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Abstract    
 
In this paper we try to combine two approaches. One is the theory of knowledge graphs 
in which concepts are represented by graphs. The other is the axiomatic theory of fuzzy 
sets (AFS). 
  
The discussion will focus on the idea of fuzzy concept. It will be argued that the 
fuzziness of a concept in natural language is mainly due to the difference in interpretation 
that people give to a certain word. As different interpretations lead to different knowledge 
graphs, the notion of fuzzy concept should be describable in terms of sets of graphs. This 
leads to a natural introduction of membership values for elements of graphs. Using these 
membership values we apply AFS theory as well as an alternative approach to calculate 
fuzzy decision trees, that can be used to determine the most relevant elements of a 
concept. 
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1. INTRODUCTION  
 

Knowledge graphs have been studied at the University of Twente since 1982. The basic 
idea is to represent words, standing for concepts, by labeled vertices of a graph and 
connect these vertices by labeled links. The resulting graph can be seen as a proposition 
or as a concept itself.  

 
For graph theory we refer to any of the many text books, e.g. that of Bondy and Murty[1], 
available on internet. For detailed discussion of the labels of the links we refer to Zhang 
[14], in which the use of knowledge graphs for natural language is discussed. In this 
paper we will only use unlabeled edges as links, as for our purpose the labels are 
irrelevant. 

 
The axiomatic theory of fuzzy sets (AFS) has been developed at the Dalian Maritime 
University since 1995. We refer to the paper of Liu and Pedrycz [11] for an introduction 
to AFS theory. In that paper also fuzzy decision trees were developed. We will apply 
their theory to calculate some fuzzy decision trees in order to compare the outcomes with 
that of an other approach. 

 
The concept of fuzziness was introduced by Zadeh [13] and has led to quite some 
discussion from the side of probability theory. The concept of fuzziness seems to be a 
fuzzy concept itself. We therefore should explain our own stand. We will do this in 
Section 2.  In Section 3 we will discuss our definition of fuzzy concept and discuss the 
concept “democracy” as an example. We will also show how important elements can be 
found. In Section 4 we will discuss the same example in the context of AFS theory and 
show how fuzzy decision rules can be derived for determining important elements. In 
Section 5 an alternative approach is derived. In Section 6 we will discuss the concept 
“fuzzy” as illustration of the ideas developed in the earlier sections. The appendices 
contain the descriptions of the definitions of the two studied concepts. 

 
2. ON FUZZINESS  
 
We consider one of the standard examples of words often mentioned to illustrate the idea 
of fuzziness. It is the word “small”. We will consider the height of people and want to 
discuss “small”, next to “normal” and “tall”. 
 
 In our view there is no fuzziness involved in first instance. The word “normal” implies 
that norms are used. Consider a person P and ask him what “normal height” means. The 
answer of P may be that the height H is normal if 150 < H < = 180. If 0 < H <= 150 the 
considered height is small, and if 180 < H the considered height is tall where the numbers 
refer to centimeters. The concept “small” is now well defined and not “fuzzy” at all. 
 
The situation changes if P1, P2, …., Pn are n persons, jurors, who give n pairs of values 
for determining the boundaries between “small”, “normal ”and “tall”. The two sets of 
boundary values, between “small” and “normal ”, respectively “normal” and “tall”, might 
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be integers around 150 respectively 180 and can then be represented by histograms , as in 
Figure 1, 
   
                         

 
 
Whether a person, whose height is considered, is “small” now depends on the juror. A 
basketball coach might give 190 and 210 as boundary values! If the jurors agree on their  

average values, say 151 and 179, “small” is precisely defined again. If, however, the 
person is confronted with one of the jurors, the outcome gets a probabilistic character. In 
a certain number a of cases the person is considered to be small. But then the quotient a/n 
can be considered to express the probability that the person is considered small by a juror 
as well as to be the value of the membership function for the person with respect to the 
“set of small persons.” 
 
However, the set of small persons has not been defined, so our discussion should lead to 
the conclusion that the adjective “small” will not always be used by jurors, who have to 
“adject” or “attribute” that word to a person. The concept “small” has a fuzzy character. 
Objections to the concept of “fuzzy set” are understandable. 
 
For our further discussion it is important to note that people, our jurors in the example, 
give different interpretations to words.  That is where the fuzziness comes in! Obtaining 
identical interpretations by discussions, as usual in science, in particular in natural 
science and mathematics, aims at removal of the fuzzy character. A definition that is 
agreed upon describes a concept that is not fuzzy at all, or is crisp. 
 
But now we can ask ourselves whether this is always the case and find out that this is 
seldom the case. A striking example is “democracy”, for which an internet search for 
“definition of democracy” gives more than 10 million sites. In any research in which 
natural language plays an important role, often the ontology to use is strongly debated, by 
the very fact that most words allow different interpretations. 

Height 

Numbers 
of jurors 

0 151 179 

Figure 1 
Distribution of boundaries 
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In the theory of knowledge graphs, a word has a corresponding word graph, depending on 
the interpreter, juror, who interprets the word. Differences in interpretation are similar to 
the differences in the boundary values of our example “small”. Consequently we have to 
consider differences in word graphs for discussing the fuzziness of the concept named 
by the word considered. 
 
3. A KNOWLEDGE GRAPH ANALYSIS OF THE CONCEPT “DEMOCRACY” 
 
In Appendix A we have listed 10 definitions of “democracy”, without reference to 
authors, as that is of no concern considering the many other definitions. 
 
We can give extensive knowledge graphs for all 10 definitions, but that would not mark 
the point we want to make. Our procedure was simply this. First we determined concepts 
in the definitions, using our own background knowledge to identify, for example, 
“persons”, “people” and “citizens” and choosing “people” as word. Then we dropped all 
concepts occurring only once, which left 8 concept elements of “democracy”. For each of 
the 10 jurors, the elements occurring in their definition were represented by labeled 
vertices. The occurring vertices were then linked by an, unlabeled, edge whenever we 
considered them linked, on interpretation of the definition. This then led to 10 small 
graphs, we might call them definition graphs. 
 
From the 10 definitions graphs a larger graph is easily constructed having 8 vertices and 
14 edges. It is given in Figure 2. 
 

 
Figure 2 

Combined definition graph for “democracy” 
 

 
 For the curious reader: v1=people, v2=decisions, v3=institutions, v4= voting, v5=power,  
v6= majority  , v7=negotiations ,  v8= representation . 
  

 v3 

 v8 

 v1 

 v2 

 v4 

 v5 

 v6 

 v7 
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The graph in Figure 2 may be considered, by the 10 jurors, to be “the” definition of 
“democracy” and their agreement removes the fuzziness of the concept. However, we 
consider only v1, v2, v3 and v5 to be really basic aspects of “democracy”. Each of the 10 
jurors considers a concept or a relationship basic or not. It is in this respect that the 
concept is fuzzy. 
 
As determining the essential aspects of a concept is of extreme importance in many 
instances of use of words in natural language, we will now focus on the question how to 
determine important vertices and edges in the combined definition graph. We considered 
these to be the vertices and edges of the subgraph induced by the vertex set  
{ v1, v2, v3, v5}. However, we would like to develop a more objective way of dealing, a 
decision rule. 
 
We consider four parameters that capture some important aspects of the resulting 
combined definition graph. 
 
1.  The number of occurrences of the vertices as concepts in the definitions, e.g. v1 

     “people” occurred in 8 definitions. 
2.  The number of occurrences of the links, e.g. the link {v1, v2} occurred 3 times. 
3. The number of links in which a vertex is involved taking into account the multiplicity 

of the links. 
4. The number of other links in which the two vertices of a link are involved, again 

taking into account the multiplicity of links. 
 
Multiplicity of links was indicated by multiple edges in Figure 2. The other links 
occurred only once. The numbers in 3 and 4 are called vertex- degree and edge-degree. 
 
One objective way to determine important elements of the combined definition graph 
would be to consider the degrees. The important vertices are probably those that are 
somehow “central”. Centrality can be implemented in various ways, here we simply take 
the occurrence as even simpler measure for centrality. We can extend the set of vertices 
to be considered important by starting with vertices of highest degree and gradually 
adding vertices of lower degree in order of value of the degrees. Note that only those 
edges are to be added, whose both vertices belong to the constructed set. 
 
It is clear from Figure 2 that v1 and v2 are the central elements of “democracy”, the 
“decisions” of “people”. 
 
In the next section we will put this problem in the context of axiomatic fuzzy set theory. 
 
4. APPLYING AXIOMATIC FUZZY SET THEORY 
 
In this section, we will shortly describe the AFS theory. Then we will apply this theory to 
the example of “democracy”, and derive fuzzy decision rules. 
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In current fuzzy theories, the membership functions are often given by personal intuition 
and the logic operations are implemented by a kind of triangular norms, shortly norms, 
which are chosen beforehand and independent of the original data and facts. The large- 
scale intelligent systems in real-world applications are usually very large and complex, 
containing such a large number of concepts that it is impossible to define the membership 
functions by personal intuition and to choose a suitable norm from very many kinds of 
triangular norms to implement fuzzy logic systems.  
 
In order to deal with the above discussed problems, AFS (Axiomatic Fuzzy Set) theory 
was firstly proposed in [3, 4] in 1995. In [5, 6], the mathematical properties of AFS 
algebras and AFS structures have been extensively investigated and discussed, and the 
fuzzy theory based on AFS algebras and AFS structures has been initially established. 
Then the topological structures on the AFS algebras and AFS structures were obtained in 
[7], and the preliminary combinatorial properties of AFS structures have been discussed 
in [8]. 
 
First we introduce notations and definitions, introduce several pertinent results 
concerning and discuss the basic ideas of AFS theory. In essence, the AFS framework 
supports studies on how to convert the information in training examples or databases to 
the membership functions and their fuzzy logic operations. AFS theory is made of AFS 
structures which are a special kind of combinatorial object [2] and AFS algebra which is 
a family of completely distributive�lattices [11]. For detailed mathematical properties 
of AFS algebra, see [3,6,7,5,8]. 
 
In order to study the essential nature of fuzzy concepts and fuzzy logic, let 
X, M be two sets. In general M is the set of crisp or fuzzy concepts on X. For 
example, in “knowledge graph of democracy” data, M ={m1, m2, ..., m8}, (where 
m1=occurrence low, m2=occurrence medium, m3=occurrence high, m4=degree low, 
m5=degree medium, m6=degree high, m7=acceptance, m8=non-acceptance} and X is the 
set of 14 or 8 training samples, given respectively by 14 edges and 8 vertices. Let 
 

EM* = {�i∈IAi | Ai⊆M, i∈I, I is any non-empty indexing set} 
EXM* = {�i∈IaiAi | ai⊆X, Ai⊆M, i∈I, I is any non-empty indexing set}. 

 

In [5, 6], an equivalence relation R is defined on EM
�
 and EXM

�
 respectively, and we 

denote EM
�
/R as EM and EXM

�
/R as EXM. For two elements, the semantics of them (or 

the membership degrees they represent) are equivalent if they have relation R: 
(�i∈IAi, �j∈JBj)∈R⇔∀i∈I, ∃k∈J, such that Ai⊇Bk and ∀j∈J, ∃q∈I such that Bj⊇Aq� 

(�i∈IaiAi, �j∈JbjBj)∈R⇔∀i∈I, ∃ k∈J such that ai⊆bk, Ai⊇Bk�and ∀j∈J, ∃q∈I such that 

bj⊆aq, Bj⊇Aq� 

 
Definition 1: For any �i∈IAi, �j∈JBj∈EM, 

�i∈IAi  ∨ �j∈JBj = �u∈UCu 

�i∈IAi ∧ �j∈JBj = �i∈I,j∈JAi∪Bj. 
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Here U is the union of I and J, for u∈U, Cu=Au, if u∈I and Cu=Bu, if u∈J. A more 

convenient way to write it is  

�i∈IAi + �j∈JBj = �u∈UCu. 

 (EM, ∧, ∨) is called the EI algebra over M � 
  
 
Definition 2: If X and M are sets, 2M is the power set of M, τ : X× X→2M, then the triple 
(M, τ, X) is called an AFS structure if τ satisfies the following axioms: 
A1:∀(x1, x2) ∈ X×X, τ (x1, x2) ⊆ τ (x1, x1) 
A2:∀(x1, x2), (x2, x3) ∈ X× X, τ (x1, x2)∩τ (x2, x3) ⊆ τ (x1, x3). 
X is called the universe of discourse, M is called an attribute set and τ is called a 
structure. 
 
We can verify that (M, � , X) is an AFS structure if for each m ∈ M, �  is defined as � (xi, xj) 
= {m|m ∈ M, (xi, xj) ∈ Rm} , xi, xj ∈ X. That is, for any m ∈ �  (x, x), x belongs to attribute 
m to some degree and for any m ∈ �  (x, y), the degree of x belonging to m is larger than or 
equal to that of y. (M, � , X) is the mathematical abstraction of the complicated 
relationships among objects in X under the attributes in M. This implies that the 
information contained in databases and human intuitions is transformed to (M, � , X), from 
which we can obtain the fuzzy sets and fuzzy logic operations. 
 
Theorem 1. [6] Let (M, � , X) be an AFS structure. For B⊆ X, A⊆ M we define 
the symbol:  

A(B)={y | y∈X, τ(x, y)⊇A, ∀x∈B}, and  
for any given x∈X�we define a mapping φx �EM→EXM, ∀�i∈IAi∈EM, 

φx(�i∈IAi)=�i∈IAi({ x}) Ai∈EXM. 

Then � x is a homomorphism from lattice (EM, ∧, ∨) to lattice (EXM, ∧, ∨)� 
 
By Theorem 1, we know that, for any given concept �  = �i∈IAi ∈ EM, we get a mapping  
�  : X �  EXM. In this way, for each �  ∈ EM, �  is Lattice-fuzzy set on X and the 
membership degree of x (x ∈ X) belonging to fuzzy set �  is �i∈IAi({ x}) Ai ∈EXM. Further, 
in [8, 9], the logic operator ′ (negation) is defined as: ∀η=�i∈IAi∈EM, 

})'{(' a
iAaIi ∈∈ ∨∧=η . (EM, ∧, ∨, ′) is called an AFS fuzzy logic system. 

 
Now we introduce a special family of measures used to determine which algebra 
becomes norm lattice structure, such that we can convert represented membership 
degrees to [0,1] interval representations and to great extent preserve the information 
contained in the representing fuzzy sets. 
 
Definition 3: (Continuous case) Let X be a set, X⊆Rn and ρ�X→R+= [0, ∞). ρ is 
integrable under Lebesgue measure and 0<�Xρdµ<∞. S (S⊆2X ) is the set of all Borel sets. 
For all A∈S, we define a measure m over S: 
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�
�=
X

A

d

d
Am

µρ

µρ
)(

. 
(Discrete case) Let X be a set, S a σ-algebra on X and ρ : X→R+=[0, ∞), 0<�x∈Xρ(x)<∞. 
For any A∈S, m is a measure over the σ-algebra S, defined as follows: 

�
�

∈

∈=
Xx

Ax

x

x
Am

)(

)(
)(

ρ
ρ

. 
 
In what follows, we define a measure m by which we can convert EII algebra 
membership degree to [0, 1], to preserve the information contained in the EII algebra to a 
significant extent. 
 
Definition 4: Let X and M be sets, (M, τ, X) be an AFS structure and S a σ-algebra over 
X. For each a∈M, there exists a function ρa: X → R+ = [0, ∞), and let mα be a measure 
defined by Definition 3 for each ρa. Then in a semi-cognitive field (M, τ, X, S), for a 
measurable fuzzy set �i∈IAi∈EM, we define its membership function as follows. For all x 
∈ X 

]1,0[))(()))((()( ∈Μ=Μ=
� �� ∈∈∈

iIi iIi iA
AxAxAx

Ii i
µ , 

where M: EXM → [0, ∞), for each � ∈Ii ii Aa ∈EXM, ai∈S, and  

]1,0[))((sup)( ∈=Μ ∏�
∈∈∈

iA
i

Ii
Ii ii amAa

α
α , ∀ i∈I. 

 
Liu and Pedrycz [11] consider training examples in which for certain membership of 
“income” and “employment” a customer of a bank is given credit. 
 
This decision on “credit” is strictly analogous to our decision to see a vertex or an edge as 
“acceptable” for a definition of a concept. Remember that we want to determine the 
important elements given a combined definition graph. Our personal decision for our 
“democracy” example was that {v1, v2, v3, v5} was the set of acceptable vertices. The 
analogue of Table 1 in [11] now is  
 

Table I(a): Data on vertices 
 Occurrence Degree Acceptance 

v1 8 10 1 
v2 4 5 1 
v3 3 4 1 
v4 3 2 0 
v5 2 4 1 
v6 2 2 0 
v7 2 3 0 
v8 2 4 0 
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Table I(b): Data on edges 
 Occurrence Degree Acceptance 
e1= v1 − v2 3 9 1 
e2= v1 − v3 1 12 1 
e3= v1 − v4 1 10 0 
e4= v1 − v5 1 12 1 
e5= v1 − v6 1 10 0 
e6= v1 − v7 1 11 0 
e7= v1 − v8 2 10 0 
e8= v2 − v3 1 7 1 
e9= v2 − v7 1 6 0 
e10= v3 − v5 1 6 1 
e11= v3 −v7 1 5 0 
e12= v4 − v8 1 4 0 
e13= v5 − v6 1 4 0 
e14= v5 − v8 1 6 0 

 
Some remarks are due here. First there is a semantic difference between credit and 
acceptance. If two persons have the same score on income and employment, their credit 
should be the same. Otherwise the data are inconsistent. If two vertices, or edges, have 
the same score on occurrence and degree, they need not both be acceptable or non-
acceptable in a definition. Hence, the data cannot be called inconsistent then. 
Consequently a decision tree can not distinguish between them. 
 
Secondly, we have essentially two tables, one for vertices and one for edges. The 12 
attributes, mentioned before, should be split into two tables of 6 attributes. If a rule for 
the acceptance of vertices has been derived, that rule does not say anything about edges. 
However, if a rule for the acceptance of edges has been derived, that rule implies that 
certain vertices should be accepted, as an edge is just a pair of vertices. For non-
acceptance of edges the situation is different, the vertices may well be acceptable, but 
there is no relationship, although in some definition that was mentioned.  
 
Thirdly, an application of the theory to the data for vertices and to the data for edges 
yields two decision trees. As just mentioned, the results for the edges imply results for the 
vertices. Therefore the edges should be considered first and the results might be used to 
interpret the decision tree for the vertices. 
 
We can now follow the AFS theory as described in [11], involving e.g. the choice of τ, 
and ρm almost literally. The data are first transformed through the function 

imρ . 

 

imρ is obtained in the following way: 

Occurrence low, 
1mρ  

1mρ (ej) = h1 − 1
ju , h1=max{ 1

1u , 1
2u , …, 1

8u } � 
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Occurrence medium, 
2mρ  

2mρ (ej) = h2 −|a− 1
ju |, h2=max {|a− 1

ju ||j=1, 2, …, 8},a=
8

1
8

1
2

1
1 uuu +++ � �

Occurrence high, 
3mρ  

3mρ (ej) = 1
ju −h3, h3=min{ 1

1u , 1
2u , …, 1

8u }; 
 

Acceptance 
7mρ (ej)= 1, when ej is accepted; 

8mρ (ej)= 0, when 

ej is not accepted. 
 
Similarly, we can obtain 

4mρ
5mρ

6mρ . In general, for each m∈M, ρm is a function derived 

from the original data or some training examples. ρm (x) ≥ρm(y) (x, y ∈ X) if and only if 
the degree of x belonging to attribute m is greater than or equal to that of y. 
 
Here, some things deserve to be mentioned. The first one is that the impurity measure we 
used in this case is  

IN = −
N

N

v

Dv
N

N

v

p

P

p

P c

c
c

c

�
∈

2log , 

where Np = �
∈ c

c

c

Dv

N

v
P ; N

vcP =�
=

∧

||

1

)(
E

j
jv

ecNβµ ; 

Dc is the set of fuzzy terms for the decision variable, such as acceptance m7 and non- 
acceptance m8; 

βN is a fuzzy set in the EI algebra EM, and )( jeNβµ is the membership degree of training 

sample ej in node N of the decision tree, such as e.g. βN= {m2, m8}; 
E is the set of training examples, in this case consisting of 8 vertices and 14 edges. 
 
The second thing is that the method we used to select attributes of child nodes of the 
decision tree is to maximize the information gainNVi

G , based on the impurity measure 

N
Vi

G = IN−
N
iVS

I . 

 
Here N

iV
S ={(N| i

p
v )| i

p
v ∈ N

iD }; N
iD ={ i

p
v ∈ N

iD |∃ ej ∈E, )( jv
ei

p
N ∧βµ >δ}; 

N
iVS

I = �
�

∈

∈

N
i

i
p

i
p

i
p

N
i

i
p

i
p Dv

vNvN

Dv

vN
IP

P
)(

1
, 

i
pvN denotes the particular child of node N created by the use of the fuzzy attribute Vi (Vi 

= Occurrence or Degree) to split N and following the edge 
i

p
v ∈ iD ; 

iD denotes the fuzzy term for the variable Vi, e.g. iD ={Occurrence low}. 
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The third thing is the method of describing acceptance and non-acceptance with the 
nodes. We select the vc with maximum value of N

vcP .  

 
For both of the tables above, according to the value of GOcc and GDeg, first the parameter 
Degree was used to split, because GDeg is larger than GOcc for the parameter Occurrence.  
 
 
By computation, we obtain the decision trees of the combined definition graph of Figure 
4. Deg stands for “Degree” and Occ for “Occurrence”, L, M and H for “Low”, “Medium” 
and “High” respectively. χi denotes the membership degree of i. 
 
 

 
Figure 4(a): Decision tree for edges(δ=0) 

 
 
 

Deg_M 

Occ_ L Occ_H Occ_M 

 All  

F={[ Deg is high], 
         [Occ is medium]} 
I=0.9801 
PyesDeg_med, Occ_med=2.1583 
PnoDeg_med, Occ_med=1.6328 
Yes: χ1=0, χ2= χ4= 1,  
    χ8=0.0989, χ10= 0.0594 .             
 No: χ3=χ5= 0.4494,    
   χ6=0.6012, χ7= 0.0099,  
   χ9= 0.0594, χ11= 0.0042,   
   χ12=χ13= 0, χ14= 0.0594   
    

F={[ Deg is high], 
         [Occ is high]} 
I=0.9813 
PyesDeg_med, Occ_hig=0.1786 
PnoDeg_med,Occ_hig=0.1667 
Yes:χ1=0.1786,  
       χ2=χ4=χ8=χ10= 0,  
 No:χ3=χ5= χ6=0,    
       χ7= 0.1667,  
       χ9= χ11= χ12=χ13 

       =χ14= 0.  

Deg_L Deg_H 

F={[ Deg is low]}  

I=0.7338 
Pyes

Deg_low=1.0357 
Pno

Deg_low=4.2857 
Yes: χ1=0.1786, χ2=χ4= 0,  
    χ8= 0.2679, χ10= 0.5893.             
No: χ3=χ5=χ7= 0.1250     
χ6=0.0179, χ9= 0.5893, 
χ11= 0.7143,    
χ12= χ13= 1.0000,  
 χ14= 0.5893   

F={[ Deg is high]} 

I=0.9990 
Pyes

Deg_high=2.5714 
Pno

Deg_high=2.75 
Yes: χ1=0.2679, χ2=χ4= 1,  
    χ8=0.1786, χ10= 0.1250 
 No: χ3=χ5=χ7=0.5893,    
    χ6=0.7143,χ9= 0.1250, 
    χ11= 0.0179,  
    χ12=χ13= 0, χ14= 0.1250 
 

F={[ Deg is high], 
         [Occ is low]} 
I=0.9798  
PyesDeg_med, Occ_low=2.16 
PnoDeg_med, oOcc_low=1.6279 
Yes: χ1=0, χ2=χ4= 1,  
        χ8=0.1, χ10= 0.06 .             
 No: χ3=χ5= 0.4479,    
   χ6=0.6, χ7= 0.0079,  
    χ9= 0.06, χ11= 0.0043,   
    χ12=χ13= 0, χ14= 0.06   

GOcc=0.0278 
GDeg=0.0294 
 

F={[ Deg is medium]} 
I=0.9725 
Pyes

Deg_med=2.7000 
Pno

Deg_med=3.7000 
Yes: χ1=1 , χ2=χ4= 0,  
        χ8= 1, χ10= 0.7.  
No: χ3=χ5=χ7=0. 7,    
     χ6=0.1,χ9= 0.7, 
     χ11= 0.1,     
      χ12=χ13= 0,  
      χ14= 0.7 
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The fuzzy rules derived from the decision tree for edges (δ=0) are: 
 
Fuzzy rule 1: if e is in {m4}+{ m5}, then e is No.(i.e. if an edge has “Degree is low” or 
“Degree is medium” then the decision on “acceptance” is No). 
 
Fuzzy rule 2: if e is in {m6, m1}+{ m6, m2}+{ m6, m3}, then e is Yes. (i. e. if an edge has 
the properties “Degree is high and Occurrence is low” or “Degree is high and Occurrence 
is medium” or “Degree is high and Occurrence is high”, then the decision on 
“acceptance” is Yes). 
 
The fuzzy rules derived from the decision tree for vertices (δ=0) are: 
 
Fuzzy rule 3: if v is in{m5} + { m6}, then v is Yes. (i. e. if a vertex has the properties 
“Degree is medium” or “Degree is high”, then the decision on “acceptance” is Yes). 
 
Fuzzy rule 4: if v is in{m4, m1} + { m4, m2}+ { m4, m3}then v is No. (i. e. if a vertex has 
“Degree is low and Occurrence is low” or “Degree is low and Occurrence is medium” or 
“Degree is low and Occurrence is high”, then the decision on “acceptance” is No). 
 
 

        
Figure 4(b): Decision tree for vertices (δ=0) 

F={[ Deg is low]} 

I=0.9068 
Pyes

Deg_low=1.1087 
Pno

Deg_low=3.1522 
Yes: χ1=0, χ2=0.1087, 
        χ3= 0.5, χ5=0.5     
 No: χ4=1, χ6= 1,   
        χ7= 0.6522,  
        χ8=0.5 .     
 

F={[ Deg is low], 
         [Occ is low]} 
I=0.9623 
Pyes

Deg_low=0.3444 
Pno

Deg_low=1.8919 
Yes: χ1=0, χ2=0.0114,          

χ3= 0.0566,           
χ5=0.2763     

 No: χ4=0.1522, χ6= 1,   
χ7= 0.4634,χ8=0.2763. 

Occ_L Occ_H Occ_M 

Deg _M 

   All  

F={[ Deg is medium]} 
I=0.7585 
Pyes

Deg_low=2.5000 
Pno

Deg_low=1.7727 
Yes: χ1=0, χ2=0.5, 
        χ3= 1, χ5=1     
 No: χ4=0.2121,  
        χ6= 0.2121,   
        χ7= 0.3485,  
        χ8=1 .     

F={[ Deg is low], 
         [Occ is medium]} 
I=0.9629 
Pyes

Deg_low=0.3708 
Pno

Deg_low=1.5326 
Yes: χ1=0, χ2=0.0161, 
  χ3= 0.2870, χ5=0.0676     
 No: χ4=1, χ6= 0.3043,   
        χ7= 0.1606,  
        χ8=0.0676 .     

F={[ Deg is low], 
         [Occ is high]} 
I=0.5786 
Pyes

Deg_low=0.0609 
Pno

Deg_low=0.1783 
Yes: χ1=0, χ2=0.0217, 
        χ3= 0.0391, χ5=0     
 No: χ4=0.1783,  
        χ6= 0,  χ7= 0,  
        χ8=0 .     

Deg_ L Deg _H 

F={[ Deg is high]} 
I=0.1936 
Pyes

Deg_low=2.3333 
Pno

Deg_low=0.4444 
Yes: χ1=1, χ2=0.5556, 

 χ3= 0.3889,                
χ5=0.3889     

 No: χ4=0, χ6= 0,   
        χ7= 0.0556,  
        χ8=0.3889 .    

GOcc=0.0869 
GDeg=0.2973 
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We should pay attention to a fact that we can use here: when attribute Vi is used to split a 
node N, some fuzzy terms vi ∈ iD , which satisfy δµβ ≤∧ )( jv

e
i

N

 for any e∈E, are not 

used to create sub-trees.  If we set δ=0.4, then we get the decision trees in Figure 5(a) and 
5(b): 
 

 

 
 
 
 

  
 
 
 
 
We deleted the samples whose membership is less than δ . Also when we compute 

N

vcP =�
=

∧

||

1

)(
E

j
jv

ecNβµ , the E changed into the set of samples in the node. We can see that 

some trivial detailed information occurring in Figure 4(a) is filtered out and we get a 
clearer tree. We can also let the value of δ rise in order to get a more satisfactory tree 
(this means that either it can have higher accuracy for the test examples or more 
meaningful rules).  
 
Most nodes become empty now, the classification becomes clearer. So now we can 
rewrite Rule 2 and Rule 4 as: 
 

F={[ Deg is high]} 

I=0.9990 
Pyes

Deg_high=2.0000 
Pno

Deg_high=2.4821 
Yes: χ2=χ4= 1,  
 
No: χ3=χ5=χ7=0.5893,    
       χ6=0.7143. 

F={[ Deg is medium]} 
I=0.9725 
Pyes

Deg_med=2.7000 
Pno

Deg_med=3.5000 
Yes: χ1=1 ,  
        χ8= 1, χ10= 0.7.  
No: χ3=χ5=χ7=0. 7,    
        χ9= 0.7,χ14= 0.7. 
 

F={[ Deg is low]}  

I=0.7338 
Pyes

Deg_low=0.5893 
Pno

Deg_low=3.8929 
Yes: χ10= 0.5893.              
No: χ9= 0.5893,χ11= 0.7143, 
      χ12= χ13= 1.0000,  
      χ14= 0.5893.   

Deg_M 

Occ_ L 
Occ_H Occ_M 

 All  

F={[ Deg is high], 
         [Occ is medium]} 
I=0.9801 
Pyes

Deg_med, Occ_med=2.0000 
Pno

Deg_med, Occ_med=1.5000 
Yes: χ2= χ4= 1,                  
 No: χ3=χ5= 0.4494,    
   χ6=0.6012.  
 

F={[ Deg is high], 
         [Occ is high]} 
I=0.9813 
Pyes

Deg_med, Occ_hig=0.1786 
Pno

Deg_med,Occ_hig=0.1667 
Yes: ∅ 
 No: ∅ 
 

Deg_L Deg_H 

F={[ Deg is high], 
         [Occ is low]} 
I=0.9798  
Pyes

Deg_med, Occ_low=2.0000 
Pno

Deg_med, oOcc_low=1.4957 
Yes: χ2=χ4= 1,          
 No: χ3=χ5= 0.4479,    

   χ6=0.6. 

GOcc=0.0278 
GDeg=0.0294 

Figure 5(a): Decision tree for edges (δ=0.4) 
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Fuzzy rule 5: If e is in {m6, m1} + { m6, m2}, then e is Yes. (i. e. if an edge has the 
properties “Degree is high and Occurrence is low” or “Degree is high and Occurrence is 
medium”, then the decision on “acceptance” is Yes). 
 
Fuzzy rule 6: If v is in {m4, m1} + { m4, m2}, then v is No. (i. e. if a vertex has the 
properties “Degree is low and Occurrence is low” or “Degree is low and Occurrence is 
medium”, then the decision on “acceptance” is No). 
 

 
 

The decision tree for the edges of Figure 5(a), with δ=0.4, shows the following:  
 
(1) Edge e10 has the same scores, 1 and 6, as edge e9, that we gave acceptance 0, so e10 is 
taken as noise. In the case of credit we would speak of an inconsistency. So we can give 
the label of node {[Deg is low]} as that of class “NO”. 
 
(2) The node{[Deg is high], [Occ is high]} has no examples, that are in agreement with 
the original data. Almost no training example has significant values for this fuzzy set.  
 
(3) The fuzzy set of elements with medium edge-degree could not be separated, for e1 and 
e8 are in the class “Yes”. But, in fact, through observing the original data, we find a 
contradiction for e1 and e8, also they are a bit special, so we can also take them as noise. 

F={[ Deg is high]} 
I=0.1936 
Pyes

Deg_low=1.5556 
Pno

Deg_low=0 
Yes: χ1=1,     

χ2=0.5556       
 No: ∅ 

F={[ Deg is medium]} 
I=0.7585 
Pyes

Deg_low=2.5000 
Pno

Deg_low=1.0000 
Yes: χ2=0.5, 
        χ3= 1, χ5=1     
 No: χ8=1.     
 

F={[ Deg is low]} 

I=0.9068 
Pyes

Deg_low=1.0000 
Pno

Deg_low=3.1522 
Yes: χ3= 0.5, χ5=0.5     
 No: χ4=χ6= 1,   
       χ7= 0.6522,  
        χ8=0.5.     

Occ_L 
Occ_H 

Occ_M 

F={[ Deg is low], 
         [Occ is 
medium]} 
I=0.9629 
Pyes

Deg_low=0 
Pno

Deg_low=1.0000 
Yes: ∅ 
 No: χ4=1. 

 

F={[ Deg is low], 
         [Occ is high]} 
I=0.5786 
Pyes

Deg_low=0 
Pno

Deg_low=0 
Yes: ∅ 
 No: ∅ 

 

Deg_ L Deg _H 

F={[ Deg is low], 
         [Occ is low]} 
I=0.9623 
Pyes

Deg_low=0 
Pno

Deg_low=1.4634 
Yes: ∅ 
No: χ6= 1,   

χ7=0.4634. 
 

GOcc=0.0869 
GDeg=0.297

Figure 5(b): Decision tree for vertices (δ=0.4) 
 

Deg _M 

   All  
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But no matter whether they are noise or not, it did not effect our classification, because 
we take vc with maximum value of N

vcP as the label of the node. Similarly, node {[Deg is 

high], [Occ is low]} and {[Deg is high], [Occ is medium]} are also not separated, we can 
take e3, e5, and e6 as noise. Here we also notice that the examples e2 and e4 are identical, 
and also e3 and e5. e6 is quite similar to e3 and e5. 
 
For Figure 5(b), the outcome is remarkable.  
 
(1) The only noise is v8 in the fuzzy set {[Deg is medium]}. Again there is the situation 
that v5 has scores 2 and 4 and is acceptable, whereas v8 has the same scores but was held 
not to be acceptable. So we can take the label of node {[Deg is medium]} as that of class 
“Yes”. 
 
(2) The node {[Deg is low], [Occ is high]} has no examples, in agreement with the 
original data. Almost no training example has significant values for this fuzzy set. 
 

 
5. APPLYING KNOWLEDGE GRAPH THEORY 
 
We recapitulate our ideas about fuzzy concepts by stating the following definition: 
 
Definition 5: Given a set of jurors a concept is fuzzy if the word describing the concept is 
not interpreted by all jurors in the same way. 
 
Remark 1: As in knowledge graph theory a concept is a word graph, the interpretations of 
the word are graphs, these graphs may be combined into one definition graph. The 
elements of this definition graph are a set of vertices, the union of the sets of vertices of 
the graphs representing the interpretations of the jurors, and a set of links, likewise the 
union of link sets. 
 
Remark 2: The combined definition graph may be generated by all jurors. Only in that 
case the concept is not fuzzy. However, suppose that all definitions of democracy would 
yield the induced subgraph of Figure 2 on the vertex set {v1, v2, v3, v5}. Then the concept 
would not be fuzzy according to our definition, but the elements occurring may be fuzzy. 
Jurors may, for example, agree on “people” and “decisions”, but for “institutions” 
different interpretations might be given and “power” is a notoriously fuzzy concept. Also 
links may have different meaning for jurors. 
 
As an introduction to the use of membership functions in our alternative approach let us 
consider the set of values {2, 3, 5, 8}. We want to consider a value to be “low”, 
“medium” or “high”. As we tried to make clear in Section 2 this depends on the jurors, 
however, it also depends on the scale. When we consider integers from -50 to +50 we are 
inclined to call all four “medium”. If, however, the scale is from 0 to 100 all four seem 
“low”. The presence of such a scale may not be given. In that case we only have the 
jurors.  But these too may not be present. 
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We might act as jurors ourselves, e.g. say 2 and 3 are low values, 5 is a medium value 
and 8 is a high value. But we want a more objective procedure. One such procedure may 
be the following. We consider artificial jurors, that have to choose two boundaries. Let 
these boundaries be chosen between the values 2 up to 8, so from six possible values, say 
2.5, 3.5, 4.5, 5.5, 6.5, 7.5. An artificial juror now chooses two different boundary values 

from these 6 values. This means that there can be ��
�

�
��
�

�

2

6
=15 different artificial jurors. 

Unlike in our discussion of “small”, “normal” and “tall” in Section 2, where we assumed 
human jurors, giving boundary values around 150 cm and 180 cm, we have no 
information on the artificial jurors, unless we give that ourselves by making assumptions. 
 
The assumption we make here is that all artificial jurors are equally likely. The 15 
possible combinations of two boundary values are given in Figure 3 by vertical lines.  
This procedure is similar to procedures in statistical mechanics where, due to incomplete 
information of the atoms, say of a gas, sums over all possible states are considered. 
 
2 | 3|      5          8            2  3|     |5         8             2  3       |5     |     8             
2 | 3      |5          8            2  3|      5|        8             2  3       |5          |8             
2 | 3       5|         8            2  3|      5    |    8             2  3       5|     |     8 
2 | 3       5    |     8            2  3|      5        |8             2  3       5|          |8 
2 | 3       5         |8            2  3      |5|        8             2  3       5      |    |8 
 

Figure 3: 15 artificial jurors 
 
We can now count the numbers of times that a value is considered to be “low”, 
“medium” or “high”. 
 
2: 15 times “low”, 
3: 10 times “low”, 5 times “medium”, 
5: 3 times “low”, 9 times “medium”, 3 times “high”, 
8: 15 times “low”. 
 
It is now easy to define a membership function for the four values with respect to the 
three “fuzzy sets” (we will use this terminology too, having given our interpretation 
earlier). We simply consider the quotients of the counted numbers and the number 15 of 
artificial jurors. For the fuzzy set of “low” values, the membership function µlow is:  
 
µlow(2)=15/15=1, µlow(3)=10/15=2/3, µlow(5)=3/15=1/5, µlow(8)=0/15=0. 
 
Analogously we find: 
 
µmed(2)=0, µmed(3)=5/15=1/3, µmed(5)=9/15=3/5, µmed(8)=0/15=0. 
 
µhig(2)=0, µ hig (3)=0, µ hig (5)=3/15=1/5, µ hig (8)=15/15=1. 
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The most interesting value is 5 as this value has membership values that are not zero for 
all three fuzzy sets: 
 
µlow(5)=3/15=1/5, µmed(5)=9/15=3/5, µ hig (5)=3/15=1/5. 
 
Note that here the sum of membership degrees is always 1, due to our choice of 
producing them. This need not always be the case. 
 
Let us now consider the alternative procedure to the one described in Section 4. The 
method of using artificial jurors immediately yields membership values for the three 
attributes of one parameter for each element, these values sum up to 1 and allow a 
probabilistic interpretation. This is not the case in the first procedure. For two parameters 
we then have, for our example, the problem of determining membership values for all 
fuzzy sets. If µlow(ρ1, e), µmed(ρ1, e),  µhig(ρ1, e) are  these values, for element e and 
parameter ρ1, we have: 
 
µlow(ρ1, e)+ µmed(ρ1, e)+ µhig(ρ1, e)=1. 
 
Likewise we have with respect to the second parameterρ2 
 
µlow(ρ2, e)+ µmed(ρ2, e)+ µhig(ρ2, e)=1. 
 
The rather natural procedure to determine the membership values for the fuzzy sets is to 
multiply the two left hand sides and consider the 9 products of the µ ’s. So, e.g., µlow(ρ1, 
e)⋅ µhig(ρ2, e) gives the membership value for the element with respect to the fuzzy set of 
low occurrence and high degree. These 9 values sum up to 1 and allow a probabilistic 
interpretation. 
 
From here to the decision tree we now proceed as follows. Each element E will have a 
product that is highest (in the unlikely case that there are two or more equal values we 
can just choose one or carry on for each choice). This “defuzzifies” the 9 fuzzy sets as 
now each element belongs to precisely one set. We only face the problem of choosing the 
order in which ρ1and ρ2 are used for constructing the decision tree. 
 
As each element is in precisely one of the nine sets, one might think that the order in 
which the parameters are used to obtain the full decision tree is irrelevant. However, the 
goal is to find rules to separate the elements with acceptance 1 from elements with 
acceptance 0. Suppose one parameter separates into three sets and within each set only 
elements with the same acceptance occur. Then this parameter alone would be sufficient 
for our purpose. The other parameter might determine three sets in which acceptance and 
non-acceptance elements are mixed. We then prefer to use the first parameter first in the 
construction. 
 
In order to grasp this distinction mathematically we introduce the notion of  “noise”. Let 
elements be partitioned into c sets and let them have label 1or 0: let ni(1) and ni(0) denote 
the number of elements in set i with label 1 and label 0, respectively. 
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Definition 6: The noise in set i is  

ni(1) ∗ ni(0). 
 
Definition 7: The noise of a partition is  

�
=

c

i 1

ni(1) ∗ni(0). 

 
If one of ni(1) and ni(0) is zero then the noise is zero and there is perfect separation in set 
i. If the noise of a partition is zero the separation of elements with label 1 or label 0 is 
perfect. 

Note that we consider “noise” to be a number here. However, the word can also be used 
to distinguish between elements in a class. Let {1, 1, 0, 0, 0} be a class with two elements 
with label 1 and three with label 0. Then the noise in this class is 2∗3=6. But one may 
also say that the elements with label 1 form the noise in a class with primarily elements 
with label 0.  

We consider noises for crisp sets. However the notion of noise is easily extended to fuzzy 
sets. If in our small example, the membership values of the two elements with label 1 are 
µ(e1) and µ(e2) and of the three elements with label 0 are µ(e3) , µ(e4) and µ(e5) then we 
could define the noise as 

[µ(e1) + µ(e2)] ∗[ µ(e3) + µ(e4) + µ(e5)]. 

 
For crisp sets all µ are 1 and we regain the definition given. 
 
So, we partition the elements in two ways. Once we determine the partition according to 
the attributes of ρ1 and a second time according to the attributes of ρ2. Then we first 
partition according to the parameter that gives lowest noise. In the exceptional case that 
both give the same noise we choose arbitrarily. 
 
We shortly give the intermediate results of this simple procedure for our democracy 
example. For the vertices we find: 
 
v1∈(H, H), v2∈(M, M), v3, v4, v5, v6, v7, v8 ∈(L, L) 
 
where, e. g.,  (M, M) denotes the set with medium occurrence and medium degree. Both 
parameters give the same noise. So the choice between ρ1 and ρ2 is irrelevant. We find  
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for the decision tree,{v1, v2} as accepted set of vertices and {v3, v5} as noise. Note that the 
splitting on the second parameter does not give any further information. 
 
For the edges we find e1∈(H, M), e2 ,e3, e4, e5, e6 ∈ (L, H), e7 ∈( M, H), e8 ∈(L, M), e9 
,e10, e11, e12, e13, e14∈(L, L). 
 
Now the choice between ρ1 and ρ2 does give a difference. First the parameter edge-degree 
is used because it gives the lowest noise. 
 
We obtain 

 
 
for the decision tree, {e1, e8} as accepted set of  edges and {e2, e4}as noise, not separable 
from the other elements by splitting according to the attributes of ρ1, occurrence.  
 
We find as rule for acceptance of edges rule A, and as rule for acceptance of vertices rule 
B. 
 
Rule A:  If “edge-degree of e is medium”, then edge e is accepted. 
 
Rule B: If “vertex-degree of v is medium or high”, then vertex v is accepted. 

Deg_L 

Yes: e10 
No: e9, e11, e12, e13, e14  

Deg_M 

Occ_M 
Occ_L Occ_M Occ_H Occ_L Occ_H 

Deg_H 

   All  

Yes: e1, e8    

No:  φ 
  

Yes: e2, e4 
No: e3, e5,  e6, e7 

Yes: e10 

 
No: e9, e11, e12, 
       e13, e14 

Yes:φ 
 
No:φ 

Yes:φ 
 

No:φ 

Yes: e2, e4  
 
No: e3, e5, e6 

Yes:φ 
 
No: e7 
 

Yes: φ 
 
No:φ 
 

H M L 

L H M 

Yes: φ 
No: φ 

 

Yes: φ 
No: φ 

 

Yes: v3, v5 
 No: v4, v6, v7, v8 

 

   All  

Yes: v3, v5 

 

No: v4, v6, v7, v8 

Yes: v2       
   
No: φ 

Yes: v1 

 

No: φ 
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Due to the occurrence of noise only node (M, H) contains, only one, non-accepted 
element. 
 
We have discussed just one concept: “democracy”, and found a rule to determine the 
important elements of that concept. The usefulness of these rules will have to be tested on 
other examples. 
 
6. APPLICATION TO THE CONCEPT “FUZZINESS” 
 
As a summary of this paper we shortly repeat the followed alternative procedure for the 
concept “fuzziness”. That concept has led to much discussion and therefore is a fuzzy 
concept. The definitions used are given in Appendix B, together with their definition 
graphs, data survey and our, subjective, acceptance. Also the procedure of growing 
graphs according to decreasing degrees is illustrated. 
 
The example of fuzziness can be considered in three ways.  
 
First we can simply apply the rules A and B found from the “democracy” example, to the 
combined definition graph, for which the crisp sets containing the elements are  
 
 v1 ∈(H, H), v2, v6∈(M, H), v3, v4, v5, v7∈(L, L) 
e1, e2∈(H, M), e3∈(M, H), e4, e5∈( M, L), , e6∈(L, M), e7, e8,  e9, e10∈(L, L). 
 
Rules A gives acceptance for {e1, e2, e6} and hence for {v1, v2, v4, v6}. 
 
Rules B gives acceptance for {v1, v2, v6}. 
 
Secondly, we can use the example itself for deriving a decision rule, first determining our 
subjective acceptance:  
{ v1, v2, v3, v4, v6} and {e1, e2, e3, e5, e6, e8, e10} were considered essential elements of the 
definition. 
 
After calculation of the membership values we find for occurrence: 

 
{ v3, v4, v5, v7} ⊂ L                  and                               {e6, e7, e8, e9, e10} ⊂ L 
{ v2, v6} ⊂ M                                                               {e3, e4, e5} ⊂ M 
{ v1} ⊂ H,                                                                     {e1, e2} ⊂ H 
 
 For degree we find: 

 
{ v3, v4, v5, v7} ⊂ L                   and                                {e4, e5, e7, e8, e9, e10} ⊂ L, 
φ ⊂ M                                                                           {e1, e2, e6} ⊂ M 
{ v1, v2, v6} ⊂ H                                                           {e3} ⊂ H 
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Calculation of the noise makes us decide for occurrence as first parameter for the 
construction of the decision tree for edges and the choice between both paramters is 
irrelevant for vertices. Pruning the tree if no further separation is possible, this gives: 
 

 
for the vertices and, 
 

 
 
for the edges. 
 
The decision rules, read off from these trees, would be: 
 
Rule A*:  if “edge –degree of e is high or medium’’ accept the edge e. 
 

Deg_H Deg_M Deg_L 

Occ_H 

Deg_L 
Deg_M Deg_H 

Occ_L 

Occ-M 

   All 

Yes: e6, e8, e10 

 

No: e7, e9 

 

Yes: e3 , e5 

       
No: e4 

 

Yes: e1, e2 

 
No: φ 

 

Yes: e6  

  

No: φ 

  

 Yes: φ 

 
No: φ 

Yes: e8, e10  

   
No: e7, e9    

Yes: e5  

   
No: e4  

Yes: φ 

 
No: φ 

 Yes: φ 

 
No: φ 

Occ_M Occ_H Occ_L 

Deg_M 
Deg_H Deg_L 

Yes: v3, v4 

 

NO: v5, v7 

All 

Yes: v3, v4 

 

 No: v5, v7   

Yes: φ 
 

 No: φ 

Yes: v1, v2, v6 

 
No: φ 

Yes: φ 

 No:φ 

  

 Yes: φ 

 No:φ 
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Rule B*:  if “degree of v is high”, accept the vertex v. 
 
 
As third consideration we remark that the concepts involved in the graph are in excellent 
agreement with the view on fuzziness developed in this paper. 
 
Two more important results are the following. First, the use of artificial jurors to obtain 
membership values and, second, the alternative method to get at a decision tree. 
 
There are some problems we did not go into. Transforming a definition into a graph is 
called structural parsing, see Zhang[14] and Zhang and Hoede[15], where a much more 
precise treatment of the types of edges or arcs is discussed. After the accepted elements 
have been determined the graph with these elements has to be “brought under words”, 
which is called uttering, see Zhang[14]. 
 
Finally, we would like to have a measure of fuzziness of a concept. Consider the quotient 
of occurrence of E and number of definitions. If all definitions contain E, then this 
quotient is 1. We then say that E is crisp with respect to the concept. 
 
Definition 6: The fuzziness of an element E with respect to a concept is  
 
       F (E) = 1− (occurrence (E) / number of definitions) 
 
If there are n definitions and E does not occur F(E) = 1. For occurring elements the 
highest fuzziness is 1 − 1/n. 
 
Definition 7: The fuzziness of a concept C is  
      

      F(C) = �
∈CE

EF
C

)(
||

1
, where C is the set of elements, occurring in the concept. 

 
If all definitions are the same each element has fuzziness zero and C has fuzziness zero. 
If all elements occurring occur only once, each element has fuzziness 1-1/n and so has C, 
the highest value possible, approaching 1 with increasing number of definitions. The 
measure given is appropriately normed:  
 

0≤  F(C) <1 . 
 

7. DISCUSSION 
 
Summarizing the decision rules obtained we have for acceptance of edges and vertices, 
with respect to the parameter combinations (Occ, Deg): 
 
Fuzzy rule 5: e∈(L, H) or e∈(M, H) 
 
Rules A: e∈(L, M) or e∈(M, M) or e∈(H, M) 
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Rule A*: e∈(L, M) or e∈(M, M) or e∈(H, M) or e∈(L, H) or e∈(M, H) or e∈(H, H), 
 
respectively: 
 
Fuzzy rule3: v∈(L, M) or v∈(M, M) or v∈(H, M) or v∈(L, H) or v∈(M, H) or v∈(H, H) 
 
Rule B: v∈(L, M) or v∈(M, M) or v∈(H, M) or v∈(L, H) or v∈(M, H) or v∈(H, H) 
 
Rule B*: v∈(L, H) or v∈(M, H) or v∈(H, H). 
 
The rules found for determining whether an element E, an edge e or a vertex v, should be 
accepted in the definition of a concept, are not very spectacular. Accept E when it has 
medium or high scores on occurrence and degree, which is something rather obvious. 
However, it is somewhat surprising that in particular the medium edge degrees determine 
edges, that are incident with vertices that one would like to accept. 
 
If we choose a restrictive rule for acceptance, say edge-degree should be medium and 
vertex-degree should be high, we only find {e1, e8} and {v1} for the “democracy”  
example, so the graph induced by {v1, v2, v3} in Figure 2. We then do not find v5= power, 
that we, subjectively, would accept. For the “fuzziness” example, we find {e1, e2, e6} and 
{ v1, v2, v6}, so the graph induced by the vertex set {v1, v2, v4, v6}, missing out v3= 
variation, that we, subjectively, would accept as important aspect of fuzziness. 
 
An important question is how these rules should be used. A bank considering a credit for 
a single customer, should have a way to determine the attributes of the parameters 
“income” and “employment”. In case a group of customers is considered, the data of the 
members of this group could be used to determine the attributes, for example by artificial 
jurors. 
 
In the case of the analysis of some concept, the vertices and edges of the combined 
definition graph form the elements on which such an analysis can be carried out. 
 
In a future investigation we want to make an extensive comparison and generalization of 
the two ways to derive decision rules as they were presented here. Also the way of 
applying the rules to new records should be discussed in detail. 
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APPENDIX A 
 

Definitions of “democracy” 
 

1. set of methods to coordinate the decisions of persons and institutions in hierarchically 
equal positions, not influenced by the market. 

 
2. production of all that is wanted: personal rights, human welfare, collective preference. 
 
 
3. protection of minority against majority and of majority against minority, by 

horizontal spreading of political power over more institutions. 
 
4. the people being a majority and law being the decision of the people. 
 
 
5. institutional arrangement to obtain political decision, in which individuals get the 

power to decide by means of a competition for the votes of citizens. 
 
6. negotiations between institutions and persons, to obtain a decision acceptable to as 

many as possible. 
 
 
7. results of negotiations being justified by voting. 
 
8. government in which the supreme  power is vested in the people and exercised by 

them directly or indirectly through representation. 
 
 
9. voting process guaranteeing to all citizens an a priori equal representation. 
 
10. political system in which the people, not monarchs or aristocracies, rule. 
 
 
The words occurring these in 10 definitions with frequency greater than 1: 
 
v1: people: 8 
v2: decision: 4 
v3: institutions: 3 
v4: voting: 3 
v5: power: 2 
v6: majority: 2 
v7: negotiations: 2 
v8: representation: 2 
 
Links occurring between these vertices in these 10 definitions: 
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e1:v1 − v2: 3                              e2:v2 − v3: 1 
e3:v1 − v3: 1                              e4:v2 − v7: 1 
e5:v1 − v4: 1                              e6:v3 − v5: 1                            
e7:v1 − v5: 1                              e8:v3 − v7: 1 
e9:v1 − v6: 1                              e10:v4 − v8: 1 
e11:v1 − v7: 1                             e12:v5 − v6: 1 
e13:v1 − v8: 2                             e14:v5 − v8: 1. 

 
 
 

APPENDIX B 
 

Definitions of “fuzziness” or “fuzzy” 
 

1. not clear: indistinctness, the quality of being indistinct and without sharp outlines. 

2. ill-definedness, ill definition. 

3. fuzziness is about a model of human estimation of real objects. 

4. fuzziness describes the situation where the reference of an expression is not 
unambiguously determined, even when the complete context is given. 

 
 
5. complete fuzziness merely signifies that any interpretation is as likely as any other 

one. 
 
 
6. fuzziness results from lack of information about the thing being described. 
 
 
7. a fuzzy concept is a concept if which the content or boundaries of application vary 

according to content or conditions. It does have a meaning, or multiple meanings, 
which however can become clearer only through further elaboration and 
specification. 

 
8. fuzziness, though it applies primarily to what is cognitive, is a conception applicable 

to every kind of representation. A representation is vague when the reaction of the 
representing system to the represented system is not one-one, but one-many. 

 
9. All definitions have a degree of fuzziness that requires intelligent application: what 

does “planet” really mean? 
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10. a proposition is fuzzy when there are possible states of things concerning which is 
uncertain whether,  had they been contemplated by the speaker, he would have 
regarded them as excluded or allowed by the proposition. 

 
 
We distinguish, after identification,  
v1 = interpretation, v2 = concept, v3 = variation,v4 = juror, v5 = meaning, v6 = content,  
v7 = context. 
 
The 10 definition graphs then are: 
 
G1 :                                       G2 :                                 G5 : 
 
 
 
G3 :                                                             G4 : 
 
 
 
 
 
 
                
     
 
 
G6 :                                                                  G7 : 
 
 
 
  
 
 
 
 
G8 :                                                                 G9 : 
 
 
G10 :  
 
 
 
 
 
 
 

 v1  v3  v1 

 v1 

 v6 

 v2 

 v4 

 v7 

 v2 

 v3 

 v1 

 v6 

 v2  v1 

 v1 

 v3 

 v2 

 v5 

 v6 

 v1  v2   v1  v7 v5 

 v6 

 v1 

 v4 

 v2 
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The combined definition graph is  

 
 

Table A 
 Occurrence Degree Acceptance 

v1 9 11 1 
v2 6 10 1 
v3 2 2 1 
v4 2 3 1 
v5 2 2 0 
v6 4 10 1 
v7 2 2 0 

 
 
 

Table B 
 Occurrence Degree Acceptance 

e1= v1 − v2 4 13 1 
e2= v2 − v6  4 11 1 
e3= v1 − v6 3 15 1 
e4= v1 − v7 2 9 0 
e5= v4 − v6 2 9 1 
e6= v1 − v4 1 12 1 
e7= v1 − v5  1 10 0 
e8 = v2 − v3 1 10 1 
e9= v2 − v5 1 10 0 
e10 =v3 − v6  1 10 1 

 
                                                              
 
 

 v1 

 v2 

 v3 

 v4 

 v5 

 v6 

 v7 
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Using degrees to determine basic, important, central elements, we consecutively find the 
graphs 
                                          
 
G1:                  + interpretation                               G2:                                     + concept 
 
                                                      
G3:                                                + contents of example 
 
 
 
 
 
                                                                                                      + variation 
 
G4:                                                           G5: 
 
 
 
 
 
 
 
                                 + jurors                           
                                                                  + meaning 
                                                  
 
 
                                                          

                                                  + context 
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 v2    v1 
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