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Abstract

In this paper the concept of page rank for the world wide web is discussed.

The possibility of describing the distribution of page rank by an exponential law is

considered.

It is shown that the concept is essentially equal to that of status score, a centrality

measure discussed already in 1953 by Katz. A structural classification of users in the

web is given in terms of graph theoretical concepts.
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1 Introduction

The concept of page rank was introduced by Brin and Page in 1998 [1]. The world wide
web, to be called just web from now on, can be described by a directed graph. For graph
theoretical terminology we refer to one of the many text books. As there is no uniformity
of terminology we have to state that a directed graph ~G(V, A) consists of two sets, the set
V of vertices and the set A of arcs. A is a subset of V × V , the Cartesian product of V
with V, where V is a set of labeled elements. The arcs may be labeled as well. Labels
of vertices describe the sites in the web. If site v can connect to site w then arc (v,w) is

present in ~G. The label l of (v,w) can be chosen to express the extent to which this is

done. In principle ~G is a complete directed graph. The arcs going out from a vertex v,
including the loop (v,v), to the N vertices of ~G may carry labels li, chosen such that

N∑

i=1

li(v, vi) = Cv, (1)
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where i refers to vertex vi in some numbering of V and Cv is a constant specific for
vertex v.

Based on the pattern of choices made by the sites, the problem is to determine a measure
for the centrality of a site. The measure should incorporate the fact that some sites are
more often visited than others. This is what the concept of page rank is about. We will
come back to the concept more explicitly in Section 3.

2 Description of a measure distribution

Presumably a minority will have a high rank and the number a(r) of sites with rank r, still
to be defined, will diminish from the minimum value Rm for r to the maximum value RM

for r, see Figure 1.
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Figure 1: A measure distribution

We focus on the arced area, giving the total number T(x) of sites greater than or equal
to x, where, as N is very large, we have gone over from a discrete description to a continuous
one.

T (x) =

∫ RM

x

a(r)dr.

In the literature for T(x) assumptions are made, in particular that T(x) behaves as

T (x) = C1x
−α + C2, (2)

with α > 1.

2



We want to see which consequences such an assumption has, given α, Rm and RM , for
the average rank R̄.
From T (RM) = 0 follows

C2 = −C1.R
−α
M

and from T (Rm) = N follows

C1.R
−α
m + C2 = N,

leading to

C1 = N.
1

[R−α
m − R−α

M ]

and

C2 = −N.
R−α

M

[R−α
m − R−α

M ]
.

So

T (x) = N.
[x−α − R−α

M ]

[R−α
m − R−α

M ]
. (3)

Differentiating Equation (1) to x on both sides gives

dT (x)

dx
= −a(x),

from which we derive

a(r) = N.
α

[R−α
m − R−α

M ]
.r−α−1.

Now R̄ follows as

R̄ =
1

N

∫ RM

Rm

a(r).rdr =
α

[R−α
m − R−α

M ]

∫ RM

Rm

r−αdr = ... =
α

α − 1
.Rm.

1 − ( Rm

RM

)α−1

1 − ( Rm

RM

)α
. (4)

If Rm = f.RM we have
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R̄ =
α

α − 1
.Rm.

1 − fα−1

1 − fα
.

If, for example, α = 2 and f = 1

2
we find R̄ = 4

3
.Rm and

lim
f→1

R̄ =
α

α − 1
.Rm.

α − 1

α
= Rm,

Equation (4) is an important consequence of the assumptions we made, in particular
that on the shape of the function T(x) in Equation (2).

3 Page rank and centrality

In a directed graph ~G each vertex j has an outdegree od(j) and an indegree id(j), being the
number of outgoing arcs and incoming arcs respectively. For the complete graph both are
N. We will discuss this case first as, in principle, it covers all other cases.

The labels on the arcs are assumed to satisfy Equation (1). We now interpret Cv as the
intensity with which from site v sites are visited. ”Intensity” may be seen as a frequency,
say the number of jumps to other, possibly also the same, sites per unit of time. The labels
li, i = 1,2,...,N, can then be seen as differentiating frequencies of jumps to these sites.

As formulated by Volkovich, Litvak and Donato [7], Page Rank PR is a method for
evaluating ” popularity of nodes in information networks”. It is therefore a kind of central-
ity measure. The basic modeling given by Brin and Page [1] is by an equation for the page
rank values PR(i), i = 1,2,...,N. This equation is to capture the idea that the rank for a
site depends on the ranks of the sites that choose the site to jump to and on the frequency
with which this is done. This basic modeling is expressed by Equation (5)

PR(i) =

N∑
j=1

lj(vj , vi).PR(j). (5)

The important next step is, of course, the choice of the labels lj.

First we can choose Cv = 1 for all vertices v of ~G. The labels can then be interpreted as
probabilities, the setting chosen in [7]. Second, we can, for each vertex v, determine a set Ov

of outgoing arcs of which one is chosen to jump along. This with probability c, 0 ≤ c ≤ 1,
whereas a jump following one of the other outgoing arcs happens with probability 1-c. For
the labels this means that they are c

|Ov|
in the first case and 1−c

N−|Ov|
in the second case. Ov

might be called a set of preferred outgoing arcs. If Ov = ∅, then the vertex is called a
”dangling” vertex in [7]. In that paper the jump is either along a preferred arc with total
probability c or to any other vertex with total probability 1-c, meaning that also preferred
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arcs are to be taken into consideration. If D is the set of dangling vertices this leads to
Equation (6)

PR(i) = c
∑
j→i

1

od(j)
.PR(j) +

c

N

∑
j∈D

PR(j) +
1 − c

N
, i = 1, ..., N, (6)

given in [7]. The notation j → i here indicates that (j,i) is a preferred outgoing arc of
j. This modeling slightly deviates from the one given above. Other choices of the labels
are possible. A variety of page rank equations is therefore possible.

For our purpose we will stick to the general Equation (5).

The main point of this section is that the concept of page rank is not new. Centrality
of actors in social networks has been considered in sociology as far back as 1953 by Katz
[5]. The measure searched for was that for influence or status of an actor. Each actor is
supposed to influence all other actors, and Katz’s approach was to calculate all weighted
paths going out from a vertex. That is, the social network was modeled as a complete
directed graph ~G, with labels on the arcs, possibly zero, and the weight of a path from
vertex v was defined as the product of the weights on the arcs of the path.
Now these weights are just labels and the sum of the weights of arcs going out from v may
be Cv. When we now remark that the paths from vertex v can all be seen as consisting
of one first arc, to a neighbour, followed by a path from that neighbour, then defining S,
status, as the sum of weights of all outgoing paths we obtain

S(i) =

N∑
j=1

li(vi, vj).S(j). (7)

But now we see that Equation (5) is precisely Equation (7), when all arcs in the graph
~G for the web are reversed, (v,w) becomes (w,v), while the labels are kept the same, i.e.
putting

li(vi, vj) = lj(vj , vi).

The conclusion is that the page rank equation is nothing but the status equation for the
”inverted web”. This means that all the literature on that centrality measure is applicable.

As a final remark we point out that both equations determine page rank respectively
status up to a constant factor.
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4 Page rank and in-degree

To discuss the relationship between page rank and indegree in the webgraph, we first
discuss a status score introduced by Hoede [3] in an internal report, but contained in the
GRADAP manual for software used in the social sciences [2].

Let W be the adjacency matrix A of ~G but with entries 1 for Ai,j replaced by entries
Wi,j. As is well-known (Al)i,j gives the number of walks of length l from vertex i to vertex
j. (W l)i.j gives the sum of weights of walks of length l from vertex i to vertex j. Status
seen as sum of the weights of all paths starting in vertex i gives

S(i) =

∞∑
l=1

N∑
j=1

(W l)i,j (8)

As

(W l)i,j =
N∑

k=1

(W l−1)i,k(W )k,j

for l > 1, we have

S(i) =
N∑

j=1

(W )i,j +
N∑

k=1

(W )i,k.S(k).

We now put d(i) =
∑N

j=1
(W )i,j, the i-th component of a vector d called the direct

influence vector. S(i) is the i-th component of the status score vector. This vector satisfies
the equation

S = d + W.S. (9)

However, for this the series of elements of powers of W should converge. This was
one of the main problems in the theory. A solution can be obtained by using the idea of
renormalization as common in theoretical physics. Instead of attaching attenuation factors
to weights of arcs to control the convergence, as was e.g. done by Hubbell [4], we can take
Equation (9) as definition of S to obtain

S = [I − W ]−1
.d

for the status score. Only in case the matrix I - W is not invertible, which can be
corrected by a minute change in W, this formula cannot be applied. Thus convergence
problems are avoided.
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We now recall that page rank is essentially status score for the inverted web. Develop-
ment of [I − W ]−1 in Equation (10) shows that

S = I.d + W.d + W 2.d + .... (10)

The first term in this development is I.d so, in that approximation, S(i) = d(i), the
direct influence of vertex i. But that is essentially the weighted outdegree in the inverted
web. So the weighted indegree in the web in first approximation determines the page rank
in the web.

A second way to arrive at this result is to consider Equation (5). Without any further
information, a first approximate solution for the page rank is obtained by putting PR(j)
equal to the average page rank PR, leading to

PR(i) =
N∑

j=1

lj(vj , vi).PR.

But, apart from the factor PR, this is precisely the weighted indegree of vertex i.

We refer to [7] for a more refined treatment of the relationship between page rank and
indegree in the web, that turn out to have the same distribution, as might be expected.

5 Structural classification of sites

The centrality of a web site, its ”popularity” if one wants, is an obvious concept to consider.
However, there are other interesting questions. Is there a way to distinguish between sites
on the basis of structural aspects?
In this case we consider a, not necessarily complete, directed graph ~G without any labels
on the arcs. Generalization to a complete graph with labels can come later.

A first distinction between vertices of ~G(V, A) can be made on the basis of outdegree
od(v) and indegree id(v), v ∈ V .
A vertex with id(v)=0 is a source, whereas a vertex v with od(v)=0 is a sink. Clearly in
the web the sites that are sources are extremely impopular, whereas the sites that are sinks
are the ones to which jumps are made, but as an end-destination for a path of jumps from
site to site by some user of the web. A first natural feature to consider is the quotient

Q(v) =
id(v)

od(v)

for vertex v. The range of Q is from zero to infinity. Q partitions the vertex set V into
classes of vertices with the same value. Within a class the actual values of id(v) or od(v)
may distinguish between the class members. Consider Figure 2.
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Figure 2: A graph ~G

For Q we find Q(1) = ∞, Q(2) = 0, Q(3) = 1, Q(4) = 2. Q(5) = 0, Q(6) = 1.

In a large web different sites v may have identical values for id(v) and od(v). Yet there
may be a feature that distinguishes them. Consider the out-neighbours of the vertices
v1 and v2 with od(v1) = od(v2). There may be significant difference between the ways
these neighbouring sets are connected. In Figure 3 we consider two vertices with the same
out-degree 4.

The ”out-neighbourhood” of v1 contains only one arc, whereas that of v2 contains seven
arcs. Various measures to distinguish between these two situations are possible.
One, simple, way to compare the ”complexity” of two out-neighbourhoods is to consider
the ”density” of the graph induced by the neighbouring vertices. In our example, we may
compare the numbers 1 and 7 with the maximum number of arcs possible. Including loops
there are 42 = 16 possible arcs, which would lead to complexities 1

16
and 7

16
for the out-

neighbourhoods of v1 and v2.
Another way, more akin to the concept of complexity in graph theory, would be to consider
all outgoing spanning trees on the vertex set consisting of a vertex v and all its out-
neighbours, with root in v. For vertex v1 there would be two such trees, for vertex v2

only one arc is obligatory and the loop can be left out of consideration. The problem is
then to count the outgoing spanning trees in the graph of Figure 4, where the obligatory
arc is drawn bold. The number may increase rapidly for larger neighbourhoods. For the
undirected complete labeled graph on n vertices there are nn−2 different spanning trees.
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Figure 3: Two out-neighbourhoods

v 2

Figure 4: Obligatory arc
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For the ”in-neighbourhood” an analogous calculation can be made. Let Cin(v) and
Cout(v) denote these complexities. Then, next to id(v), od(v) and Q(v), we can distinguish
vertices on the basis of Cin(v) and Cout(v). Clearly a vertex for which Cin(v) = Cout(v) = 0
has a position in the web, different from one for a vertex w for which Cin(w) and Cout(w)
are both high. Note that these numbers may be normed by dividing by the maximum
value that they can assume, like we did for the simple measure.

The generalization to labeled directed graphs is immediate by replacing indegree and
outdegree by weighted indegree and outdegree, possibly also allowing that ~G is complete
now. For the complexities one might, for example, not count the number of arcs in an
in-neighbourhood or an out-neighbourhood, but the sum of the weights of such arcs. In
all cases the interpretation should make sense.

The quotient Q may be used, also in the weighted version, in the following way. Vertices
of ~G0, the whole web graph, may be partitioned into two sets. A set for which Q ≥ 1 and
a set of vertices for which Q < 1. The choice of the constant 1 is arbitrary here, one might
also consider the set with minimum value of Q and the rest of the vertices. The vertices
with the higher values of Q may be said to get more attention from other vertices than
they give attention to other vertices.
Now we delete the vertices of the second set and their adjacent arcs and focus on the graph
~G1 induced by these vertices. Note that the degrees respectively the weighted values of
indegrees and outdegrees now may have changed. A vertex that received much attention
from vertices of the second set, in ~G0, may receive little attention from the other vertices
in ~G1. Again Q’s can be considered, now in ~G1, and a second partitioning takes place.
The ”surviving” vertices, for which Q ≥ 1, then induce a graph ~G2. The procedure can be
repeated to any desired extent.

For the graph in Figure 2, ~G0, the first partition yields {1,3,4,6} for the first set and

{2,5} for the second set. Figure 5 gives the graph ~G1.

For ~G1 we find Q(1) = ∞, Q(3) = 0, Q(4) = 1 and Q(6) = 0. Consequently the

partitioning gives {1,4} and {3,6}. ~G2 is induced by {1,4} and consists of the single arc

(4,1). In ~G2 Q(1) = ∞ and Q(4) = 0, partitioning V ( ~G2) into {1} and {4}. The outcome
of a simple procedure like this is a ranking:

{2, 5} ≻ {3, 6} ≻ {4} ≻ {1}.

As getting to the top of such a ranking requires incoming arcs from vertices that rank
higher and higher themselves, the basic idea of the page rank Equation (5), as well as the
status score Equation(7) is captured. The procedure does not give a value for the ranking,
although the values for Q calculated in the procedure may be used to distinguish between
different vertices in a class for which Q < 1 and is therefore not considered anymore.
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