
Abstract Grammars Based on Transductions

Peter R.J. Asveld

Department of Computer Science, Twente University of Technology
P.O. Box 217, 7500 AE Enschede, The Netherlands

We study an abstract grammatical model in which the effect (or application) of a produc-
tion — determined by a so-called transduction — plays the main part rather than the
notion of production itself. Under appropriately chosen assumptions on the underlying
family T of transductions, we establish elementary, decidability, and complexity proper-
ties of the corresponding family L (T) of languages generated by T -grammars. These
results are special instances of slightly more general properties of so-called Γ-controlled
T -grammars, since regular control does not increase the generating power of T -
grammars. In a Γ-controlled T -grammar we restrict the iteration of T -transductions to
those sequences of transductions that belong to a given control language, taken from a
family Γ of control languages.

1. Introduction

During the last decade some abstract grammatical models have been introduced, trying to provide

a general framework in which all (or, at least, a considerable part of all) existing concrete gram-

mars and rewriting systems are particular instances of these abstract models. The most well-

known of these abstract models include grammar schemata, grammar forms, L forms, selective

substitution grammars, and abstract (family of) grammars.

The notion of grammar scheme originates from [14] in which to each recursively enumer-

able trio K (i.e., to each r.e. language family closed under nondeterministic finite state transduc-

tions) a family of phrase structure grammars that generates K is associated. In context-free

grammar [11] and L [21] form theory one mainly deals with normal forms for restricted classes of

rewriting systems, viz. for (subfamilies of) context-free grammars and several types of L (or Lin-

denmayer) systems, respectively; cf. [33] and the references mentioned there. Selective substitu-

tion grammars have been motivated as a unifying approach to many different ways of rewriting

strings [25, 20]. This model emphasizes the mechanism of the actual rewriting process, i.e., the

details of transforming strings into other strings according to restrictions on the type and/or the

application of the productions. This contrasts with the concept of abstract (family of) grammars

[16] in which the notion of production as well as the mode of application are treated as free vari-

ables.

The abstract model that we study in the present paper shares this latter feature. But it

emphasizes the effect of applying (abstract) productions without referring to productions them-

selves. More concretely, applying a production π is modeled by a mapping τπ (called transduc-

tion) from strings to sets of strings, such that τπ(x) is the set of all strings obtainable from the

word x by applying π in some legitimate fashion. In dealing with parallel rewriting systems like

ETOL systems π refers to a set of productions, called table, instead of a single production. Now

by definition, τπ characterizes completely the application of the production π. And since we res-

trict our attention to the effect of productions only, we need not refer to π at all, in contradistinc-

tion to the proposal in [16] where (π,τπ) is taken as principal entity.

2 P.R.J. Asveld

In our abstract approach a grammar G = (V, Σ,U,S) consists of an alphabet V, a terminal

alphabet Σ, an initial symbol S, and a finite set U of transductions. We assume that these

transductions are taken from a given family T of transductions, and therefore we call G a T -

grammar. The language L (G) generated by G consists of all terminal words obtainable by apply-

ing all sequences u from U ∗ to S. Equivalently, in order to obtain L (G) we iterate the transduc-

tions from U, and at the end we intersect with Σ∗ .

The iteration of transductions or mappings has been investigated previously in computer

science; it has its roots in the work of Fleck [13], who studied pattern representation, and Wood

[32], who was the first to consider iterated transductions as a grammatical concept in its own

right. Continuations of this latter theme are [23, 5, 24] and, of course, the present paper.

Returning to our abstract model, a T -grammar is in essence an ETOL system in which the

finite substitutions are replaced by T -transductions; cf. [32]. For T equal to some specific

(sub)families of generalized sequential machine mappings this model has been studied in [13, 32,

23, 5, 24]. Analogous to the notion of Γ-controlled ETOL system [17, 22, 2] we introduce the

concept of Γ-controlled T -grammar: it consists of a T -grammar G = (V, Σ,U,S) provided with a

control language C over U, taken from a given family Γ. The language L (G;C) generated by

such a controlled grammar consists of all terminal strings that can be obtained from S by applying

those sequences of T -transductions that belong to the control language C. Formal definitions and

examples are given in Section 2.

In Section 3 we establish some elementary properties of (Γ-controlled) T -grammars; viz.

the fact that regular control does not increase the generating capacity of T -grammars, and that the

number of T -transductions in such a grammar may be reduced to two or to one depending on the

properties of T . We also show inclusion relations between the families Γ of control languages,

OUT(T) of output languages of T -transductions, L (T) of languages generated by T -grammars,

and L (T ;Γ) of languages generated by Γ-controlled T -grammars.

Section 4 is devoted to the inclusion of L (T) and L (T ;Γ) in the family of recursively enu-

merable languages and in the family of recursive languages, and to the decidability of the empti-

ness problem for (Γ-controlled) T -grammars.

In Section 5 we establish upper bounds for the space and time complexity of the member-

ship problem for L (T) and L (T ;Γ), where T is a family of space- or time-bounded transduc-

tions, respectively.

Finally, Section 6 consists of concluding remarks, suggestions for further research, and

open problems.

Some of the main results of this paper have been announced in [7].

2. Definitions

For all unexplained terminology from formal language theory we refer to the first few chapters of

standard texts like [1, 18, 19, 27]. Some basic facts that we need from L systems theory and

AFL-theory can be found in [26] and [15], respectively.

Crucial in our approach to introduce an abstract grammar is the notion of transduction.

Definition 2.1. Let V be an alphabet and let P (V ∗) denote the power set of V ∗ . A transduction τ
over V is a function τ: V ∗ →P (V ∗) extended to languages by τ:P (V ∗)→ P (V ∗) with

Abstract Grammars Based on Transductions 3

τ(L) = ∪ {τ(x) c x ∈ L} for each language L over V. `

From ∅∈ P (V ∗) and Definition 2.1 it follows that τ(∅) = ∅ . This property together with

L ∪ ∅ = ∅ ∪ L = L and L ∅ = ∅ L = ∅ for each language L over V enables us to let ∅ perform

the part of blocking symbol (rejection symbol [26], or dead alley symbol) in order to abort

undesirable sequences of rewriting steps; cf. [22]. Viz. we define τ(x) = ∅ in case x should never

yield a (terminal) string by an application of τ rather than τ(x) = F cx c as usually in L systems

theory [26], where F is a new nonterminal symbol such that τ preserves each occurrence of F in

any string, and cx c is the length of the string x.

Definition 2.2. Let f be an n-ary operation on languages. A family T of transductions is closed

under (composition to the left with) f, if for all T -transductions τ1 , . . . , τn over some alphabet V,

there exists a T -transduction τ over V such that for all x in V ∗ , τ(x) = f (τ1(x),...,τn(x)). `

Examples of such operations which we will use in the sequel are isomorphism (‘‘renaming

of symbols’’), union, and intersection with regular languages.

In many proofs we will construct a new grammar GN from an old one GO by attaching a

finite amount of information to the symbols used in GO . Then the transductions in GN over this

extended alphabet will be defined in terms of the old transductions of GO using closure under iso-

morphism. Finally, we strip this additional information by applying an isomorphism in order to

obtain words over the original alphabet. Therefore we make the following basic assumption

throughout this paper.

Assumption 2.3. Henceforth T is a family of transductions that

(1) is closed under (composition to the left with) isomorphisms; cf. Definition 2.2,

(2) is closed under composition to the right with isomorphisms, i.e., for each T -transduction τ1

over V 1 and each isomorphism i : V → V 1 there exists a T -transduction τ over V such that

τ(x) = τ1(i (x)) for each x in V ∗ , and

(3) contains for each V the identity mapping over V. `

Notice that from Assumption 2.3 it follows that T also contains all isomorphisms.

We are now ready for the main formal definition.

Definition 2.4. Let T be a family of transductions. A T -grammar G = (V, Σ,U,S) consists of

g an alphabet V,

g a terminal alphabet Σ (Σ ⊆ V),

g an initial symbol S (S ∈ V − Σ), and

g a finite set U of T -transductions over V.

The language L (G) generated by G is defined by

L (G) = U ∗ (S) ∩ Σ∗ = (∪ {τp(. . . (τ1(S)) . . .) c p ≥ 0; τi ∈ U, 1 ≤ i ≤ p}) ∩ Σ∗ .

Let Γ be a family of languages. A Γ-controlled T -grammar (G;C) = (V, Σ,U,S,C) is a T -

grammar (V, Σ,U,S,) provided with a control language C (with C ⊆ U ∗) from Γ. The language

L (G;C) generated by (G;C) is defined by

L (G;C) = C (S) ∩ Σ∗ = (∪ {τp(. . . (τ1(S)) . . .) c τ1 . . . τp ∈ C}) ∩ Σ∗ .

4 P.R.J. Asveld

L (T) [L (T ;Γ), respectively] is the family of languages generated by [Γ-controlled] T -

grammars, and L (T ;m) [respectively L (T ;Γ;m)] is the subfamily of languages generated by [Γ-

controlled] T -grammars that possess at most m (m ≥ 1) T -transductions. `

Examples 2.5. (1) Let HOM and FINSUB be the families of all homomorphisms and of all

finite substitutions, respectively. Then L (HOM) = EDTOL and L (FINSUB) = ETOL. For Γ-

controlled variations, see e.g. [2, 3, 10, 17, 22].

(2) Let K be a family of languages closed under isomorphism, and containing all singleton

languages. A (nondeterministic) K -substitution or nK -substitution σ is a mapping σ : V → K
extended to words over V by σ(λ) = {λ} (λ is the empty word), σ(α1 ...αn) = σ(α1)...σ(αn), αi ∈ V

(1 ≤ i ≤ n) and to languages over V by σ(L) = ∪ {σ(x) c x ∈ L} for each L ⊆ V ∗ . A deterministic

K -substitution or dK -substitution σ is a mapping σ : V → K too. But it is extended to words x

over V by

σ(x) = {h (x) c h is a homomorphism with h (α)∈σ (α), α∈ V},

and to languages L over V by σ(L) = ∪ {σ(x) c x ∈ L}.

Let dK -SUB [nK -SUB] denote the family of all [non]deterministic K -substitutions. Then

L (dK -SUB) = η(K) [respectively, L (nK -SUB) = H (K)], i.e., the family of languages gen-

erated by [non]deterministic K -iteration grammars. Cf. [2, 3, 4, 8, 9], where the Γ-controlled

case is also considered.

(3) A [λ-free] nondeterministic generalized sequential machine with accepting states or NGSM

[λNGSM] τ = (Q, ∆1 ,∆2 ,δ,q 0 ,QF) consists of

g a set of states Q with initial state q 0 , and a set QF of final states (q 0 ∈ Q; QF ⊆ Q),

g an input alphabet ∆1 and an output alphabet ∆2 ,

g a function δ from Q × ∆1 into the finite subsets of Q × ∆2
∗ [Q × ∆2

+].

The function δ is extended from Q × ∆1
∗ into the finite subsets of Q × ∆2

∗ by

(i) δ(q, λ) = {(q, λ)},

(ii) δ(q,x α) = {(q ′,y) c y = y 1y 2 and for some q ′′∈ Q, (q ′′,y 1)∈δ (q,x) and (q ′,y 2)∈δ (q ′′,α)},

where q ∈ Q, α∈∆ 1 , x ∈∆ 1
∗ .

Each [λ-free] NGSM τ induces a transduction τ:P (∆1
∗)→ P (∆2

∗), called [λ-free] NGSM mapping,

defined by

g τ(x) = {y c (q,y)∈δ (q 0 ,x) for some q ∈ QF}, for each word x in ∆1
∗ , and

g τ(L) = ∪ {τ(x) c x ∈ L}, for each language L over ∆1 .

A NGSM [λNGSM] τ is called deterministic or DGSM [λDGSM] if δ is a function from

Q × ∆1 into Q × ∆2
∗ [Q × ∆2

+]. By NGSM [λNGSM] we also denote the family of [λ-free] NGSM

mappings, and similarly we use DGSM [λDGSM] in the deterministic case. The language fami-

lies L (T ;Γ) and L (T) with T equal to λNGSM, λDGSM, NGSM, and DGSM have been inves-

tigated in [13, 32, 23, 5, 24, 12]; see [24] in particular, where e.g. the family of context-free

languages is characterized by L (T) for some family T of restricted NGSM mappings. `

All the examples in 2.5 are transductions in the sense of Definition 2.1, and they all satisfy

Assumption 2.3.

Abstract Grammars Based on Transductions 5

In proofs we will use the following convention. If we define a transduction τ by means of n

mutually exclusive cases, characterized by n predicates P 1(x), . . . , Pn(x), then we assume that

for the usually omitted (n +1)st otherwise case when none of the Pi(x) is true, we have τ(x) = ∅ .

For example (n =2), when we write

τ(x) = X 1 if P 1(x)

τ(x) = X 2 if P 2(x)

we tacitly assume that

τ(x) = ∅ otherwise.

We consider two languages to be equal if they only differ at most by the empty word.

Equality of language families is defined correspondingly.

3. Elementary Properties

Firstly, we establish the equivalence with respect to generating power of regularly controlled T -

grammars and uncontrolled T -grammars. Let REG denote the family of regular languages.

Theorem 3.1. L (T ;REG) = L (T).

Proof: The inclusion L (T) ⊆ L (T ;REG) is obvious, since U ∗ is regular for each U.

Conversely, consider the REG-controlled T -grammar (G;R) = (V, Σ,U,S,R) where R is

accepted by some deterministic finite automaton (Q,U,q 0 ,δ,QF), where Q is the set of states, U is

the input alphabet, q 0 is the initial state, δ: Q ×U → Q is the transition function, and QF is the set

of final states. Define for each p in Q the isomorphism ip: V → Q ×V by ip(α) = (p, α) for each α
in V, and Vp by Vp = {(p, α) cα∈ V}.

Consider the uncontrolled T -grammar G0 = (V 0 ,Σ,U0 ,S 0) with V 0 = V ∪ Q ×V, S 0 =
(q 0 ,S), U0 = {τ f c f ∈ QF} ∪ {τ0 c τ∈ U} where for each τ in U, each p in Q, and each x in Vp

∗ ,

τ0(x) = iq(τ(ip
−1(x))) if and only if δ(p, τ) = q,

and for each f in QF ,

τ f(x) = {x} if and only if x ∈ V f
∗ .

By this construction we have L (G0) = L (G;R), and hence L (T ;REG) ⊆ L (T). `

This result is a straightforward generalization of similar facts concerning the transductions

mentioned in Examples 2.5(1)-(3) [2, 5, 8, 9, 17, 22]. But it also applies to, e.g., ETIL systems;

cf. [26] for a definition.

Next we will reduce the number of transductions in a (controlled) T -grammar, for which

we need some additional terminology.

For each transduction τ over V, the support Sup (τ) of τ is Sup (τ) = {x ∈ V + c τ(x) ≠ ∅ }. A

family T is closed under disjoint union if for all τ1 and τ2 in T with Sup (τ1) ∩ Sup (τ2) = ∅ ,

there exists a τ in T such that τ(x) = τ1(x) ∪ τ 2(x) for each x in V ∗ .

Let U = {τ1 ,...,τm} and U0 = {σ,τ}. Then for each m ≥ 2, we define the λ-free homomor-

phism hm: U ∗ → U0
∗ by hm(τk) = σkτ (1 ≤ k ≤ m).

6 P.R.J. Asveld

Theorem 3.2. Let T be closed under disjoint union. Then L (T ;2) = L (T ;m) = L (T) and

L (T ;Γ;2) = L (T ;Γ;m) = L (T ;Γ), m ≥ 2, provided Γ is closed under hm for each m ≥ 2.

Proof: Consider a Γ-controlled T -grammar (G;C) = (V, Σ,U,S,C) with U = {τ1 ,...,τm}. Define

for each k (1 ≤ k ≤ m) an isomorphism ik by ik(α) = αk for α in V (Each αk is assumed to be a new

symbol). We construct a Γ-controlled T -grammar (G0;C 0) = (V 0 ,Σ,U0 ,S,C 0) where U0 =
{σ,τ}, C 0 = hm(C), V 0 = V ∪ {ik(α) cα∈ V; 1 ≤ k ≤ m}, and

σ : (V ∪ {ik(α) cα∈ V; 1 ≤ k ≤ m −1}) → {ik(α) cα∈ V; 1 ≤ k ≤ m}

is the isomorphism defined by

σ(α) = α1 α in V,

σ(αk) = αk +1 α in V; 1 ≤ k ≤ m −1.

For each x in {ik(α) cα∈ V; 1 ≤ k ≤ m}∗ , τ(x) equals the following disjoint union

τ(x) = τ1(i1
−1 (x)) ∪ . . . ∪ τ k(ik

−1(x)) ∪ . . . ∪ τ m(im
−1)x)).

It is straightforward to show that L (G0;C 0) = L (G;C), and hence for each m ≥ 2 we have

L (T ;Γ;m) ⊆ L (T ;Γ;2), while the converse inclusion is trivial. Note that L (T ;Γ) equals

∪ {L (T ;Γ;m) cm ≥ 0}.

The statement in the uncontrolled case simply follows from the observation that L (G0) =
U0

∗ (S) ∩ Σ∗ = U ∗ (S) ∩ Σ∗ = L (G). `

This property clearly extends the well-known fact that the number of substitutions in

(un)controlled EDTOL, ETOL systems [26], dK - and nK -iteration grammars [2, 8] can be

reduced to two. Note that it also applies to DGSM and λDGSM mappings.

Let gm: {τ1 , ...,τm}∗ → τ∗ be the length-preserving homomorphism gm(τk) = τ (1 ≤ k ≤ m).

By a further restriction on the family T a reduction to a single transduction is possible.

Theorem 3.3. Let T be closed under union. Then L (T ;1) = L (T ;m) = L (T) and L (T ;Γ;1) =
L (T ;Γ;m) = L (T ;Γ), m ≥ 1, provided Γ is closed under gm for each m ≥ 1.

Proof: Starting from (G;C) = (V, Σ,U,S,C) and U = {τ1 , ...,τm} we construct (G0;C 0) =
(V, Σ,U0 ,S,C 0) where C 0 = gm(C), U0 = {τ} with τ(x) = τ1(x) ∪ . . . ∪ τ m(x) for each x in V ∗ .

Then L (G0;C 0) = L (G;C), and L (G0) = L (G). `

This directly implies a result from [32], viz. L (T) = L (T ;1) for T equal to NGSM or

λNGSM.

Finally, we establish some simple inclusion relationships between language families for

which we need the following notation and terminology.

A family Γ is closed under right marking if for each language C (over some U), and each

symbol $ not in U, the language C{$} — for which we usually write C$ — is in Γ.

For each family T of transductions, OUT(T) is the family of output languages defined by

OUT(T) = {τ(x) c τ is a T -transduction over V for some V; x ∈ V ∗ }.

Let λHOM be the family of λ-free homomorphisms.

Theorem 3.4. If T ⊇ λ HOM and if Γ is closed under right marking, then

(1) Γ ⊆ L (T ;Γ),

Abstract Grammars Based on Transductions 7

(2) OUT(T) ⊆ L (T ;Γ),

(3) OUT(T) ⊆ L (T),

(4) if in addition the family Γ of control languages is also closed under union (or concatena-

tion) and Kleene ∗ , then L (T) ⊆ L (T ;Γ).

Proof: (1) Let C ⊆ U ∗ for some U. Consider (G0;C 0) = (V,U,U0 ,S,C 0) with C 0 = C τ0 ,

U0 = U ∪ {τ0}, V = U ∪ {τ′ c τ∈ U} ∪ {S}, while all transductions in U0 are λ-free homomor-

phisms defined by

τ(S) = τ′ τ∈ U,

τ(σ′) = στ′ σ,τ∈ U,

τ(α) = α α,τ∈ U,

τ0(σ′) = σ σ∈ U,

τ0(σ) = σ σ∈ U.

Then L (G0;C 0) = C, and hence Γ ⊆ L (T ;Γ).

(2) Take for each τ over V and for each x in V ∗ , any nonempty C over some U such that U does

not contain τ or τx. Consider (G τx;C τx) = (V τx,V,U τx,S,C τx) with U τx = U ∪ {τ,τx}, V τx =
V ∪ {S} where S is new, C τx = C τxτ, each transduction in U is taken equal to the identity map-

ping on V τx, and τx is the homomorphism defined by

τx(S) = x

τx(α) = α for each α in V.

Then L (G τx;C τx) = τ(x), and thus OUT(T) ⊆ L (T ;Γ).

(3) follows from (2) and Theorem 3.1 with Γ = REG.

(4) Let G = (V, Σ,U,S) be a T -grammar with U = {τ1 , ...,τm} and let C ⊆ U0
∗ be any nonempty

language in Γ such that U0 ∩ U = ∅ . If Γ is closed under union [concatenation] and Kleene ∗ ,

then the control language C 1 = (C τ1 ∪ C τ2 ∪ . . . ∪ C τm)∗ [C 1 = ((C τ1)∗ (Cτ2)∗ . . . (C τm)∗)∗ ,

respectively] is in Γ. Consider the Γ-controlled T -grammar (G1;C 1) = (V, Σ,U1 ,S,C 1) with

U1 = U ∪ U0 , where each τ in U0 is the identity transduction over V. Then L (G1;C 1) = L (G),

and hence L (G)∈ L (T ;Γ). `

Theorem 3.4 generalizes the analogous statements for nK -iteration grammars proved in [2].

Clearly, it also applies to dK -iteration grammars, iterated (λ-free) NGSM and iterated (λ-free)

DGSM mappings.

4. Recursively Enumerable Languages and Decidability

A transduction τ over some alphabet V is called partial recursive if for each x in V ∗ , τ(x) is a

recursively enumerable (or r.e.) language. Let PRECtr be the family of partial recursive transduc-

tions. We call a transduction τ over V monotonic if for each x and y in V ∗ , y ∈τ (x) implies that

cy c≥ cx c. A transduction τ over V is called recursive if for each x in V ∗ , τ(x) is a recursive language.

Let MRECtr be the family of monotonic recursive transductions. RE and REC denote the fami-

lies of recursively enumerable and of recursive languages, respectively.

The proof of the following statement is straightforward; therefore it is left to the reader.

8 P.R.J. Asveld

Proposition 4.1.

(1) If T ⊆ PRECtr and Γ ⊆ RE, then L (T) ⊆ RE and L (T ;Γ) ⊆ RE.

(2) If T ⊆ MRECtr, then L (T) ⊆ REC. `

Corollary 4.2. L (PRECtr) = RE, and L (MRECtr) = REC.

Proof: It follows from 4.1, 3.4(3) and the equalities OUT(PRECtr) = RE and OUT(MRECtr) =
REC. `

However, RE can be obtained by iterating much simpler transductions. The following

theorem is a combination of results from [13, 32, 23, 5, 24] together with Theorems 3.1-3.3.

Theorem 4.3. If Γ satisfies REG ⊆ Γ ⊆ RE, then

L (NGSM;Γ) = L (NGSM;REG) = L (NGSM) = L (NGSM;1) =
L (DGSM;Γ) = L (DGSM;REG) = L (DGSM) = L (DGSM;2) = RE. `

The question remains whether L (DGSM;1) = RE; cf. [32]. Note also that in 4.1(2) the con-

trolled variant is absent. This is due to the following characterization of RE; cf. Theorem 2.2 in

[2].

Theorem 4.4. If Γ and T satisfy

(1) λHOM ⊆ T ⊆ PRECtr,

(2) {h (C) cC ∈Γ ; h is an arbitrary homomorphism} = RE,

then L (T ;Γ) = RE.

Proof: The inclusion L (T ;Γ) ⊆ RE follows from Proposition 4.1(1).

Conversely, let L 0 ⊆ Σ ∗ be any language in RE. Define the alphabet Σ′ = {α′ cα∈Σ } where

each α′ is a new symbol, and the length-preserving homomorphism h 0 by h 0(α) = h 0(α′) = α.

Then L 0 ′ = h0
−1 (L 0) ∩ Σ∗ Σ′ is also recursively enumerable. Now 4.4(2) implies the existence of a

language C ⊆ U ∗ in Γ for some U, and of a homomorphism h : U ∗ → (Σ ∪ Σ′)∗ such that

h (C) = L 0 ′.

Consider the Γ-controlled T -grammar (G;C) = (V, Σ,U,S,C) with V = Σ ∪ {S}, and each τ
in U is a λ-free homomorphism defined by

τ(S) = h (τ)S if and only if h (τ)∈Σ ∗ ,

τ(S) = h 0(h (τ)) if and only if h (τ)∈Σ ∗ Σ′,
τ(α) = α if and only if α∈Σ .

Then L (G;C) = L 0 (modulo λ), and therefore RE ⊆ L (T ;Γ). `

Essentially, the proof is based on the idea that long control words, i.e., long derivations,

may yield relatively short terminal strings in the end; in this way it is possible to simulate an

erasing homomorphism. Since each transduction in MRECtr is monotonic, applying 4.4 with T

equal to MRECtr means that arbitrary long length-preserving subderivations may occur in Γ-

controlled MRECtr-derivations. In order to obtain a ‘‘controlled’’ analogue of Theorem 4.1(2)

the length of those length-preserving subderivations should be bounded uniformly; cf., e.g.,

Theorem 3.4 in [10], Lemma 2.3 in [4], and Theorem 3.5 in [6]. The conditions in Definition 4.5

and Lemma 4.6 do guarantee such a uniform bound. They also play a key role in the next sec-

tion.

Abstract Grammars Based on Transductions 9

Definition 4.5. A transduction τ over some alphabet V is called locally context-independent if

(1) τ is monotonic, and

(2) τ is context-independent in length-preserving applications, i.e., for all xi ,yi in V ∗ with

cxi c = cyi c (i =1, 2, 3), y 1y 2y 3 ∈τ (x 1x 2x 3) implies y 1y 3y 2 ∈τ (x 1x 3x 2). `

Henceforth we assume that all closure properties are effective.

Lemma 4.6. Let T be a family of locally context-independent transductions, and let T contain

for all alphabets V the length-preserving finite substitutions

τ(α) = W α in V, W ⊆ V.

(1) Let Γ be a family closed under finite substitutions and under intersection with regular

languages, and let (G;C) = (V, Σ,U,S,C) be a Γ-controlled T -grammar. Then we can

effectively construct a Γ-controlled T -grammar (G0;C 0) = (V, Σ,U0 ,S,C 0) such that

(1.1) L (G0;C 0) = L (G;C), and

(1.2) for each x in L (G0;C 0), there is a control word τ1 ...τp in C 0 such that x ∈τ p ...τ1(S)

and p ≤ 2cx c.

(2) For each T -grammar G = (V, Σ,U,S), we can effectively construct a T -grammar

G0 = (V, Σ,U0 ,S) such that

(2.1) L (G0) = L (G), and

(2.2) for each x in L (G0), there exists a word τ1 ...τp in U ∗ such that x ∈τ p ...τ1(S), and

p ≤ 2cx c .

Proof: (1) The construction is similar to the one in Lemma 2.3 of [4]. Viz. we add new control

words to C such that the corresponding derivations possess the property that each length-

preserving step in such a derivation is immediately followed by a length-increasing step.

If V = {α1 , ...,αk} for some k ≥ 1, then we define U0 = U ∪ {[τ,q] cτ∈ U,q ∈ Q} with

Q = {< X 1 , ...,Xk > cXi ⊆ V, 1 ≤ i ≤ k}, and C 0 = σ(C) where σ = (Q,U,U0 ,δ,q 0 ,QF) is an NGSM

with q 0 = < {α1}, . . . , {αk} >, QF = {q 0}, while δ is defined by

δ(< X 1 , ..,Xk >,τ) = {(< τ(X 1) ∩ V, ..., τ(Xk) ∩ V >,λ),(q 0 ,[τ,< X 1 , ...,Xk >])} ∪

∪ {(q 0 ,τ) c< X 1 , ...,Xk > = q 0}.

(By Lemma 9.3 of [18] we have C 0 ∈Γ . Notice that C ⊆ C 0).

We outline the way in which the new additional control words are obtained by means of σ
from C, as well as the effect of these new control words. Consider an arbitrary derivation D

according to (G;C). At each step in D, determined by the application of some T -transduction τ,

one of the following three possibilities applies (cf. the definition of δ):

Case (a): This application of τ is length-increasing.

The corresponding transition in σ is the identity transition: (q 0 ,τ)∈δ (q 0 ,τ). This case does not

give rise to adding new control words.

Case (b): This application of τ is length-preserving and the next step in D will also be length-

preserving.

The corresponding occurrence of τ in the control word is erased, and the length-preserving

context-independent effect (cf. Definition 4.5) of τ is stored by means of changing the state of σ

10 P.R.J. Asveld

from < X 1 , ...,Xk > to < τ(X 1) ∩ V, ..., τ(Xk) ∩ V >.

Case (c): This application of τ is length-preserving but either the next step in D will be length-

increasing, or this application of τ is the last step in D.

In the old control word we replace the corresponding occurrence of τ by [τ,< X 1 , ...,Xk >] where

< X 1 , ...,Xk > is the current state of σ in which the ultimate length-preserving effect of a consecu-

tive sequence of erased transductions (cf. Case (b)) has been stored. This new transduction

[τ,< X 1 , ...,Xk >] is a length-preserving finite substitution defined by

[τ,< X 1 , ...,Xk >](αi) = τ(Xi) ∩ V for each i (1 ≤ i ≤ k).

(2) Define U0 = U ∪ {τu c u ∈ U+} with for each u in U+, τu is the length-preserving substitution

defined by τu(α) = u (α) ∩ V for each α in V. Then U0 is finite, because there are only a finite

number of length-preserving substitutions over V. `

We are now ready for the controlled variant of Proposition 4.1(2).

Theorem 4.7. Let Γ and T satisfy the assumptions of Lemma 4.6. If Γ ⊆ REC and T ⊆ MRECtr,

then L (T ;Γ) ⊆ REC.

Proof: The algorithm of Figure 1 determines whether a word x belongs to L (G0;C 0); cf. Lemma

4.6. Since after execution of an accept- or reject-statement the algorithm is supposed to halt,

termination is guaranteed for each input x. Hence L (G0;C 0) is recursive. `
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read x ;

if x ∉Σ + then reject else

for all u in C 0 with cu c≤ 2cx c do

if x ∈ u (S) then accept

od;

reject

fi.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Figure 1.

Proposition 4.1(2) and Theorem 4.7 enable us to improve upon the decidability of the

membership problem for λ-free (non)deterministic iteration grammars; cf. [2, 3].

Corollary 4.8. Let K be a family of λ-free languages that contains all finite alphabets. [Let Γ
be a subfamily of the recursive languages, closed under finite substitution and intersection with

regular languages]. If K ⊆ REC, then the membership problem for [Γ-controlled]

(non)deterministic K -iteration grammars is decidable. `

When K is not λ-free one may first use Theorem 3.1 from [2] or Theorem 3.2 from [8] to

obtain an equivalent (controlled) λ-free K -iteration grammar. However, the constructive version

of both these theorems requires the decidability of the emptiness problem for K ; cf. [2, 3].

We conclude this section with a set of conditions (cf. Definition 4.9 and Theorem 4.12) that

imply the decidability of the emptiness problem for Γ-controlled T -grammars.

Definition 4.9. A family T of transductions is locally regular if for each finite set U of T -

transductions over some alphabet V, and for each subset Σ of V, there exists an equivalence rela-

tion ≡ over V ∗ such that

Abstract Grammars Based on Transductions 11

(1) ≡ is decidable and of finite index,

(2) for each τ in U and for all x 1 ,x 2 in V ∗ , if x 1 ≡x 2 , then either τ(x 1) = ∅ = τ (x 2), or there

exist yi ∈τ (xi) for i =1, 2 such that y 1 ≡y 2 ,

(3) Σ∗ equals the union of a finite number of equivalence classes with respect to ≡ . `

In Definition 4.10 and Lemma 4.11 we extend the notion of Szilard language to T -

grammars; cf. [27, 31].

Definition 4.10. Let G = (V, Σ,U,S) be a T -grammar. The Szilard language of G is the

language Sz (G) over U defined by

Sz (G) = {τ1 . . . τn c τn(. . . (τ1(S)) . . .) ∩ Σ∗ ≠ ∅ ; n ≥ 0}. `

For each family T of transductions we call the question to decide whether τ(x) = ∅ , where

τ is a T -transduction over some alphabet V and x is a word in V ∗ , the emptiness problem for T .

Lemma 4.11. If T is a locally regular family of transductions, then for each T -grammar

G = (V, Σ,U,S) the Szilard language Sz (G) is regular. Moreover, if T is closed under intersec-

tion with regular languages and if the emptiness problem for T is decidable, then Sz (G) can be

constructed effectively.

Proof: For each x in V ∗ , let [x] be the equivalence class with respect to ≡ that contains x.

Define the right-linear grammar G0 = (V 0 ,U,P,S 0) with V 0 −U = {[x] c x ∈ V ∗ }, S 0 = [S], and

P = {[x] → λ c [x] ⊆ Σ ∗ } ∪ {[x] → τ[y] c y ∈τ (x); x,y ∈ V +}.

Since T is locally regular, V 0 and P are finite. Then [S] ⇒ ∗ τ1 . . . τn according to G0 for some

n ≥ 0 if, and only, if τn(. . . (τ1(S)) . . .) ∩ Σ∗ ≠ ∅ . Consequently, Sz (G) = L (G0), and Sz (G) is

regular.

Since ≡ is of finite index, each equivalence class with respect to ≡ is regular. Therefore

the fact that T is closed under intersection with regular languages implies that we can reduce

effectively the question ‘‘y ∈τ (x)?’’ (cf. the definition of P) to ‘‘τ(x) ∩ [y] = ∅ ?’’, i.e., to the

emptiness problem for T . `

12 P.R.J. Asveld

Theorem 4.12. Let Γ and T be closed under intersection with regular languages, and let the

emptiness problem be decidable for Γ and T . If T is locally regular, then the emptiness problem

for L (T ;Γ) and for L (T) is decidable.

Proof: By Lemma 4.11 the language Sz (G) is regular and it can be constructed effectively for

each Γ-controlled T -grammar (G;C) = (V, Σ,U,S,C). Then C ∩ Sz (G) is in Γ. By the definition

of Sz (G) we have that L (G) = ∅ if, and only, if Sz (G) = ∅ . Hence L (G;C) = ∅ if, and only, if

C ∩ Sz (G) = ∅ . `

Let K be a family of languages, closed under intersection with regular languages, for which

the emptiness problem is decidable. Then the families dK -SUB and nK -SUB of Example 2.5(2)

are locally regular with x ≡y if, and only, if alph (x) = alph (y); cf. [2, 3] (For each word w,

alph (w) is the set of symbols that do occur in w).

On the other hand Theorem 4.3 implies that neither NGSM nor DGSM is locally regular.

The same conclusion holds for λNGSM and λDGSM (cf. Theorem 5.4 below).

5. Complexity

In this section we determine upper bounds for the space and time complexity of languages gen-

erated by (controlled) T-grammars; viz. Theorems 5.2, 5.5 and 5.8.

Throughout this section ‘‘function’’ means a monotone increasing function f over the

natural numbers satisfying f (n) ≥ n for each n ≥ 0.

Definition 5.1. Let for each function f, DSPACETR(f) [NSPACETR(f), respectively] be the

family of those transductions τ that satisfy

(1) τ is locally context-independent, and

(2) there exists a [non]deterministic algorithm that can decide a query ‘‘y ∈τ (x)?’’ for each x

and y within space f (cy c). `

As usual, for each function f, DSPACE(f) [NSPACE(f), respectively] is the family of

languages accepted by [non]deterministic multi-tape Turing machines that use at most f (n) tape

squares on each work tape during a computation on a input of length n.

Theorem 5.2. Let f be a function.

(1) If T ⊆ NSPACETR(f), then L (T) ⊆ NSPACE(f).

(2) L (NSPACETR(f)) = NSPACE(f).

(3) Let Γ be a family closed under finite substitution and under intersection with regular

languages. If Γ ⊆ NSPACE(f), T ⊆ NSPACETR(f), and f (2n) ≤ c.f (n) for some con-

stant c and for each n ∈ IN, then L (T ;Γ) ⊆ NSPACE(f).

Proof: (1) Consider the algorithm in Figure 2; remove the assignments in which the variable

control is involved, and replace the last statement by accept.

Then each step in this modified algorithm requires at most linear space, except the test

‘‘z ∈τ (y)’’ for which we need f (cz c) ≤ f (cx c) space. Thus for cx c=n, the total amount of space is

Ο(n + f (n)) = Ο(f (n)).

(2) From (1) with T equal to NSPACETR(f) it follows that

L (NSPACETR(f)) ⊆ NSPACE(f).

Abstract Grammars Based on Transductions 13

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read x ;

control := λ ;

if x ∉Σ + then reject else

y :=S ;

while y ≠ x and cy c≤ cx c do

guess τ∈ U;

guess z ∈ V + with cy c≤ cz c≤ cx c;
if z ∈τ (y) then control :=control. τ ;

y := z

else reject

fi

od

fi;

if control ∈ C then accept else reject fi.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2.

Conversely, let L 0 ⊆ Σ ∗ be a language in NSPACE(f). Define G = (V, Σ,{τ},S) with

V = Σ ∪ {S}, and τ is defined by

τ(S) = L 0

τ(w) = {w} for each w in Σ∗ .

Then we have τ∈ NSPACETR(f), G is an NSPACETR(f)-grammar, L (G) = L 0 , and hence

NSPACE(f) ⊆ L (NSPACETR(f)).

(3) Consider the algorithm of Figure 2. By Lemma 4.6 the last statement requires space

Ο(f (2n)) which is Ο(f (n)) due to the assumption on f. So the total space needed to execute the

algorithm is Ο(n + f (n)) + Ο(f (n)) = Ο(f (n)); cf. the proof of (1). `

Corollary 5.3. L (NSPACETR(n)) = NSPACE(n). `

NSPACE(n) or, equivalently, the λ-free context-sensitive languages can be characterized by

much simpler transductions than those used in 5.3. In 5.4 we combine results from [13, 32, 23, 5,

24] with Theorems 3.1-3.3.

Theorem 5.4.

L (λNGSM;REG) = L (λNGSM) = L (λNGSM;1) =
L (λDGSM;REG) = L (λDGSM) = L (λDGSM;2) = NSPACE(n). `

Although this result solves partially an open problem mentioned in [32], viz.

L (λDGSM;2) = NSPACE(n), the precise nature of L (λDGSM;1) as well as an analogous char-

acterization of DSPACE(n) are still unknown. However, it is easy to show that

L (λDGSM;1) ⊆ DSPACE(n).

For a deterministic counterpart of Theorem 5.2 we can generalize the proof of Theorem 5.2

in [30] straightforwardly. This easy modification is left to the reader.

Theorem 5.5. Let f be a function with f (n) ≥ n log n for each n ∈ IN, and there exists a constant

c > 0 such that f (2n) ≤ c.f (n) for each n. Let Γ be a family of languages closed under finite sub-

stitution and under intersection with regular languages.

14 P.R.J. Asveld

(1) If T ⊆ DSPACETR(f), then L (T) ⊆ DSPACE(f).

(2) L (DSPACETR(f)) = DSPACE(f).

(3) If Γ ⊆ DSPACE(f) and T ⊆ DSPACETR(f), then L (T ;Γ) ⊆ DSPACE(f). `

Next we turn to time-bounded transductions and time-bounded complexity classes. Instead

of a single bounding function we now need a class of functions that is closed under certain opera-

tions. The following definition is a slight modification of a concept from [29].

Definition 5.6. A class C of functions is called natural if

(1) C contains the identity function λx. x,

(2) for each f and g in C , there is a monotone increasing function in C that majorizes

λx. (f (x) +g (x)),

(3) for each f and g in C , there is a monotone increasing function in C that majorizes

λx. (f (x) g (x)), and

(4) for each f in C , there is a monotone increasing function in C that majorizes λx. f (2x). `

Definition 5.7. Let for each class C of functions, NTIMETR(C) be the family of those transduc-

tions τ that satisfy

(1) τ is locally context-independent, and

(2) there exists a nondeterministic algorithm that can decide a query ‘‘y ∈τ (x)?’’ within time

f τ (cy c) for some f τ in C . `

For each function f, let NTIME(f) be the family of languages accepted by nondeterministic

multi-tape Turing machines within time f (n). For a class C of functions NTIME(C) is defined

by NTIME(C) = ∪ {NTIME(f) c f ∈ C }. Let poly be the class of all polynomials over the natural

numbers. Obviously, poly is a natural class.

Theorem 5.8. Let C be a natural class of functions, and let Γ be a family of languages closed

under finite substitution and under intersection with regular languages.

(1) If T ⊆ NTIMETR(C), then L (T) ⊆ NTIME(C).

(2) L (NTIMETR(C)) = NTIME(C).

(3) If Γ ⊆ NTIME(C) and T ⊆ NTIMETR(C), then L (T ;Γ) ⊆ NTIME(C).

Proof: The proof is similar to the one of Theorem 5.2. As an example we show (3). Let

(G;C) = (V, Σ,U,S,C) be a Γ-controlled T -grammar.

Assume U = {τ1 , ...,τm}, and for each i (1 ≤ i ≤ m) a query ‘‘z ∈τ i(y)?’’ can be resolved

within time fi(cz c) for some fi in C . Since C is natural there exists a function f in C that major-

izes λx. (f 1(x) + . . . + fm(x)) and hence f (x) ≥ fi(x) for each x and each i (1 ≤ i ≤ m).

Consider the algorithm of Figure 2. By Lemma 4.6 it suffices to execute the body of the

while-loop at most 2n times where n is the length of the input. All statements in this body

require time Ο(n) only, except the test ‘‘z ∈τ (y)?’’ which is Ο(f (n)). Therefore this while-loop

can be executed in time at most Ο(n (n +f (n))). The preceding statements consume Ο(n) time,

while the last statement of the algorithm needs time g 1(2n) for some g 1 in C (assuming that we

have C ∈ NTIME(g 1)). As C is natural, λn.g 1(2n) is majorized by some g in C . Thus the total

time to execute the algorithm of Figure 2 is Ο(n +n (n + f (n)) +g (n)). Since C is natural this is

majorized by some function in C . Hence L (G;C)∈ NTIME(C). `

Abstract Grammars Based on Transductions 15

Corollary 5.9. L (NTIMETR(poly)) = NTIME(poly). `

Theorem 5.8(2) and Corollary 5.9 are variations of results established by Van Leeuwen [29]

for another rather abstract grammatical model.

In addition to Theorem 5.8 we remark that from the main result in [28] it follows that if T

contains all λ-free finite substitutions, then the membership problem for L (T) is NP-hard, i.e.,

NTIME(poly)-hard in the present notation.

6. Concluding Remarks

Controlled T -grammars have been defined in a way such that they may be considered as generali-

zations of controlled iteration grammars [2, 3, 4, 8, 9] as well as of the controlled iteration of

DGSM and NGSM mappings [13, 32, 23, 5, 24]. We showed that some results from these refer-

ences can be extended to corresponding statements for (Γ-controlled) T -grammars. Some of

these extensions are straightforward, whereas other ones — viz. all results depending on Lemma

4.6 — only hold for grammars based on locally context-independent transductions, i.e., mono-

tonic transductions that are context-independent in length-preserving applications (Definition

4.5). Nevertheless, it follows that some complexity classes possess stronger closure properties

than those established in [4, 29, 30]. We call a family K of languages closed under iterated T -

transductions if for each language L in K with L ⊆ V ∗ for some alphabet V, and each finite set U

of T -transductions over V, the language U ∗ (L) belongs to K .

Theorem 6.1. Let f be a function such that there exists a constant c > 0 with f (2n) ≤ c. f (n) for

each n ∈ IN.

(1) If f (n) ≥ n for each n ∈ IN, then NSPACE(f) is the smallest AFL closed under iterated

locally context-independent nondeterministic f-space-bounded transductions. In particular

this applies to

g NSPACE(n), the family of context-sensitive languages;

g NSPACE(n 2), the family of two-way nondeterministic nonerasing stack automaton

languages;

g DSPACE(poly).

(2) If f (n) ≥ n log n for each n ∈ IN, then DSPACE(f) is the smallest AFL closed under iterated

locally context-independent deterministic f-space-bounded transductions. In particular this

applies to DSPACE(n log n), the family of two-way deterministic nonerasing stack automa-

ton languages.

(3) If C is a natural class of functions, then NTIME(C) is the smallest AFL closed under

iterated locally context-independent nondeterministic C -time-bounded transductions. In

particular this applies to NTIME(poly).

Proof: From 5.2(2), 5.5(2) and 5.8(2) closure under iterated T -transductions easily follows for T

equal to NSPACETR(f), DSPACETR(f), and NTIMETR(C), respectively. Closure under

iterated T -transductions implies closure under union, concatenation, Kleene + and λ-free

homomorphism. The remaining two AFL-operations (closure under inverse homomorphism and

intersection with regular languages) can be proved by standard automaton-theoretic construc-

tions. Since each AFL closed under iterated T -transductions includes L (T), it is easy to see that

16 P.R.J. Asveld

L (T) is the smallest AFL closed under iterated T -transductions.

For the characterization of two-way nonerasing stack automaton languages in terms of com-

plexity classes we refer to [19]. `

It is an open problem whether a similar proposition holds for DSPACE(n), the family of

deterministic context-sensitive languages.

We saw that NGSM mappings are powerful enough to generate all recursively enumerable

languages: L (NGSM) = RE (Theorem 4.3). Now each NGSM mapping τ can be decomposed

into a triple (h 1 ,R,h 2)∈λ HOM ×REG ×HOM such that for each language L we have

τ(L) = h 2(h1
−1 (L) ∩ R); cf. slight modifications of the proofs of Lemma 9.3 in [19], Theorem

IV.1.2 in [27], or Theorem 3.2.3 in [15]. This decomposition reflects the essential aspects of

applying a production in grammatical rewriting:

(i) h1
−1 determines what ought to be rewritten,

(ii) R tells us where it will be replaced, and

(iii) h 2 prescribes by which it will be substituted.

(Notice that we have h1
−1 (λ) = {λ} and hence τ(λ) = {λ}, as h 1 is λ-free. This models the linguis-

tic constraint that by applying productions from a grammar the only word derivable from λ is λ.

From the previous sections it is clear that in a mathematical treatment of rewriting there is no

need for such a constraint). This observation naturally leads to the question of characterizing

well-known language families in terms of subsets of λHOM ×REG ×HOM. We already saw an

example: L (λHOM ×REG × λHOM) = NSPACE(n), the family of context-sensitive languages

(Theorem 5.4); cf. also [13, 32, 23, 5, 24]. From the proof of Lemma 9.3 in [19] it follows that

L (LPHOM ×T2 ×HOM) = RE — and analogously for NSPACE(n) — where LPHOM is the

class of length-preserving homomorphisms, and T2 denotes the family of 2-testable languages; cf.

e.g. [27] for a definition. We may also start from a different decomposition of τ, e.g.,

τ(L) = f (h1
−1 (L) ∩ R) for each L, where (h 1 ,R, f)∈λ HOM ×REG ×FINSUB.

Problems of this type are closely related to the subject of selective substitution grammars

[25, 20], where h 1 is a length-preserving homomorphism satisfying h 1: (V ∪ V ′) → V with

V ′ = {α′ cα∈ V} and h (α) = h (α′) = α for each α in V, R ⊆ (V ∪ V ′)∗ plays the part of selector,

while h 2 [or f, respectively] is a homomorphism [finite substitution] with h 2(α′)∈ V ∗

[f (α′) ⊆ V ∗] and h 2(α) = α [f (α) = {α}].

Finally, we remark that although the present paper has been inspired by [16] the central

problem posed in [16] has not yet been touched.

Acknowledgment. I am indebted to Joost Engelfriet for his comment on a preliminary version of

this paper.

References

1. A.V. Aho & J.D. Ullman: The Theory of Parsing, Translation, and Compiling − Volume I:

Parsing (1972), Prentice-Hall, Englewood Cliffs, N.J.

2. P.R.J. Asveld: Controlled iteration grammars and full hyper-AFL’s, Inform. and Contr. 34

(1977) 248-269.

Abstract Grammars Based on Transductions 17

3. P.R.J. Asveld: Iterated Context-Independent Rewriting − An Algebraic Approach to Fami-

lies of Languages (1978), Doctoral Dissertation, Twente University of Technology,

Enschede, The Netherlands.

4. P.R.J. Asveld: Space-bounded complexity classes and iterated deterministic substitution,

Inform. and Contr. 44 (1980) 282-299.

5. P.R.J. Asveld: On controlled iterated GSM mappings and related operations, Rev. Roum.

Math. Pures et Appl. 25 (1980) 139-145.

6. P.R.J. Asveld: Time and space complexity of inside-out macro languages, Internat. J. Com-

put. Math. 10 (1981) 3-14.

7. P.R.J. Asveld: Complexity aspects of iterated rewriting − a survey, pp. 89-105 in

P.R.J. Asveld & A. Nijholt (Eds.): Essays on Concepts, Formalisms, and Tools (1987),

Tract 42, Centre for Mathematics and Computer Science, Amsterdam.

8. P.R.J. Asveld & J. Engelfriet: Iterated deterministic substitution, Acta Inform. 8 (1977)

285-302.

9. P.R.J. Asveld & J. Engelfriet: Extended linear macro grammars, iteration grammars, and

register programs, Acta Inform. 11 (1979) 259-285.

10. P.R.J. Asveld & J. van Leeuwen: Infinite chains of hyper-AFL’s, TW-memorandum No. 99

(1975), Twente University of Technology, Enschede, The Netherlands.

11. A. Cremers & S. Ginsburg: Context-free grammar forms, J. Comput. Systems Sci. 11 (1975)

86-117.

12. K. Culik II & T. Head: Transductions and the parallel generation of languages, Internat. J.

Comput. Math. 13 (1983) 3-15.

13. A.C. Fleck: Formal languages and iterated functions with an application to pattern represen-

tations, Report No. 75-03 (1975) Department of Computer Science, The University of Iowa,

Iowa City.

14. A. Gabrielian & S. Ginsburg: Grammar schemata, J. Assoc. Comp. Mach. 21 (1974) 213-

226.

15. S. Ginsburg: Algebraic and Automata-Theoretic Properties of Formal Languages (1975),

North-Holland, Amsterdam.

16. S. Ginsburg: Methods for specifying families of formal languages − past-present-future,

pp. 1-22 in R.V. Book (Ed.): Formal Language Theory: Perspectives and Open Problems

(1980), Academic Press, New York.

17. S. Ginsburg & G. Rozenberg: TOL schemes and control sets, Inform. and Contr. 27 (1975)

109-125.

18. M.A. Harrison: Introduction to Formal Language Theory (1978), Addison-Wesley, Read-

ing, Mass.

19. J.E. Hopcroft & J.D. Ullman: Formal Languages and Their Relation to Automata (1969),

Addison-Wesley, Reading, Mass.

20. H.C.M. Kleijn: Selective Substitution Grammars Based on Context-Free Productions

(1983), Doctoral Dissertation, University of Leiden, The Netherlands.

18 P.R.J. Asveld

21. H.A. Maurer, A. Salomaa & D. Wood: EOL forms, Acta Inform. 8 (1977) 75-96.

22. M. Nielsen: EOL systems with control devices, Acta Inform. 4 (1975) 373-386.

23. G. Paun: On the iteration of GSM mappings, Rev. Roum. Math. Pures et Appl. 23 (1978)

921-937.

24. B. Rovan: A framework for studying grammars, pp. 473-482 in J. Gruska & M. Chytil

(Eds.): Mathematical Foundation of Computer Science 1981, Lect. Notes Comp. Sci. 118

(1981), Springer-Verlag, Berlin - Heidelberg - New York.

25. G. Rozenberg: Selective substitution grammars (towards a framework for rewriting sys-

tems) Part I: definitions and examples, Elektron. Informationsverarbeit. Kybernetik 13

(1977) 455-463.

26. G. Rozenberg & A. Salomaa: The Mathematical Theory of L Systems (1980), Academic

Press, New York.

27. A. Salomaa: Formal Languages (1973), Academic Press, New York.

28. J. van Leeuwen: The membership question for ETOL languages is polynomially complete,

Inform. Process. Lett. 3 (1975) 138-143.

29. J. van Leeuwen: Extremal properties of non-deterministic time-complexity classes, pp. 61-

64 in E. Gelenbe & D. Potier (Eds.): International Computing Symposium (1975), North-

Holland, Amsterdam.

30. J. van Leeuwen: A study of complexity in hyper-algebraic families, pp. 323-333 in

A. Lindenmayer & G. Rozenberg (Eds.): Automata, Languages, Development (1976),

North-Holland, Amsterdam.

31. D. Wood: A note on Lindenmayer systems, Szilard languages, spectra, and equivalence,

Internat. J. Comp. Inform. Sci. 4 (1975) 53-62.

32. D. Wood: Iterated a-NGSM maps and Γ systems, Inform. and Contr. 32 (1976) 1-26.

33. D. Wood: Grammar and L Forms: An Introduction, Lect. Notes Comp. Sci. 91 (1980)

Springer-Verlag, Berlin - Heidelberg - New York.

