
First European Workshop on Composition
of Model Transformations - CMT 2006

Proceedings

10 July 2006

Bilbao, Spain

http://ew-cmt.ewi.utwente.nl

Edited by
Anneke Kleppe

i

Organisation Committee

Anneke Kleppe, University Twente, The Netherlands
Ivan Kurtev, INRIA & University of Nantes, France
Jos Warmer, Ordina, The Netherlands

Programme Committee

Klaas van den Berg, University Twente, The Netherlands
Jeff Gray, University of Alabama at Birmingham, USA
Jan Hendrik Hausmann, S&N AG, Germany
Jochen Küster, IBM Research, Switzerland
Jon Oldevik, SINTEF, Norway
Richard Paige, University of York, UK
Alfonso Pierantonio, Università degli Studi dell'Aquila, Italy
Andy Schürr, Darmstadt University of Technology, Germany
Antonio Vallecillo, University of Malaga, Spain
Daniel Varro, Budapest University of Technology and Economics, Hungary
ii

iii

Contents

Preface... 1

A Framework for Transformation Chain Design Processes.............................. 3
Bert Vanhooff, Dhouha Ayed, and Yolande Berbers

Composition of Models Differences ... 9
A. Cicchetti, D. Di Ruscio, and A. Pierantonio

Blackbox Composition of Model Transformations using Domain-Specific
Modelling Languages.. 15

Dennis Wagelaar

Aspects of Reusable Model Transformations ... 21
Gøran K. Olsen, Jan Aagedal, Jon Oldevik

Composing Transformation Operations Based on Complex Source Pattern
Definitions... 27

Arda Goknil and N. Yasemin Topaloglu

Pattern Composition in Graph Transformation Rules 33
András Balogh and Dániel Varró

Transformation Composition in QVT ...39
Mariano Belaunde

Octel, a Template Language for Generating Structures Instead of
Textstreams..47

Jos Warmer
iv

v

Preface

This technical report contains the proceedings of the first European Workshop on Com-
position of Model Transformations held in Bilbao, Spain on July 10, 2006, as a satellite
event to the European Conference on Model Driven Architecture.

Model transformation techniques have been studied for some years now and they
have advanced quite a lot. More recently, attention has been given to the subject of
transformations composition. One possibility for transformation composition is chain-
ing several model transformations potentially expressed in different languages and ex-
ecuted by different tools. Another possibility is to compose rules from two or more
existing transformations usually written in the same transformation language into a new
transformation. The latter possibility may follow a composition of existing metamodels.

Because of the nature of model transformations, which is to implement an m-to-n re-
lation between models, a simple composition mechanism like the Unix pipe does not
suffice. Another complication of composition of model transformations is that it in-
volves interoperability between various transformation tools.

Composition of transformation rules into a new transformation requires proper mod-
ularity constructs and compositional operators within a single transformation language.
Most languages provide constructs similar to the well-known constructs in program-
ming languages: inheritance, aggregation, templates, etc. But these constructs have also
some limitations. We need a better understanding of the nature of the pieces of trans-
formation functionality that must be modularized, reused, and composed.

The aim of the workshop is to identify the research issues and the existing work in
this area. We tried to cover the topic in breadth and therefore invited short papers (po-
sition statements) only. We are very happy with the number and quality of the submitted
papers, which are presented in this technical report.

July 2006
Anneke Kleppe, Ivan Kurtev, and Jos Warmer

First European Workshop on Composition of Model Transformations - CMT 2006 1

First European Workshop on Composition of Model Transformations - CMT 2006 2

A Framework for Transformation Chain
Development Processes

Bert Vanhooff, Dhouha Ayed, and Yolande Berbers

Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, 3001 Leuven,
Belgium

{bert.vanhooff, dhouha.ayed, yolande.berbers}@cs.kuleuven.be

Abstract. Model Driven Development (MDD) promotes the use of ab-
stract models in software development. A key ingredient of MDD is the
application of transformations to these models, which means that part
of the development effort is relocated to the transformations. Currently
there is almost no available guidance to help designing a suitable, project
specific, transformation chain. We propose a framework of four concern
layers to organize transformations, which facilitates better separation-of-
concerns and offers opportunities for transformation reuse and replace-
ment. We use this framework as a foundation to build a incremental
transformation chain design process.

1 Introduction

Model Driven Development (MDD) is an approach to developing software that
proposes using machine-readable models at various levels of abstraction as its
main artifacts. The key MDD idea is to (semi-)automatically transform highly
abstract models into more concrete models from which an implementation can
straightforwardly be generated.

However, it is not enough to have a set of interesting development ideas and
concepts to create great software; the way we use these is just as important.
For example, it is not just because we implement an application using an object
oriented language that our software is automatically well structured. The same
is true for MDD: it is not because we apply an MDD approach that we get a
good system. A good design of the system helps development just as much, if
not more, as the development paradigm we use to realize it.

In this paper we argue that it is possible to achieve a better separation of con-
cerns than with the classical PIM/PSM (Platform Independent/Specific Model)
distinction (Section 2). In Section 3 we introduce a framework for transformation
development processes that can be refined with concrete activities. We wrap up
by presenting related work (Section 4), drawing some conclusion and discussing
future work (Section 5).

First European Workshop on Composition of Model Transformations - CMT 2006 3

2 Separation of Concerns with Transformations and
Abstract Platforms

Many introductions on MDD use the notions of PIM and PSM, which were
introduced by OMG’s MDA [1]. A PIM is a model of a system that contains no
technical details while a PSM is an elaboration of the same system that contains
exactly these details. A single-level transformation process between PIM and
PSM allows us to capitalize on stable platform independent matters and generate
PSMs for a range of different concrete technology platforms.

The use of transformations can provide a more fine grained sense of separation-
of-concerns than is implied by the black-and-white PIM/PSM separation. A
transformation chain specifies how a number of transformations work together,
each elaborating on the source model to come to a target model. The following
types of concerns could subsequently be addressed in a transformation chain:

Functional concerns influence a model at the highest level of abstraction,
namely the application business domain. For transformations this can mean
automatic insertion of additional (pluggable) functionality into the basic
model and can be accomplished with what is called model composition or
weaving. – e.g. merge a basic chat application model with a model for pro-
viding file transfer.

Non-functional concerns determine the quality characteristics of a system.
We consider them in a technology independent way at this stage. This means
that transformations at this level can only apply generic solutions for a non-
functional concern, without referring to platform-specific solutions. – e.g. a
general distribution model, general persistence specification.

Technical concerns worry about the realization of the above (non-)functional
concerns by using technology specific mechanisms (middleware concepts). –
e.g. distribution realized with CORBA, persistency with an RDBM.

Implementation concerns go further than middleware-related concerns. Trans-
formations for this category prepare a model for implementation in a certain
programming language. – e.g. CORBA in Java, PG/SQL as RDBM.

The above categorization depicts a four-layered transformation approach
where each layer can contain a number of concern-specific transformations that
facilitate a gradual move from platform independency to platform specificity.
The layers introduce constrained boundaries for transformations, forcing a nar-
rower focus for each transformation and therefore taking one step towards easier
reuse and replacement.

Each intermediate model can be seen as being specific to a virtual platform,
corresponding the a concern layer, but independent to platforms further up the
transformation chain. Abstract platforms are introduced in [2] and can serve as
boundaries between transformations. A simple example of abstract platform is
a user-defined subset of the UML with all semantic variation points fixed.

First European Workshop on Composition of Model Transformations - CMT 2006 4

3 Transformation Chain Development Process

The discussion in the previous section provides a certain mind set to start think-
ing about transformations. Nevertheless this is often not enough to design a
good transformation chain. We need some additional guidance that helps us de-
cide which concrete models, notations and transformations are needed in the
same way that classical software development processes, like the Unified Process
(UP), offer guidance for classical application development starting from a set of
requirements.

We expect a transformation chain design process to produce a model that
has the following characteristics:

– Mutually exclusive transformations – Avoid overlap between transformation.
– Clearly separated transformation (concern) areas – A concern can easily be

traced to a (group of) transformation(s).
– Loose coupling – Transformations do not rely on each other’s implementation

properties but only on externally defined pre- and postconditions (reusabil-
ity).

– Technology independence – The transformation chain model is specified in-
dependent of the technology that is used to implement it.

We present the outline of an iterative process framework that can act as
a starting point for concrete transformation chain design processes based on
the notion of the four-layer concern separation defined in Section 2. We name
the iterations inception and elaboration corresponding to UP terminology. The
evolution of a transformation chain model throughout the iterations is shown
in Figure 1. Model types are shown as square boxes (labeled Mx, gray boxes
are additions and hashed boxes are refinements), transformations are indicated
as arrows (labeled Tx), abstract platforms are shown as solid lines and concern
layers are shown as dotted lines. This example just illustrates the main concepts
and is purely fictional.

Inception: MDD-specific Vision and Concerns
A first iteration should clearly state a fair amount of the requirements that we
impose on the transformation chain in order to get a common vision. Three
important things have to be identified here:

1. Motivation for applying an MDD approach. This states the general quality
requirements for the transformation chain and could be elaborated by using
some form of transformation use cases. – e.g. offer a domain specific language
(DSL) (top left of Figure 1), automate error-prone coding parts.

2. Concerns that you want to address in transformations instead of explicitly
specifying them in the main application model – e.g. Distribution and per-
sistence (both non-functional).

3. Pre-fixed constraints for the project that could influence the transformation
chain development. – e.g. the use of CORBA and PG/SQL (the first is a
technical concern, the second an implementation concern), using the UML as
primary modeling language. Some of the constraints can already be indicated

First European Workshop on Composition of Model Transformations - CMT 2006 5

Fig. 1. From top to bottom: incremental development of a transformation chain, show-
ing the four concern layers with transformations, model types and abstract platforms.

on the transformation chain model (M3b and M3z on top of Figure 1 indicate
the CORBA and PG/SQL constraints).

Elaboration 1: Conceptual Transformation Chain Model
Since we aim for an incremental top-down approach the first elaboration iter-
ation will primarily address the functional and non-functional layers. The goal
here is to identify most of the transformations and model types in this area
by describing them informally according to the concerns they address (e.g. per-
sistency transformation, data model, distribution model, etc.) and decompose
them according to common subconcerns.

In the top part of Figure 1 we show three transformations: the first one (T1)
weaves two models in the application’s DSL, T2 translates the DSL models into
an equivalent UML representation and T3 represents the persistency transfor-
mation concern.

If we identify transformation overlap, e.g. we can have a ’notifier’ concept
from the persistence concern and an ’event’ concept from a logging concern (not
shown in the figure), this can be handled by a designated transformation ad-
dressing event and notification as separate subconcern. Hence we split T3 in
T3a’ and T3a” (middle part of Figure 1). This kind of decomposition leads to
more focused and potentially more reusable subject-matter specific transforma-
tions.

First European Workshop on Composition of Model Transformations - CMT 2006 6

Elaboration 2: Refined Transformation Chain Model
In this iteration, we refine the conceptual model by formalizing the in- and output
model types of each transformation and, accordingly, determine the abstract
platforms.

We decided for example to let T3a’ also output a dedicated data model
besides a refined UML model (middle of Figure 1) – another decomposition.
If in- and output of a transformation have a different model type, we have to
add an platform boundary (between M3 and M3x). Each abstract platform is
described by a new or exsiting/modified metamodel.

Finally we can describe the transformations in more detail by using the vo-
cabulary defined in the metamodels/abstract platforms.

Elaboration 3: Fully Specified Transformation Chain model
In the last iteration (in practice there could be more) we execute further transfor-
mation decompositions and we consider the technical and implementation layer.
Furthermore, the existing chain can be refined at all points in general.

If we consider transformations that operate within the same metamodel (or
platform), some more fine-grained decompositions might be possible since each
transformation is expressed in detailed metamodel/platform concepts instead of
high-level, informal concern concepts (as in elaboration 1). A typical example in
the UML domain is the addition of a separate transformation that generates get
and set operations because these are UML specific concepts.

To close the gaps to the technical and implementation domain, we introduce
for example the Entity-Relationship (ER) model (bottom of Figure 1) between
the data model and the pre-determined PG/SQL model. Delaying these layers
up till now, improves the separation between them and the higher layers. Fur-
thermore the model types (metamodels) for the lower layers are assumed to be
well-known since they correspond with concrete platforms.

4 Related Work

Our work is partly inspired by [3], where the importance of preparation phases
(development transformations, metamodels, model notations, etc.) in developing
a project-specific MDD infrastructure is emphasized. We addressed one part of
such an infrastructure: the transformation chain.

We argued for four conceptual concern layers, each in which many transfor-
mations can operate. The Enterprise Fondue method [4] introduces a layering
that uses UML profiles to distinguish five abstraction layers: component, con-
cern refinement, technical, platform and implementation. This method is aimed
towards distribution and other middleware related concerns. Similarly the RM-
ODP (Reference Model for Open Distributed Processing) [5] defines five view-
points to look at a distributed system: enterprise, information, computational,
engineering and technology. Our layering is very similar to the two previous ones
but we wish to use it to address a more broad area of concerns. Almeida et al.
introduced the notion of abstract platform [2] in particular for separating mid-

First European Workshop on Composition of Model Transformations - CMT 2006 7

dleware specific concerns and discusses the costs and benefits of more levels of
abstraction in [6].

We did not discuss technical solutions for decomposing transformations, how-
ever some work has been done in this area. In [7] an OCL-based method is offered
to formally specify pre- and postconditions for transformations, which is required
to make transformations self-contained and easily reusable. In [8] we discussed
a UML-based traceability mechanism that provides additional means to split up
transformations into smaller, commonly used, pieces.

5 Conclusions and Future Work

An important part of the effort in an MDD-based project lies in the development
of an appropriate transformation chain, which in turn eases the construction of
the application(s) described in a project.

We introduced a four-layer concern framework for transformation chains that
is richer than the classical PIM/PSM separation. To make good use of this frame-
work we presented an initial high-level transformation chain design process that
uses the layers to incrementally guide the designer to a complete transformation
chain model. The layered approach facilitates a better separation-of-concerns
and is a first step towards reusable and replaceable transformation components.

All ideas presented in this paper need to be refined. In our future work
we will address concrete approaches for defining the layers formally technical
solutions for composing transformations. We will also refine the proposed high-
level process with concrete activities that offer better guidance to developers in
order to evolve to a full-fledged transformation chain design process.

References

1. Object Management Group: Mda guide version 1.0.1. Misc (2003)
2. Almeida, J.P., Dijkman, R.M., van Sinderen, M., Pires, L.F.: On the notion of

abstract platform in mda development. In: EDOC. (2004) 253–263
3. Gavras, A., Belaunde, M., Almeida, L.F.: Towards an mda-based development

methodology. In: EWSA. (2004) 230–240
4. Silaghi, R., Fondement, F., Strohmeier, A.: Towards an mda-oriented uml profile

for distribution. In: EDOC. (2004) 227–239
5. ISO/IEC and ITU-T: Reference model for open distributed processing. (Misc)
6. Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Costs and benefits of multiple levels

of models in mda development. In: 2nd European Workshop on Model-Driven Ar-
chitecture with Emphasis on Methodologies and Transformations. Volume Technical
Report No. 17-04., University of Kent, Canterbury, UK (2004)

7. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: Ocl for the specification of
model transformation contracts. In Patrascoiu, O., ed.: OCL and Model Driven
Engineering, UML 2004 Conference Workshop, October 12, 2004, Lisbon, Portugal,
University of Kent (2004) 69–83

8. Vanhooff, B., Berbers, Y.: Supporting modular transformation units with precise
transformation traceability metadata. In: ECMDA Traceability Workshop, SIN-
TEF, (2005) 15–27

First European Workshop on Composition of Model Transformations - CMT 2006 8

Composition of Model Differences

A. Cicchetti, D. Di Ruscio, and A. Pierantonio

Dipartimento di Informatica
Università degli Studi di L’Aquila,

67100 L’Aquila, Italy
{cicchetti,diruscio,alfonso}@di.univaq.it

Abstract. Difference calculation and subsequent representation are in-
teresting and useful operations between models. Whilst the former can
be performed by means of a number of tools, the latter is often based
on case–specific solutions with limited abstraction. Therefore, a model
representation for differences can be convenient both to depict informa-
tion needed in a general way and to perform interesting operations such
as parallel compositions. Starting from different concurrent versions of
a certain model, represented as change documents, the whole spectrum
of updates is obtained by merging such parallel changes. This paper il-
lustrates how to deal with conflicting modifications of the same model
elements by conceiving the composition of difference models as a partic-
ular kind of model transformation composition.

1 Introduction

Increasingly, complex software systems are cooperatively designed in distributed
environments. The various kinds of design–level structural modifications a soft-
ware system undergoes during its life–cycle can be detected for specifying differ-
ences in subsequent versions of design documents. The interaction among such
modifications inevitably involves conflicts which must be reconciled. Taking ad-
vantage of current metamodel facilities, a difference model can be given according
to a profile (introduced in [4]). In general, differences between model versions
are mainly represented in operational terms or by coloring techniques (see [1,
3, 6]). However, leveraging the abstraction level is crucial to better comprehend
the rationale behind the modifications and to harness the capabilities offered
by modeling platforms. Interestingly, regardless of the calculation algorithm be-
ing used, the profile allows the result to be always represented with a model,
although the difference is not necessarily a model (in a similar way that the
difference between two natural numbers is not a natural number but a negative
one). These models may represent different design versions of the same software
system, which is possibly divided into several subsystems created in parallel by
several designers on different platforms. In [4], the profile has been given a dy-
namic semantics and a difference model gives place to a specific kind of model
transformation, i.e. specifying the evolution from an original to a final model by
a difference model, then it can be applied to the original model to automatically
obtain the final one.

First European Workshop on Composition of Model Transformations - CMT 2006 9

This paper focuses on the composition of model differences, especially it
proposes a domain specific language for specifying criteria to handle change
conflicts raising from a parallel composition of modifications. The criteria can
enhance the automatic composition of the differences by minimizing the manual
intervention of the involved designers. Their intervention is expected only when
the described criteria do not cover specific conflicts, or when manual and ad-hoc
reconciliations are explicitly required.

The structure of the paper is as follows: Section 2 introduces the difference
abstraction, showing the minimum information about syntax and semantics of
the model. In Section 3, we specify an approach for weaving parallel changes, i.e.
to merge concurrent deltas solving conflicts as described in the weaving itself. In
Section 4 some related works are discussed. We conclude in Section 5 by stating
what problems are solved

2 Specification of Model Differences

In [4] we proposed a UML profile to represent modifications of a model. The
profile can be (logically) divided into three fundamental fragments dealing with
the various kind of model modifications:

– addition and deletion of classes as a whole;
– structure update or moving of classes;
– addition, deletion and update of relationship between classes.

The first one is used whenever new classes are created or existing classes are
deleted; in such cases the classes are marked with the stereotypes ¿addedÀ
and ¿deletedÀ, respectively. The second part concerns updates to the class
components, as attributes and methods, including the addition, modification,
and deletion of them. Classes involved in such kind of differences are decorated
with the ¿updatedÀ stereotype and show only those elements which changed.
Different versions of updated classes are linked by means of a directed associa-
tion. Moreover, it is possible to represent shifts of attributes and methods from
a source class to one or more target ones; in such cases the source is stereotyped
with ¿movedÀ and contains all the elements involved. As in the update, an
association links the source with all targets, which are named empty classes.
Finally, the last fragment comprises all differences affecting relations between
classes; it is possible to specify the addition, the deletion and the update of any
relationship by using ¿addedÀ, ¿deletedÀ and ¿updatedÀ stereotypes for
the involved relations, respectively. In the latter case the relation is enriched
with two tagged values, from and to, in order to denote modified properties
(for example the multiplicity). Any kind of differences can be specified except
those in diagrams with a layout semantics as sequence diagrams. See Fig. 1 for
a simple example.

Finally, in order to avoid any ambiguity in the information conveyed in dif-
ference models since they are used throughout a tool chain, the profile is given
formal dynamic semantics by means of Abstract State Machines (ASMs) as
shown in [4].

First European Workshop on Composition of Model Transformations - CMT 2006 10

Fig. 1. Sample Difference models.

3 Parallel composition of difference models

In this section, we investigate the problem of conflicting modifications repre-
sented in distinguished change documents which have been produced in a dis-
tributed development environment (see Fig. 1). In particular, a Domain Specific
Language (DSL) is proposed for specifying criteria to handle change conflicts,
regardless algorithms to detect them, raising from a parallel composition of mod-
ifications. The criteria described by means of the proposed DSL can be evaluated
by a resolving procedure able to perform the parallel composition [4, 12], that is
the merging operation of the difference models.

By going into more details, the result of two parallel modifications can give
place to conflicting results, i.e. elements in the original model which are changed
by both difference models without converging to a common result. In this case,
conflicting modifications have to be resolved by the corresponding designers (see
for instance [1]). The different kinds of updates interact each other by eventually
giving place to conflicts as illustrated in Table 1 where some combinations of
differences (denoted by δ) and the related conflict possibilities between classes
(or relations) are presented.1

δ1 / δ2 new update delete

new YES NO NO

update NO YES YES

delete NO YES NO

Table 1. Some Difference combinations.

For example, two concurrent new actions give place to a conflict whenever
they impose the same model element to have contradicting properties; the same
problem can happen with two update. Other conflicts arise when the concomitant
update and delete of a certain element are specified, then the changes must
be reconciled by a negotiation among the corresponding designers. Finally, the
remaining combinations are always not conflicting, as for instance when a new
element in one modification cannot appear as updated or deleted into another,
just because in the common ancestor, i.e. the initial version, it does not exist.
1 For sake of space the table is not complete; in fact, it does not show interference

situations between class and relation modifications.

First European Workshop on Composition of Model Transformations - CMT 2006 11

As mentioned, conflicts cannot be automatically resolved when they have
been caused by parallel updates of the same elements, then designers’ interven-
tion is needed; unfortunately, this activity is time–consuming and error–prone
since it does not scale up well with the complexity of the software system. Be-
sides, modification reconciliation is often guided by well–defined criteria set,
heuristics and specific knowledge. Therefore, in the sequel a weaving model is
described to explicitly represent such criteria and, consequently, to automate
the parallel composition. Each different conflict, similar to the ones in Table 1,
could be given corresponding resolution criteria; therefore in the proposed model
should be depicted all possible conflicting couples in our differences representa-
tion. Each couple can appear in the weaving model linked by an undirected
association, which is decorated with three tagged values, namely appliedTo,
rules and criteria. The first tag can be valued class, attributes, methods
or attributes,methods (default), and is used to modulate the granularity of the
rules application, i.e. the class as a whole, only attributes, only methods, or both
attributes and methods, respectively2. The second one specifies the rules which
will be used in the criteria; for example date:mostRecent declares a rule named
date which returns the latest element version. Finally, the third tag groups de-
note the desired criteria by means of rules and boolean operators, and it is used
to drive modifications composition.

Fig. 2. Sample Weaving model.

To better explain the proposed model, a simple example is shown in Fig. 2,
where the left part of the picture specifies the behavior with conflicts related to
the addition of the class named class A. The tagged value appliedTo narrows
the criteria application to attributes, rules defines a predicate for roles and one
for addition date priorities; finally, criteria combines the rules to drive the
resolution. On the contrary, the right part is not related to a particular class,
and for each pair of classes (¿updatedÀ, ¿deletedÀ) prescribes to consider
only those modifications which are owned by the developer whose id is id A.
In fact, appliedTo value is class, rules contains the predicate about owner
identity which is used by criteria.

There are several points to remark: first of all, the criteria can be specified at
several levels of granularity, as model level, element type level, or single element
level. Thus, the resolving procedure starts from the finest granularity, forward-
ing the unsolved problems to coarser–grained definitions until the top level is
reached. Moreover, each criteria can re–use rules described at upper levels and
define its own rules, giving the weaving a high customization rate. However, it is

2 It has to be noted that in the case of relationships this tag is ignored.

First European Workshop on Composition of Model Transformations - CMT 2006 12

possible that some conflict cannot be reconciled, necessitating manual interven-
tion; by knowing the designers who originated the update (by the tagged value
devID associated to each model element), it is possible to automatically alert
the ones involved in the situations, for instance, or post process the model to
feed a workflow system.

Even if the proposed model is specifically developed to the parallel compo-
sition of change documents, several common aspects of transformation compo-
sition can be detected. In fact, such operation should solve possible conflicts
between rules, and should use a flexible approach to minimize the manual inter-
vention.

4 Related Work

There exists a number of works which define methods for detecting differences
between two documents and only few focus on visualization and composition
issues. In particular, the difference representation are often given in operational
terms, i.e. structured documents, including UML models, can be represented as
trees and differences can be detected by means of algorithms [2, 9, 11, 13] based
on different set of atomic operations. All sets include the basic operations to cre-
ate, delete or modify a node of the tree but only some of them can distinguish
between the shift of a node and the combination of an insert and a delete. Thus,
differences are given as sequence of such operations and are called edit scripts [3].
Another operational representation which presents similarities with edit scripts
is given in [1] where visualization is given with sequence of operational terms.
Another well-known visualization technique is coloring [5], where the original
and final models are merged together distinguishing the various operations on
the elements by means of different colors. In this paper, the differences are rep-
resented in a declarative way by means of suitable models that can enhance the
interoperability between various modeling tools.

To the best of our knowledge, composition of differences is only partly con-
sidered in few works which mainly focus on software refactoring [10, 7] and dif-
ferences occurring on systems developed in parallel [12]. This paper tries to raise
the level of abstraction by reformulating part of the knowledges and experiences
of these works in a Model Driven setting. In particular, the differences and their
compositions are expressed by means of proposed modeling constructs and a
conflict resolution mechanism based on priorities and roles is also provided. Fi-
nally, in [8] a number of operators for model integration are described and they
have partially inspired the weaving constructs proposed in this paper.

5 Conclusions

In this paper, the problem of reconciling the conflicts which arise from composing
change documents is discussed. Difference models are given as profiled UML
diagrams in order to record the modifications a software system has been subject
to during its life–cycle. Moreover, a differences model gives place to a specific kind
of model transformation since the final model can be automatically obtained by

First European Workshop on Composition of Model Transformations - CMT 2006 13

applying the differences model to the original model. Therefore, the composition
of difference models is a particular kind of model transformation composition.
The model transformation is defined by means of the dynamic semantics which
operationally describes how to reconstruct a final model by starting from the
original model and the differences model. In this paper, the reconciliation of the
conflicts is defined according to criteria which can be given at different degree
of granularity. In particular, the resolution starts from the finest granularity,
forwarding the unresolved conflicts to coarser–grained definitions until the top
level is reached. When specific conflicts do not reconcile the involved designers
are required to negotiate the manual intervention. All the information is encoded
in the models enabling the automated processing of difference models and their
composition within a given tool chain. Further work is necessary to develop
a tool to assist the proposed approach especially for supporting the criteria
specification and the resolving procedure. The validation of the work against a
realistic problem is also needed.

References

1. M. Alanen and I. Porres. Difference and Union of Models. In UML 2003, volume
2863 of LNCS, pages 2–17. Springer-Verlag, 2003.

2. D.T. Barnard, G. Clarke, and N. Duncan. Tree-to-tree Correction for Document
Trees. Technical report, Departement of Computing and Information Science
Queen’s University Kingston, Ontario, Canada, Jan 1995.

3. S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change De-
tection in Hierarchically Structured Information. In Proc. ACM ICMD’96, pages
493–504, 1996.

4. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Domain-Specific Modeling Lan-
guage for Model Differences. Technical report, Dipartimento di Informatica, Uni-
versità di L’Aquila, http://www.di.univaq.it/di/pub.php?page=1&id=728, 2006.

5. D.Ohst, M. Welle, and U. Kelter. Difference Tools for Analysis and Design Doc-
uments. In 19th Int. Conference on Software Maintenance (ICSM 2003), pages
13–22. IEEE Computer Society, 2003.

6. D.Ohst, M. Welle, and U. Kelter. Differences between versions of UML diagrams.
In ESEC/FSE-11: Proc. ESEC/FSE, pages 227–236. ACM Press, 2003.

7. T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electr. Notes Theor. Comput. Science, 127(3):113–
128, 2005.

8. T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. Model Integra-
tion Through Mega Operations. In MDWE2005, 2005.

9. S. M. Selkow. The tree-to-tree editing problem. IPL, 6(6):184–186, Dec 1977.
10. G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. M. Bieman. Model Com-

position Directives. In UML2004, volume 3273 of LNCS, pages 84–97. Springer-
Verlag, 2004.

11. K.-C. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 26(3):422–
433, 1979.

12. G. L. Thione and D. E. Perry. Parallel Changes: Detecting Semantic Interferences.
In COMPSAC, pages 47–56. IEEE Computer Society, 2005.

13. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 18(6):1245–1262, 1989.

First European Workshop on Composition of Model Transformations - CMT 2006 14

Blackbox Composition of Model Transformations
using Domain-Specific Modelling Languages

Dennis Wagelaar?

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
dennis.wagelaar@vub.ac.be

Abstract. In Model-Driven Engineering, multiple model transforma-
tions often have to be composed to produce a common result. One com-
position approach is to compose rules from existing transformations into
one transformation, which generally requires the transformations to be
written in the same language. This paper focuses on chaining model
transformations together by having them pass models to each other,
thus treating model transformations as blackbox components. Similarly
to blackbox software components, not all model transformations can be
combined. There are also constraints to the order in which model trans-
formations have to be used. In the domain of component composition,
Domain-Specific Modelling Languages (DSMLs) have been used to drive
verification of compositions and automatic generation of composition
code. We propose to apply DSML techniques for the composition of
model transformations.

1 Introduction

There are many scenarios in Model-Driven Engineering in which a number of
model transformations have to be composed in order to produce a common
result. These scenarios range from one transformation language applied to one
meta-model to many transformation languages applied to multiple meta-models.
Each of these scenarios has different possibilities and limitations for composition.
In some scenarios, it is possible to compose rules from existing transformations
into one transformation. This generally requires the transformation rules to be
written in the same language. This paper focuses on chaining model transforma-
tions together by having them pass models to each other, thus treating model
transformations as blackbox components. This approach should be applicable in
all scenarios and can be combined with the first approach.

Similarly to blackbox software components, not all model transformations
can be combined. For the model transformations that can be combined, there
are often constraints to the order in which they have to be applied. In the domain
of component composition, Domain-Specific Languages (DSLs) have been used

? The author’s work is part of the CoDAMoS project, which is funded by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

First European Workshop on Composition of Model Transformations - CMT 2006 15

to drive verification of compositions and automatic generation of composition
code [1]. In the case of a Domain-Specific Modelling Language (DSML) [2][3],
the configuration rules and constraints are encoded in the meta-model of the
DSML.

A DSL (or DSML) typically contains language constructs that refer to a par-
ticular application domain (e.g. web registration systems or instant messaging),
whereas general-purpose languages use far more abstract language constructs
and force the programs/models to fill in the concrete semantics.

We propose to apply DSML techniques, such as meta-modelling and transfor-
mation, for the verification of model transformation compositions and automatic
generation of composition code. In the remainder of this paper, we will illustrate
the use of meta-models and transformations for expressing composition rules
and for generating build scripts that implement the composition.

2 Expressing Composition Rules

Using the Eclipse Modeling Framework [4], one can define a meta-model for a
domain-specific composition language. As an example domain, a set of Java-
specific refinement transformations is used. These transformations apply local
refinements to model written in the Unified Modeling Language (UML) version
1.4 and use Java as an Action Language. The kinds of refinement include refining
associations to attributes, attributes to accessor methods, observer stereotypes
to a Java implementation, applet steretypes to a Java implementation and a few
others1. Fig. 1 shows (part of) the meta-model for the “Java-refinement-specific”
composition language.

The meta-model enforces the order in which the transformations must oc-
cur: each RefinementConfiguration must start with an AssociationAttributesRe-
finement. AssociationAttributesRefinement is an abstract meta-class, which has
two concrete subclasses: AssociationAttributes and Java2AssociationAttributes.
Note that the meta-model also enforces one to choose exactly one Association-
AttributesRefinement, since the first attribute of RefinementConfiguration has
a multiplicity of 1. The meta-model then goes on by enforcing that the next
transformation after AssociationAttributesRefinement should be an Accessors-
Refinement. This is again an abstract class with two concrete subclasses: Acces-
sors and Java2Accessors. After AccessorsRefinement come ObserverRefinement,
AppletRefinement and other that are no longer shown.

Note that there is another rule to the composition of AssociationAttributes-
Refinement and AccessorsRefinement: if one chooses to use AssociationAttri-
butes, one has to choose Accessors. Alternatively, if one chooses to use Java2-
AssociationAttributes, one has to choose Java2Accessors. This is because both
transformations use Java collection types to implement multiple value attributes
and its accessor methods. The Java types used in both transformations have to
be the same. In order to express this in the meta-model, the next attribute
1 The transformations themselves can be found at http://ssel.vub.ac.be/ssel/

research:mdd:casestudies

First European Workshop on Composition of Model Transformations - CMT 2006 16

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies

Fig. 1. Part of the EMF meta-model of the refinement model transformations

of AssociationAttributesRefinement would have to be pushed down to its sub-
classes and point to the correct AccessorsRefinement subclass. While this can
still be done relatively efficiently for transformations that reside next to each
other in the execution order, it would have been very cumbersome if Accessors-
Refinement came after AppletRefinement, for example. It also tangles the order
enforcing rules with the Java type consistency rules. In our example meta-model,
we’ve chosen to introduce two new abstract meta-classes, Java1Refinement and
Java2Refinement, which can be used in a model transformation that checks type
consistency, such as the following model transformation written in ATL [5]:

rule Java1Java2 {
from s : DSL!Java1Refinement (

DSL!Java2Refinement.allInstances()->notEmpty ())
to t : REPORT!Error mapsTo s (

message <- ’Java1 and Java2 refinements cannot be combined ’)
}

First European Workshop on Composition of Model Transformations - CMT 2006 17

Note that this transformation rule does not need to know about any concrete
transformations or the order in which they must be executed. It just checks for
combinations of Java1Refinement and Java2Refinement instances.

3 Generating Composition Code

In addition to validation of transformation compositions, it is also possible to
generate build scripts from transformation compositions. Since these transfor-
mation compositions are again models, adhering to the rules expressed in the
meta-model (see Fig. 1), we can use model transformations to generate the build
scripts. Below is a partial example ATL transformation that generates code for
an Ant build.xml file:

query GenerateBuildFile = DSL!RefinementConfiguration ->allInstances ()
->collect(e|e->toString()->writeTo(’build.xml ’));

helper context DSL!RefinementConfiguration def : toString () : String =
thisModule ->header () +
self.first ->toString(input) +
thisModule ->footer ();

helper def : header () : String =
’<?xml version ="1.0" encoding ="UTF -8"? >\n’ +
’<project name=" refinement" default =" transform ">\n’ +
’ <target name=" transform" depends =" clean">\n’ +
’ <atl >\n’;

helper def : footer () : String =
’ </atl >\n’ +
’ </target >\n\n’ +
’</project >’;

helper context String def : atlRefineCommand(input : String , merge : String)
: String =

’<!-- ’ + self + ’ -->\n’ +
’<arg line=" --trans ${transf.uri}’ + self + ’.asm "/>\n’ +
’<arg line=" --in IN=’ + input + ’.ecore UML=${mmodel.uml} EMF "/>\n’ +
’<arg line=" --in MERGE=’ + merge + ’.ecore UML=${mmodel.uml} EMF "/>\n’ +
’<arg line=" --out OUT=’ + input + ’r.ecore UML=${mmodel.uml} EMF "/>\n’ +
’<arg line=" --lib Java=${lib.java }"/ >\n’;

helper context DSL!AssociationAttributes def : toString(input : String)
: String = ’AssociationAttributes ’->atlRefineCommand(

input , ’${rmodel.ocltypes}’) + self.next ->toString(input + ’r’);

helper context DSL!Java2AssociationAttributes def : toString(input : String)
: String = ’Java2AssociationAttributes ’->atlRefineCommand(

input , ’${rmodel.ocltypes}’) + self.next ->toString(input + ’r’);

helper context DSL!Accessors def : toString(input : String) : String =
’Accessors ’->atlRefineCommand(input , ’${rmodel.ocltypes}’) +
self.next ->toString(input + ’r’);

helper context DSL!Java2Accessors def : toString(input : String) : String =
’Java2Accessors ’->atlRefineCommand(input , ’${rmodel.ocltypes}’) +
self.next ->toString(input + ’r’);

...

First European Workshop on Composition of Model Transformations - CMT 2006 18

4 Conclusion

This paper has illustrated how DSML techniques can be used to perform black-
box composition of model transformations. A meta-model is used to express
the rules for composition, along with any additional model transformations for
validation. Since the transformation compositions are models themselves, it is
possible to use model transformations for generating build scripts. Such build
scripts can be used to implement the transformation composition.

In our example, the execution order of the transformations, which is already
encoded in the DSML meta-model using the next and prev attributes, is explic-
itly navigated for each meta-class in this build script generator. With the current
meta-model used, this cannot be avoided. If we would have modelled the next
and prev attributes in a general superclass in the meta-model, the build script
generator could have used one general helper method to navigate from one trans-
formation to the next. Doing this would however also remove the execution order
rules from the meta-model itself and an additional validation transformation is
necessary to check the ordering.

From the above observation, it seems that the DSML meta-model should
be mainly used as an enabler for validation and generation transformations. By
using abstract meta-classes to model a kind of rule, such as “execution order”
or “type consistency”, external validation transformations can be used to check
such rules while being oblivious of other rules. Similarly, build script generator
transformations can be oblivious of the composition rules and only needs to
navigate through the composition model.

References

1. Deursen, A.v., Klint, P.: Domain-Specific Language Design Requires Feature De-
scriptions. Journal of Computing and Information Technology 10 (2002) 1–17

2. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai,
G.: Composing Domain-Specific Design Environments. IEEE Computer 34 (2001)
44–51

3. Tolvanen, J.P., Rossi, M.: MetaEdit+: defining and using domain-specific modeling
languages and code generators. In: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
(OOPSLA 2003), Anaheim, CA, USA, ACM Press (2003) 92–93

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional (2003)

5. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Model Transformations
in Practice Workshop at MoDELS 2005, Montego Bay, Jamaice. (2005)

First European Workshop on Composition of Model Transformations - CMT 2006 19

First European Workshop on Composition of Model Transformations - CMT 2006 20

Aspects of Reusable Model Transformations

Gøran K. Olsen1, Jan Aagedal1, Jon Oldevik1,

SINTEF Information and Communication Technology
Forskningsveien 1,

0373 OSLO, NORWAY

{Goran.K.Olsen, Jan.Aagedal, Jon.Oldevik} @sintef.no

Abstract. Model transformations are one of three pillars that OMG’s Model
Driven Architecture is built on. Together with metamodels and models it is a
vital part. Today model transformations are mainly written from scratch for each
problem they are to help solving. This is in many cases a very time consuming
and difficult task. If the vision of MDA is to be fulfilled we believe that there
must be large libraries of reusable model transformations available. This paper
describes aspects of reusable transformations: It defines reuse in the context of
transformations, identifies characteristics of reusable transformations, ways of
achieving reuse and presents three studies conducted in the MODELWARE
project.

1 Introduction

MDA emphasizes that models should be considered as first degree artifacts and be
used and kept in sync throughout the software development process. The software
systems should be designed at a high abstraction level and then incrementally refined
to contain more specific and detailed information, ending at the implementation of the
system in a given language. In MDA, there is a belief that automation of parts of these
refinements would be beneficial, both increasing the productivity and the quality of
the developed systems. An even greater gain could be achieved by enabling extensive
reuse of these transformations. Reuse of transformations is an absolute requirement,
since writing the transformations from scratch each time would be too time
consuming, and the quality benefits of reuse would be lost.[1]

2 Transformations

A model transformation can be viewed as a transformation between two model spaces
defined by their respective metamodels. A source model to target model
transformation specification describes how elements in the source model space should
appear in the target model space by relating metamodel elements in the source and
target metamodels. The source model instance conforms to the source metamodel (for
instance the UML2 metamodel). The transformation implementation transforms a

First European Workshop on Composition of Model Transformations - CMT 2006 21

source model instance to the corresponding target model instance. The target model
instance conforms to the target metamodel (for instance the UML profile for EJB). In
this context we are interested in transformation specifications that can be reused.

 3 Transformations Reuse

The idea and debate concerning reuse in software development have been present in
the software community for decades:

Reusability. The degree to which a software module or other work product can be
used in more than one computer program or software system.[2]

Reuse has been touted as the silver bullet for many new technologies, e.g., object-
orientation and component-based software engineering. Despite the hypes, reuse has
been applied successfully in many different settings, spanning from the opportunistic
approach of cutting and pasting code lines, to a more structured and systematic
approach like creating and utilizing assets, for instance architectures, patterns,
components and frameworks.

Reusing software assets involves several steps, such as: Identification,
specification, storage, retrieval, application and assessment of costs and benefits. In
order to cope with these challenges there is a need to understand how reuse applies to
the transformation domain.

In this paper we discuss how to apply the results from the reuse domain to model
transformations, making them reusable assets. An overall goal of the MODELWARE
project is to increase the productivity of software development with 15 – 20 %, and
we believe reuse of model transformations will significantly contribute to this. If the
transformations must be written from scratch each time, this will be time consuming
and one can expect that the cost of transformation development may sometimes even
outweigh the benefits of applying them. Therefore one of MODELWARE’s important
results is to establish libraries containing reusable transformations. In these libraries it
should be possible to search for and retrieve information on already existing
transformations in a quick and simple way such that all necessary information is made
available.

4 Characteristics of Reusable transformations

In order to characterize a reusable transformation, we need to characterize the
properties that make a transformation reusable as opposed to just usable in a specific
case. We define a reusable transformation to be a transformation that can be used in
several contexts to produce a required asset. With different contexts we mean for
instance different applications, projects, companies, or domains. In the following we
discuss how the specificity of the source, target, and modeling element relationships
influence reusability of a transformation.

First European Workshop on Composition of Model Transformations - CMT 2006 22

4.1 Specificity

A model is always an abstraction of the system under consideration. This means that a
model specifies certain aspects of a system, whereas other aspects are not considered.
A model may therefore represent many systems, varying by the aspects not defined by
the model. If one refines a model, one adds more detail. This means that one restricts
the possible systems further, reducing the number of candidate implementations. The
recursive process of refinement ends when there are no degrees of freedom and it
therefore only exist one possible solution: the implemented system.

The level of specificity of a model influences its reuse potential. An abstract model
can represent many systems, and is therefore reusable in many contexts. However, the
knowledge embedded in a detailed model is much larger than in an abstract one, so
the value of reusing a detailed model is much greater. In the following we discuss this
trade-off in specificity, and address the source and target models, and the actual
transformations.
Source and Target Model Specificity. The more details the metamodels contain, the
more restrictions are put on the models that complies with these, and the less reusable
are the transformations to which these models are source/target. It therefore is clear
that the metamodels should be as small and little restrictive as possible while still
containing the necessary information for the transformation specification.

There are several orthogonal dimensions of a modeling language: from general
purpose to domain-specific, from high-level to low-level, and from focused (e.g., only
process modeling) to complete (i.e., able to model all aspects of the systems). The
number of contexts that a transformation fits in depends on how the metamodels
position the modeling language on these dimensions.
Transformation Specificity. A transformation specification is in essence also a
model, i.e., it specifies the relationships between source and target model elements. A
complex transformation specification contains much knowledge, and the added-value
of reusing such a transformation is therefore high. However, a complex
transformation may make too many choices for the relationships between source and
target, and it is therefore not possible to use in many contexts. One possibility to
alleviate this is to divide a complex transformation into smaller transformations that
can be sequenced. Using this approach, one may identify several reusable
transformations even if the larger and more complex one is not reusable

A transformation specification can be made more general (and thereby more
reusable) by parameterization. A transformation specification template can be
instantiated to become many kinds of transformation specifications, depending on the
value of the parameters used to instantiate it. For instance, a transformation
specification template can take the source metamodel type as a template parameter
and use this to resolve the specified mappings to actual metamodel properties of the
source metamodel. This may be achieved by defining the transformation without
referring to any specific properties of the source metamodel; for instance choosing a
meta-metamodel such as MOF2.0 that defines some generic properties (e.g., name,
isQuery) of all metamodels that can be used in the transformation specification.

First European Workshop on Composition of Model Transformations - CMT 2006 23

5 Ways of reusing

There are several different approaches for making use of a reusable transformation:
From the transformation point of view:

As-is. The simplest way of reuse is when a transformation is found in a
transformation library and the specification fits the requirements. The transformation
can be reused as-is without additional specialization. This is typically a very general
transformation that generates common static structures or does some kind of re-
factoring.

Another approach of reusing a transformation as-is is the creation of new
transformations based on reusable transformation fragments. In this case, the
developer uses fragments of a transformation as-is. We might see a scenario where a
large amount of rules/operations are collected in a library in the same manner as what
is the case with the reusable transformations.
Composition / Chaining. To be able to compose a transformation, it requires that
several reusable transformations already exist and these transformations can be
composed in such a way that they produce the required output. This means that the
output of one transformation can be used as the input of another transformation. It
also means that there is a way to define the composition, e.g., by defining a composite
transformation that can invoke or otherwise include other transformations.[3]
Specialization. If a generic transformation needs to be extended to better fit the
current needs, it may be possible to specialize it, e.g., by using inheritance. This might
be a scenario where the original transformation is made very generic such that it will
fit a larger number of problem domains. Instead of making your own from scratch you
can continue building on an already stable and well tested transformation. You will
also have the ability to import so called “utility” or “helper” transformations.
Parameterized. As previously described, a transformation specification can have
parameters that need to be supplied when reusing it, either template or actual
parameters. Note that parameterization can be combined with other reuse approaches
such as specialization and composition.
Higher-order. A higher-order transformation is a model transformation that
transforms other model transformations. A higher-order transformation uses the fact
that a transformation itself is a model compliant with a metamodel, and one can
therefore define transformations that take models of transformations as input (e.g.,
models conformant with the MOF 2.0 QVT metamodel[4]) and produces other
transformation models as output.
Opportunistic. There will be a number of transformations that might not be
applicable to more than a few applications. These and all the other transformations
can be subject for opportunistic reuse (edit / copy / paste) and work as guidance for
other similar problems.
Modify/filter the source model. As transformations are constrained by source and
target metamodels, a way to enhance transformation reuse is to reduce the scope for
each transformation input metamodel. This approach needs to filter the source model
in source model subsets, define the necessary glue between compositions and finally
combine the obtained target sub-models together.

First European Workshop on Composition of Model Transformations - CMT 2006 24

6 Experience in practice

Several experiments with model transformations have been conducted in the
MODELWARE project over the last years. Different tools and languages have been
tested for reusability purposes and some of the experiences are presented in the
following sections. The different ways of reusing a transformation explained in the
previous sections are derived from these experiments.
ATL Transformations and library. ATL is the ATLAS INRIA & LINA research
group answer to the OMG MOF/QVT RFP. Several transformations have been
written in this language and some of them have been utilized as reusable
transformations. The ATL project is part of the Eclipse GMT project and on this web
site the transformations are published in a preliminary transformation library. Present
the library contains almost fifty different transformations where some of them have
been subject for some amount of reuse. There is also developed a transformation
specification sheet that has given experience in how information about the different
transformations should be structured[5-7].
J-language Transformations. At Thales there have been developed several
transformations in the J-language which is the Objectering Profile Builder Tool’s
development language. There have also been developed a framework which is based
on fine-grained unitary clone transformation rules for concept creation and fine-
grained unitary ownership transformation rules for concept linking.[5]
MOFScript Transformations. MOFScript is a language and tool for writing model
to text transformations. It is developed in the MODELWARE project by SINTEF.
MOFScript is part of the Eclipse GMT sub-project and is also submitted to OMG as
an answer to the MOF Model to Text Transformation RFP. A number of MOFScript
transformations have been developed as examples, proof-of-concept and as part of
cases. Most of the examples are based on the UML2 metamodel, however, there are
also examples of using other metamodels, e.g. EMF and MOFScript’s own
metamodel. Reuse mechanisms supported in MOFScript includes rule polymorphism
/ overriding, transformation inheritance and transformation library imports (reuse by
composition and invocation)[5, 8].

7 Conclusion

The experiments have shown that the importance of large libraries containing
transformation can not be overstated. A major issue is sharing and retrieving the
transformation in a way that makes reuse possible. Presently, the libraries do not have
sufficient functionality, and need to be further developed.

We have seen some successful application of reusable transformations, mainly in
the modeling domain (e.g. UML2Ecore) and with the use of fine-grained
transformations that are being composed (chaining).

There are aspects of reusable transformations that make them more expensive to
develop. More planning and analyses must be conducted. This will rapidly become
economical defensible as soon as the transformations are reused.

First European Workshop on Composition of Model Transformations - CMT 2006 25

In short, we conclude that there is not yet found any significant trace of large-scale
reuse in the area of model transformation. This is not surprising, because the field is
still very young. Our study warns, however, that unless we prove that some
reusability of transformation software exists, the MDA approach is not likely to
produce any economy of scale in the software development industry. As a
consequence, we emphasize that the problem is serious and needs more investment
than this study[5].

1MODELWARE is a project co-funded by the European Commission under the

“Information Society Technologies” Sixth Framework Programme (2002-2006).
Information included in this document reflects only the author’s views. The European
Community is not liable for any use that may be made of the information contained
herein.

8 References

1. OMG Model Driven Architecture, http://www.omg.org/mda/. 2006.
2. IEEE Standard Glossary of Software Engineering Terminology 610.12-1990.

In IEEE Standards Software Engineering. 1990.
3. Oldevik, J., Transformation Composition Modelling Framework. Vol. 3543 /

2005 2005: Springer Berlin / Heidelberg
4. OMG, MOF QVT Final Adopted Specification

http://www.omg.org/docs/ptc/05-11-01.pdf. 2006.
5. MODELWARE, D1.6 Definition of Reusable Transformations,

http://www.modelware-
ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=7
7. 2006.

6. ATL home page at: http://www.eclipse.org/gmt/atl. 2006.
7. INRIA, ATL: the ATLAS Transformation Language

http://www.eclipse.org/gmt/atl/doc/ATL_PresentationSheet.pdf.
8. MOFScript Home page at: http://www.eclipse.org/gmt/mofscript/. 2006.

First European Workshop on Composition of Model Transformations - CMT 2006 26

http://www.omg.org/mda/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.modelware-ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=77
http://www.modelware-ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=77
http://www.modelware-ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=77
http://www.eclipse.org/gmt/atl
http://www.eclipse.org/gmt/atl/doc/ATL_PresentationSheet.pdf
http://www.eclipse.org/gmt/mofscript/

Composing Transformation Operations Based on
Complex Source Pattern Definitions

Arda Goknil1, N. Yasemin Topaloglu2

 Department of Computer Engineering, Ege University, Izmir, Turkey
1arda.goknil@ege.edu.tr, 2yasemin.topaloglu@ege.edu.tr

Abstract. Rule composition and decomposition is a hot research topic within
the context of model transformation. Mostly, transformation rules are
considered as atomic parts of the transformation and rule composition has been
the focus of recent research in the model transformation area. In our approach,
we consider the transformation operations such as add, delete and update
operations as the atomic parts of the transformation and the synthesis of these
operations constitutes a single transformation rule. Defining complex and
hierarchical source pattern definitions requires approaches and techniques
about the composition and decomposition of these operations. In this paper, we
discuss the problem statement and present an example case in which operation
composition is required.

1 Introduction

Rule-based model transformation languages are the core technologies for operating
the transformations between models on different abstraction levels in current Model
Driven Engineering (MDE) approaches, such as Model Driven Architecture (MDA)
[4] and Model Integrated Computed (MIC) [6]. In these languages, transformation
rules are considered as the atomic elements of the transformation process.

Implementing large and complex transformations require complex and hierarchical
pattern definitions to query models. In this context, complex pattern definitions mean
that the pattern elements are tightly coupled and the relations between them are
derived from the domain, not from the meta associations of the source metamodels.
The coupling between the model elements is defined in the problem domain instead
of metamodels. For instance, the relation between the UML Class and UML Attribute
model elements in a proposed UML2JAVA transformation is derived from the UML
metamodel. Complex source patterns include variation points and coupled elements
hierarchically. Transformation rules which query these models should contain
multiple operations and multiple pattern elements. In our approach, we consider the
transformation operations such as add, delete and update operations as the atomic
parts of the transformation and the collaboration between them constitutes a
transformation rule.

In this paper, we highlight the need of transformation languages that support
operation composition for complex pattern definitions. The paper is organized as
follows. In Section 2, we discuss the transformations with operation definitions. In

First European Workshop on Composition of Model Transformations - CMT 2006 27

Section 3, we present a sample transformation for composing transformation
operations. Section 4 includes the conclusions.

2 Transformations with Operation Definitions

In transformation between two different metamodels, rules have simple definitions
for transforming one model element in the source model into one or more model
elements in the target model. This approach is called one-many mapping. In [7], the
term mapping is defined as a synonym for correspondence between the elements of
two metamodels, while the mapping specification precedes the transformation
definition. Especially, transformation platforms which combine weaving and
transformation, execute the transformations with one-many mapping. In
transformations generated by mapping two different metamodels, the model elements
are loosely coupled and the relations between them are derived from the source
metamodel. The implicit rule calls defined in [1] solve the problem about integration
and execution order of mapping rules. Composition approaches are mainly concerned
about rule composition.

Since entities and the relations between these entities in the pattern definition are
derived from the problem domain, they constitute the hierarchical complex source
patterns. The rule structure requires complex pattern mapping within a single rule
instead of one-many pattern element mapping within multiple rules. For instance, the
relations between the pattern elements are defined by the problem domain in a
proposed multiple inheritance-single inheritance (MI2SI) transformation [2] as a part
of UML2JAVA transformation. In such a transformation operated by one-many
mapping, the mechanism needs helper rules to define relations between the elements
of the pattern. These helper rules make the problem definition more complex and
incomprehensible. Transforming by pattern mapping takes the source pattern and
transforms it into the target pattern by using less number of rules than one-many
model element mapping uses. However, in this case, rules need multiple operations to
transform one pattern into another one. Multiple operations in a transformation rule
are given by Figure-1.

Figure-1. Multiple Operations in a Single Transformation Rule.

First European Workshop on Composition of Model Transformations - CMT 2006 28

There are some issues to be considered in transforming by pattern mapping. Like
rule composition, operation composition is required to manage and to organize the
transformation operations defined between the complex pattern definitions. In Figure-
1, the r1 rule has four operations named o1, o2, o3 and o4. The organization of the
operations in the rule can be considered within the parallel of rule organization. The
same problems about rule integration and organization occur in the operation
organization and integration. There must be implicit operation calls in the rule to
collaborate operations according to the relations between the pattern elements.

3 A Sample Transformation for Composing Transformation
Operations

In this section, we explore the cases derived from the problem statements depicted in
Section 2 over a sample pattern definition of multiple inheritance for a proposed
multiple inheritance (MI) to single inheritance (SI) transformation. Although some
programming languages include only single inheritance, defining a class by inheriting
from more than one class is needed in a system design frequently. We consider UML
models as the platform independent models which support multiple inheritance and
Java programming language as our platform specific model which supports only
single inheritance. The MI2SI transformation is a good example for complex pattern
definitions because both source and target patterns contain multiple hierarchies and
the transformation has multiple add, delete and update operations between MI and SI.

We consider the two alternatives as the representative cases of multiple inheritance
(MI) since they can constitute the basis to generate other MI cases. In the first case,
the inheritance hierarchy is composed of only one level and it is the simplest case of
MI. The second case adds one more level to the inheritance hierarchy and called
“diamond inheritance” [5].

Figure-2. Transforming Multiple Inheritance to Single Inheritance with Role

Aggregation.

First European Workshop on Composition of Model Transformations - CMT 2006 29

In the hierarchy of multiple inheritance, we named the classes as GrandParent,
Parent and Child classes. The GrandParent class is at the top of the hierarchy and the
Child class is at the bottom. The Parent classes are the middle level classes which are
the subclasses of the GrandParent class and super classes of the Child class. Figure-2
depicts the MI2SI transformation with role aggregation given in [2]. In Figure-2, one
of the inheritance links is replaced by an aggregation link. The newly added abstract
class named A/C is called AbstractDiscriminatedClass and the Parent classes in the
MI which are the subclasses of the A/C class are now called the
ConcreteDiscriminatedClass instead of Parent class.

The problem here is how to identify the rules between these two complex pattern
definitions in the transformation definition. Decomposition satisfies the requirements
for this identification. Kurtev [3] defined some rule decomposition approaches
according to the target and source pattern. In source-driven approach [3], rules for
every model element in the source pattern are defined. The rules for the MI2SI
transformation are shown below:

GrandParentRule (Source[GrandParentClass],
 Constraint[GrandParentClass, ParentClass, ChildClass],
 Target[GrandParentJClass, AbstractJClass])

ParentRule (Source[ParentClass],
 Constraint[ParentClass, GrandParentClass, ChildClass],
 Target[ParentJClass, ConcreteDiscriminatedJClass])

ChildRule (Source[ChildClass],
 Constraint[ChildClass, GrandParentClass, ParentClass],
 Target[ChildJClass])

This transformation contains three rules. Each rule defines a source model element

in its source part but each rule has the full definition of constraints to query the whole
source pattern in the model. For instance, the GrandParentClass in the source part of
GrandParentRule needs the full constraint definition of the source pattern to match in
the model because the constraint part requires constraints of other source pattern
elements related to the GrandParentClass to bind the appropriate model element. The
helper rules are required in the constraint part to define the relationships between the
pattern elements. In the GrandParentRule, we need to call two helper rules for the
relation between the GrandParentClass, ParentClass and the ChildClass. The same
helper rules and constraint repetitions are required for other rules named the
ParentRule and the ChildRule. This kind of rule decomposition makes the definition
more complex. We chose the composition of rules according to the source and target
pattern mapping instead of rule decomposition.

MI2SIRule (Source[GrandParentClass, ParentClass, ChildClass, GPFeature],
 Constraint[GrandParent, Parent, Child, GPFeature],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass, AbstractDiscriminatedJClass,
 GPJFeature, CDJFeature])

First European Workshop on Composition of Model Transformations - CMT 2006 30

MI2SIRule maps the multiple inheritance source pattern and the single inheritance
target pattern. The source and target parts of this rule include all pattern elements and
the constraint part of the rules defines all relation and cardinality constraints of these
pattern elements at once. In this kind of rule structure, we need to define the
transformation operations which are the atomic parts of the transformation definition.
There is a need of operation composition to organize and manage the appropriate
operations within a single rule. Transformation languages should also support explicit
definition of operation structures in rules. Every single operation should be able to
map a number of source model elements to a number of target model elements.

MI2SIRule (Source[GrandParentClass, ParentClass, ChildClass],
 Constraint[GrandParent, Parent, Child],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass,AbstractDiscriminatedJClass]
 Operation1[Type: Add, GPP_Generalization],
 Operation2[Type: Delete, PC_Generalization],
 Operation3[Type: Add, AbstractDiscriminatedJClass],
 Operation4[Type: Add, GPA_Aggregation],
 Operation5[Type: Add, AC_Generalization])

Another issue in the operation composition is the reuse of transformation

definitions. OMI2SIRule depicts the transformation from one level multiple
inheritance to single inheritance. Source pattern elements of the MI2SIRule except the
GrandParentClass constitute the pattern elements of OMI2SIRule.

OMI2SIRule (Source[ParentClass, ChildClass],
 Constraint[Parent, Child],
 Target[ParentJClass, ChildJClass]
 Operation1[Type: Delete, PC_Generalization],
 Operation2[Type: Add, ParentFeaturetoChild])

We must decompose the constraint part of the rule structure to reuse the pattern

elements and constraints of the MI2SIRule in the OMI2SIRule. The composed
constraint structure of the MI2SIRule prevents the reuse of constraints for the
ParentClass and ChildClass pattern elements. MI2SIRule2 is the rule whose
constraints are decomposed for every pattern element in the source part of MI2SIRule.

MI2SIRule2(Source[GrandParentClass, ParentClass, ChildClass],
 ConstraintGP[GrandParent], ConstraintP[Parent],
 ConstraintC[Child],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass,AbstractDiscriminatedJClass]
 Operation1[Type: Delete, GPP_Generalization],
 Operation2[Type: Delete, PC_Generalization],
 Operation3[Type: Add, AbstractDiscriminatedJClass],
 Operation4[Type: Add, GPA_Aggregation],
 Operation5[Type: Add, AC_Generalization])

First European Workshop on Composition of Model Transformations - CMT 2006 31

As shown briefly in the above example, decomposing a transformation into
operations and composing operations according to the complex pattern mapping
make the transformation definitions more expressive. In addition, reusing the
operations to constitute new rules is trivial.

4 Conclusion

In this paper, we discuss the need of operation composition and the general operation
structure in transformation rules that transformation languages should support.
Transformation languages should have additional features in their rule structures that
provide operation composition. Composing operations within transformation rules
will enable us to query and transform complex pattern definitions in a more
expressive way.

References

1. Czarnecki, K., Helsen, S. Classification of Model Transformation Approaches.
OOPSLA2003 Workshop on Generative Techniques in the Context of MDA, USA,
2003

2. Dao, M., Huchard, M., Libourel, T., Pons, A., Villerd, J.: Proposals for Multiple to
Single Inheritance Transformation. In Proceedings of the 3rd International Workshop
on Mechanisms for Specialization, Generalization and Inheritance MASPEGHI 2004
(Workshop ECOOP 2004), Oslo Norway, June 2004

3. Kurtev, I.: Adaptability of Model Transformations, PhD Thesis, University of
Twente, 240p, ISBN 90-365-2184-X

4. OMG: MDA Guide Version 1.0.1. The Object Management Group, Document
Number: omg/2003-06-01 (2003)

5. Sebesta, R.: Concepts of Programming Languages. Addison-Wesley Publishing,
2002.

6. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer, Apr. 1997,pp.
110-112

7. Lopes, D., Hammoudi, S., Bezivin, J., Jouault, F.: Mapping Specification in MDA:
From Theory to Practice. INTEROP-ESA'2005

First European Workshop on Composition of Model Transformations - CMT 2006 32

Pattern composition in graph transformation rules ?

András Balogh and D́aniel Varŕo

Department of Measurement and Information Systems
Budapest University of Technology and Economics
H-1117 Magyar tudosok krt. 2, Budapest, Hungary

{balogh,varro }@mit.bme.hu

Abstract. Graph transformation (GT) frequently serves as a precise underlying
specification mechanism for model transformations within and between model-
ing languages. However, composability of graph transformation rules is typically
limited to inter-level rule composition (i.e. rules calling other rules). In the current
paper, we introduce intra-level composition for GT rules where the left-hand side
and right-hand side graphs of GT rules can be composed of stand-alone graph pat-
terns in a fully declarative way. As a result, the specification of complex model
transformation problems can be drastically reduced. Our concepts are demon-
strated using the transformation language of the VIATRA2 framework.

1 Introduction

Graph transformation (GT) [5], which provides a rule and pattern-based specification
paradigm for the manipulation of graph models, is frequently used for specifying model
transformations within and between modeling languages. When executing a GT rule on
an instance model, a matching of the left-hand side (LHS) graph pattern is substituted
by an image of the right-hand side (RHS) pattern. Since the early 1990s, a wide range of
tool support has become available, e.g. PROGRES [9], FUJABA [7], AGG [6], GReAT
[8], ATOM3 [4], TefKat [1], VIATRA2 [2].

On the one hand, graph transformation tools are able to handle industrial size mod-
els [10] for practical model transformation problems. However, GT specifications can
easily become large and scattered in case of complex model transformations due to
the limited support of composability in graph transformation languages. Most typically,
the graph patterns in GT rules become large (consisting of a large number of pattern
elements), and have often common partitions reused in many pattern.

In existing GT tools, composability is either completely missing (e.g. in AGG, or in
ATOM3), or it is mainly limited to inter-level rule composition where a GT rule can be
called from other GT rules, or by external control structures (as in PROGRES, FUJABA
and GReAT), or the composition is similar to the object/oriented inharitance, where
a rule can extends an other rules behaviour (like in case of TefKat). However, path
expressions and multi-objects are the only mechanism which aim at compacting the
definition of GT rules. Furthermore, while most of these tools offer support for defining

? This work was partially supported by the European IPs SENSORIA and DECOS. The second
author was also supported by the J. Bolyai Scholarship.

First European Workshop on Composition of Model Transformations - CMT 2006 33

constraints (either in OCL or by graph constraints), the constraints and transformation
rules are defined in different ways.

In the current paper, we introduce intra-level composition for GT rules in a fully
declarative way. We first define graph patterns as a stand-alone and reusable specifi-
cation concept, and then construct the LHS and RHS of GT rules by composing these
predefined and also local patterns. As a result, the specification of complex model trans-
formation problems can be drastically reduced. Our proposal also supports the reusabil-
ity of GT patterns and rules by allowing the creation of predefined pattern libraries for
typical GT steps. We demonstrate our concepts using the transformation language of
the VIATRA2 framework.

2 Graph Transformation Rules in VIATRA2

The main transformation language of the VIATRA2 framework (called VTCL: Viatra
Textual Command Language) [2] combines the declarative paradigm of graph trans-
formation with the imperative constructs of the Abstract State Machines (ASM) [3]
where elementary model transformation steps are carried out by graph transformation
rules while complex transformations can be driven by ASM programs. While this ap-
proach is feasible form many model transformations in practice, the specification of
fully declarative transformations frequently results in complex transformation rules.

The following code illustrates a simple graph transformation rule in VIATRA2,
which operates on UML models and lifts up attributes from the child class to the parent.

gtrule liftAttrsR(in CP, in CS, in A) = {
precondition pattern lhs(CP,CS,A,Attr) = {

UML.Class(CP);
UML.Class(CS);
UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
UML.Class.attrs(Attr,CS,A);

}
postcondition pattern rhs(CP,CS,A,Attr) = {

UML.Class(CP);
UML.Class(CS);
UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
UML.Class.attrs(Attr2,CP,A);

}
}

The precondition pattern defines the LHS, and the postcondition pattern defines
the RHS of the transformation step. When applying the rule, the pattern variables are
substituted according to the matching, and these bound variables are passed to the RHS,
where the difference of the RHS and LHS is calculated along the matching (i.e. edge
attrs is removed between child classCS and attributeA, and a new edgeattrs is created
from parent classCP to attributeA).

In addition, VIATRA2 also supports negative application conditions defined as neg-
ative patterns, which may prohibit the application of the GT rule on a certain matching.

First European Workshop on Composition of Model Transformations - CMT 2006 34

3 Composition of Graph Patterns in GT Rules

Now we discuss how graph transformation rules can be assembled by composing and
reusing predefined graph patterns in the LHS and RHS of rules.

3.1 Composition of simple patterns

Now we can recognize two patterns that can be used at various places during UML
model refactorings: the first is the class-attribute pattern, and the second one is the
parent class-child class pattern. If we refactor the transformation by extracting these
patterns we get the following code:

pattern classAttribute(C,A) = {
UML.Class(C);
UML.Attribute(A);
UML.Class.attrs(Attr,C,A);

}
pattern parentClass(Parent,Child) = {

UML.Class(Parent);
UML.Class(Child);
UML.Class.parent(Par,Child,Parent);

}

gtrule liftAttrsR(in CP, in CS, in A) = {
precondition pattern lhs(CP,CS,A,Attr) = {

find parentClass(CP,CS);
find classAttribute(CS,A);

}
postcondition pattern rhs(CP,CS,A,Attr) = {

find parentClass(CP,CS);
find classAttribute(CP,A);

}
}

The find construct is used forpattern composition, which means (in the simple case)
the inclusion of other patterns in the current one by appropriate copying and renaming.
Using this functionality we can compose our graph transformation rule using a prede-
fined pattern set.

Simple pattern composition in the LHSof a GT rule means that all elements in
the component patterns (after an appropriate merging) have to matched. Simplepattern
composition in the RHSmeans that the merged pattern will define the overall RHS
which defines the result of rule application.

Since both internal patterns (which reside in the current ASM machine) and external
patterns (which reside in different ASM machines) can be called transparently using the
find construct, this way one can create stand-alone pattern libraries, which are reusable
from any other transformations. The reusability of patterns will require the presence of
a developer documentation that provides a textual description of reusable components
(like in many modern programming languages).

First European Workshop on Composition of Model Transformations - CMT 2006 35

3.2 Composition of complex patterns

In case of the LHS of GT rules, the find construct also allows recursive pattern calls
(the pattern calls itself), and OR-patterns which have multiple bodies (where a match
of at least one body has to be found for a successful pattern matching).

The following rule illustrates both of these concept by defining the (transitive) an-
cestor of a class. The first part states that a parent is ancestor of a child if there is a
direct parent relation between them, the second states that class Parent is ancestor of
class Child, if there is a class C that is child of Parent and ancestor of Child.

pattern ancestorOf(Parent,Child) = {
find parentClass(Parent,Child);

} or {
find parentClass(Parent,C);
find ancestorOf(C,Child);

}

When using such complex patterns in the RHS of GT rules, a new problem arises
during execution. If the LHS contains recursive calls, the RHS should also be executed
for all of the pattern matches. This requires the maintenance of the pattern call hier-
archy (the execution stack of the LHS) and the execution of the RHS for all calls (by
appropriate variable (re)naming). To illustrate the problem the following VTCL code
introduces a pattern that can be used to lift the attributes of a class to all of its parents.

gtrule liftAttrs2R(in CP, in CS, in A) = {
precondition pattern lhs(CP,CS,A,Attr) = {

find ancestorOf(CP,CS);
find classAttribute(CS,A);

}
postcondition pattern rhs(CP,CS,A,Attr) = {

find ancestorOf(CP,CS);
find classAttribute(CP,A);

}
}

The execution environment needs to recognize that we have recursive patterns in
both the LHS and RHS, and it has to “execute the RHS” for each level of the recursive
call hierarchy of the LHS (and with the same pattern bodies in case of multi-body
patterns). Such a recursive execution is sketched in Fig. 1.

4 Conclusions

In the paper we discussed composition mechanisms for graph transformation rules by
merging predefined graph patterns both in the LHS (precondition) and RHS (postcon-
dition) of the rules.

These mechanisms are already integrated in the VTCLmodel transformation lan-
guageof the VIATRA2 framework. The transformation engine of VIATRA2 already
has a stable implementation for the composition of both simple and complex patterns

First European Workshop on Composition of Model Transformations - CMT 2006 36

Fig. 1.Execution stack for recursive patterns in GT rules

in the LHS, while the implementation for pattern composition in the RHS is currently
in an experimental phase.

Our practical transformation experiences in various projects show that the specifi-
cation of complex model transformation problems can be drastically reduced (already
if pattern composition is only supported for the LHS).

References

1. TefKat Project home page.http://www.dstc.edu.au/tefkat .
2. A. Balogh and D. Varŕo. Advanced model transformation language constructs in the VI-

ATRA2 framework. InACM Symposium on Applied Computing — Model Transformation
Track (SAC 2006), pp. 1280–1287. ACM Press, Dijon, France, 2006.

3. E. Börger and R. Stärk. Abstract State Machines. A method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

4. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In
R.-D. Kutsche and H. Weber (eds.),5th International Conference, FASE 2002: Fundamental
Approaches to Software Engineering, Grenoble, France, April 8-12, 2002, Proceedings, vol.
2306 ofLNCS, pp. 174–188. Springer, 2002.

5. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.).Handbook on Graph Gram-
mars and Computing by Graph Transformation, vol. 2: Applications, Languages and Tools.
World Scientific, 1999.

6. C. Ermel, M. Rudolf, and G. Taentzer.In [5] , chap. The AGG-Approach: Language and Tool
Environment, pp. 551–603. World Scientific, 1999.

7. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph transfor-
mation language based on UML and Java. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg (eds.),Proc. Theory and Application to Graph Transformations (TAGT’98),
vol. 1764 ofLNCS. Springer, 2000.

8. G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph transformation in the
formal specification of model interpreters.Journal of Universal Computer Science, 2003.

9. A. Scḧurr, A. J. Winter, and A. Z̈undorf. In [5] , chap. The PROGRES Approach: Language
and Environment, pp. 487–550. World Scientific, 1999.

10. G. Varŕo, A. Scḧurr, and D. Varŕo. Benchmarking for graph transformation. InProc. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05), pp. 79–88.
IEEE Press, Dallas, Texas, USA, 2005.

First European Workshop on Composition of Model Transformations - CMT 2006 37

First European Workshop on Composition of Model Transformations - CMT 2006 38

Transformation Composition in QVT

Mariano Belaunde1

1 France Telecom Recherche et Développment, 2 avenue Pierre Marzin,
22307 Lannion, France

mariano.belaunde@francetelecom.com

Abstract. This paper describes the mechanisms defined in the QVT-
Operational [1] formalism to express composition of transformations. In
particular it discusses the different granularities of composition and the effect
on interoperability.

Keywords: QVT, MDA

1 Introduction

Transformation composition can be considered at two levels: coarse-grained
composition is the capability to combine several complete transformations whereas
fine-grained composition is the capability to combine partial elementary
transformations – commonly called transformation rules. Typically, the former kind
operates on models whereas the later operates on model elements.
The QVT-Operational formalism, which is part of the adopted OMG MOF 2.0 Q/V/T
specification [1], provides, first of all, a set of elementary imperative constructs to
express chaining of large transformations, which could, potentially, be implemented
in different languages. In the other hand, it provides various high-level constructs to
express fine-grained coupling of rules to build a complex composite transformation.

Section 2 of this paper examines the mechanisms that are available in QVT for
coarse-grained composition and the following Section 3 examines the facilities that
are available for fine-grained composition of rules.

2 Expressing coarse-grained composition in QVT

A command scripting language like shell in Unix systems allows to chain commands
that can be implemented in different languages. The shell script languages offers the
possibility to write loops, if/the/else controls, to manipulate variables, to pass string
parameters to the commands and the possibility to retrieve the output of a command
and to pass as input to the consequent command.
The ability to chain transformations is indeed a major scenario in MDA. There are
excellent reasons for having transformations specified or implemented using different
frameworks and different languages. One possibility we had when defining the QVT-
Operational formalism was to let the chaining of large transformation out of the

First European Workshop on Composition of Model Transformations - CMT 2006 39

standard and let this task to existing scripting languages as the shell. This remains of
course possible but, as we will see, having in QVT the capability to express directly
this coarse-grained composition has several advantages.

In essence, a QVT operational transformation declares a name, a signature stating
the expected input models and the output models, an entry operation and a list of
queries and mapping operations. A black-box transformation only declares a signature
and serves to encapsulate a transformation implemented using an external language.

The example below could be the signature of a transformation that would generate
a RDF model from a UML model and, as side effect, insert annotations in the UML
model.

transformation Uml2rdf (inout umodel:UML,out rmodel:RDF);
main() { … }

Now let's imagine this uml2rdf is a composite transformation that chains two
transformations: an in place uml2annotateduml that performs intensive analysis and
produces automatic annotation to prepare the following step annotateduml2rdf, which
is the production of the RDF model. The first transformation could be a
transformation written directly in Java while the second one could be a QVT
transformation. The code for the composite transformation will be something like:

transformation Uml2rdf (inout srcmodel:UML,out destmodel:RDF)
 access Uml2annotateduml(UML), Annotateduml2rdf(UML,RDF);
main() {
 var t1 := new Uml2annotateduml(srcmodel);
 if (t1.transform().failed()) then do {
 log("Failed UML transformation",t1.status);
 return;
 };
 var t2 := new Annotateduml2rdf (srcmodel,destmodel);
 if (t2.transform().failed()) then
 log("Failed RDF transformation",t2.status);
}

As demonstrated by this example, an explicit invocation of a transformation implies
two steps: firstly the transformation is instantiated using the new operator, and then
the transformation is invoked through the transform operation. Because it is a
parameter with out direction, the model denoted by destmodel - representing an RDF
model - is implicitly created and initialized before entering the entry point of the
composite Uml2rdf transformation. The result type of the transform operation is a
Status object storing a code status of the execution (like fail or success flag). .

The body of the entry operation contains a sequence of expressions. In this case we
take advantage of imperative constructs in QVT to express in a simple and
understandable way1 the composition, which indeed, includes the production of
arbitrary log messages when errors are encountered. Others typical constructs like
OCL [2] collect and select operators or imperative forEach and while loop can be
exploited here. To summarize, QVT has enough "programmatic" support to allow
expressing arbitrary logic for chaining the transformations.

1 An OCL expert would probably be capable of expressing the same thing using a unique long
expression. But such a complex expression might be not of the taste of most users.

First European Workshop on Composition of Model Transformations - CMT 2006 40

The main observation we can do at this level is that for coarse grained
transformations QVT is not inventing something significantly new. It is simply using
the same basic programmatic constructs that are available for fine grained
composition of rules (if-then-else, loops, variables and so on) and that will be
typically found in a scripting shell language. An interesting implication of this is that,
for the purpose of composing coarse-grained transformations, there is no need for the
user to "jump" into a different formalism2.

If we continue the comparison with the shell language, there is however a
noticeable difference regarding the type of parameters that can be passed to the
"command" – a transformation in our case. Rather than simple strings, we are dealing
here with model types, which basically are MOF extents with additional constraints
implied by the MOF metamodel associated to the model type. This means that a tool
implementing the language is expected to perform type analysis on models3. The
notion of model type, referring indirectly to a metamodel, gives some flexibility in the
kind of input models that can be accepted by a transformation. For instance, the UML
model type required by the uml2rdf may be defined in a way that makes it possible to
use both UML 1.4 or UML 1.3 conformant models. The flexibility on the model
parameters enhances the possibilities for reusing existing transformations in composite
transformations.

2.1 Parallelizing invocation of transformations.

Within a composite transformation it may be useful to indicate somehow that some
of the composed transformations can run in parallel. This can be very important from
the point of view of optimization, especially when dealing with large amounts of data
as the input of a transformation. This facility is indeed available in standard command
script languages like the shell, with the facility to execute commands in background.
Less common in scripting language is the ability to synchronize upon the completion
of a command executed in 'background'. In QVT-Operational, parallelism is expressed
through the usage of a variant of the 'transform' operation: it is the 'parallelTransform'
whose effect is to – potentially – create a new thread of execution and return
immediately. The synchronization uses a wait operation on the status variable
assigned when invoking the transformation in parallel.

The example below illustrates the usage of this facility. The Uml2rdf has been
changed in suach a way that it performs now a merge of two annotated UML models.
The Uml2annotateduml transformation is executed for each UML source model.

transformation Uml2rdf (inout src1:UML, inout src2:UML,out destl:RDF)
 access Uml2annotateduml(UML), Annotateduml2rdf(UML,RDF);
main() {
 var status1 := new Uml2annotateduml(src1).parallelTransform();
 var status2 := new Uml2annotateduml(src2).parallelTransform();

2 The implicit assumption here is that there is - probably - no great added value to introduce
specific concepts to express chaining of large transformations. This can be, of course, matter
of discussion but there is no sufficient room in this paper for this.

3 Various strategies for model checking are possible. The standard QVT defines only two pre-
defined model type compliance kinds (strict and effective) but leaves open the possibility to
define other variants.

First European Workshop on Composition of Model Transformations - CMT 2006 41

 status1.wait();
 status2.wait();
 if (status1.failed()) then do {
 log("Failed UML transformation on first model",t1.status);
 return;
 };
 if (status2.failed()) then do {
 log("Failed UML transformation on second model",t1.status);
 return;
 };
 var t := new Annotateduml2rdf (src1,src2,destmodel);
 if (t.transform().failed()) then
 log("Failed RDF transformation",t2.status)
}

3 Expressing fine-grained composition in QVT

For composing elementary transformation rules the basic imperative constructs – if-
then-else, loops, variables and so on – that are available for chaining coarse-grained
transformations can be used. However, QVT defines specific high-level mechanisms
to enhance the modularity and reuse of the language in situations where a simply
chaining of rules is not sufficient for composition. The specific compositions facilities
described from Section 3.2 to Section 3.4, introduces, at some extent, a declarative
"look and feel" in the language – while remaining, in terms of the execution
semantics, hopefully, totally imperative.

A typical use-case of fine-grained composition is when a transformation designer
wants to build a transformation that reuses rules from an existing transformation
already written, in order to specialize it or in order to apply the transformation in a
slightly different context.

3.1 Object oriented background of QVT-Operational

Writing transformations may be a complex task and the nature of such a task is not
so different than the task of building a complex program. QVT-Operational exploits
well-proven object-oriented techniques: Transformations may inherit from other
transformations, operations may be overridden and dynamic binding semantics applies
on overridden operations. In addition QVT offers an extension mechanism which
allows defining helper operations, mappings operations and intermediate properties as
"logical" additional features of the pre-existing meta-classes involved in the
transformation. The specific composition facilities described in the following sub-
sections are defined in the context of this object-oriented background.

3.2 Guards in mapping operations

A mapping operation may declare explicitly a condition expression introduced by
the "when" keyword. Depending on the invocation mode (xmap or map) this
expression will be interpreted either as a simple pre-condition (raising an error if not

First European Workshop on Composition of Model Transformations - CMT 2006 42

satisfied) or as a guard (the body of the operation is not invoked, null is returned
instead).

The guard facility will have an effect on the way mappings operations are
composed since the testing expression for invoking a mapping instead of another will
be placed internally in the mapping definition rather than in the mapping invocation.
This is one of the facilities that make an operational specification appear almost
"declarative".

In the example above the 'class2table' mapping is invoked for each owned element
of a package (could be of different actual type: Classes, Associations, (sub)Packages
and so on) but, thanks to the 'map' invocation mode, the body will be executed only
for "persistent" instances of the Class metaclass (since guard is the sum of the
constraint on types in the signature and the when clause).

mapping Package::packageToSchema() : result:Schema
{
 name := self.name;
 table := self.ownedElement->map class2table();
}
mapping Class::class2table(): Table

 when {self.isPersistent()}
{ … }

3.3 Mapping merge and mapping inheritance

A mapping body is decomposed in three sub-sections: an initialization section, a
population section and a finalization section. This structure allows making implicit a
list of interesting things:

- The actual instantiation of the declared output, which is performed within a
hidden "instantiation" section that occurs after the initialization.

- The generation of the trace data linking the source element and the output
element. The trace data is implicitly used by the resolve operators, which allow
obtaining from a source instance the objects already created by mappings with this
source.

The fact that the actual instantiation of the output element is implicit also permits
introducing the concept of rule inheritance. A mapping may declare inheritance from
an existing mapping, meaning internally that the inherited mapping is invoked after
the instantiation section and before entering the population section. This "declarative"
inheritance declaration makes the specification more compact and "structured". A
composite transformation that is build as a specialization of an existing set of mapping
rules will typically contain new mappings inheriting from the existing ones.

The example below (taken from the specification) shows a simple usage of
mapping inheritance. Note that the context type of the inheriting mapping need to
conform with the context type of the inherited mapping.

mapping Attribute::attr2Column (in prefix:String) : Column {
 name := prefix+self.name;
 kind := self.kind;
 type := if self.attr.type.name='int'
 then 'NUMBER' else 'VARCHAR' endif;

First European Workshop on Composition of Model Transformations - CMT 2006 43

}
mapping Attribute::attr2ForeignColumn (in prefix:String) : Column
inherits Attr2Column {
 kind := "foreign";
}

The concept of mapping merge is the dual feature of mapping inheritance: the
merged mapping is invoked after the end of the finalization section. The merge facility
allows writing modular mappings specially when there are various outputs involved in
a rule: each "part" of a mapping will be treated separately in a merged mapping. Use
of this facility may improve significantly the readability of a complex mapping
operating on a single metaclass.

We should note that the guard mechanism has an influence in the invocation of
inherited and merged mappings since only the mappings which guard is satisfied are
effectively implicitly invoked.

3.4 Mapping disjunction

Another composition-oriented facility in QVT-Operational is the ability to define a
mapping as a disjunction of mappings. Invoking such mapping results on the selection
of the first mapping whose guard (type and when clause) succeeds. The null value is
returned if no guard succeeds. This is an example taken from the QVT specification.:

mapping UML::Feature::convertFeature () : JAVA::Element
 disjuncts convertAttribute, convertOperation,

 convertConstructor() {}
mapping UML::Attribute::convertAttribute : JAVA::Field {
 name := self.name;
}
mapping UML::Operation::convertConstructor : JAVA::Constructor
when {self.name = self.namespace.name;} {
 name := self.name;
}
mapping UML::Operation::convertOperation : JAVA::Constructor
when {self.name <> self.namespace.name;} {
 name := self.name;
}

Mapping inheritance, mapping merge and mapping disjunction are facilities that
can be used to modularize a large specification into small pieces.

3.5 Fine grained black-boxes

In Section 1 we mentioned the possibility for defining entire transformations as
black-boxes. But black-boxes can also be defined at the level of queries and mapping
operations: in such case the operation should not define a body. Black-box mappings
allow composing external transformations that operate on model elements directly
rather than models. Black-box queries allow integrating specific computations written
in an external language which can be needed as a preliminary step to define the logic
of a transformation. It is indeed up to the QVT tool implementer to provide the

First European Workshop on Composition of Model Transformations - CMT 2006 44

mechanisms for linking the QVT code with the external code to build the executable
transformation program.

4 Conclusion

This paper describes the mechanisms that are available within QVT-Operational
formalism to compose transformations. For coarse-grained transformations the level
of expressivity offered is basically the one provided by existing scripting 'shell'
languages running on top of operating systems. A specific facility is provided for
parallelizing transformation invocations. In the other hand, for fine-grained
transformations, in addition to the "regular" object-oriented mechanisms, QVT
provides a list of innovative facilities to enhance the capacity to modularize a complex
specification and to reuse mapping rules.
As we have seen, thanks to the black-box mechanism, QVT also addresses the
problem of interoperability with external transformations written in other languages
than QVT.
We do not have yet enough experience on using some of these more "advanced"
features like disjunction and merge of rules to state how these features will function
together and what would be the end-user feedback. Complete implementation of QVT
will give us a response on this. However, our past and present experience on using the
QVT-Operational ancestor formalism – TRL[3] – and using earlier implementations
of QVT allows us to state that the formalism facilitates significantly the writing of
complex transformations, which would be more difficult to develop and maintain if
implemented using a general purpose language.

References

1. OMG, MOF 2.0 Query View and Transformation specifications version 1.0, November
2005, OMG document ptc/05-11-01 available from www.omg.org

2. OMG, OCL 2.0 Object Constraint Language specifications version 2.0, May 2006, OMG
document formal/06-05-01 available from www.omg.org

3. Mariano Belaunde, Mikael peltier: From EDOC to CCM components: A Precise mapping
Specification, FASE 2002, Springer

First European Workshop on Composition of Model Transformations - CMT 2006 45

First European Workshop on Composition of Model Transformations - CMT 2006 46

First Euro
Octel, a Template Language for Generating
Structures instead of Textstreams

Jos Warmer

Ordina, The Netherlands

Abstract. This paper introduces Octel, a template langauge for generating mod-
els. Octel has the ease of use of text based template languages. At the same time
it gives the possibility of composing transformations from smaller ones. Octel has
been extensively used in the model transformations in the open source Octopus
tool.

1 Introduction

Within the field of model driven development the differences between model-to-model
and model-to-text transformations are already acknowlegded. A model-to-model trans-
formation takes some structure, which is often a graph, and transforms it to another
structure, whereas a model-to-text transformation takes a structure and produces a text-
stream, i.e. a sequence of characters without any other internal structuring. In [1] a tax-
onomy of model transformations is given that clearly distinguishes these types of
transformations.

This paper describes the use of a template language that enables model-to-model
transformations. Furthermore, this template language is very useful for building larger
transformations from small interconnected transformations.

2 Template Language for Model-to-Model Transformations

The use of template languages for model-to-text transformations has become popular.
Eclipse based languages like JET, or VisualStudio languages like T4 are good exam-
ples. Their popularity can easily be explained by the simplicity of their use. The output
file to be generated is simply written as it should be, and at certain places pieces of in-
formation from the input model are substituted. However, these template languages are
not very suitable for model-to-model transformations. The template is always a text,
and therefore the output produced by such a template language is also text.

In our work on the Octopus tool [2] we have created a template language that is able
to generate structures instead of text. This language is called Octel, which stands for Oc-
topus Template Language. A difference between Octel and other template languages is
that an Octel template is not an example of the final output of the transformation, in-
stead it is an example of the code that is to generate the output.

As example we use the UML to Java transformation that we have implemented in
Octopus. For this we have created a Java version of the UML metamodel and a meta-
model of Java itself, again in Java. The Octel templates produce the code that generates
pean Workshop on Composition of Model Transformations - CMT 2006 47

First Euro
the instances of the Java metamodel. Parts of these templates are references to (parts of)
the instance of the UML metamodel to be transformed.

For instance, the following code (Code Example 1) generates a setter method for an
UML attribute without using Octel. (For space reasons we have left out the generation
of the field and getter method.)

 1 public void generateAttributeInClass(
 2 IStructuralFeature att,
 3 OJClass owner){
 4 FEATURE = new StructuralFeatureMap(att);
 5 owner.addToImports(FEATURE.javaTypePath());
 6
 7 OJOperation method1 = new OJOperation();
 8 owner.addToOperations(method1);
 9 method1.setName(FEATURE.setter());
10 method1.setStatic(FEATURE.isStatic());
11 method1.setVisibility(FEATURE.visibility());
12 method1.setComment("implements the setter for feature '"
13 + att.getSignature() + "'");
14 OJParameter param1 = new OJParameter();
15 method1.addToParameters(param1);
16 param1.setType(FEATURE.javaTypePath());
17 param1.setName("element");
18 OJBlock body2 = new OJBlock();
19 method1.setBody(body2);
20 OJIfStatement if1 = new OJIfStatement();
21 if1.setCondition(FEATURE.javaFieldName() + " != element");
22 body2.addToStatements(if1);
23 OJBlock then1 = new OJBlock();
24 if1.setThenPart(then1);
25 OJSimpleStatement exp2 =
26 new OJSimpleStatement(FEATURE.javaFieldName()
27 + " = element");
28 then1.addToStatements(exp2);
29 }

The type IStructuralFeature represents an attribute or association end in the UML mod-
el, the type OJClass represents a class in the generated Java model, the type OJOpera-
tion represents a Java method. StructuralFeatureMap is explained in section 3.1. Lines
18 to 28 generate the body of the setter method. This body itself is an instance of the
type OJBlock, which holds an instance of OJIfStatement which in turn holds an instance
of OJSimpleStatement representing the then part of the if-statement in the setter’s body.

Certainly the transformation does not function correctly if not all of the details –
name, type, visibility, etc.– are included, but writing this code is very tedious work and
often you need many lines of code for the transformation of a single, rather simple input
element. Furthermore, the code does not look like the intended output of the transfor-
mation, which would the following code (Code Example 2) for the input attribute '+
number : Integer' of class Breakfast.

public class Breakfast {
private int f_number = 0;

/** Implements the setter for feature '+ number : Integer'
pean Workshop on Composition of Model Transformations - CMT 2006 48

First Euro
 *
 * @param element
 */
public void setNumber(int element) {

if (f_number != element) {
f_number = element;

}
}

}

As one can see, it is hard to see what code is generated from the generating Java code,
which is oine of the main advantages of template languages. Therefore we decided to
write the generating code differently, more in line with the final output to be generated
but still generating a structure of Java metamodel instances. The Octel preprocessor
then generates the code in Code Example 1, which in its turn generates the code in Code
Example 2. The following (Code Example 3) is the input to the Octel preprocessor.

 1 public void generateAttributeInClass(
 2 IStructuralFeature att,
 3 OJClass owner){
 4 FEATURE = new StructuralFeatureMap(att);
 5 owner.addToImports(FEATURE.javaTypePath());
 6
 7 /**<octel var="owner">
 8 <method type="%FEATURE.javaTypePath()%"
 9 name="%FEATURE.setter()%"
10 static="%FEATURE.isStatic()%"
11 visibility="%FEATURE.visibility()%">
12 <comment> implements the setter for feature
13 '%att.getSignature()%' </comment>
14 <param type="%FEATURE.javaTypePath()%"
15 name="element"/>
16 <body>
17 <if> %FEATURE.javaFieldName()% != element
18 <then>
19 %FEATURE.javaFieldName()% = element;
20 </then></if>
21 </body>
22 </method>
23 **/
24 }

The Octel preprocessor only changes the parts in its input that are between the ‘/**’ and
‘**/’ markers, which is pure XML. The text between ‘%’ signs, which usually refers to
information from the input model, is also considered to be Java code. Therefore, the in-
put to the Octel preprocessor is correct Java, and tools available for Java, like editors
with code completion, can still be used. Furthermore, the way Octel generates code
from the XML tags may be changed by the Octel user. In this way many different target
metamodels can be addressed. For instance, we also used Octel to generate Eclipse
plug-in manifest files, and Microsoft DSL models.
pean Workshop on Composition of Model Transformations - CMT 2006 49

First Euro
3 Composition in the Small

From the previous section it is clear that Octel generates code that in turn generates the
output of the transformation. This two-step approach is very usefull when the complete
transformation (in our example from a UML model to a Java model) is build up from
smaller transformations. We call this transformation composition in the small.

Transformation composition in the small is an excellent way to give the user control
over the overall transformation. Almost every part of the overall transformation can be
turned on or off separately. Furthermore, these parts may be changed or even complete-
ly replaced by a different implementation. For instance, in Octopus the following order
of small transformations is used to transform the complete UML model into a Java mod-
el.

1. Create the sceleton java model consisting of empty, unconnected classes.
2. Add supertype relations.
3. Add implemented interface relations.
4. Add operations.
5. Add attributes.
6. Add association ends.
7. Add code for association classes.
8. Add states.
9. Add code from implemented interfaces.
10. Add code for checking for OCL expressions.
11. Add code for checking multiplicities.
12. Generate the storage layer.
13. Generate the user interface layer.

Step 1 creates the initial model, step 2 to 11 add elements to this initial model, while
step 12 and 13 generate classes that use the classes in the initial model. Step 13 inself
is, once again, composed of many small transformations. After the complete Java model
is created, a fairly simple process produces the textual representation of this Java model
in the form of a set of Java class files. In fact, this process implements a model-to-text
transformation. Of course, it does not make much sense to leave out some of the steps
in this process, for instance to generate code for operations but not for attributes, but in
other cases this is very convenient. The Octopus user can freely turn steps 10 to 13 on
or off.

 3.1 Mappers

Some of the smaller transformations are dependent upon each other. For instance, when
generating the body of an operation one needs to know how to address references to at-
tributes or associations ends, in other word, one needs to know how attributes or asso-
ciation ends are transformed. Yet we do not want to mingle the separate steps. For this
reason we have created a set of mapper classes. A mapper object is a wrapper for an
element of the input model that is able to answer questions on how this element is or
will be transformed.
pean Workshop on Composition of Model Transformations - CMT 2006 50

First Euro
For instance, StructuralFeatureMap in Code Example 1 is a wrapper for the input
attribute. It returns the Java counterpart of an aspect of that attribute. For instance, UML
allows spaces in the attribute names, but Java does not, so the wrapper changes the
UML name to a similar name that takes into account the Java restrictions on names.

An advantage of using mappers is that changes of coding rules are easily implement-
ed. For instance, the name of the setter method for an attribute is currently always the
name of the attribute, starting with a captical letter, prefixed by ‘set’.

4 Conclusion

It is only because Octel is able to generate a structure, namely a connected set of in-
stances of the classes in our Java metamodel, that we are able to use the composition in
the small approach. If instead we had created a textual template, we were obliged to de-
cide up front whether or not we wanted to include a certain step, like generating code
for checking OCL expressions or multiplicities.

Another advantage of composition in the small is that we have separated doing the
‘smart’ bits of the transformation, namely transforming the UMl model into the Java
model, from the ‘dumb’ bits of the transformation, namely producing the Java class
files. This is a separation of concerns, which is very positive when building a complex
and large transformation.

References

[1] Anneke Kleppe. MCC: A model transformation environment. In A. Rensink and
J. Warmer, editors, Proceedings of the second European Conference on MDA,
2006, volume 4066 of LNCS, pages 173–187, Berlin Heidelberg, July 2006.
Springer-Verlag.

[2] octopus.sourceforge.net
pean Workshop on Composition of Model Transformations - CMT 2006 51

	First European Workshop on Composition
	Organisation Committee
	Programme Committee
	Contents
	Preface
	A Framework for Transformation Chain Development Processes
	Composition of Model Differences

	Blackbox Composition of Model Transformations
using Domain-Specific Modelling Languages
	Aspects of Reusable Model Transformations
	Composing Transformation Operations Based on
Complex Source Pattern Definitions
	Pattern composition in graph transformation rules
	Transformation Composition in QVT
	Octel, a Template Language for Generating
Structures instead of Textstreams

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

