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Abstract

In this paper we try to combine two approaches. Btiee theory of knowledge graphs
in which concepts are represented by graphs. Ther &t the axiomatic theory of fuzzy
sets (AFS).

The discussion will focus on the idea of fuzzy aptc It will be argued that the
fuzziness of a concept in natural language is maink to the difference in interpretation
that people give to a certain word. As differerteérpretations lead to different knowledge
graphs, the notion of fuzzy concept should be deslole in terms of sets of graphs. This
leads to a natural introduction of membership vafiee elements of graphs. Using these
membership values we apply AFS theory as well estamative approach to calculate
fuzzy decision trees, that can be used to deterthmenost relevant elements of a
concept.
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1. INTRODUCTION

Knowledge graphs have been studied at the UniyasiTwente since 1982. The basic
idea is to represent words, standing for concépttabeled vertices of a graph and
connect these vertices by labeled links. The reguraph can be seen as a proposition
or as a concept itself.

For graph theory we refer to any of the many texiks, e.g. that of Bondy and Murty[1],
available on internefor detailed discussion of the labels of the liwesrefer to Zhang
[14], in which the use of knowledge graphs for naltianguage is discussed. In this
paper we will only use unlabeled edges as link$pasur purpose the labels are
irrelevant.

The axiomatic theory of fuzzy sets (AFS) has bemretbped at the Dalian Maritime
University since 1995. We refer to the paper of &unal Pedrycz [11] for an introduction
to AFS theory. In that paper also fuzzy decisieesrwere developed. We will apply
their theory to calculate some fuzzy decision tiaesder to compare the outcomes with
that of an other approach.

The concept of fuzziness was introduced by Zadahdhd has led to quite some
discussion from the side of probability theory. THomcept of fuzziness seems to be a
fuzzy concept itself. We therefore should explain own stand. We will do this in
Section 2. In Section 3 we will discuss our deifim of fuzzy concept and discuss the
concept “democracy” as an example. We will alsoashow important elements can be
found. In Section 4 we will discuss the same exampthe context of AFS theory and
show how fuzzy decision rules can be derived foemeining important elements. In
Section 5 an alternative approach is derived. kti&e 6 we will discuss the concept
“fuzzy” as illustration of the ideas developed e tearlier sections. The appendices
contain the descriptions of the definitions of tiwe studied concepts.

2. ON FUZZINESS

We consider one of the standard examples of wdtda mentioned to illustrate the idea
of fuzziness. It is the word “small”. We will conlar the height of people and want to
discuss “small”, next to “normal” and “tall”.

In our view there is no fuzziness involved inffirsstance. The word “normal” implies
that norms are used. Consider a person P and mskiat “normal height” means. The
answer of P may be that the height H is normabd# & H <= 180. If 0 < H <= 150 the
considered height is small, and if 180 < H the aered height is tall where the numbers
refer to centimeters. The concept “small” is nowlaefined and not “fuzzy” at all.

The situation changes it >, ...., R, aren personsjurors, who give n pairs of values
for determining the boundaries between “small”,rfnal "and “tall”. The two sets of
boundary values, between “small” and “normal " pesdively “normal” and “tall”, might



be integers around 150 respectively 180 and canlibeepresented by histograms , as in
Figure 1,

A
Numberg
of jurars

0 151 179 Height

Figure 1
Distribution of boundaries

Whether a person, whose height is consideredmsalt$now depends on the juror. A
basketball coach might give 190 and 210 as bounddunes! If the jurors agree on their
average values, say 151 and 179, “small” is prgcdefined again. If, however, the
person is confronted with one of the jurors, thecome gets a probabilistic character. In
a certain number a of cases the person is conditietge small. But then the quotierh
can be considered to express the probability tleperson is considered small by a juror
as well as to be the value of the membership fandbr the person with respect to the
“set of small persons.”

However, the set of small persons has not beenet&fso our discussion should lead to
the conclusion that the adjective “small” will radtvays be used by jurors, who have to

“adject” or “attribute” that word to a person. Tbencept “small” has a fuzzy character.

Objections to the concept of “fuzzy set” are untierdable.

For our further discussion it is important to ntitat people, our jurors in the example,
give different interpretations to words. That isere the fuzziness comes in! Obtaining
identical interpretations by discussions, as ususatience, in particular in natural
science and mathematics, aims at removal of theyfadzaracter. A definition that is
agreed upon describes a concept that is not fuzal, ar iscrisp.

But now we can ask ourselves whether this is alwlagsase and find out that this is
seldom the case. A striking example is “democrafty”which an internet search for
“definition of democracy” gives more than 10 milligites. In any research in which
natural language plays an important role, ofterotiitelogy to use is strongly debated, by
the very fact that most words allow different ipetations.



In the theory of knowledge graphs, a word has eesponding word graph, depending on
the interpreter, juror, who interprets the wordff@®ences in interpretation are similar to
the differences in the boundary values of our eXarfgmall”. Consequently we have to
considerdifferencesin word graphs for discussing the fuzziness of the concept named
by the word considered.

3. AKNOWLEDGE GRAPH ANALYSIS OF THE CONCEPT “DEMCRACY”

In Appendix A we have listed 10 definitions of “deanacy”, without reference to
authors, as that is of no concern considering taeynother definitions.

We can give extensive knowledge graphs for all dfindions, but that would not mark
the point we want to make. Our procedure was sirtipsy First we determined concepts
in the definitions, using our own background knalge to identify, for example,
“persons”, “people” and “citizens” and choosing Opée” as word. Then we dropped all
concepts occurring only once, which left 8 conagdeiments of “democracy”. For each of
the 10 jurors, the elements occurring in theirmgén were represented by labeled
vertices. The occurring vertices were then linkgab, unlabeled, edge whenever we
considered them linked, on interpretation of thigniteon. This then led to 10 small

graphs, we might call thedefinition graphs.

From the 10 definitions graphs a larger graph sslyaonstructed having 8 vertices and
14 edges. It is given in Figure 2.

Figure 2
Combined definition graph for “democracy”

For the curious readeri=people v,=decisionsys=institutions,v,= voting, vs=power,
V6= majority ,vz=negotiations vg= representation .



The graph in Figure 2 may be considered, by thgibs, to be “the” definition of
“democracy” and their agreement removes the fuzsiodé the concept. However, we
consider only, V2, v3 andvs to be really basic aspects of “democracy”. Eacthef10
jurors considers a concept or a relationship basiot. It isin this respect that the
concept is fuzzy.

As determining the essential aspects of a consagtextreme importance in many
instances of use of words in natural language, Wexaw focus on the question how to
determine important vertices and edges in the coetbdefinition graph. We considered
these to be the vertices and edges of the subgrdpbed by the vertex set

{v1, V2, v3, vs}. However, we would like to develop a more objeetivay of dealing, a
decisionrule.

We consider four parameters that capture some tapoaspects of the resulting
combined definition graph.

1. The number of occurrences of the vertices asaqts in the definitions, e.g.
“people” occurred in 8 definitions.

2. The number of occurrences of the links, e.glitik {v;, vo} occurred 3 times.

3. The number of links in which a vertex is involvedting into account the multiplicity
of the links.

4. The number of other links in which the two vertiods link are involved, again
taking into account the multiplicity of links.

Multiplicity of links was indicated by multiple eég in Figure 2. The other links
occurred only once. The numbers in 3 and 4 arededttex- degree andedge-degree.

One objective way to determine important elemehth@combined definition graph
would be to consider the degrees. The importanicesrare probably those that are
somehow “central”. Centrality can be implementedanious ways, here we simply take
the occurrence as even simpler measure for ceagitrdlie can extend the set of vertices
to be considered important by starting with vegioéhighest degree and gradually
adding vertices of lower degree in order of valtithe degrees. Note that only those
edges are to be added, whose both vertices bedaihg tonstructed set.

It is clear from Figure 2 that andv, are the central elements of “democracy”, the
“decisions” of “people”.

In the next section we will put this problem in dentext of axiomatic fuzzy set theory.
4. APPLYING AXIOMATIC FUZZY SET THEORY

In this section, we will shortly describe the AFedry. Then we will apply this theory to
the example of “democracy”, and derive fuzzy derisules.



In current fuzzy theories, the membership functiaresoften given by personal intuition
and the logic operations are implemented by a &irtdangular norms, shortly norms,
which are chosen beforehand and independent afripmal data and facts. The large-
scale intelligent systems in real-world applicati@me usually very large and complex,
containing such a large number of concepts thatimpossible to define the membership
functions by personal intuition and to choose #asle norm from very many kinds of
triangular norms to implement fuzzy logic systems.

In order to deal with the above discussed probl&RS (Axiomatic Fuzzy Set) theory
was firstly proposed in [3, 4] in 1995. In [5, @) mathematical properties of AFS
algebras and AFS structures have been extensiwadgtigated and discussed, and the
fuzzy theory based on AFS algebras and AFS strestuas been initially established.
Then the topological structures on the AFS algebrasAFS structures were obtained in
[7], and the preliminary combinatorial propertiésAé-S structures have been discussed
in [8].

First we introduce notations and definitions, iduoe several pertinent results
concerning and discuss the basic ideas of AFS yh&oessence, the AFS framework
supports studies on how to convert the informaitioimaining examples or databases to
the membership functions and their fuzzy logic afiens. AFS theory is made of AFS
structures which are a special kind of combinalaigect [2] and AFS algebra which is
a family of completely distributiveattices [11]. For detailed mathematical properties
of AFS algebra, see [3,6,7,5,8].

In order to study the essential nature of fuzzycepts and fuzzy logic, let

X, M be two sets. In generl is the set of crisp or fuzzy conceptsXiror

example, in “knowledge graph of democracy” ddas{m, m, ...,mg}, (where
my=occurrence low,=occurrence mediunmz=0ccurrence highmy=degree low,
ms=degree mediumms=degree highm;=acceptancayg=non-acceptance} andis the
set of 14 or 8 training samples, given respectibgiyt4 edges and 8 vertices. Let

EM’ = {XioA | AOM, idl, | is any non-empty indexing set}
EXM’ = {TinaA |alX, ADOM, ill, | is any non-empty indexing set}.

In [5, 6], an equivalence relatiddis defined orEM™ andEXM™ respectively, and we
denoteEM/R asEM andEXM'/R asEXM. For two elements, the semantics of them (or
the membership degrees they represent) are equivbtkey have relatioR:

(ZioA, 25m9B) R Lill, kI, such thaty[OByandUj0J, qI such thaB;UA,.

CioaA, YjnibB)OR= Oidl, OkOJ such thag by, ADB,, andOj0J, (Ol such that
bi0ag, BiOA,.

Definition 1: For anyimiA, 2miBiUEM,
2ioA 02098y = 2uuCu
2ioA O 250B; = ZioijnsALB;.



Here U is the union ofl andJ, for udU, C,=A, if udl and C=B,, if ulJJ. A more
convenient way to write it is

2inA + 2B = 2unuC.
(EM, O, 0) is called theel algebra overM .

Definition 2: If X andM are sets, 2is the power set dfl, 7: Xx X 2", then the triple
(M, 7, X) is called arAFSstructure if 7 satisfies the following axioms:

AL:O(Xg, X2) O XxX, 7 (X1, X2) O 7(Xq, X1)

A2:00(X1, X2), (X2, X3) LI XX X, T (X1, X2) N T (X2, X3) [ 7 (X1, X3).

Xis called theuniverse of discourse, M is called arattribute set andris called a
structure.

We can verify thatNl, z, X) is an AFS structure if for each M, 7 is defined as(x;, X))
={mmOM, (%, %) O Rn}, X, X O X. That is, for anym U z (x, X), X belongs to attribute
mto some degree and for amy1 z (X, y), the degree of belonging tanis larger than or
equal to that of. (M, 7, X) is the mathematical abstraction of the complidate
relationships among objects Xunder the attributes iWl. This implies that the
information contained in databases and human iohgtis transformed td\, z, X), from
which we can obtain the fuzzy sets and fuzzy logierations.

Theorem 1. [6] Let (M, 1, X) be an AFS structure. F8f] X, ALJ M we define
the symbol:

AB)={y | yLIX, t(x, y)UA, OxUB}, and
for any giverx(OX, we define a mapping: EM - EXM, 0Xin ALEM,

AioA)=2ioA{x}) ADEXM.
Thengy is ahomomorphism from lattice EM, [, [) to lattice EXM, [, [).

By Theorem 1, we know that, for any given condep®.in/A O EM, we get a mapping
{: X— EXM. In this way, for eaci I EM, {is Lattice-fuzzy set oX and the
membership degree &f(x 0 X) belonging to fuzzy setis Yo A({x}) A JEXM. Further,
in [8, 9], the logic operatdr(negation) is defined a8l/n=2iq ALEM,

n'=0, (DaDA{a}) . (EM, [0, 0" is called an AFS fuzzy logic system.

Now we introduce a special family of measures usetketermine which algebra
becomes norm lattice structure, such that we camezbrepresented membership
degrees to [0,1] interval representations and éatgextent preserve the information
contained in the representing fuzzy sets.

Definition 3: (Continuous case) Létbe a setXOR" andp: X R'=[0, ). pis
integrable under Lebesgue measure arjgdii<eo. S(S02%) is the set of all Borel sets.
For allAUS we define a measure m o\@r



[ pdu
m(A) =2~——
[ o

(Discrete case) LeX be a setSag-algebra orX ando: X - R'=[0, ©), 0<Xxgx0(X)<.
For anyAJS m is a measure over tbealgebraS, defined as follows:

D aP(X)
) =Eao
AT

In what follows, we define a measureby which we can conveHll algebra
membership degree to [0, 1], to preserve the infdion contained in thEll algebra to a
significant extent.

Definition 4: Let X andM be sets,Nl, 1, X) be an AFS structure ai®h o-algebra over
X. For eachaM, there exists a functiopy: X — R = [0, ), and letm, be a measure
defined by Definition 3or eachg,. Then in asemi-cognitive field (M, 1, X, S), for a
measurable fuzzy sl ALEM, we define its membership function as follows. &lbx
O X

ps A =M, AR =M, AXA)D[0L],
whereM: EXM - [0, ), for eachziDI a A UEXM, a0S and

M aA) =sur [ m, @) 0fox. DIk

Liu and Pedrycz [11] consider training examplew/imch for certain membership of
“income” and “employment” a customer of a bankiigeg credit.

This decision on “credit” is strictly analogousdor decision to see a vertex or an edge as
“acceptable” for a definition of a concept. Rementhat we want to determine the
important elements given a combined definition grapur personal decision for our
“democracy”’ example was that{ v», vs, vs} was the set of acceptable vertices. The
analogue of Table 1 in [11] now is

Table I(a): Data on vertices

Occurrence Degree Acceptance
\ 8 10 1
A 4 5 1
V3 3 4 1
\A 3 2 0
Vg 2 4 1
Vs 2 2 0
V7 2 3 0
Vg 2 4 0




Table I(b): Data on edges

Occurrence| Degree Acceptance
e=Vi— Vo 3 9 1
&=Vi— V3 1 12 1
&=Vi— Vs 1 10 0
€=Vi— Vs 1 12 1
&= Vi— Ve 1 10 0
&=Vi— V7 1 11 0
€/=Vi— Vg 2 10 0
&=Vo— V3 1 7 1
C=Vo—V7 1 6 0
€10= V3— Vs 1 6 1
e11= V3 —V7 1 5 0
€15= Va— Vg 1 4 0
€13= V5— Vg 1 4 0
€14~ V5— Vg 1 6 0

Some remarks are due here. First there is a senthfiirence between credit and
acceptance. If two persons have the same scorecome and employment, their credit
should be the same. Otherwise the data are intensi#f two vertices, or edges, have
the same score on occurrence and degree, theynoebdth be acceptable or non-
acceptable in a definition. Hence, the data cabhadatalled inconsistent then.
Consequently a decision tree can not distinguisivden them.

Secondly, we have essentially two tables, one édiices and one for edges. The 12
attributes, mentioned before, should be split imto tables of 6 attributes. If a rule for
the acceptance of vertices has been derived,uleatioes not say anything about edges.
However, if a rule for the acceptance of edgesieas derived, that rule implies that
certain vertices should be accepted, as an edgstia pair of vertices. For non-
acceptance of edges the situation is differentyémgces may well be acceptable, but
there is no relationship, although in some debnitihat was mentioned.

Thirdly, an application of the theory to the dataVertices and to the data for edges
yields two decision trees. As just mentioned, #mults for the edges imply results for the
vertices. Therefore the edges should be considest@nd the results might be used to
interpret the decision tree for the vertices.

We can now follow the AFS theory as described iij,[Ihvolving e.g. the choice af
andp, almost literally. The data are first transformirbtigh the functiorp,, .

P, is obtained in the following way:
Occurrence lowo,,

pml(q) = hl_U:jL, h]_:maX{ui, U;, SRR Ué}



Occurrence mediump,

1,1
P, (8) =hy _|a_U} |, h,=max {|a—u]? i=1, 2, ... 8},a—u1 +U2; +Ug :

Occurrence highp,,
Pr, (8) = Ui —hg, he=min{u;, uj, ..., Ug};

Acceptancep,, (€)= 1, wheng is acceptedjo,, (§)= 0, when
g is not accepted.

Similarly, we can obtairp,, o, A, - In general, for eacmIM, on is a function derived
from the original data or some training exampjgs(x) =o(y) (x, y O X) if and only if
the degree af belonging to attributenis greater than or equal to thatyof

Here, some things deserve to be mentioned. Theofiesis that thempurity measure we
used in this case is

PN PN
|N: - L|og L,
% p" T p"

IE|
N _— N . N _ .
wherep"= Y P!'; P; —Z;ﬂﬁN (&)
veOD, i=
D. is the set of fuzzy terms for the decision vagaklich as acceptante and non-
acceptancey:

B is a fuzzy set in thEl algebra EM, ancpﬁN (e;)is the membership degree of training

sampleg in nodeN of the decision treesuch as e.g?'= {my mg};
E is the set of training examples, in this case isting of 8 vertices and 14 edges.

The second thing is that the method we used tatsatgibutes of child nodes of the
decision tree is to maximize the information @lh based on the impurity measure

GN=N-1 %
Here s ={(NI+,)l+,0D"}; D" ={+,0D" [0g UE, s, (&) >8};

5\2‘ _ 1 N‘v‘p N‘v‘p
™= N‘vip Zv‘pDD‘N (P I ) !

ZvipDD,N P

N‘Vip denotes the particular child of noNecreated by the use of the fuzzy attribuigV,

= Occurrence or Degree) to spNitand following the edge&aip ub, ;

D, denotes the fuzzy term for the variablee.g.D, ={Occurrence low}.

10



The third thing is the method of describing acceptanden@n-acceptance with the
nodes. We select thé with maximum value o} .

For both of the tables above, according to the val@ 8fand G, first the parameter
Degree was used to split, beca@®& is larger tharG°for the parameter Occurrence.

By computation, we obtain the decision trees of the cordldeénition graph of Figure
4. Deg stands for “Degree” and Occ for “Occurrente’™ and H for “Low”, “Medium”

and “High” respectivelyy; denotes the membership degree of

Dec L

All

Dec M

Dec H

G°%=0.0278
GP°%=0.0294

F={[ Deg is low]}
1=0.7338

Pyeg 1"=1,0357
P ”*=4 2857

F={[ Deg is medium]}
1=0.9725
Pyes*®-"=2.7000
Po>®-m=3.7000

Yes:X;=0.1786x,=X4= 0,

F={[ Deg is high]}
1=0.9990

Pyeg ""=2 5714
Ppo "= 75

Yes:x:=1,X>=Xs= 0,

Yes:X1=0.2679 . x>=X4= 1,

Xg= 0.2679 X,0= 0.5893. Xs= 1, X10= 0.7. Xs=0.1786 X10= 0.1250
No: X3=Xs=X7= 0.1250 No: X3=Xs=X7=0. 7, NoO: X3=Xs5=X7=0.5893,
X6=0.0179 xo= 0.5893, X6=0.1Xo= 0.7, X6=0.7143xo= 0.1250,
X11= 07143, X11= Ol, X11= 00179,

X12= X1z= 1.0000, X12=X15= 0, X12=X13= 0, X14= 0.1250
X1~ 0.5893 X14= 0.7
Occ_ L

Occ_ NV Occ_F

F={[ Deg is high],
[Occis low]}

1=0.9798
PyesDeg_med, OCC_|OW:2. 16

PnoDeg_med, oOcc | ow— 1. 6279

F={[ Deg is high],
[Occ is medium]}

1=0.9801
pyesDeg.med 0ce -9 1583

PnoDeg_med, OCC_I'TEd: 1. 6328

F={[ Deg is high],
[Occ is high]}

1=0.9813
Py%Deg_med, OCC_hIg:O.1786

PnoDeg_n‘ed,Occ_hig:OI 1667

Yes: X1=0, Xo=X4= 1,
)(820.1,)(10: 0.06.

Yes:X1=0, Xo= X4= 1,
Xs=0.0989 X1~ 0.0594 .

Yesyx;=0.1786,
X2=X4=Xe=X10= 0,

No: X3=xs= 0.4479, NoO: X3=Xs= 0.4494, NO:X3=X5= X6=0,
X6=0.6,x7= 0.0079, X6=0.6012 x,= 0.0099, X7= 0.1667,
Xo—= 0.06,X11: 00043, Xo—= 0.0594,)(11: 00042, Xo= X11= X12=X13
X12=X13= 0, X14= 0.06 X12=X13= 0, X14= 0.0594 14= 0.

Figure 4(a): Decision tree for edgés()
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The fuzzy rules derived from the decision tree for ed&e8) are:

Fuzzy rule 1: if eis in {my}+{ ms}, theneis No.(i.e. if an edge has “Degree is low” or
“Degree is medium” then the decision on “acceptance’os N

Fuzzy rule 2: if eis in {me, m}+{ ms, mp}+{ me, Mg}, theneis Yes. (i. e. if an edge has
the properties “Degree is high and Occurrence is lawDegree is high and Occurrence
is medium” or “Degree is high and Occurrence is higien the decision on
“acceptance” is Yes).

The fuzzy rules derived from the decision tree for eegip=0) are:

Fuzzy rule 3: if vis in{ms} + { mg}, thenvis Yes. (i. e. if a vertex has the properties
“Degree is medium” or “Degree is high”, then the decisarfacceptance” is Yes).

Fuzzy rule 4: if vis in{my, my} + { my, mp}+ { my, mg}thenvis No. (i. e. if a vertex has
“Degree is low and Occurrence is low” or “Degree is lnvd Occurrence is medium” or
“Degree is low and Occurrence is high”, then the degisio “acceptance” is No).

All

Deg NV /

G°%=0.0869

Deg_L GP*%=0.2973

Deg F

F={[ Deg is low]}
1=0.9068

Pyes1"=1.1087
Pro ®-'"=3.1522

F={[ Deg is medium]}
1=0.7585
Pye”®-"=2.5000
Pro®8-10V=1 7727

F={[ Deg is high]}
1=0.1936
Pye@"=2.3333
Poo>-'2"=0.4444

Yes:x;=0, X,=0.1087,

Yes:X1=0, X»=0.5,

Yes:x;=1, X,=0.5556,

Xz= 0.5,X5=0.5 X3= 1,Xs=1 Xs= 0.3889,
No: xs=1, X6= 1, No: x,=0.2121, Xs=0.3889
X7= 0.6522, Xe= 0.2121, No: x4=0, Xe= 0,
Xs=0.5 . X7= 0.3485, X7= 0.05586,
Xa=1. X==0.388¢.
Occ_L\ Occ_ NV Occ F

F={[ Deg is low],
[Occ is low]}

1=0.9623

Pye”-"=0.3444

Poo %-"=1.8919

Yes:x1=0, x,=0.0114,

F={[ Deg is low],

[Occ is medium]}
1=0.9629
P,e”-?"=0.3708
Pro =1 5326
Yes:x;=0, x,=0.0161,

F={[ Deg is low],
[Occ is high]}
1=0.5786
Pyes”-'*"=0.0609
Pa>®-%=0,1783
Yes:x1=0, x,=0.0217,

X3= 0.0566, X3= 0.2870,x5=0.0676 X3= 0.0391 x5=0
X5=0.2763 No: X4=1, Xe= 0.3043, No: x4=0.1783,
No: x4=0.1522 x¢= 1, X7= 0.1606, Xe= 0, X7= 0,
X7= 0.4634x5=0.276:. Xs=0.0676 Xs=0 .

Figure 4(b): Decision tree for vertice3=Q)
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We should pay attention to a fact that we can use tvren attributev;is used to split a
nodeN, some fuzzy termg 0D, , which satisfyyﬁN ., (&) = d for anyellE, are not

used to create sub-tredbwe setd=0.4, then we get the decision trees in Figure &i(d)
5(b):

All G°*=0.0278
Deg_L Deg_F GP*%=0.029¢
\Deg_l\/
F={[ Deg is low]} F={[ Deg is medium]} F={[ Deg is high]}
1=0.7338 1=0.9725 1=0.9990
Pe’*=0 5893 Py;ewd—z 7000 Pyes9-"9"=2.0000
Poo21=3 8929 PaoD-™=3 5000 Pro *"9"=2.4821
Yes: X1~ 0.5893. Yes:X;=1, Yes:Xo=Xs=1
NO: Xo= 0.5893x:,= 0.7143, Xs= 1, X10= 0.7.
X12= X15= 1.0000, No: Xa=xs=X7=0. 7, NoO: Xs=Xs=X7=0.5893,
X14= 0.5893. Xo= 0.7X14= 0.7. Xs=0.7143.
Occ_ L
Occ_ NV Occ _F
F={[ Deg is high], F={[ Deg is high], F={[ Deg is high],
[Occ is low]} [Occ is medium]} [Occ is high]}
1=0.9798 1=0.9801 1=0.9813
Pyeg20-m O lon=3 0000 Pyeg>20-m Oce =5 0000 Pyeg 20 Ocehio=( 1786
P et 00 low=q 4957 P bea mes 0ee.mei_1 500 F’mf’e@L”“edc"’c M9=0.1667
Yes:Xo=X.=1, Yes: Xo=Xa=1, Yes:[J
No: xs=Xs= 0.4479, No: Xz=Xs= 0.4494, No: O
X6=0.6. X6=0.6012.

Figure 5(a): Decision tree for edgés0.4)

We deleted the samples whose membership is less thalso when we compute
IE|

PV'C“ :Z'uﬁNDvc (e,), theE changed into the set of samples in the node. Weeaithat
j=1

some trivial detailed information occurring in Figu(a) is filtered out and we get a
clearer tree. We can also let the valué ake in order to get a more satisfactory tree
(this means that either it can have higher accui@cthe test examples or more
meaningful rules).

Most nodes become empty now, the classificatiomines clearer. So now we can
rewrite Rule 2 and Rule 4 as:
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Fuzzy rule5: If eis in {ms, my} + { mg, mp}, theneis Yes. (i. e. if an edge has the
properties “Degree is high and Occurrence is low'Degree is high and Occurrence is
medium?”, then the decision on “acceptance” is Yes).

Fuzzy rule6: If vis in {my, my} + { my, mp}, thenvis No. (i. e. if a vertex has the
properties “Degree is low and Occurrence is low"@egree is low and Occurrence is

medium”, then the decision on “acceptance” is No).

All G°°=0.086¢
Deg _H P*9=0.297
Deg_ L Deg| M g_ G 0.297
F={[ Deg is low]} F={[ Deg is medium]} F={[ Deg is high]}
1=0.9068 1=0.7585 1=0.1936
Pye-'*"=1.0000 Pyes”-'"=2.5000 Pyes”*-'"=1.5556
Pro>*-'?"=3.1522 Pro *-'°"=1.0000 Pro =0
YES:Xz= U.5,Xs=U.5 YES X,=U.5, Yes:x;=1,
No: X4=Xe= 1, Xs= 1,Xs=1 X2=0.5556
X7= 0.6522, No: Xg=1. No: O
X8:0'5'
Occ_H
Occ_L Occ_|
F={[ Deg is low], F={[ Deg is low], F={[ Deg is low],
[Occ is low]} [Occis [Occ is high]}
I:O.96|23 medium]} 1=0.5786
Deg_low_ —
iy 1=0,9629 Prof 0
Pro =1.4634 Pyes®-2"=0 P, Peslow=q)
Yes:[O Pro_*-'"=1.0000 Yes:[
No: X6= 1, Yes:[ No: O
X7=0.4634 No: x4=1.

Figure 5(b): Decision tree for vertice®=(0.4)

The decision tree for the edges of Figure 5(a) ¥i0.4, shows the following:

(1) Edgeeiphas the same scores, 1 and 6, as eglgbat we gave acceptance 0gsgs
takenasnoise. In the case of credit we would speak of an inist@scy. So we can give
the label of node {[Deg is low]} as that of clagsO”.

(2) The node{[Deg is high], [Occ is high]} has nwaenples, that are in agreement with
the original data. Almost no training example higsificant values for this fuzzy set.

(3) The fuzzy set of elements with medium edge-gegould not be separated, éand

ggare in the class “Yes”. But, in fact, through oy the original data, we find a
contradictionfor e; andeg, also they are a bit special, so we can alsottam as noise.

14



But no matter whether they are noise or not, itrdileffect our classification, because
we takev® with maximum value oﬂDVL“ as the label of the node. Similarly, node {[Deg is

high], [Occ is low]} and {[Deg is high], [Occ is nd@um]} are also not separated, we can
takees, &5, andes as noise. Here we also notice that the exanglasde, are identical,
and alsce; andes. e;is quite similar tae; andes.

For Figure 5(b), the outcome is remarkable.

(1) The only noise isgin the fuzzy set {[Deg is medium]}. Again theretie situation
thatvs has scores 2 and 4 and is acceptable, wheséas the same scores but was held
not to be acceptable. So we can take the labedad f{Deg is medium]} as that of class
“Yes”_

(2) The node {[Deg is low], [Occ is high]} has ngamples, in agreement with the
original data. Almost no training example has digant values for this fuzzy set.

5. APPLYING KNOWLEDGE GRAPH THEORY
We recapitulate our ideas about fuzzy conceptddting the following definition:

Definition 5: Given a set of jurors a concepfugzy if the word describing the concept is
not interpreted by all jurors in the same way.

Remark 1: As in knowledge graph theory a concept is a woaglg, the interpretations of
the word are graphs, these graphs may be combit@dme definition graph. The
elements of this definition graph are a set ofigest, the union of the sets of vertices of
the graphs representing the interpretations ofuittgs, and a set of links, likewise the
union of link sets.

Remark 2: The combined definition graph may be generatedlbjyrors. Only in that
case the concept is not fuzzy. However, supposathdefinitions of democracy would
yield the induced subgraph of Figure 2 on the westt {1, V», V3, vs}. Then the concept
would not be fuzzy according to our definition, i elements occurring may be fuzzy.
Jurors may, for example, agree on “people” andii@es”, but for “institutions”

different interpretations might be given and “poWisra notoriously fuzzy concept. Also
links may have different meaning for jurors.

As an introduction to the use of membership fumgim our alternative approach let us
consider the set of values {2, 3, 5, 8}. We wantaasider a value to be “low”,
“medium” or “high”. As we tried to make clear in ®n 2 this depends on the jurors,
however, it also depends on the scale. When wademistegers from -50 to +50 we are
inclined to call all four “medium”. If, however, ¢hscale is from 0 to 100 all four seem
“low”. The presence of such a scale may not bergilrethat case we only have the
jurors. But these too may not be present.

15



We might act as jurors ourselves, e.g. say 2 aar@ Bow values, 5 is a medium value
and 8 is a high value. But we want a more objegiroeedure. One such procedure may
be the following. We consider artificial jurorsatthave to choose two boundaries. Let
these boundaries be chosen between the valueso28ygo from six possible values, say
2.5, 3.5, 4.5, 5.5, 6.5, 7.5. An artificial jura»wm chooses two different boundary values

from these 6 values. This means that there ¢ n29315 different artificial jurors.

Unlike in our discussion of “small”, “normal” andall” in Section 2, where we assumed
human jurors, giving boundary values around 15Gooh180 cm, we have no
information on the artificial jurors, unless we g@ithat ourselves by making assumptions.

The assumption we make here is that all artificiedrs are equally likely. The 15
possible combinations of two boundary values arvergin Figure 3 by vertical lines.

This procedure is similar to procedures in stattmechanics where, due to incomplete
information of the atoms, say of a gas, sums olg@oasible states are considered.

23] 5 8 23 |58 23 |5 | 8
213 |5 8 23 5|8 23 |5 I8
213 5 8 23 Pp 8 23 5 | 8
2|3 5 | 8 23 58 23 5 ki
2|3 5 I8 23 |58 23 5 | |8

Figure 3: 15 artificial jurors

We can now count the numbers of times that a vialaensidered to be “low”,
“medium” or “high”.

2: 15 times “low”,

3: 10 times “low”, 5 times “medium”,

5: 3 times “low”, 9 times “medium”, 3 times “high”,

8: 15 times “low”.

It is now easy to define a membership functiontti@r four values with respect to the
three “fuzzy sets” (we will use this terminologytdaving given our interpretation

earlier). We simply consider the quotients of tbarded numbers and the number 15 of
artificial jurors. For the fuzzy set of “low” valsgthe membership functiquy,, is:

Hiow(2)=15/15=1 Lhow(3)=10/15=2/3 thow(5)=3/15=1/5 L4ow(8)=0/15=0.
Analogously we find:
HUmed2)=0, Limed3)=5/15=1/3 fined 5)=9/15=3/5 Limed8)=0/15=0.

,Llhig(Z):O,,Uhig (3)20,,Uhig (5):3/15:1/5,Uhig (8)=15/15=1.
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The most interesting value is 5 as this value hasbership values that are not zero for
all three fuzzy sets:

Liow(5)=3/15=1/5 Lhned5)=9/15=3/5 f1iq (5)=3/15=1/5.

Note that here the sum of membership degrees myald, due to our choice of
producing them. This need not always be the case.

Let us now consider the alternative procedure éootie described in Section 4. The
method of using artificial jurors immediately yisldhembership values for the three
attributes of one parameter for each element, thases sum up to 1 and allow a
probabilistic interpretation. This is not the caséhe first procedure. For two parameters
we then have, for our example, the problem of deiteng membership values for all
fuzzy sets. fiow(P1, €), tmedP1, €), Lhig(P1, €) are these values, for elemerdnd
parametep;, we have:

How(P1, €)+ tmedP1, €)F Lhig(P1, €)=1.

Likewise we have with respect to the second paramet

How(P2, €)F Lmed P2, €)F Lhig(P2, €)=1.

The rather natural procedure to determine the meshlpevalues for the fuzzy sets is to
multiply the two left hand sides and consider the&lucts of the/’s. So, e.g. Liow(p1,
e)Liig(P2, €) gives the membership value for the element vatpect to the fuzzy set of
low occurrence and high degree. These 9 valuesupuim 1 and allow a probabilistic
interpretation.

From here to the decision tree we now proceedlsv® Each elemeri will have a
product that is highest (in the unlikely case thate are two or more equal values we
can just choose one or carry on for each choida} "Hefuzzifies” the 9 fuzzy sets as
now each element belongs to precisely one set. Myeface the problem of choosing the
order in whichpi;andp, are used for constructing the decision tree.

As each element is in precisely one of the ning, ggte might think that the order in
which the parameters are used to obtain the fallsdn tree is irrelevant. However, the
goal is to find rules to separate the elements adtteptance 1 from elements with
acceptance 0. Suppose one parameter separatézegsets and within each set only
elements with the same acceptance occur. Thepdhggneter alone would be sufficient
for our purpose. The other parameter might detegrtiiree sets in which acceptance and
non-acceptance elements are mixed. We then pretexetthe first parameter first in the
construction.

In order to grasp this distinction mathematicalky mtroduce the notion of “noise”. Let

elements be partitioned into ¢ sets and let theve kabel 1or O: lebj(1) andn;(0) denote
the number of elements in getith label 1 and label O, respectively.

17



Definition 6: Thenoiseinseti is
ni(l) Dni(O).

Definition 7: Thenoise of a partition is

C

Z ni(l) D’],(O)

i=1

If one ofnj(1) andn;(0) is zero then the noise is zero and there ifepeseparation in set
i. If the noise of a partition is zero the separatbelements with label 1 or label O is
perfect.

Note that we consider “noise” to be a number hdomavever, the word can also be used
to distinguish between elements in a class. Lell{D, 0, 0} be a class with two elements
with label 1 and three with label 0. Then the naisthis class is [2B=6. But one may

also say that the elements with label 1 form theenm a class with primarily elements
with label O.

We consider noises for crisp sets. However theonaif noise is easily extended to fuzzy
sets. If in our small example, the membership \&ahfdhe two elements with label 1 are

H(e1) and(e;) and of the three elements with label 0 &) , 1(e,) and(es) then we
could define the noise as

[14er) + p(e2)] [ fa(es) + ph(es) + fA(65)].

For crisp sets ajlf are 1 and we regain the definition given.

So, we partition the elements in two ways. Oncealatermine the partition according to
the attributes op; and a second time according to the attributgs dthen we first
partition according to the parameter that givesdsiwoise. In the exceptional case that
both give the same noise we choose arbitrarily.

We shortly give the intermediate results of thme procedure for our democracy
example. For the vertices we find:

VlD(H’ H)’ VZD(M’ M)a V3, V4, V5, V6, V7, Vg D(L; L)

where, e. g., (M, M) denotes the set with mediwtuorence and medium degree. Both
parameters give the same noise. So the choice &epyvandp; is irrelevant. We find

18



All

L M H
Yes: Vs, Vs Yes: v, Yes:v;
NO: Vg, Vg, V7, Vg No: ¢ No: ¢
| M H
Yes:vs, Vs Yes: ¢ Yes:¢
NO: V4, Ve, V7, Vg No: @ No: @

for the decision treey, v»} as accepted set of vertices ang, {5} as noise. Note that the
splitting on the second parameter does not giveaiyer information.

For the edges we finel(O(H, M), &, ,63, &4, 65, €51 (L, H), e, 0( M, H), egI(L, M), &
€10, €11, €12, €13, €1400(L, L).

Now the choice betwegm andp,does give a difference. First the parameter edgeede
is used because it gives the lowest noise.

We obtain
All
Deg L
9 Deg M Deg_F
Yes: ey Yes:e, 6 Yes.e, &
No: 691 €11, €12, el3l €14 NO: w No: e3| 651 %1 €
Occ L Qce H Occ_L Occ_M Occ H
Occ M -
Yesl ey Yes¢g Yes¢ Yes e, e Yesg Yes: ¢
No: &, €11, €12, No: @ No:@ NO: €, &, & No: & No: @
€13, €14

for the decision tree g, es} as accepted set of edges aeg §}as noise, not separable
from the other elements by splitting accordinghte attributes op,, occurrence.

We find as rule for acceptance of edges rule A,amrlle for acceptance of vertices rule
B.

RuleA: If “edge-degree of is medium”, then edgeis accepted.

RuleB: If “vertex-degree o¥ is medium or high”, then vertexis accepted.
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Due to the occurrence of noise only node (M, H)tams, only one, non-accepted
element.

We have discussed just one concept: “democracy’famd a rule to determine the
important elements of that concept. The usefuloésizese rules will have to be tested on
other examples.

6. APPLICATION TO THE CONCEPT “FUZZINESS”

As a summary of this paper we shortly repeat thevied alternative procedure for the
concept “fuzziness”. That concept has led to musbussion and therefore is a fuzzy
concept. The definitions used are given in Appemjitogether with their definition
graphs, data survey and our, subjective, acceptéte® the procedure of growing
graphs according to decreasing degrees is illestrat

The example of fuzziness can be considered in thegs.

First we can simply apply the rules A and B fourahf the “democracy” example, to the
combined definition graph, for which the crisp satataining the elements are

vi(H, H), vz, ve[I(M, H), V3, V4, Vs, v7O(L, L)
e, &0(H, M), es0(M, H), &, es0( M, L), , es0(L, M), &7, es, &, ero0(L, L).

Rules A gives acceptance fax{e,, es} and hence for ¥i, Vo, V4, Ve}.

Rules B gives acceptance for {2, Ve}.

Secondly, we can use the example itself for degiardecision rule, first determining our
subjective acceptance:

{v1, Vo, V3, V4, Vg} and {ey, e, &3, &, 5, €3 €10} Were considered essential elements of the

definition.

After calculation of the membership values we fiodoccurrence:

{V3, V4, Vs, V7} 0L and {e& €7, €g, &, elO} 0L
{V2, VG} 0M Eg, €y, 95}D M
{vi} O H, €, e} H

For degree we find:

{V3, V4, V5, V7} |:| L and {e4a efu e71 33! 331 elO} |:| L1
pO M e, &, e} O M
{v1, vo, vg} O H et 0 H
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Calculation of the noise makes us decide for oetwe as first parameter for the
construction of the decision tree for edges andhiméce between both paramters is
irrelevant for vertices. Pruning the tree if nothar separation is possible, this gives:

All
Deg_L Deg_F
Deg_N
Yes:ivs, vy Yes: ¢ Yes:vy, Vo, Ve
No: Vs, V7 No: ¢ No: ¢
Occ_L O¢c_M Occ_F
Yes:Vs, Vs Yes: @ Yes: @
NO: Vi, Vs No: @ No: @
for the vertices and,
All
Oce L Occ H
Occ-M
Yes: e, €, €10 Yes:es, & Yes:e;, &
No: €7, & No: e, No: @
Deg L
Deg M| Deg | Deg_L| Deg_ Deg_F
Yes:eg, €0 Yes:e; Yes:¢ Yes: g Yes: ¢ Yes: ¢
No: &, & No: ¢ No: ¢ No: e, No: ¢ No: ¢

for the edges.
The decision rules, read off from these trees, dbel

Rule A*: if “edge—degree oéis high or medium” accept the edge
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Rule B*: if “degree ofvis high”, accept the vertex
As third consideration we remark that the conceptslved in the graph are in excellent
agreement with the view on fuzziness developetisgaper.

Two more important results are the following. Fithe use of artificial jurors to obtain
membership values and, second, the alternativeadéthget at a decision tree.

There are some problems we did not go into. Tramsfg a definition into a graph is
calledstructural parsing, see Zhang[14] and Zhang and Hoede[15], wherechmore
precise treatment of the types of edges or amds@sissed. After the accepted elements
have been determined the graph with these elerhast® be “brought under words”,
which is calledittering, see Zhang[14].
Finally, we would like to have a measure of fuzgmef a concept. Consider the quotient
of occurrence oE and number of definitions. If all definitions cairi E, then this
guotient is 1. We then say tHais crisp with respect to the concept.
Definition 6: Thefuzziness of an elemenE with respect to a concept is

F €) = 1- (occurrencek) / number of definitions)

If there aren definitions andE does not occur E) = 1. For occurring elements the
highest fuzziness is4 1/n.

Definition 7: Thefuzziness of a concepC is

FC) = |%|Z F(E), whereC is the set of elements, occurring in the concept.
EOC

If all definitions are the same each element hasifiess zero an@ has fuzziness zero.
If all elements occurring occur only once, eaclmelet has fuzziness 1rland so ha€,
the highest value possible, approaching 1 witheasing number of definitions. The
measure given is appropriately normed:

0< FC)<1.
7. DISCUSSION

Summarizing the decision rules obtained we havadoeptance of edges and vertices,
with respect to the parameter combinations (Ocg)De

Fuzzy rule 5eJ(L, H) oreJ(M, H)

Rules A:elJ(L, M) or elJ(M, M) or elJ(H, M)
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Rule A': eJ(L, M) or ed(M, M) or edJ(H, M) ore(L, H) ored(M, H) or elJ(H, H),
respectively:

Fuzzy rule3v(L, M) or vCJ(M, M) or viJ(H, M) orv(L, H) orviJ(M, H) orvJ(H, H)
Rule B:vO(L, M) or vJ(M, M) or v(J(H, M) or vI(L, H) orv(l(M, H) or v(H, H)
Rule B: vO(L, H) orvi(M, H) or viJ(H, H).

The rules found for determining whether an elenigrain edge or a vertex, should be
accepted in the definition of a concept, are noy gpectacular. Accefd when it has
medium or high scores on occurrence and degreehvidnsomething rather obvious.
However, it is somewhat surprising that in paréeuhe medium edge degrees determine
edges, that are incident with vertices that onelavbke to accept.

If we choose a restrictive rule for acceptance,esiye-degree should be medium and
vertex-degree should be high, we only fired, fs} and {v1} for the “democracy”
example, so the graph induced lwy, {», vs} in Figure 2. We then do not find= power,
that we, subjectively, would accept. For the “fueds” example, we finde{, e, es} and
{v1, V2, 6}, so the graph induced by the vertex sat {», Va, Ve}, missing outvs=
variation, that we, subjectively, would acceptrapdrtant aspect of fuzziness.

An important question is how these rules shoulddel. A bank considering a credit for
a single customer, should have a way to deterrhimattributes of the parameters
“income” and “employment”. In case a group of castos is considered, the data of the
members of this group could be used to determieatinibutes, for example by artificial
jurors.

In the case of the analysis of some concept, thecge and edges of the combined
definition graph form the elements on which suclaaalysis can be carried out.

In a future investigation we want to make an extensomparison and generalization of

the two ways to derive decision rules as they weesented here. Also the way of
applying the rules to new records should be dismligs detail.
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9.

APPENDIX A

Definitions of “democracy”

. set of methods to coordinate the decisions of parand institutions in hierarchically

equal positions, not influenced by the market.

. production of all that is wanted: personal righisman welfare, collective preference.

. protection of minority against majority and of mtjp against minority, by

horizontal spreading of political power over manstitutions.

the people being a majority and law being the decisf the people.

. institutional arrangement to obtain political démis in which individuals get the

power to decide by means of a competition for thkes of citizens.

negotiations between institutions and personsbtaio a decision acceptable to as
many as possible.

results of negotiations being justified by voting.

government in which the supreme power is vestetarpeople and exercised by

them directly or indirectly through representation.

voting process guaranteeing to all citizens an@igrqual representation.

10. political system in which the people, not monareharistocracies, rule.

The words occurring these in 10 definitions witkguency greater than 1:

V1.
\o.
Va.
Vy4.
Vs.
V6.
V7.
V.

people: 8
decision: 4
institutions: 3
voting: 3

power: 2
majority: 2
negotiations: 2
representation: 2

Links occurring between these vertices in thesdefiitions:
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e vi—Vo: 3 &Vo—Va 1l
evi—va 1 ervo—v7 1
esvi—Va l €:Va— Vs 1
ervi—Vs 1 eva—Vv7 1
&Vi—Ve 1 €oVa— Vg 1
envi—vei 1 €2Vs— Vg 1
€13:V1— Vg 2 €14Vs— Vg 1.
APPENDIX B

Definitions of “fuzziness” or “fuzzy”

. hot clear: indistinctness, the quality of beingigtidct and without sharp outlines.
. ill-definedness, ill definition.

. fuzziness is about a model of human estimatioralf objects.

. fuzziness describes the situation where the referehan expression is not

unambiguously determined, even when the completiexgbis given.

. complete fuzziness merely signifies that any imetgtion is as likely as any other
one.

. fuzziness results from lack of information abouw thing being described.

. afuzzy concept is a concept if which the conterticundaries of application vary
according to content or conditions. It does hawgeaning, or multiple meanings,
which however can become clearer only through &srétaboration and
specification.

. fuzziness, though it applies primarily to what agnitive, is a conception applicable
to every kind of representation. A representatsowague when the reaction of the
representing system to the represented systent aeeone, but one-many.

. All definitions have a degree of fuzziness thauress intelligent application: what
does “planet” really mean?
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10. a proposition is fuzzy when there are posstates of things concerning which is
uncertain whether, had they been contemplatetidogpeaker, he would have
regarded them as excluded or allowed by the proposi

We distinguish, after identification,
vi = interpretationy, = conceptys = variationy, = juror,Vvs = meaningys = content,
V7 = context.

The 10 definition graphs then are:

@ *®  *®
Gs: QP G: @_@
©O-0  § ©
®
“o-—© Y900
/

Gs:

©
-9
®
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The combined definition graph is

Table A
Occurrencg Degree | Acceptance

! 9 11 1

vy 6 10 1

V3 2 2 1

Vs 2 3 1

Vg 2 2 0

Vs 4 10 1

V7 2 2 0

Table B
Occurrence Degree | Acceptanc

e=vi—\, 4 13 1
&=V — Vg 4 11 1
&=Vi— Vg 3 15 1
e=Vi— VW 2 9 0
&= Vi— Vg 2 9 1
&=Vi— Vs 1 12 1
e=Vi— Vs 1 10 0
B=Vo—V\3 1 10 1
&= \Vo— Vs 1 10 0
€1 0=V3— Vg 1 10 1
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Using degrees to determine basic, important, cealieanents, we consecutively find the
graphs

G @ + interpretation G @ — @ + concept
Gz @ centents of example
+ variation

o
®
— 2
/
Ol

©
oF

+ jurors

G/

+ meaning

\
()

context
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