary tension is correct for any
temperature, suggesting that our partition function contains the correct set of
Boltzmann factors. The only way to understand this is that the contributions of
overhangs and inclusions nicely cancel each other at any temperature. By setting

the boundary tension equal to zero we find Onsager’s criticality condition, i.e.,

2]
sinh| 22X |sinh| =Y |21 (5)
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In a similar manner the free energy of a boundary running along the [11]
direction can be derived. If overhangs and inclusions are ignored we find (see

Fig. 2).
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The partition sum Z(;7) can be rewritten in form

, _e—ZJX/kBT Lo 2y/keT ,
1y = 1_e—2(JX+Jy)/kBT @)

The boundary tension per spin or per unit length, a (a is the nearest-neighbor

distance between the spins) along the [11] direction is then,
Fag) = —V2kgT |n(z(11)) (8)

The critical temperature is found by setting F7) =0 or Z3) =1. We find,

or again,
2J
sinh| 22X |sinh| =Y |21 (10)
kgTe kgTe

Recently, Schumann and Kobe [16] applied the above mentioned method to
determine the partition function of a [10] boundary of the fully anisotropic 2D

square Ising model with both nearest (JX,Jy) and next-nearest neighbour

interactions (J41,Jq2)- They found by using our approach,
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For Jq1=0 (or Jgp =0) the fully anisotropic 2D square model reduces to the

anisotropic triangular lattice with coupling constants Jy, Jy and J,. The

equation giving the critical temperature is identical to the criticality condition

derived by Houtappel [2], i.e.,

e_z(‘]X+‘]y)/kBTC + e_z(‘]X+‘]Z)/kBTC + e—2(Jy+Jz)/kBTC =1 (12)

The latter expression is equivalent to,

2] 2]
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(13)

In Table I an overview of the exact solutions of square and triangular Ising
lattices as well as the criticality condition obtained from the expressions for the

boundary tension along the [10] and [11] directions are given.



Exact [10] boundary [11] boundary
Isotropic 2D | S=1 S=1 S=1
square

[1] [15]
Anisotropic | $Sy =1 SkSy =1 SkSy =1
2D square

(1] [15]
Isotropic 3s? -1 3s? -1 3s%-1
triangular

(2] [15]
Anisotropic | S¢Sy +5S, +S;S, =| Sy + 5, +5yS, =1 5Sy +5S,+5,S, =1
triangular

(2] [16]
Table I

Comparison of criticality conditions of the exact solutions of various planar Ising

models and
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(Szgnh(k

Blc

results obtained

)

by the

“boundary

tension” method.




2. The phase diagram of the 2D square Ising lattice with nearest and next-

nearest neighbour interactions

So far we have only determined the phase boundary that separates the
ferromagnetic from the paramagnetic phase. The other two phase boundaries, i.e.
the phase boundaries between the antiferromagnetic and paramagnetic and
between the superantiferromagnetic and paramagnetic phases can be extracted
as well. For the sake of simplicity we restrict ourselves to the 2D square lattice

with isotropic nearest (Jyyn) and isotropic next-nearest neighbour (Jynn)

interactions. The phase boundary between the antiferromagnetic phase and

paramagnetic phase can simply be found by replacing Jyn by |J NN | . One finds,

oa2INN|/KBTe | ~4INN/ kBTc(Z_e—4JNNN/ kBTc): AINNN kBT (14)

Next we consider the superantiferromagnetic phase. We consider a domain wall
running along the x-direction (the [10] direction) of the superantiferromagnetic
phase. As we will see later on, it does not matter whether the striped spin
domains of the superantiferromagnetic phase run along or are perpendicular to
the direction of the domain wall (here we assume that in the x-direction the
nearest neighbour coupling is ferromagnetic and in the y-direction the nearest
neighbour coupling is antiferromagnetic).

The domain wall formation energy per unit length along the x-direction is,

Buy=-2d,-43; =20y ~ 4y - (15)



The superantiferromagnetic state will be the ground state if the domain wall

1
energy is positive, ie. JNNN S —E JNN (J y = -JnN <0 and

Jd = INNN < 0). At zero temperature, the domain wall is always as straight as

possible. However, with increasing temperature the formation of thermally
excited kinks allows the domain wall to wander, increasing the entropy and thus
decreasing the free energy for domain wall formation [15]. The formation energy

of a kink with length n (measured in units a) in a [10] boundary is given by
Enao =20, —4(n-1)J4 = 2nJ,, —4n-1)J with n>1. (16)

The partition function of the superantiferromagnetic domain wall is

Ej /KRT _ (23NN -4 IkgT o —(2nI NN —4(n-1) I )/ kBT
Zygy =Y e Filke _ o (2INN-4INNN)) ke [1+22e (2nINN -4(n-1)INNN )/ kB ]
[ n=1

(17)

Here we have summed over all possible configurations of an elementary
boundary segment. In this approach overhangs and inclusions are again
explicitly excluded.

The superantiferromagnetic to paramagnetic phase boundary can be determined

by setting the domain wall free energy, F1g) =—kgT In(Z(lo) ), equal to zero. This

results in the following equation,

e—2J NN /kBTe n eZJ NN /kBTe " (2_ e4J NNN /kBTe ): e—4J NNN / kBT¢ .
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(18)

The superantiferromagnetic to paramagnetic phase boundary can then be

rewritten as

cosh| 2NN |1 cogn| ZINNN | g JINNN <O (19)
kpTc kpTc

Exactly the same result is found if we consider a domain wall running in the [01]
direction, i.e. perpendicular to the striped spin up or spin down regions. Eq. (19)
is exactly the same as the expression derived earlier by Fan and Wu [19] within
the framework of the free-fermion model. Egs. (14) and (19) give the full phase
diagram of the square 2D Ising model with isotropic nearest- and next-nearest-
neighbor interactions.

In Fig. 3 a plot of the phase diagram is shown. All the phase boundaries of

this Ising model exhibit asymptotic behavior in the strong coupling limit

(JINNN —>—%|JNN|). The Ilatter is in agreement with predictions from a

renormalization analysis [5]. The data points are series expansions results
(triangles, Oitmaa [3]), finite scaling of transfer matrix results (squares,
Nightingale [20,21]), Onsager’s exact result (filled circles, Onsager [1]), Monte
Carlo simulations (open circles, Blote, Compagner and Hoogland [12] and open
stars, Landau [4]) and free-fermion approximation (closed stars, Fan and Wu
[19]). The agreement between the available numerical and theoretical data and

our domain result wall is very good in the strong coupling limit. However, it
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must be noted that in the weak nearest neighbour coupling limit our result

deviates from the theoretical data. For a vanishing nearest neighbour interaction

(.e.JyN — 0), our approach gives JNN%bTC =— }éln[%} (=-0.3293)

while the exact number should be — %In(\/?+1) (=-0.4407). Despite this

discrepancy, the result for the phase boundary correctly displays a maximum at

Jnn /kgT =0, which is consistent with the proposed phase diagram of this

system.

OJNNN

)
NN/ NN =0

In the Onsager point (Jyyny =0) we find that the derivative (

determined from either the [10] or the [11] boundary tension is —%\/E, which

should be a property of the exact solution [13].

3. The ferromagnetic anisotropic 3D Ising lattice

In contrast to the 1D and the 2D Ising models, the 3D Ising model has, despite
hugh efforts, not been solved exactly. It is evident that an exact solution of the 3D
Ising model would be a great step forward, since it can be used to describe a
broad class of phase transitions, ranging from binary alloys, simple liquids and
their mixtures, polymer solutions to easy-axis magnets [22,23]. The first rigorous
proof that the Ising model in three dimensions exhibits a phase transition in the
sense of having a nonzero spontaneous magnetization below some critical

temperature T was provided by Griffiths [24]. Griffiths made use of a heuristic

argument that has been put forward and applied earlier by Peierls to the 2D case
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[25]. A lower bound on the critical temperature of the anisotropic 3D Ising model
where one coupling constant (J,) is much larger than the coupling constants in

the other 2 directions (JX,Jy) was derived by Weng, Griffiths and Fisher [26].

With increasing exchange energy anisotropy the lower bound on the critical

temperature decreases logarithmically,

@:ZIn Jz —In| In Jz

—z_ ——z__ 11+ 0 . (20)
N Jx +Jy Jx +Jy

Weng, Griffiths and Fisher [26] surmised that Eq. (20) is even asymptotically
exact. The latter was indeed confirmed in a subsequent paper by Fisher [27],
where he derived an upper bound on the critical temperature, which has the
exact form of Eq. (20).

We consider the anisotropic simple-cubic Ising lattice. The nearest-
neighbour exchange energies between the spins in the x-, y- and z- direction are

represented by Jy, Jy and J», respectively. For convenience we use the
P y JIx, Jy z p y

following notation,

Ix ‘]y 2
Hy = , Hy = and H, = . 1
X kgT y kgT z T @1)

For the sake of simplicity we assume that all the nearest neighbor interactions are

ferromagnetic, i.e. Jyy z>0. In order to derive an expression for the order-

disorder phase transition temperature we consider to domains with opposite

spin ordering. We assume that at zero temperature the domain wall is located in
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the xy-plane. It should be pointed out here that this choice does not have any
influence on our main conclusion. Each cell (i,j) of the domain wall is represented
by a column in the z-direction with height h(i, j) and is surrounded by four
neighbours with indices (i-1,j), (i+1,j), (i,j-1) and (i,j+1) respectively (see Fig. 4). As
is evident, the height differences between these columns directly affect the
formation energy of the domain wall. The total partition sum of the domain wall,

Ziot » can be written as,

Zio =y & BT = [T Z6.p), (22)
m )

where the summation m runs over all possible configurations of the domain wall

and Z(i, j)is the partition sum of the (;j)-th cell. We start with the assumption
that Hz >>Hy y. If overhangs and inclusions (i.e. droplets and bubbles of the

opposite spin ordering) are ignored the following partition function of (i,j)-th cell,

Z(i ,j), can be derived [28];

L —2Hz+2H|h(i, j)-h(i-1, j)|+2H y|n(i, j)-h(, j -1
=, %e( 2+ 2Hx{hG )= D 2Hy G )-hG.i-0l)
l,])=—

The summation in Eq. (4) can be separated into three terms

Zg -2z ieZh(i,j)(Hx+Hy)—2th N
hi, j)=—o
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o—2H7 % o 200 DHx-2(R-hG. DHy 21, %e—z(h(i,j)—h)(Hx+Hy)—2th
h(i, j)=0 h(i, j)=|h+1

(24)
where h=h(i =1, j) = h(i, j —=1) (see Fig. 4).

It is convenient to replace h(i, ) by Nand rearrange Eq. (24) to

F] N — —
2y =€ 22| ye XAy +[e_2th +e_2thJ§e_2n(Hx+Hy)
n=0 ]

(25)

All three terms deal with the energy that is required to form the side planes of
the column h(i, j). The probabilities of finding an upward or downward
excitation are equal and therefore the mean overall orientation of the domain

wall is maintained parallel to the xy-plane. Eq. (25) can be rewritten to,

e-z(\ﬁ\ﬂ)H x e—z(\ﬁ\ﬂ)H y (e—ZhH X, e—z\H\H y )e—Z(H x+Hy)

+
e_2HX _e—ZHy 1_ e—2(H X+H y)

~2H
Zi,jy=€ "¢

(26)

It is convenient to introduce the following variables;

15



_ —2H _
u=e2Hx y=e Y and w=e2Hz (27)
Using these variables for u, v and w Eq. (27) reduces to,
( 1 h+1j & i h] J
u -V u'+v uv
Z(i ) =W + (28)

(u-v) (1-uv)

Ignoring overhangs and inclusions is appropriate only in the case when
Hz >>Hy y (these configurations will lead to additional terms in the partition
function which are proportional to ez , with s> 6).

The partition function, Z(i i) exhibits a maximum for H =0, thus leading to an

upper bound on H. (H;=J/KgT;) and a lower bound on the critical

temperature. For this specific case Eq. (28) reduces to

S e e :\A{1+ uv} 29)
() 1_e—2(Hx+Hy) 1-uv '

The critical temperature can be found by setting Z(i )= 1. One finds [28],

sinh(2H,)sinh(2(H  + H ) =1 . (30)
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By cyclic permutation two similar expressions are found. The difference in these
expressions comes from the choice of the wall which has its normal in either the
x, y or z direction. In the anisotropic case it is most convenient to define the
domain wall in such a way that the normal of the wall is along the strongest
coupling direction. As is evident from Eq. (26) this will lead to a maximum
suppression of the contribution of overhangs and inclusions to the partition
function. In the asymptotic limit the 3D Ising model gradually converts to the 1D

Ising model and the phase transition temperature approaches zero, and thus the

expectation value of h gradually approaches zero too. However, even for a non-

zero value of h Eq. (30) is recovered in the asymptotic limit provided that

hH x,y <<1. For sufficiently small values of Hyy all factors e_ZhH X,y

(= uh ,vh) in Eq. (28) approach 1 and Eq. (29) will be recaptured.
The critical temperature of the anisotropic 2D Ising ferromagnet is known from

Onsager's exact solution [1], ie. sinh(2H;)sinh(2Hy)=1, to vanish

asymptotically as

2H, = {In[ﬁj - In(l n(ﬁB + o(1)} , (31)
Hx Hx
where the ratio of the exchange energies for bonds parallel to the x and z-axes,

H
ie. [H_XJ, approaches zero [26,27]. Weng, Griffiths and Fisher [26] and Fisher
V4

[27] have shown that for the simple cubic lattice an asymptotically exact

expression of the same form as Eq. (31) is found with the only modification that

Hy is replaced byHy + Hy. The latter provides strong evidence that the

17



asymptotically exact formula that describes the critical line, between the

ferromagnetic and paramagnetic phase in the anisotropic limit, can be written as

sinh(2H 7)sinh(2(H  + Hy)) =1

But this is precisely the result we found in the domain wall analysis. Finally, the
value of O(1) in Eq. (20) can de determined by comparing Egs. (20) and (30). We

found a value for O(1) a value that gradually decreases from ~0.84 at

Hy+H Hyx+H
XY 12102 t0~0.76 at | ——Y |=10%,
Hz Hz

Conclusions

We have shown that the boundary tension method leads to the exact criticality
conditions of the 2D planar Ising models with nearest neighbour interactions. For
the square Ising lattice with nearest and next-nearest neighbour interactions and
the anisotropic 3D Ising lattice expressions for the critical temperature are

determined.
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Figure captions
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Figure 1

Schematic diagram of a domain wall running along the [10] direction of a square
lattice. In the calculation of the boundary tension all possible up and down steps
in the domain wall are taken into account. Overhangs and inclusions are omitted

in the analysis.
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Figure 2

Schematic diagram of a domain wall running along the [11] direction of a square
lattice. In the calculation of the boundary tension all possible up and down steps
in the domain wall are taken into account. Overhangs and inclusions are omitted

in the analysis.
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Figure 3

The phase diagram of the isotropic square lattice Ising model with nearest- and
next-nearest-neighbor interactions. The solid lines refer to the phase boundaries
between the ferromagnetic (F), antiferromagnetic (AF), superantiferromagnetic
(SAF) and paramagnetic (P) phases as derived in this paper. The data points are
series expansions results (triangles, Oitmaa [3]), finite scaling of transfer matrix
results (squares, Nightingale [20,21]), Onsager’s exact result (filled circle,
Onsager [1]), Monte Carlo simulations (open circles, Blote, Compagner and
Hoogland [11] and open stars, Landau [4]) and free-fermion approximation

(closed stars, Fan and Wu [19]). The dotted line gives the asymptotic strong-

coupling slope (J\nN = —%|J NN )-
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Figure 4

Schematic model of a 2D domain wall of a cubic lattice. The normal of the
domain wall is oriented in the z-direction. Each column, h(i,j), is surrounded by
four nearest neighbors labeled h(i-1,j), h(i,j-1), h(i+1,j) and h(i,j+1), respectively. h
is the height difference between the h(i-1,j) and h(ij-1) columns. h(i, j) € [— oo,oo]

(h(i, j) = 0 corresponds to the height of the (i-1,j)-th column).
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