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ABSTRACT
Ad hoc network routing protocols may fail to operate in the
absence of an end-to-end connection from source to desti-
nation. This deficiency can be resolved by so-called oppor-
tunistic networking which exploits the mobility of the nodes
by letting them operate as relays according to the store-
carry-and-forward paradigm. However, the efficiency of this
approach will depend to a large extent on the contact and
inter-contact times of node pairs.

In this work, we analyze the delay performance of a small op-
portunistic network by considering a tandem queueing sys-
tem. We present an exact packet-level analysis by applying
ideas from the polling literature. Due to the state-space
expansion, this analysis cannot efficiently be applied for all
model parameter settings. For this reason, an analytical ap-
proximation is constructed and its excellent performance has
extensively been validated. Numerical results on the mean
end-to-end delay show that the inter-contact time distribu-
tion impacts this metric only through its first two moments.
Finally, we study delay optimization under power control.

Keywords: Tandem model, Delay-tolerant networking, Op-
portunistic networking, Mobile queue , Autonomous server,
Performance analysis.

1. INTRODUCTION
End-to-end connectivity is not a natural property of ad hoc
networks. For instance, nodes may vary their transmission
power, nodes may move, nodes may enter the sleep mode,
or nodes may suffer from hardware failures. As a result, the
network structure changes dynamically and this may lead to
undesired situations of nodes becoming disconnected from
parts of the network.

The traditional store-and-forward routing protocols, which
require the existence of a connected path between a source
and a destination, cannot be employed in highly discon-
nected ad hoc networks. A solution for this problem is to
exploit the mobility of nodes present in the network. The
mobile nodes may form in fact bridges which relay traffic be-
tween the disconnected parts. This approach has been pro-
posed in the pioneering paper of Grossglauser and Tse [14]
as an alternative to the store-and-forward paradigm and it is
now known as the store-carry-and-forward paradigm in the
context of delay-tolerant networking (DTN) [1]. In DTN,
the incurred delay to send data between nodes can be very
large and unpredictable due to the disconnection problem.
Applications of such can be found in, e.g., disaster relief
networks, rural networking, environmental monitoring net-
works, vehicular networks, and interplanetary networks.

A significant amount of research for routing-based approaches
in DTN has recently emerged. An important factor in DTN
is the so-called contact opportunity between node pairs.
Two nodes are in contact if they are within transmission
range of one another and thus packet exchange between
them is possible. The proposed routing solutions essentially
differ on the required knowledge of these contact opportuni-
ties. Specifically, depending on whether the contact oppor-
tunities are scheduled [16], predicted [20], controlled [33],
or opportunistic [25, 27], they can be grouped into differ-
ent classes. The best performance would be achieved in
the full knowledge case of contacts. However, this comes
at the expense of a higher complexity both from the im-
plementation and from the maintenance perspectives. In
the present work, we will focus on the performance analysis
of the opportunistic-based approach where no knowledge is
required. For detailed surveys about the different routing-
based approaches in DTN we refer to [28, 29].

Another factor that impacts the performance of opportunis-
tic approaches is the inter-contact time which is defined as
the time duration between two consecutive contacts of node



pairs. The inter-contact time mainly depends on the mo-
bility of the nodes. In [13], simulations showed that for
the Random Waypoint [2] and the Random Direction [23]
mobility models the distribution of the inter-contact times
is exponential when the nodes’ transmission range is small.
On the contrary, for human mobility, it is shown through
experiments that the tail of the distribution of inter-contact
times has a power law decay in some finite range [4], and af-
ter that it exhibits an exponential decay [17]. In the present
work, we will assume that the inter-contact times distribu-
tion has a finite first and second moment.

We will analyze the opportunistic approaches in DTN by
taking into account, unlike [4, 13, 26], that the transmission
of packets may fail due to the short contact time and a re-
transmission is required. Also, we assume that the source
node has a stream of packet arrivals instead of only one
packet, like it was considered in [15, 26, 32]. In addition,
here we are interested in what happens in a more practical
case of small, finite-size networks, rather than in asymptotic
cases (see, e.g., [14, 32]). To this end, we adopt the net-
work scenario of a fixed source and destination node and
mobile intermediate nodes that serve as relay nodes. As a
primary step towards understanding such models, we will
study a network model with a single mobile node as a re-
laying device. Although it is a small model, it contains the
main characteristics of an opportunistic network and it is
also non-trivial from an analytical perspective.

The network model of our interest is reminiscent of a two-
queue tandem model with a single alternating server. Such
a tandem model has been analyzed under various servic-
ing strategies (see, e.g., [?]). Typically, these strategies are
based on the assumption that the server can be controlled.
However, in the mobility-driven model of our interest, the
server is autonomous and there is no possibility to control
its movement. The research efforts on models with time-
limited service periods are also closely related to our work.
In a two-queue setting, [5] analyzes the model via boundary
value techniques. Unfortunately, the analysis along these
lines for more than two queues appears intractable. Time-
limited service models have also been studied in the context
of polling systems (see, e.g., [10, 22]). However, also in these
models, there exists a notion of server control, since it is as-
sumed that whenever a queue becomes empty the server
moves to another queue.

In this work, our interest is mainly in the end-to-end de-
lay under opportunistic networking. We assume that data
packets arrive according to a Poisson process at the source
queue. The mobile node stores the packets received from the
source and forwards them to the destination. The source
and destination are assumed far apart, so that the mobile
node is never in range of both source and destination. The
contact times are assumed exponentially distributed. Pack-
ets whose transmission is interrupted will be retransmitted
during a next contact time.

We study this system at the packet level by considering the
tandem queueing model as a particular kind of polling sys-
tem. That is, a polling system for which customers of one
queue move to another queue after being served. This spe-
cific polling system is a time-limited polling system extended

with the feature that the server remains at a queue even if
it becomes empty. We perform an exact analysis for this
system by using similar techniques as in [22] and [6].

Due to the state-space expansion, the computation time of
the joint queue-length probabilities may grow large for cer-
tain model parameters. Therefore, as a complementary tool,
we present an analytical approximation for the case that the
service requirements at each queue are exponential. The
queue-length process at the second queue is then analyzed in
isolation as a workload process with Poisson batch arrivals.
The Poisson process follows directly from the assumption of
exponential contact times. The key element is to approx-
imate the batch size distribution as closely as possible. A
similar model has been analyzed by Borst et al. [3]. The
authors consider a Poisson batch arrival process for which
the batch size depends on the inter-arrival time of the batch.
This differs from our model in the sense that batch sizes de-
pend not only on the final inter-arrival period, but also on
the previous ones which induce that they are dependent.

Numerical experiments show the excellent performance of
the approximation for a broad range of parameter settings.
These experiments further show that mean sojourn time is
insensitive to third and higher moments of the inter-contact
times. Finally, several guidelines are given for delay op-
timization by power control. In particular, balancing the
queues load is not always close to the optimal policy. How-
ever, using a simple heuristic based on optimizing the delay
of a tandem model of two M/M/1 queues gives nearly opti-
mal results under wide variety of parameter settings.

The main contributions of this article are:

• an analytical model for queue-length and delay analy-
sis in a simple opportunistic network;

• an analytic approximation for the delay in a two-queue
tandem model with a single autonomous server;

• third and higher moments of the inter-contact times
have negligible impact on mean end-to-end delay;

• load balancing is not an effective tool for delay opti-
mization in DTN.

The rest of the paper is organized as follows. Section 2
gives the description of the opportunistic network model,
discusses the stability issues, and finds exact results for so-
journ time in the source node and mobile node. Section 3
proposes and analyses an approximation for the sojourn time
in the mobile queue. In Section 4, we numerically validate
the accuracy of the approximation and we present additional
results which give insight on the delay of the network. Sec-
tion 5 concludes the paper and suggests some research di-
rections.

2. MODEL AND EXACT RESULTS

2.1 Model
We consider a tandem model consisting of 3 first-in-first-
out (FIFO) single-server systems with unlimited queue, Qi,
i = 1, 2, 3, in which customers arrive to Q1 and subsequently



require service at Q2 before reaching their destination at
Q3. The special feature of the model is that Q2 alternates
between positions L1 and L2 such that the server in Q1 is
available only when Q2 is at L1 and the server in Q2 is
available only when Q2 is at L2. In addition, Q2 incurs a
switching time from Li to Lj (i 6= j, j ∈ {1, 2}) during
which the server at neither Q1 nor Q2 is available. Q3 is a
sink and will not be included in our analysis.
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Figure 1: Three queue tandem model with a mobile
queue. Top: Q2 is at L1, its server is down. Bottom:
Q2 at L2, its server is up.
Customers arrive to Q1 according to a Poisson process with
arrival rate λ. The service requirement Si at Qi has general
distribution Si(·), with Laplace-Stieltjes Transform (LST)

S̃i(·), and mean 1/βi. We assume that the service require-
ments are independent and identically distributed (iid) ran-
dom variables (rvs).

Movement of Q2 is autonomous. Q2 remains at location L1

(resp. L2) a (random) time of duration XL1
n (resp. XL2

n ) be-
fore it migrates to L2 (resp. L1) during its n-th visit. It is im-
portant to notice that in the analysis we will use visit (time)
rather than contact (time) to refer to (the duration of) a con-
tact opportunity as to be in line with the common practice
in the polling literature. After the n-th visit to L1, Q2 in-
curs a switch-over time C1,2

n from L1 to L2, and similarly a
switch-over time C2,1

n after the n-th visit to L2. We assume
that C1,2

n (C2,1
n ) is an iid sequence with general distribu-

tion C1,2(·)
`

C2,1(·)
´

, LST C̃1,2(·)
`

C̃2,1(·)
´

, and mean c1,2

(c2,1). We further assume that XL1
n (XL2

n ) is an iid sequence
of common exponential distribution with rate α1 (α2). Fur-
thermore, we assume {XL1

n , XL2
n , C1,2

n , C2,1
n } are iid and mu-

tually independent, and also independent at their starting
time points of the other rvs in the model (queue length, wait-
ing time, sojourn time, etc.). Therefore, the location of Q2

is driven by an underlying continuous-time, discrete-state,
process {L(t) : t ≥ 0} of state space {−2,−1, 0, 1}. More
precisely, L(t) = 1 (L(t) = 0) when Q2 is at L1 (resp. L2)
at time t, and L(t) = −1 (L(t) = −2) when Q2 switches
from L1 to L2 (L2 to L1). Without loss of generality, let
L(0) = 1.

During the availability of the server at Q1 and Q2, the server
may alternate between service and idle periods depending on
whether customers are present. It is worth pointing that the
term customer throughout this paper will designate packet.
When the server is active at the end of a visit of Q2 to L1 or
L2, service will be preempted. At the beginning of the next
visit of Q2, the service time will be re-sampled according to
Si(·). This discipline is commonly referred to as preemptive-
repeat-random. Let Ni(t) denote the number of customers
in Qi, i = 1, 2, at time t. Assume Ni(0) = 0, i = 1, 2.

A word on the notation. 1{A} will designate the indicator
function of event A (1{A} = 1, if A is true, and 0 otherwise),
rv will mean random variable, LST Laplace-Stieltjes Trans-

form and p.g.f. probability generating function. Given a rv
X, X(t) will denote its distribution function, X̃(s) its LST.

Our objective is to analyze the sojourn time of a customer
in the whole system and at the individual queues Q1 and
Q2. First, we discuss the stability of the system. Second,
we will analyze the sojourn time at Q1. The model for Q1 in
isolation boils down to a single-vacation model or an on-off
server model. Finally, we analyze the sojourn time at Q2. To
this end, we determine the joint queue-length probabilities
at a specific instant. These probabilities can be related to
the time-equilibrium probabilities for the tandem system.
Applying Little’s law, the mean sojourn time is then readily
found.

2.2 Stability condition
The tandem model is stable if each customer in the system
can be served in a finite period of time. We must consider
stability on a per-queue basis as service capacity cannot be
exchanged between the queues. We say that the system is
stable if and only if all the queues in the system are stable.

Let a cycle define the time that separates two consecutive
visits to a queue. Due to the independence assumption
on our rv’s, cycle lengths are iid, with generic rv C :=
XL1 +XL2 +C1,2 +C2,1. For an individual queue to be sta-
ble, we must have that on average the number of customer
arrivals per cycle is smaller than the number of customers
that can be served at most per cycle. The latter random
variable for Qi will be denoted by N i

max, i = 1, 2, and is ge-
ometrically distributed (due to the exponential visit times
and preemptive-repeat-random discipline), i.e.

P(N i
max = k) = pi(1 − pi)

k, k = 0, 1, 2, . . . ,

where pi = P(service is preempted at Qi) = 1 − S̃i(αi), i =
1, 2. Thus, the stability condition for Qi, i = 1, 2, reads

ρi :=
E[arrivals per cycle to Qi]

E[N i
max]

= λE[C]
1 − S̃i(αi)

S̃i(αi)
< 1,

(1)
where

E[C] =
1

α1
+

1

α2
+ c1,2 + c2,1. (2)

Notice that under stability, on average, the arrival rate to
Q2 equals that to Q1.

2.3 Queue one
Let us recall that we assumed that the server visit process is
autonomous and that service is according to the preemptive-
repeat-random discipline. It is then easily seen that Q1 in
isolation is an M/G/1 queue with On-Off server with arrival
rate λ, service time rate β1, exponential on-period XL1 with
rate α1, and off-period Roff equal to the switch-over times
plus the server visit time to Q2 at L2, i.e.,

Roff = C1,2 + C2,1 + XL2 . (3)

By a renewal reward argument, the probability, POn, that
the server is on equals

POn =
1

α1E[C]
, (4)

and POff = 1 − POn.



The M/G/1 queue with On-Off server has been extensively
studied in the literature (see, e.g., [7, 18, 19]). Below, we
provide an alternative derivation of the LST of the waiting
time of a customer at Q1 using the idea of waiting-time
decomposition. From there, we will deduce the sojourn time
and also the time-equilibrium distribution of the number of
customers in Q1. Finally, we determine the p.g.f. of the
number of customers at the end of an off-period which we
will need later for the analysis of Q2.

2.3.1 Sojourn time in queue one
Let Ak denote the k-th arriving customer at Q1. Define
the effective service time, Seff

k , of Ak to be the time period
which starts when Ak receives service for the first time at
Q1 and which ends when Ak departs from Q1, i.e.,

Seff
k = S∗

k +

M
X

i=1

Ci, (5)

where S∗
k is the conditional service requirement Sk of Ak

given that Sk is not interrupted, i.e., Sk < XL1 , Ci is a cycle
duration distributed as C, and M is the (random) number of
off-periods before service completion of Ak. Since the visit
time of Q2 at L1, XL1 , is exponential and independent of
the service requirement, the distribution of M is geometric
with parameter p1 = P (Sk > XL1) = 1 − S̃1(α1). Note
that {C1,2

n , C2,1
n , XL1

n , XL2
n }n≥0 are mutually independent.

In particular, the lengths of the on-periods are mutually in-
dependent and also independent of the lengths of off-periods.
Further, the service discipline is preemptive-repeat-random,
so that S∗

k is independent of M and Ci, i = 1, . . . , M . As a
consequence, we can write the LST of the effective service
time as follows.

S̃eff
k (s) =

(α1 + s) · S̃1(α1 + s)

(α1 + s) − α1(1 − S̃1(α1 + s)) · α2C̃1,2(s)C̃2,1(s)
α2+s

,

(6)
where Re(s) ≥ 0.

Let WM/G/1 denote the waiting time in the M/G/1 queue

with arrival rate λ and service time Seff
k . The Pollaczek-

Khinchine formula for the LST of WM/G/1 reads [30, P. 386],

W̃M/G/1(s) =

`

1 + λ(S̃eff
k )

′

(0)
´

s

s − λ + λS̃eff
k (s)

, (7)

where (S̃eff
k )

′

(0) is the first derivative of S̃eff
k (s) at the ori-

gin.

The time that the service of an arriving customer to Q1, say
Ak, starts depends on the state of the system at that time.
If Ak arrives to a non-empty Q1, then its service starts at
the instant that Ak−1, k ≥ 1, departs from the queue. If
Ak arrives to an empty Q1 and the server is on, then its
service starts instantaneously. However, if Ak arrives to an
empty Q1 and the server is off, then it has to wait a residual
off time, Roff

e , before its service will start. Thus, Q1 can
be seen as an On-Off queue with an exceptional first service
time. It is known that for such a queue the waiting time,
W1, of a customer in Q1 can be decomposed as follows [18,
19]

W1 = WM/G/1 + Roff
e 1

{server off}
, (8)

where WM/G/1 and Roff
e are independent. The LST of W1

is readily found by conditioning on the server’s state upon
a customer’s arrival, which yields

W̃1(s) = W̃M/G/1(s)(POn + POff R̃off
e (s)

´

, (9)

where POn and W̃M/G/1(s) are given in (4) and (7) respec-
tively, and

R̃off
e (s) =

1 − (α2/(α2 + s)) · C̃1,2(s) · C̃2,1(s)

(c1,2 + c2,1 + 1/α2) · s
. (10)

The LST of the sojourn time, D1
∆
= W1 + Seff

k , of Ak at Q1

then yields

D̃1(s) = W̃1(s)S̃
eff
k (s). (11)

2.3.2 Number of customers in Q1

The arrival process to Q1 is Poisson with rate λ. Thus,
it follows that the p.g.f. of N1, which we denote by F1(·),

can be expressed as function of D̃1(·) using the so-called
functional form of Little’s law (see [31] for a general proof
for FIFO queues with non-anticipating arrivals) as follows

F1(z) = D̃1

`

λ(1 − z)
´

, |z| ≤ 1. (12)

Next, we will determine F {−2,1}(·), the p.g.f. of the number
of customers at the end of an off-period, i.e., at the transition
of L(t) from −2 to 1. This function will be required later
in the analysis for the second queue. To this end, we first
compute the p.g.f. of the number of customers in Q1 given
that the server is on. Let To denote a random time during
an off-period, Ts denote the start time of this off-period,
and let A(x, y) denote the total number of arrivals during
(x, y] with y > x. Thus, N1(To) = N1(Ts)+A(Ts, To). Con-
ditioned on the event ‘server on’, we may treat the epochs
at which the server switches off (and immediately on) as a
Poisson arrival stream of batches. Due to the PASTA prop-
erty, these batches see time average behavior upon arrival.
As the system observed by the arriving batches is exactly
the system as observed by the server that departs, we have
that

E[zN1 |server off] = E
ˆ

zN1(Ts)˜E[zΨ]

= E[zN1 |server on]E[zΨ], (13)

where Ψ is the number of arrivals to Q1 during the age
of the off-period. The latter being equal in distribution to
the residual time of an off-period. In other words, Ψ is the
number of Poisson arrivals of rate λ during Roff

e . Thus,
conditioned on the state of Q1’s server at a random time,
the conditional p.g.f. of N1 can be written as

E[zN1 |server on] =
F1(z)

POn + E[zΨ]POff

= W̃M/G/1

`

λ(1 − z)
´

S̃eff
k

`

λ(1 − z)
´

.

(14)

Finally, we can conclude that

F {−2,1}(z) = E[zN1 |server on]R̃off`λ(1 − z)
´

. (15)

2.4 Queues in tandem

2.4.1 Joint queue-length probabilities at the end of a

server visit



In this section, we will determine the queue-length distribu-
tion at the end of a server visit at each queue of the tandem
of two queues. The analysis builds on the work of Eisenberg
[9] and involves setting up an iterative scheme. This itera-
tive approach was introduced by Leung [21] for the study of
a probabilistically-limited polling model. Later, this model
was extended in [22] to a time-limited polling model and in
[6] for a time-limited model in which the server remains at
a queue even if it becomes empty. A key role in the iter-
ative scheme is played by the (auxiliary) p.g.f.’s φk(z) and
φs

k(z) for z := (z1, z2), which will be explained below. In
the final step of the iteration scheme γi(z), the p.g.f. of the
queue-length distribution at the end of a server visit to Qi,
is obtained as a function of φs

k(z).

We consider a tagged queue i and we will leave out the
subscript and superscript i whenever it does not lead to
ambiguity. Let us introduce the concept of a service period.
We let a service period be a segment of a visit time such that
all service periods together form exactly a visit time. The
first service period of a visit starts when the server arrives
to the queue. This period ends with either an interruption
(due to the departure of the server) or a service completion,
whichever occurs first. In the latter case, a second service
period will start and this process continues until finally an
interruption occurs. Each service period, except for the final
service period of a visit, comprises exactly one successfully
completed service. Further notice that there need not always
be customers present at the start of a service period.

Let us denote by N i
k the number of customers at the end of

the kth service period at Qi and by κi the number of service
periods of a visit time of Qi. We may then define for k ≥ 1

φi
k(z) := E[zNi

k1{κi>k}] . (16)

That is, φi
k(z) is the p.g.f. of the number of customers at the

queues at the end of the kth service period at Qi and service
period k is not the final service period (i.e., service period k
ends with a successful service completion, and service period
k + 1 will occur). Similarly, we define for k ≥ 1

φs,i
k (z) := E[zNi

k1{κi=k}] . (17)

That is, φs,i
k (z) is the p.g.f. of the number of customers at the

queues at the end of the kth service period at Qi and k is the
final service period (i.e., service period k will be interrupted,
and service period k + 1 will not occur). Finally, we denote
by φi

0(z) the p.g.f. of the number of customers present at the
beginning of a visit to Qi. Let N(T ) the number of arrivals
during a random period T , I1 the (exponential) interarrival
time of customers at Q1, and Ci,j(z) be the p.g.f. of the
number of arrivals during a switch-over time from Qi to Qj .
Then, by analogy with the results of De Haan et al. [6] for a
time-limited polling system, φi

k(z) and φs,i
k (z), i = 1, 2, k =

1, 2, . . ., are recursively given by

φ1
k(z) = φk−1(z) |z1=0 ·

“

E[zN(I1)1{XL1>I1}
]

× E[zN(S1)1{XL1>S1}
] · z2

”

+
“

φk−1(z)

− φk−1(z) |z1=0

”

· E[zN(S1)1{XL1>S1}
] ·

z2

z1
, (18)

φ2
k(z) = (φk−1(z) − φk−1(z) |z2=0) ·

E[zN(S2)1{XL2>S2}
]

z2
,

(19)

and

φs,1
k (z) = φk−1(z) |z1=0 ·

“

E[zN(XL1 )1{XL1<I1}
]

+ z1E[zN(I1)1{XL1>I1}
]E[zN(XL1 )1{XL1<S1}

]
”

+ (φk−1(z) − φk−1(z) |z1=0)

× E[zN(XL1 )1{XL1<S1}
], (20)

φs,2
k (z) = φk−1(z) |z2=0 ·E[zN(XL2 )] +

“

φk−1(z)

− φk−1(z) |z2=0

”

· E[zN(XL2 )1{XL2<S2}
] , (21)

where

φi
0(z) = γ3−i(z)C3−i,i(z) ,

E[zN(I1)1{XL1>I1}
] =

λ

λ + α1
,

E[zN(Si)1{XLi >Si}
] = S̃i(αi + λ(1 − z1)) ,

E[zN(XL1 )1{XL1<I1}
] =

α1

λ + α1
,

E[zN(XLi )1{XLi <Si}
] = αi ·

1 − S̃i(αi + λ(1 − z1))

αi + λ(1 − z1)
,

E[zN(XL2 )] =
α2

α2 + λ(1 − z1)
.

Equation (18) can be explained by the following observa-
tions. First, the length of the kth service period (and thus
also the number of arriving customers) depends on whether
at least one customer was present at the end of the pre-
vious service period. This explains why the equation con-
sists of two parts. Second, the number of customers at all
queues at the end of a service period is equal to the number
present at the end of the previous service period plus the
ones that arrived during the present service period. Equa-
tion (19) consists only of one part due to the fact that once
Q2 is empty no customers will be served anymore during
that visit. Along the same lines as Eq. (18), Eqs. (20) and
(21) are derived where it should be noticed that the number
of arrivals depends on whether a service period is interrupted
or not. Finally, we note that φi

0(1) = 1, while φi
k(1) ≤ 1,

for all k = 1, 2, . . ., since the kth period completion may not
occur at all during a visit to Qi.

Notice that there is one-to-one relationship between a visit
completion and the end of a final service period. Therefore,
we can write for the number of customers at the queues at
the end of a server visit to Qi

γi(z) = E[z
Ni

κi ] =

∞
X

k=1

E[zNi
k1{κi=k}] =

∞
X

k=1

φs,i
k (z) . (22)



We set up an iterative scheme to obtain γi(z) numerically.
The scheme is constructed in terms of Discrete Fourier Trans-
forms (DFTs) as these appear more convenient for compu-
tational purposes. To this end, we replace zi, ∀ i, in the ex-
pressions above by ωki

i , where ωi = exp(−2πI/Ji), so that
all expressions become functions of k = (k1, k2). Here I
is the imaginary unit and Ji refers to the number of dis-
crete points used for Qi to determine the joint probabilities.
These probabilities that will eventually follow are exact for
Ji → ∞, ∀ i. However, the strength of the approach is that
in general the probabilities are already close to the exact
probabilities for small values of Ji. The pseudo-code of the
iterative scheme is presented in Table 1. Notice that we start
initially with an empty system. The standard values for the
convergence parameters that have been used are ǫ = 10−6

and δ = 10−9. Finally, via the Inverse Fourier Transform,
the joint queue-length probabilities at visit completion in-
stants γi

n
are found. These probabilities are only exact for

Ji → ∞, i = 1, 2 but the strength of the approach is that in
general the probabilities are already close to the exact val-
ues for small values of Ji. However, it should be noted that
when the system load increases, these values Ji must typ-
ically be increased to guarantee the accurate computation
of the probabilities. Thus, this iterative approach appears
mainly applicable to systems with a light to moderate load.

γi0(k) = 1, ∀ i0, ∀ k; (start with an empty system)
FOR i1 = 1, 2

set i2 := i1;
REPEAT

γ̂i2(k) = γi2(k), ∀ k;
set j := 0;

set φ0(k) = γ3−i2(k) · C3−i2,i2(k);
REPEAT

set j := j + 1;

compute φi2
j (k), ∀ k, using (18) and (19);

compute φs,i2
j (k), ∀ k, using (20) and (21);

compute γi2(k) =
Pj

l=1 φs,i2
l (k), ∀ k;

UNTIL 1 − Re(γi2(0)) < δ
set i2 := MOD(i2, 2) + 1;

UNTIL |Re(γi1(k)) − Re(γ̂i1(k))| < ǫ, ∀ k
END (FOR)

Table 1: Pseudo-code of iterative scheme for deter-
mining γi(k), ∀ i .

2.4.2 Mean sojourn time
The sojourn time is related to the time-equilibrium queue-
length probabilities. These probabilities can be obtained
from the queue-length probabilities at visit completion in-
stants due to exponential visit times. We determine these
probabilities by conditioning on the position of the server.
Notice that the server is either at some queue or switch-
ing from one queue to another. Using the same arguments
as in Sect. 2.3.2 above Eq. (13), we have that a departing
server observes the system in steady-state conditioned on
the queue it departs from. Let us further denote the p.g.f.
of the number of customers present at a random instant dur-
ing a switch-over time from Q3−i to Qi by Ci

R(z). It can
readily be found that

Ci
R(z) = γi(z) ·

1 − C̃3−i,i
`

λ(1 − z1)
´

c3−i,i · λ(1 − z1)
. (23)

Hence, by conditioning on the position of the server, we
may write for P (z) := E[zN1

1 zN2

2 ], the joint p.g.f. of the
time-equilibrium queue lengths,

P (z) =
1

E[C]

2
X

i=1

„

γi(z) ·
1

αi
+ Ci

R(z) · c3−i,i

«

. (24)

The mean queue length at Qi, E[Ni], is then given by

E[Ni] =
X

n1≥0

X

n2≥0

P(N1 = n1, N2 = n2)ni, (25)

where the probabilities P(N1 = n1, N2 = n2) follow imme-
diately from P (z). The mean sojourn time is related to the
queue length via Little’s law, which then finally provides us
with

E[Di] = E[Ni]/λ. (26)

Remark 1. We note that using the distributional form
of Little’s law also higher moments can be obtained for the
end-to-end sojourn time. However, this form cannot be ap-
plied to the individual sojourn time at Q2 here, since the
arrival process to Q2 does not satisfy the non-anticipating
property [31].

3. APPROXIMATION
In this section, we present an approximation for D̃2(s), the
LST of the sojourn time of a customer in the mobile queue
Q2, so that we may also deal with the situations in which
the exact approach is no longer computationally feasible.
We consider the workload process in Q2 when L(t) = 0,
i.e. Q2 is served. This will be done under the additional
assumption that the service time requirements are exponen-
tially distributed at both queues. It turns out that this
process corresponds to the workload process in an M/M/1
with batch arrivals. The sojourn time of a customer in Q2

then equals the sum of the waiting time of the batch in
this corresponding M/M/1 system, the service times of all
customers in its batch served up to and including this cus-
tomer and the time the customer is at Q2 but L(t) 6= 0,
i.e. Q2 is not served. We emphasize that in this case both
the preemptive-repeat-random and preemptive-resume dis-
ciplines are stochastically identical. For the sake of simplic-
ity, in the following we will consider the preemptive-resume
discipline.

3.1 The workload in queue two
To study the workload process at Q2, we split the time in
disjoint intervals which begin at the time instants that the
L(t)-process jumps from state −2 to 1 (i.e., the start of an
on-period at Q1). Denote the starting points of these inter-
vals by {Zn, n = 1, 2, · · · }, with, by convention, Z1 = 0. Let
the n-th cycle of L(t) denote the time interval [Zn, Zn+1[.
The duration of the n-th cycle is Zn+1−Zn = XL1

n +C1,2
n +

XL2
n + C2,1

n , where XL1
n is the duration of time that cus-

tomers can arrive at Q2 (L(t) = 1)) and XL2
n is the duration

of time that customers can leave Q2 (L(t) = 0)) during this
n-th cycle. Let V (t) denote the workload (i.e., virtual wait-
ing time) of Q2 present at time t. Without loss of generality,
we assume that V (t) is left-continuous, i.e., arrivals are not
counted as being in the system until (just) after they arrive.
A sample path of the evolution of V (t) as function of L(t)
is shown in Figure 2.
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Figure 2: Evolution of L(t) and workload V (t) of
queue Q2.

Let W B
n denote the workload present in Q2 at time Zn.

Based on the evolution of L(t), it is easily seen that

W B
n+1 =

 

W B
n +

Kn
X

i=1

S2,i − XL2
n

!+

, n ≥ 0, (27)

where (.)+ = max(., 0), Kn is the total number of arrivals
to Q2 (or departures from Q1) during XL1

n and S2,i is the
service requirement of a customer in Q2. Note that S2,i

is independent of XL2
n and that Kn depends on N1(Zn),

the number of customers at Q1 at time Zn. Therefore, the
rvs Kn, n = 1, 2, · · · are correlated. For the sake of model
tractability it is assumed in the sequel that Kn, n = 1, 2, · · ·
are iid and also independent of {XL2

m : m ≤ n}. By these
assumptions, Eq. (27) also represents the relation between
the workload seen by the first customer of the n-th batch and
of the (n+1)-th batch in a queue with Poisson batch arrivals
with rate α2, independent batch size Kn, and exponential
service requirement with rate β2. It is well known that this
queue is stable when

−α2G
′

(0) =
α2

β2
E[Kn] < 1. (28)

Note that this condition (28) is equivalent to the condition
in (1) for Q2. Furthermore, the LST of the steady-state
distribution of W B

n can be written as

W̃ B(s) =
“

1 + α2G
′

(0)
” s

s − α2 + α2G(s)
, (29)

where G(s) := E
h

e−s
PKn

i=1
S2,i

i

. By conditioning on Kn, we

find that

G(s) = E

»

“ β2

β2 + s

”Kn

–

. (30)

Finally, let Ṽ j(s) denote the LST of the workload seen by
the jth customer within a batch upon arrival including the
work brought in by himself. Since the service requirement
of customers is independent of the workload present in the
queue upon arrival and its distribution is exponential with
rate β2, Ṽ j(s) reads

Ṽ j(s) = Ṽ j−1(s)
β2

β2 + s
, j = 1, 2, . . . , (31)

with Ṽ 0(s) = W̃ B(s). Moreover, since Kn are iid rvs,
P(J = j), the probability that a customer is the j-th cus-
tomer within the batch is equal to the fraction of customers

who are j-th arrival in their own batch, which gives

P(J = j) =
P(Kn ≥ j)

E[Kn]
. (32)

Removing the condition on the customer position in a batch,
the LST of the sojourn time of an arbitrary customer in the
batch arrival queue is given by

Ṽ (s) = β2W̃
B(s)

1 − G(s)

sE[Kn]
. (33)

Thus, it remains to compute E[zKn ] in order to find W̃B(s).
In the following section, we will compute the closed form of
E[zKn ] by using the matrix-geometric approach.

3.2 The p.g.f. of the batch size distribution
As remarked in the previous section, Kn is the total number
of departures from Q1 during the n-th cycle and depends on
the queue length of Q1 at time Zn. To compute the p.g.f. of
Kn, we first assume that Q1 has a limited queue of M − 1
customers. This queue is denoted by QM

1 . Later, we will let
M tend to infinity to get the final results.

As we need the arriving batch size distribution in steady
state, we assume that QM

1 is in steady state at time Zn.
The probability that there are i customers in QM

1 at Zn is
denoted by bM (i). Under the assumption that the unlim-
ited Q1 is stable, limM→∞ bM (i) = b(i) with

P

i≥0 b(i)zi =

F {−2,1}(z) (see Eq. (15)). Let bM = (bM (0), · · · , bM (M−1))
denote the steady-state distribution of the finite capacity
QM

1 .

Let (N1(t), D(t)) denote the two dimensional, continuous
time process with discrete state space {0, 1, · · · , M − 1} ×
{0, 1, · · · } ∪ {(M, 0)} , where N1(t) represents the number
of customers in Q1 at time t, and D(t) the number of de-
partures from Q1 until t. (M, 0) is an absorbing state. We
refer to this absorbing Markov chain by AMC. The absorp-
tion of AMC occurs when the server leaves the queue which
happens with rate α1. By setting the probability that the
initial state of AMC at t = 0 is (i, 0) to bM (i), the proba-
bility that the absorption of AMC occurs from one of the
states {(i, k) : i = 0, 1, · · · , M − 1} equals the steady-state
batch size distribution P(Kn = k). The transition state di-
agram of AMC is shown in Figure 3.
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Figure 3: Transition state diagram of AMC.



Now we focus on P(Kn = k). From Figure 3, we readily seen
that the transition matrix P of AMC can be written as

P =

„

Q R
0 0

«

,

where Q is an upper bidiagonal square block matrix, R =
(α1, . . . , α1)

T , and 0 is the row vector with all zero entries.
The blocks of Q’s diagonal are all equal to A, the M -by-
M bidiagonal matrix A with diagonal (−λ− α1,−λ− α1 −
β1, . . . ,−λ − α1 − β1,−α1 − β1) and with upper-diagonal
(λ, . . . , λ). The blocks of Q’s upper-diagonal are all equal to
B, the M -by-M lower-diagonal matrix with lower-diagonal
(β1, . . . , β1).

In the sequel, P(Kn = k) is derived as function of the inverse
of Q, that is readily obtained as

Q−1 =

0

B

B

B

B

B

B

@

A−1 U0,1 · · ·
. . .

. . .

A−1 Um,m+1 · · ·
. . .

. . .

1

C

C

C

C

C

C

A

where Um,l =
`

− A−1B
´l−m

A−1 for m ≥ 0 and l ≥
m. Note that the matrix A is invertible since it is upper-
bidiagonal with strictly negative diagonal entries.

From the theory of absorbing Markov chains, given that the
initial state vector of AMC is bM , the probability that the
absorption occurs at one of the states {(i, k) : i = 0, 1, · · · ,
M − 1} is given by (see, e.g., [11], [12, Theorem 11.9])

P(Kn = k) = −α1bM (U0,k)e = −α1bM

`

− A−1B
´k

A−1e.
(34)

where e denote the M -dimensional column vector with all
entries equal to one. Thus, the LST of Kn reads

EM [zKn ] = −α1bM (A + zB)−1e, (35)

where |z| ≤ 1. Therefore, it remains to find (A + zB)−1.

Now, define Q(z) := (A + zB), let uT = (1, 0, . . . , 0) and
let vT = (0, . . . , 0, 1). Observe that Q(z) = T(z) + β1uuT +
λvvT , where T(z) is the M-by-M tridiagonal Toeplitz matrix
with diagonal entries equal to (−λ−β1−α1), upper-diagonal
entries equal to λ, and lower-diagonal entries zβ1. Let t∗ij
denote the (i, j)-entry of T−1(z). By applying the Sherman-
Morrison formula [24, page 76] we find that the (i, j)-entry
of Q−1(z) gives

q∗ij = mij − λ
miMmMj

1 + λmMM
, (36)

with

mij = t∗ij − β1
t∗i1t

∗
1j

1 + β1t∗11
, (37)

for i = 1, . . . , M and j = 1, . . . , M .

The inverse of a tridiagonal Toeplitz matrix has been com-
puted in closed-form (see [8, Sec. 3.1]). Following that same
approach, we obtain

t∗ij =

8

>

<

>

:

−
(ri

1−ri
2)(r

M+1−j
1

−r
M+1−j
2

)

λ(r1−r2)(rM+1

1
−rM+1

2
)

, i ≤ j ≤ M

(r
−j
1

−r
−j
2

)(rM+1

1
ri
2−rM+1

2
ri
1)

λ(r1−r2)(rM+1

1
−rM+1

2
)

, j ≤ i ≤ M

9

>

=

>

;

(38)

where

r1,2 =
(λ + β1 + α1) ∓

p

(λ + β1 + α1)2 − 4λβ1z

2λ
. (39)

We take |r1| < |r2|. Note that |r1| < 1 < |r2|.

Inserting (36)-(37) into (35) yields that

EM [zKn ] = −α1

M
X

i=1

bM (i − 1)

M
X

j=1

»

t∗ij −
β1t

∗
i1t

∗
1j

1 + β1t∗11

−
λmiM

1 + λmMM

„

tMj −
β1t

∗
M1t

∗
1j

1 + β1t∗11

«–

. (40)

Thus, it remains to let M → ∞ in (40) in order to find
E[zKn ]. It is readily seen that

lim
M→∞

tM,M−j = −
1

λr2
lim

M→∞
rj
1,

lim
M→∞

mM−i,M = lim
M→∞

tM−i,M = −
1

λ
lim

M→∞
r
−(i+1)
2 ,

lim
M→∞

t1j = −
1

λ
r−j
2 ,

lim
M→∞

ti1 =
1

λr1r2
lim

M→∞

rM+1
1

rM−i+1
2

− ri
1.

Some easy but technical calculus shows that the following
limit is equal to zero

lim
M→∞

α1

M
X

i=1

bM (i − 1)

M
X

j=1

λmiM

1 + λmMM

„

tMj −
β1tM1t1j

1 + β1t11

«

,

and that

E[zKn ] =
α1

λ(1 − r1)(r2 − 1)

»

1 + β1
1 − z

λr2 − β1
F {−2,1}(r1)

–

,

(41)

where F {−2,1}(.) and r1,2 are given in (15) and (39) respec-
tively. Inserting z = β2/(β2 + s) into (41) gives the closed
form of G(s), the LST of the service requirement of a to-
tal batch (see (30)), which in turn gives the closed form of

W̃B(s).

3.3 Sojourn time in queue two
In the beginning of the section, we already remarked that,
D2, the sojourn time of a customer in Q2 consists of three
parts: the waiting time and the service time of a customer
in a batch arrival queue, and the time a customer is in Q2

but Q2 is not served. Together, the waiting time and service
time in the batch arrival queue form the sojourn time of the
customer in the batch arrival queue.

Let H0 denote the sojourn time of a costumer in the batch
arrival queue. Let {Ht : t ≥ 0} denote the remaining sojourn
time of a customer in Q2 if the server would be continu-
ously working at Q2 from time t onwards. In other words,
Ht decreases at rate 1 when L(t) = 0 and Ht is constant
when L(t) ∈ {−2,−1, 1} at time t. The service at Q2 is
interrupted by the mobility of the queue. Let Y denote the
number of service interruptions during the sojourn time of a
customer. Figure 4 displays a sample path of the evolution



of Ht as a function of t, in this figure the threshold zero is
crossed at Y = 3.
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Figure 4: Evolution of Ht as a function of t with
Y = 3.

The visit periods have an exponential length with rate α2.
Now, given that H0 = v, the number of interruptions has a
Poisson distribution with

E[zY |H0 = v] = e−α2v(1−z). (42)

The duration of these interruptions are independent and are
given by Ξ = C2,1 + XL1 + C1,2. Furthermore, Ξ∗, the time
it takes before Ht actually starts decreasing after time 0,
satisfies Ξ∗ = XL1

e + C1,2, where XL1
e is the residual time

of XL1 . Note that XL1
e and XL1 are identically distributed

with common exponential distribution.

From Figure 4 it is easily seen that

D2 = Ξ∗ + H0 +

Y
X

i=1

Ξi. (43)

By conditioning on H0 and Y , we find for the LST of D2,

D̃2(s) = E
ˆ

e−sΞ∗˜

E
ˆ

e−s(
PY

i=1 Ξi+H0)˜,

= E
ˆ

e−sΞ∗˜

E
ˆ

e−sH0e−α2H0(1−Ξ̃(s))˜. (44)

where Ξ̃(s) = α1

α1+s
C̃1,2(s)C̃2,1(s). Since H0 equals the so-

journ time in the batch arrival queue, we find (see, Eq. (33))

D̃2(s) =
α1C̃

1,2(s)

α1 + s
× W̃ B`∆(s)

´

×
β2

E[Kn]
×

1 − G
`

∆(s)
´

∆(s)
,

(45)

where ∆(s) := s + α2(1 − Ξ̃(s)).

4. NUMERICAL EVALUATION
The evaluation of the model will be done in three parts.
First, we will extensively validate the accuracy of the ap-
proximation. Second, we consider the impact of the switch-
over time distribution on the mean sojourn time. Notice
that the switch-over times determine to a large extent the
inter-contact times. Finally, we study the problem of opti-
mizing the end-to-end delay in the network by adjusting the
visit time parameters for a given cycle length. Throughout
this section, the distribution of the switch-over times of Q2,
C1,2 and C2,1, are assumed identically distributed according
to an exponential distribution with mean c1,2 = c2,1.

4.1 Model validation
We validate the approximate model developed in Section 3.3
for the mean sojourn time at Q2. In this model, Kn, the
batch sizes in the batch arrival queue (see, e.g., (27)), were
assumed to be mutually independent and independent of all
other rvs. The validation will be done by comparing the
results with those of the exact model in Section 2.4. We
recall that due to the state-space expansion, the computa-
tion time for the exact joint queue-length probabilities, and
thus also the mean sojourn time, may grow large for certain
model parameters. Therefore, in the latter case we will use
simulation to determine the mean sojourn time in Q2.

Now, let us introduce some notation. Let E[Dapp
2 ] (resp.

E[Dexa
2 ]) denote the mean sojourn time in Q2 using the ap-

proximate (resp. exact) model given in Sect. 3.3 (resp. in
Sect. 2.4.2). Let R2 denote the absolute relative difference
between the approximate and exact mean sojourn time in
Q2, i.e.,

R2 :=

˛

˛

˛

˛

1 −
E[Dapp

2 ]

E[Dexa
2 ]

˛

˛

˛

˛

.

Further, we note that the load at Q1 and Q2 can be written
as

ρi =
λ

βi

„

α1 + α2

α3−i
+ 2αic

1,2

«

, i = 1, 2.

Figure 5 displays R2 as a function of λ for different values
of c1,2 with β1 = β2 = 1 and α1 = α2 = 0.1. Thus, in this
scenario the load at Q1 and Q2 are equal (ρ1 = ρ2). Observe
that R2 increases with λ and that the approximate model is
accurate for ρ1 = ρ2 < 0.5. This is because the probability
that Q1 is empty upon the departure of the server from Q1

decreases with λ. For this reason, the auto-correlation of
Kn increases with λ. Moreover, Figure 5 shows that R2

decreases with c1,2 for ρ1 = ρ2 (e.g., for ρ1 = 0.5, R2 = 15%
when c1,2 = 1sec and R2 = 8% when c1,2 = 20 ). This is
because in the case where ρ1 = ρ2, λ decreases with c1,2.
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Figure 5: R2 as a function of λ for different values
of c1,2 with β1 = β2 = 1 and α1 = α2 = 0.1.
Figure 6 shows the mean sojourn time in Q2 using the ap-
proximate and exact models. Observe that the approxima-
tion gives an upper bound for E[D2]. This observation is
in support of the result in [3] which proves that in the cor-
related M/G/1 a positive correlation between the service
requirement and the last inter-arrival reduces the mean so-
journ time. We should emphasize that also in our model Kn



and the last inter-arrival are positively correlated, i.e., an
increase of the last interarrival time induces stochastically
an increase of Kn.
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Figure 6: Mean sojourn time in Q2 calculated from
the approximate model and the exact model (resp.
simulation for λ > 0.05) as a function of λ for different
values of c1,2 with β1 = β2 = 1 and α1 = α2 = 0.1.

Figure 7 shows R2 as a function of ρ2 for different values
of ρ1 with λ, β1, and α1 = α2 constant. This is done by
changing the value of β2. First, observe that for a given
ρ1, the approximate model is more accurate for small values
of ρ2. This is due to the increase of probability that Q2 is
empty at a batch arrival instant which in turn decreases the
correlation between the sojourn times of customers in differ-
ent batches. Second, for a given ρ2, the approximate model
is more accurate for higher values of ρ1 (for example when
ρ2 = 0.6, R2 = 9.6% for ρ1 = 0.25, while R2 = 4.72% for
ρ1 = 0.75). The reason is that for high values of ρ1 the queue
size of Q1 is large for most of the time, therefore in this case
Kn will only depend on XL1

n and S1, the service requirement
of a customer in Q1. Since the sequences {XL1

n }n≥0 and
{S1,i}i≥0 are independent, the auto-correlation of {Kn}n≥0

becomes smaller for higher values of ρ1.
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Figure 7: R2 as a function of ρ2 for different values
of ρ1 with λ = 0.01, α1 = α2 = 0.1, and c1,2 = 10.

We conclude that the approximate model has the following
properties:

• It is accurate for low and moderate load at Q1 and Q2;

SCOVs 1 5 10 15 20 30
SCOVi 0.33 1.22 2.33 3.44 4.55 6.78

Hyper-exponential distribution
E[Dapp] 45.07 55.85 69.28 82.69 96.06 122.7
E[Dexa] 45.02 55.8 69.25 82.66 95.96 121.4

Coxian distribution
E[Dapp] 45.07 55.85 69.31 82.74 96.15 122.9
E[Dexa] 45.02 55.81 69.27 82.71 96.12 122.6

Weibull distribution

E[Dsim] 45.01 55.85 69.25 82.54 95.88 121.9

Table 2: Mean sojourn time in Q1 and Q2 as a func-
tion of SCOV for the hyper-exponential, Coxian, and
Weibull distributions of the switch-over times with
λ = 0.01, β1 = β2 = 1, α1 = α2 = 0.1, and c1,2 = 10.

• It gives an upper bound for the sojourn time at Q2;

• It is accurate for high load at Q1 and moderate load at
Q2.

4.2 Impact of the switch-over times distribu-

tion on sojourn time
We note that in the analysis the distribution of the switch-
over time was assumed to be arbitrary. This section studies
the impact of the distribution of the switch-over times on the
end-to-end sojourn time of a customer. This will be done
by considering the following three different distributions of
the switch-over times in such way that they share the same
first two moments: two-phase hyper-exponential, two-phase
Coxian and Weibull distribution.

For c1,2 = 10, Table 2 displays the mean sojourn time as a
function of SCOVs := V ar(C1,2)/(c1,2)2, the squared coef-
ficient of variation of the switch-over times, and of SCOVi

:= V ar(C1,2 + C2,1 + XL2)/(2c1,2 + 1/α2)
2, the squared

coefficient of variation of the inter-visit times. This is done
using both the approximate and exact models for the hyper-
exponential and Coxian distributions. For the Weibull dis-
tribution, we used simulation since its LST it is not known
in closed form. In our simulation settings, we fixed the con-
fidence interval to be within 1.2% of the mean simulated
value. Observe that in Table 2 the mean sojourn time is
almost equal for the three different distributions. Hence, we
conclude that the mean sojourn time depends on the distri-
bution of the switch-over and inter-visit times through their
first two moments. In other words, considering two differ-
ent distributions of the switch-over time with equal first two
moments and different higher moments will induce the same
mean sojourn time.

4.3 Insight on the optimal end-to-end sojourn

time
In this section we study the evolution of, αopt

2 , the optimal
value of α2 that yields the minimum value of the end-to-end
sojourn time in Q1 and Q2. This will be done under the
constraints of zero switch-over time, i.e., c1,2 = 0, and of
constant cycle length, i.e., E[C] = 1/α1 + 1/α2 is constant.
Moreover, the load at Q1 and Q2 should be between zero and
one. Note that under these constraints when α1 increases
α2 should decrease. Since the mean sojourn time in Q1

(resp. Q2) increases (resp. decreases) with α1 (resp. α2) then



αopt
2 exists and it is unique. The adjustment of α1 and α2 can

be done in practice by controlling the transmission power of
the nodes in our model.

In the following, αopt
2 will be computed using the approxi-

mate mean sojourn time in (45) using the numerical opti-
mization package of MAPLE. This value was validated by
verifying that the mean sojourn time using the exact model
for α2 = αopt

2 is a local minimum inside [αopt
2 − 10−3, αopt

2 +
10−3].

In the symmetric case β1 = β2, it is found that αopt
2 = α1 =

2/E[C]. In the asymmetric case β1 > β2 = 1, Table 3 dis-
plays αopt

2 as a function of β1 for E[C] = 10. Observe that
in this case αopt

2 is smaller than 2/E[C] and that this differ-
ence increases with β1. Table 4 displays αopt

2 as a function
of β2 for β2 > β1 = 1 and E[C] = 10. In contrast with the
previous case, notice that αopt

2 is greater than 2/E[C]. In
fact, the values of αopt

2 and α1 for these two cases are ex-
changed which is quite surprising since the arrival processes
at the queues are essentially different. It is not clear why
these values found for αopt

2 would indeed lead to the optimal
mean sojourn time.

β1 1.1 2 3 6 11 16

αopt
2 0.197 0.181 0.173 0.165 0.161 0.16

α1 0.203 0.223 0.236 0.253 0.265 0.27
ρ1 (%) 4.62 2.79 1.97 1.05 0.6 0.42
ρ2 (%) 4.91 4.50 4.34 4.12 4.01 3.97

Table 3: αopt
2 as a function of β1 for β2 = 1, λ = 0.025,

and E[C] = 10.

β2 1.1 2 3 6 11 16

αopt
2 0.203 0.223 0.236 0.253 0.265 0.27

α1 0.197 0.181 0.173 0.165 0.161 0.16
ρ1 (%) 4.92 4.52 4.34 4.13 4.01 0.42
ρ2 (%) 4.61 2.79 1.96 1.05 0.60 3.97

Table 4: αopt
2 as a function of β2 for β1 = 1, λ = 0.025,

and E[C] = 10.

In practice one might prefer to have a simple rule that pro-
vides a value for α2 which yields a mean sojourn time close to
optimal. Therefore, we will discuss two alternative, heuristic
optimization approaches. First, we select the values of α1

and α2 such that the load is balanced at both queues, i.e.,
ρ1 = ρ2. This gives:

αi =
β1 + β2

β3−i
·

1

E[C]
, i = 1, 2 . (46)

Second, we choose α1 and α2 based on the analysis of a
tandem model of two M/M/1 queues with shared service
capacity. That means that the servers at both queues are
always present, but serving at rate ν at Q1 and at rate 1−ν
at Q2. Then, the optimal ν, say ν∗, is the one that minimizes
the end-to-end sojourn in such a tandem model, which we
denote by E[D]M/M/1 and equals simply

E[D]M/M/1 =
1

β1ν − λ
+

1

β2(1 − ν) − λ
. (47)

We choose the ratio α1/α2 equal to (1−ν∗)/ν∗, such that the
fraction the server is at Q1 in our model equals the optimal
rate ν∗ in the M/M/1 tandem model.

In Tables 5 and 6, we present the results of this compar-

ison. Here, αopt
2 , αLB

2 and α
M/M/1
2 refer to the choice of

α2 in the optimal case, in the load balancing heuristic, and
in the M/M/1 tandem heuristic, respectively. Further, we
present the relative differences in mean sojourn time using
the two heuristics (denoted by ǫLB and ǫM/M/1) with respect
to the optimal mean sojourn time, E[D]opt. In Table 5, we
study the performance of those heuristics when β1 is in-
creased while β2, λ and E[C] are kept constant. We note
that for the symmetric case, β1 = β2, the heuristics would
also give the optimal solution α1 = α2. The performance
using load balancing worsens rapidly when β1 is increased.
Also the M/M/1 tandem heuristic deviates from the opti-
mum, but the relative differences remain small. In Table 6,
we investigate the performance of the heuristics when the
mean cycle time is varied. The results show that the rela-
tive error when using load balancing is almost insensitive to
E[C]. We note that in the limit case of the cycle time tend-
ing to zero our tandem model approaches the tandem model
of two M/M/1 queues. Hence, in this case the M/M/1 tan-
dem heuristic is optimal. This explains the why the relative
error increases in E[C]. However, notice that the relative

error ǫM/M/1 is still very small for E[C] = 20.

We can conclude that balancing the load is not a good so-
lution for end-to-end sojourn time optimization unless β1 ≈
β2. However, using an optimization heuristic based on a
simple tandem model of two M/M/1 queues will give nearly
optimal results for the mean sojourn time under a wide va-
riety of parameter settings.

β1 1.1 2 3 6 11 16

αopt
2 0.194 0.174 0.166 0.156 0.150 0.148

αLB
2 0.190 0.150 0.133 0.117 0.109 0.106

α
M/M/1
2 0.195 0.167 0.154 0.138 0.128 0.123

E[D]opt 14.47 12.82 12.14 11.42 11.08 10.94

ǫLB (%) <0.1 3.9 8.6 17.2 23.6 26.3

ǫM/M/1 (%) <0.1 0.4 0.9 2.3 3.8 4.7

Table 5: Comparison of α2 and E[D] for different
optimization approaches for β2 = 1, λ = 0.1, and
E[C] = 10.

E[C] 1 2 5 10 20

αopt
2 1.408 0.719 0.300 0.156 0.080

αLB
2 1.167 0.583 0.233 0.117 0.058

α
M/M/1
2 1.375 0.687 0.275 0.137 0.069

E[D]opt 3.152 4.07 6.83 11.42 20.58

ǫLB (%) 17.3 17.1 17.1 17.2 17.7

ǫM/M/1(%) 0.2 0.6 1.4 2.3 3.0

Table 6: Comparison of α2 and E[D] for different
optimization approaches for β1 = 6, β2 = 1, and λ =
0.1.

5. CONCLUSIONS
This study is part of a research effort towards developing
analytical models for quantifying the end-to-end delay in a
opportunistic network. We consider here a network consist-
ing of a fixed source node, a fixed destination node, and a
mobile relay node. A closed-form expression has been de-
rived for the delay at the packet’s source node. Next, an
iterative approach has been developed for the joint queue-
length distribution of the source and the relay node. In



addition, a simple approximate model has been proposed
for the delay analysis at the relay node. The approximate
model has extensively been validated and shows excellent re-
sults. Numerical results on the mean end-to-end delay show
that the inter-contact time distribution impacts this metric
only through its first two moments. Moreover, load balanc-
ing is not an effective tool for delay optimization, while the
M/M/1 tandem heuristic is near optimal.

In the present work, we have focused on the delay analysis
of simple opportunistic networks. As a second step towards
understanding these networks, we will study in the future
work the scenario where multiple relay nodes coexist in the
network. In this case, the packet multi-copy routing-based
proposals in DTN will help to reduce the delay. We an-
ticipate that the exact and approximate models can be ex-
tended at least to cover the packet single-copy case with only
one packet transmission at a time. For the multi-copy case,
the help of certain theoretical techniques like customers re-
sequencing and impatient customers might be required to
analyze the delay.
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costumers: a correlated M/G/1 queue. Performance
Evaluation, 20(1):47–59, 1992.

[4] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott. Impact of human mobility on the design
of opportunistic forwarding algorithm. In Proc. of
IEEE INFOCOM, Barcelona, Spain, Apr. 2006.

[5] E. G. Coffman, G. Fayolle, and I. Mitrani. Two queues
with alternating service periods. In Performance ’87:
Proc. of the 12th IFIP WG 7.3 International
Symposium on Computer Performance Modelling,
Measurement and Evaluation, pages 227–239, 1988.

[6] R. de Haan, R. J. Boucherie, and J.-K. van Ommeren.
A polling model with an autonomous server. Research
Memorandum, University of Twente, 2007.

[7] B. Doshi. Queueing systems with vacations-a survey.
Queueing Systems, 1(1):29–66, 1986.

[8] M. Dow. Explicit inverses of Toeplitz and associated
matrices. ANZIAM J., 44(E):E185–E215, Jan. 2003.

[9] M. Eisenberg. Queues with periodic service and
changeover times. Operation Research, 20(2):440–451,
1972.

[10] I. Frigui and A. Alfa. Analysis of a time-limited
polling system. Computer Communications,
21(6):558–571, 1998.

[11] D. P. Gaver, P. A. Jacobs, and G. Latouche. Finite
birth-and-death models in randomly changing
environments. Advances in Applied Probability,
16:715–731, 1984.

[12] C. Grinstead and J. Snell. Introduction to Probability.
American Mathematical Society, 1997.

[13] R. Groenevelt, P. Nain, and G. Koole. The message

delay in mobile ad hoc networks. Performance
Evaluation, 62(1-4):210–228, Oct. 2005.

[14] M. Grossglauser and D. Tse. Mobility increases the
capacity of ad hoc wireless networks. ACM/IEEE
Transactions on Networking, 10(4):477–486, Aug.
2002.

[15] M. Ibrahim, A. Al Hanbali, and P. Nain. Delay and
resource analysis in manets in presence of throwboxes.
Performance Evaluation, 64(9-12):933–947, Oct. 2007.

[16] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant networking. In Proc. of ACM Sigcomm, Aug.
2004.

[17] T. Karagiannis, J.-Y. L. Boudec, and M. Vojnovic.
Power law and exponential decay of inter contact
times between mobile devices. In Proc. of MOBICOM,
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