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Abstract. Taking up a recent proposal by Stadje and Parthasarathy in the

setting of the many-server Poisson queue, we consider the integral∫∞
0 [limu→∞E(X(u)) − E(X(t))]dt as a measure of the speed of convergence

towards stationarity of the process {X(t), t ≥ 0}, and evaluate the integral ex-

plicitly in terms of the parameters of the process in the case that {X(t), t ≥ 0}

is an ergodic birth-death process on {0, 1, . . .} starting in 0. We also discuss the

discrete-time counterpart of this result, and examine some specific examples.
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1 Introduction

Let X(t) be the number of customers at time t in a stable M/M/c queueing

system and suppose that the system is initially empty. The process {X(t), t ≥

0} is then stochastically increasing, and, as a consequence, E(X(t)) converges

monotonically to its limiting value

M ≡ lim
t→∞

E(X(t)).

This has recently motivated Stadje and Parthasarathy [10] to propose the quan-

tity ∫ ∞
0

[M −E(X(t))] dt (1)

as a measure of the speed of convergence as t→∞ of the distribution of X(t)

to the stationary distribution of the number of customers in an M/M/c system.

They subsequently evaluate the integral (1) explicitly in terms of the number

of servers c, and the arrival and service rates of the system.

Clearly, the process {X(t), t ≥ 0} constitutes a birth-death process. More-

over, any birth-death process on the nonnegative integers which starts in state

0 is stochastically increasing (see, for example, Kijima [9, Section 4.8]). It is

therefore natural to ask whether the result of Stadje and Parthasarathy can be

extended into the more general setting of birth-death processes. The purpose

of this paper is to resolve this question in the affirmative. So in what follows

X ≡ {X(t), t ≥ 0} will be an ergodic birth-death process taking values in

N ≡ {0, 1, . . .} with birth rates {λj , j ∈ N} and death rates {µj , j ∈ N}, all

strictly positive except µ0 = 0. Throughout we will assume X(0) = 0 and use

the notation

pj(t) ≡ Pr{X(t) = j | X(0) = 0}, j ∈ N , t ≥ 0,

and

pj ≡ lim
t→∞

pj(t), j ∈ N .

The speed of convergence to stationarity of the process X is usually char-

acterized by the decay parameter

γ(X ) ≡ sup {γ ≥ 0 | pj − pj(t) = O(exp(−γt)) as t→∞}
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(which is independent of j), or its reciprocal r(X ) ≡ 1/γ(X ), the relaxation

time (see, for example, [1] and [12]). If M ≡ limt→∞E(X(t)) <∞ we also have

r(X ) = inf {r > 0 | M −E(X(t)) = O(exp(−t/r)) as t→∞} , (2)

the infimum of an empty set being infinity. The relaxation times of many specific

birth-death processes are known, but there exists no general expression for r(X )

in terms of the birth and death rates of X . Since, as we will show, the integral

(1) can be evaluated explicitly in terms of the birth and death rates of X it

may be an attractive alternative to r(X ) as a one-parameter characterization of

the speed of convergence. Rather than (1), however, we propose its normalized

value

m(X ) ≡
∫ ∞

0
[1−E(X(t))/M ] dt (3)

as an alternative to r(X ) as a measure of the speed of convergence towards

stationarity of the process X .

The rest of the paper is organised as follows. After presenting some prelimi-

nary results on birth-death processes in Section 2, we will obtain our main result

– an explicit expression for the integral (1) in terms of the birth and death rates

– in Section 3. The expression will be evaluated for some specific birth-death

processes in Section 4. In particular, we will compare our findings with those

of Stadje and Parthasarathy [10] (and find a discrepancy). Finally, in Section

5, we consider birth-death processes in discrete time, and show that a similar

result may be obtained in this setting by performing a suitable transformation,

provided the birth and death probabilities satisfy certain requirements.

2 Preliminaries

The potential coefficients of the birth-death process X ≡ {X(t), t ≥ 0} are

defined by

π0 ≡ 1 and πj ≡
λ0λ1 . . . λj−1

µ1µ2 . . . µj
, j ≥ 1. (4)

Since X is assumed to be ergodic these constants must satisfy the condition

K ≡
∞∑
j=0

πj <∞. (5)
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We will additionally assume
∞∑
j=0

(λjπj)−1 =∞, (6)

ensuring that X is uniquely determined by its birth and death rates (see [4]).

It is well known that

pj ≡ lim
t→∞

pj(t) =
πj
K
, j ∈ N , (7)

while (see, for example, Holewijn and Hordijk [3])

lim
t→∞

E(X(t)) = E(X),

X denoting a random variable with distribution {pj , j ∈ N}. Evidently, we

will assume throughout that

E(X) =
∞∑
j=0

jpj <∞. (8)

It will be convenient to introduce the quantities

τj ≡ pj
j−1∑
k=0

(λkpk)−1
∞∑

`=k+1

p`, j ≥ 0, (9)

and

T ≡
∞∑
j=0

τj.

Here, and henceforth, the empty sum should be interpreted as zero (so that

τ0 ≡ 0). By interchanging summations it is easily seen that

T =
∞∑
k=0

(λkpk)−1

 ∞∑
`=k+1

p`

2

, (10)

which may be finite or infinite.

3 The main result

In this section we will first evaluate the integrals

Ij ≡
∫ ∞

0
[pj(t)− pj] dt, j ≥ 0, (11)
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after which the value of the integral (1) will follow as a corollary. Since pj(t) is

a unimodal function (see Keilson [8]) the integrals Ij exist, but may be infinite.

The integrals Ij have been evaluated explicitly by Whitt [14, Proposition

6] in the setting of a birth-death process with finite state space {0, 1, . . . , n}.

Letting n tend to infinity in the expression for Ij given by Whitt yields after a

little algebra

Ij ≡
∫ ∞

0
[pj(t)− pj] dt = Tpj − τj, j ≥ 0, (12)

with the interpretation that Ij = ∞ whenever T = ∞. We have verified this

result by substituting in (11) the spectral representation for pj(t) developed by

Karlin and McGregor [4] and exploiting the technique suggested by Karlin and

McGregor [5, p. 399] to evaluate the resulting integral.

We are now in a position to state our main result.

Theorem 1 If
∑∞

0 jτj <∞, then∫ ∞
0

[E(X) −E(X(t))] dt =
∞∑
j=0

jτj − TE(X), (13)

whereas the integral is infinite otherwise.

Proof. Since X is stochastically increasing, we have
k∑
j=0

(pj(t)− pj) > 0, k ≥ 0. (14)

We also observe

E(X) −E(X(t)) =
∞∑
k=1

∞∑
j=k

(pj − pj(t)) =
∞∑
k=1

k−1∑
j=0

(pj(t)− pj). (15)

It follows that

E(X) −E(X(t)) > p0(t)− p0,

and hence, by (12), the integral is infinite if T = ∞. Now assuming T < ∞,

and using (15) and the fact that
∑
Ij = 0, we can write∫ ∞

0
[E(X) −E(X(t))] dt =

∞∑
k=1

k−1∑
j=0

Ij = −
∞∑
k=1

∞∑
j=k

Ij = −
∞∑
j=1

jIj ,

the interchange of integration and summation being justified by (14). In view

of (8) and (12) the theorem follows. 2

4



4 Examples

To check the theorem we first look at a process for which the value of the

integral (1) is available. Namely, we let X ≡ {X(t), t ≥ 0} be the number of

customers in the M/M/∞ queue, which is a birth-death process with rates

λj = λ and µj = jµ, j ∈ N .

It is well known (see, for example, Feller [2, p. 461]) that when the system starts

empty the mean number of customers in the system at time t is given by

E(X(t)) =
λ

µ

(
1− e−µt

)
, t ≥ 0,

so that∫ ∞
0

[E(X) −E(X(t))] dt =
λ

µ2 . (16)

This result can indeed be recovered – albeit somewhat tediously – by evaluating

the right-hand side of (13). For completeness’ sake we note that the convergence

measures (2) and (3) for this process are given by

m(X ) = r(X ) =
1
µ
. (17)

Our second example is the birth-death process X with rates

λj = λ/(j + 1) and µj+1 = µ, j ≥ 0,

which may be interpreted as the process of the number of customers in a queue-

ing system in which customers are discouraged by queue length (see, for exam-

ple, [11]). In this case no simple expression for E(X(t)) is available. To evaluate

the right-hand side of (13) we write

a ≡ λ/µ (18)

and note that

K = ea and E(X) = a.

Moreover, letting

fj(a) ≡
∞∑
`=1

(j + 1)!
(j + `)!

a`, j ≥ 0, (19)
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we readily obtain

τj =
1
λ
e−a

aj

j!

j−1∑
k=0

fk(a), j ≥ 0,

so that

T =
1
λ
e−a

∞∑
j=1

aj

j!

j−1∑
k=0

fk(a) and
∞∑
j=1

jτj =
a

λ
e−a

∞∑
j=0

aj

j!

j∑
k=0

fk(a).

Substitution of these results in (13) gives us∫ ∞
0

[E(X) −E(X(t))] dt =
a

λ
e−a

∞∑
j=0

aj

j!
fj(a),

which, after substitution of (18) and (19) and some algebra, reduces to∫ ∞
0

[E(X) −E(X(t))] dt =
λ(λ+ 2µ)

2µ3 . (20)

It now follows that

m(X ) =
λ+ 2µ

2µ2 , (21)

while we know from [11] that the relaxation time of the process is given by

r(X ) =
λ+ 2µ+

√
λ2 + 4λµ

2µ2 . (22)

We will finally apply our results to the process of the number of customers in

anM/M/c queueing system – the setting in which Stadje and Parthasarathy [10]

proposed the integral (1) as a measure of the speed of convergence to station-

arity – and compare our findings with those in [10]. The process at hand is a

birth-death process X with rates

λj = λ and µj = min{j, c}µ, j ∈ N .

Writing

ρ ≡ λ

cµ
, (23)

we must have ρ < 1 for the system to be stable. The potential coefficients of

the process are given by

πj =


(cρ)j

j!
, 0 ≤ j ≤ c,

ccρj

c!
, j ≥ c,
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so, with

Kc ≡
∞∑
j=c

πj =
1

1− ρ
(cρ)c

c!
, (24)

we have

K =
c−1∑
j=0

(cρ)j

j!
+Kc and E(X) = cρ+

ρ

1− ρ
Kc

K
. (25)

It is convenient to let

Aj ≡
j−1∑
k=0

(λkpk)−1
∞∑

`=k+1

p`, j ≥ 0

(so that A0 ≡ 0), which is readily seen to imply

Aj =
1
λ

j−1∑
k=0

k!
(cρ)k

 c−1∑
`=k+1

(cρ)`

`!
+Kc

 , 0 ≤ j ≤ c. (26)

The quantities τj of (9) can now be expressed as

τj =


Aj
K

(cρ)j

j!
, 0 ≤ j ≤ c,

1
K

(
Ac + (j − c) 1

λ

ρ

1− ρ

)
ccρj

c!
, j ≥ c,

from which it follows after some algebra that

T =
1
K

c−1∑
j=1

Aj
(cρ)j

j!
+ Tc (27)

and
∞∑
j=0

jτj =
cρ

K

c−2∑
j=0

Aj+1
(cρ)j

j!
+ Tc

(
c+

ρ

1− ρ

)
+
Kc

K

1
λ

ρ2

(1− ρ)3 , (28)

where

Tc ≡
∞∑
j=c

τj =
Kc

K

(
Ac +

1
λ

ρ2

(1− ρ)2

)
. (29)

The integral (1) can now easily be evaluated for specific values of c, λ and

µ from (13) and the expressions (23) – (29). In particular, for c = 1 we obtain∫ ∞
0

[E(X) −E(X(t))] dt =
1
µ

ρ

(1− ρ)3 . (30)

As a consequence the measure (3) for the M/M/1 queue is given by

m(X ) =
1
µ

1
(1− ρ)2 , (31)
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while it is well known that the relaxation time of the M/M/1 queue satisfies

r(X ) =
1
µ

(1 +
√
ρ)2

(1− ρ)2 . (32)

Evaluating (12) for c = 2 leads to∫ ∞
0

[E(X) −E(X(t))] dt =
1
µ

2ρ(1 − ρ+ ρ2)
(1− ρ)3(1 + ρ)2 , (33)

so in this case we have

m(X ) =
1
µ

1− ρ+ ρ2

(1− ρ)2(1 + ρ)
, (34)

while the relaxation time of the M/M/2 queue is given in [1] as

r(X ) =


1
µ

2
1 + 4ρ+

√
1− 8ρ

, 0 < ρ < 1
9 ,

1
2µ

(1 +
√
ρ)2

(1− ρ)2 , 1
9 ≤ ρ < 1.

(35)

Comparing our results with those of Stadje and Parthasarathy [10], we find

agreement for c = 1, but a discrepancy for c = 2. As a check, we evaluated

the integral Ij of (11) directly by using the representation for pj(t) derived in

Karlin and McGregor [6] for j = λ = µ = 1, and found that it equals 0, which

is consistent with (12), but not with Theorem 3 of Stadje and Parthasarathy

[10].

5 Discrete-time birth-death processes

A discrete-time birth-death process or random walk X̃ ≡ {X̃(n), n = 0, 1, . . .}

on the state space N ≡ {0, 1, . . .} is a Markov chain with stationary one-step

transition probabilities pij satisfying pij = 0 for |i − j| > 1. We shall only

consider honest random walks in which pj ≡ pj,j+1 > 0, qj+1 ≡ pj+1,j > 0, and

rj ≡ pjj ≥ 0 for all j ∈ N , but rj > 0 for at least one j ∈ N (the latter to avoid

periodicity). We assume throughout that X̃(0) = 0 and let

p̃j(n) ≡ Pr(X̃(n) = j | X̃(0) = 0), j ∈ N , n ≥ 0.

Defining

π̃0 = 1 and π̃j =
p0p1 . . . pj−1

q1q2 . . . qj
, j ≥ 1, (36)
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it is well known that the process is ergodic if

K̃ ≡
∞∑
j=0

π̃j <∞, (37)

in which case

p̃j ≡ lim
n→∞

p̃j(n) =
π̃j

K̃
, j ∈ N , (38)

and

lim
n→∞

E(X̃(n)) = E(X̃) =
∞∑
j=0

jp̃j , (39)

X̃ denoting a random variable with distribution {p̃j , j ∈ N} (see, for example,

Karlin and McGregor [7]).

If E(X̃) is finite it seems natural to propose – in analogy to (1) – the sum
∞∑
n=0

[
E(X̃)−E(X̃(n))

]
(40)

as a measure of the speed of convergence of X̃(n) to X̃, provided E(X̃(n))

converges monotonically to E(X̃). However, it is easy to construct examples of

random walks starting in 0 in which the latter does not happen, so that (40) is

less attractive than its continuous-time counterpart as a measure of the speed

of convergence to stationarity. For completeness’ sake we shall nevertheless

evaluate the sum (40) explicitly, under the condition that

E(X̃(n)) < E(X̃), n ≥ 0. (41)

We note that a sufficient condition for E(X̃(n)) to converge monotonically to

its limit E(X̃) as n→∞ (and hence for (41)), is stochastic monotonicity of X̃ ,

which prevails if and only if

pj + qj+1 ≤ 1, j ∈ N (42)

(see Kijima [9, Example 3.12]).

To evaluate the sum (40) we associate with X̃ a continuous-time birth-death

process X ≡ {X(t), t ≥ 0} with rates

λj = pj and µj = qj , j ∈ N . (43)
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Since λj + µj = pj + qj ≤ 1 for all j, the process X is uniformizable with

uniformization parameter 1 and we get X̃ back as the uniformized process.

Moreover, with {N(t), t ≥ 0} denoting a Poisson process with intensity 1, we

have

{X(t), t ≥ 0} d= {X̃(N(t)), t ≥ 0} (44)

(see, for example, [9, Section 4.4] for these results on uniformization). The next

theorem shows that the problem of evaluating (40) can now be reduced to that

of evaluating the integral (1) for the continuous-time process X .

Theorem 2 If E(X̃(n)) < E(X̃) for all n ≥ 0, then
∞∑
n=0

[
E(X̃)−E(X̃(n))

]
=
∫ ∞

0
[E(X)−E(X(t))] dt,

where {X(t), t ≥ 0} is the birth-death process with rates (43).

Proof. It is obvious from (44) that E(X̃) = E(X). Moreover, by conditioning

on the value of N(t) we get∫ ∞
0

[E(X) −E(X(t))] dt =
∫ ∞

0

[
E(X̃)−E(X̃(N(t)))

]
dt

=
∫ ∞

0

{ ∞∑
n=0

[
E(X̃)−E(X̃(n))

]
e−t

tn

n!

}
dt =

∞∑
n=0

[
E(X̃)−E(X̃(n))

]
,

where the interchange of integration and summation is allowed by Fubini’s

theorem. 2
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