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Abstract. Taking up a recent proposal by Stadje and Parthasarathy in the
setting of the many-server Poisson queue, we consider the integral
Jo limy o0 E(X (u)) — E(X(t))]dt as a measure of the speed of convergence
towards stationarity of the process {X(t), ¢ > 0}, and evaluate the integral ex-
plicitly in terms of the parameters of the process in the case that {X(¢), t > 0}
is an ergodic birth-death process on {0,1,...} starting in 0. We also discuss the

discrete-time counterpart of this result, and examine some specific examples.
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1 Introduction

Let X (t) be the number of customers at time ¢ in a stable M/M/c queueing
system and suppose that the system is initially empty. The process {X(t), ¢t >
0} is then stochastically increasing, and, as a consequence, F(X(t)) converges

monotonically to its limiting value
M = lim E(X(t)).
t—o00

This has recently motivated Stadje and Parthasarathy [10] to propose the quan-

tity

|1 - B @) ar 1
as a measure of the speed of convergence as t — oo of the distribution of X (t)
to the stationary distribution of the number of customers in an M /M /c system.
They subsequently evaluate the integral (1) explicitly in terms of the number
of servers ¢, and the arrival and service rates of the system.

Clearly, the process {X(t), ¢t > 0} constitutes a birth-death process. More-
over, any birth-death process on the nonnegative integers which starts in state
0 is stochastically increasing (see, for example, Kijima [9, Section 4.8]). It is
therefore natural to ask whether the result of Stadje and Parthasarathy can be
extended into the more general setting of birth-death processes. The purpose
of this paper is to resolve this question in the affirmative. So in what follows
X = {X(t), t > 0} will be an ergodic birth-death process taking values in
N ={0,1,...} with birth rates {\;, j € N'} and death rates {p;, j € N}, all
strictly positive except g = 0. Throughout we will assume X (0) = 0 and use

the notation
pi(t) =Pr{X(t)=j | X(0) =0}, jeN, t=0,
and
pj = lim p;(t), jeN.
The speed of convergence to stationarity of the process X is usually char-

acterized by the decay parameter

Y(X) =sup{y >0 | pj — p;j(t) = Oexp(—t)) as t — oo}



(which is independent of j), or its reciprocal r(X) = 1/v(X), the relazation
time (see, for example, [1] and [12]). If M = lim;—,o, E(X(t)) < 0o we also have

r(X)=inf{r>0| M — E(X(t)) = O(exp(—t/r)) as t — oo}, (2)

the infimum of an empty set being infinity. The relaxation times of many specific
birth-death processes are known, but there exists no general expression for r(X)
in terms of the birth and death rates of X'. Since, as we will show, the integral
(1) can be evaluated explicitly in terms of the birth and death rates of X it
may be an attractive alternative to r(X') as a one-parameter characterization of
the speed of convergence. Rather than (1), however, we propose its normalized

value

m(X) = /0 T - B(X(8)/M] dt (3)
as an alternative to r(X) as a measure of the speed of convergence towards
stationarity of the process X.

The rest of the paper is organised as follows. After presenting some prelimi-
nary results on birth-death processes in Section 2, we will obtain our main result
— an explicit expression for the integral (1) in terms of the birth and death rates
— in Section 3. The expression will be evaluated for some specific birth-death
processes in Section 4. In particular, we will compare our findings with those
of Stadje and Parthasarathy [10] (and find a discrepancy). Finally, in Section
5, we consider birth-death processes in discrete time, and show that a similar
result may be obtained in this setting by performing a suitable transformation,

provided the birth and death probabilities satisfy certain requirements.

2 Preliminaries

The potential coefficients of the birth-death process X = {X(¢), t > 0} are
defined by

AOAL - Ao
m=1 and 7= "L G (4)
M2 -« - - g
Since X is assumed to be ergodic these constants must satisfy the condition
o
K = Zﬂ'j < 00. (5)

=0



We will additionally assume
[e.e]
> (ym) T = oo, (6)
=0

ensuring that X’ is uniquely determined by its birth and death rates (see [4]).

It is well known that

T4 .
p]—tliglop]( ) ?]7 ]€N7 (7)

while (see, for example, Holewijn and Hordijk [3])

lim E(X(t)) = B(X),

t—o0

X denoting a random variable with distribution {p;, j € N'}. Evidently, we

will assume throughout that
o
X)=> jp;j < oo (8)
j=0

It will be convenient to introduce the quantities

= pj Z AePk)” Z pe, J =0, 9)

l=k+1

and

00
T= ZT]‘.
7=0

Here, and henceforth, the empty sum should be interpreted as zero (so that

7o = 0). By interchanging summations it is easily seen that

2
T = Z kD)™~ ( Z pé) ; (10)
k=0

{=k+1
which may be finite or infinite.
3 The main result

In this section we will first evaluate the integrals

5= [To-pld o ()



after which the value of the integral (1) will follow as a corollary. Since p;(t) is
a unimodal function (see Keilson [8]) the integrals I; exist, but may be infinite.

The integrals I; have been evaluated explicitly by Whitt [14, Proposition
6] in the setting of a birth-death process with finite state space {0,1,...,n}.
Letting n tend to infinity in the expression for I; given by Whitt yields after a
little algebra

o
IjE/O [p'(t)—pj]dtZij—Tj, jzo, (12)
with the interpretation that I; = oo whenever 7' = oo. We have verified this
result by substituting in (11) the spectral representation for p;(t) developed by
Karlin and McGregor [4] and exploiting the technique suggested by Karlin and
McGregor [5, p. 399] to evaluate the resulting integral.

We are now in a position to state our main result.
Theorem 1 If Y (° j7; < oo, then
00 o
| B0 — B a = 3, ~ TEX), (13)
§=0
whereas the integral is infinite otherwise.

Proof. Since X is stochastically increasing, we have

k
> (pi(t) —pj) >0, k>0 (14)
§j=0
We also observe
co 00 oo k—1
E(X)—-EX®)=>_Y (0 —pjt) =>_> (pi(t) — pj). (15)
k=1j=k k=1j=0

It follows that
E(X) — E(X(t)) > po(t) — po,

and hence, by (12), the integral is infinite if T = co. Now assuming 7' < oo,

and using (15) and the fact that )~ I; = 0, we can write

0o oo k-1 oo 00 00
| — B =Y S == L ==Yl
k=1 j=0 k=1 j=k j=1

the interchange of integration and summation being justified by (14). In view

of (8) and (12) the theorem follows. O



4 Examples

To check the theorem we first look at a process for which the value of the
integral (1) is available. Namely, we let X = {X(¢), ¢ > 0} be the number of

customers in the M /M /oo queue, which is a birth-death process with rates
Aj =X and pj=ju, jEN.

It is well known (see, for example, Feller [2, p. 461]) that when the system starts
empty the mean number of customers in the system at time t is given by

A

B(X(0) = (1=e), t>0,
so that
o A
/0 [B(X) ~ B(X(0)]di = . (16)

This result can indeed be recovered — albeit somewhat tediously — by evaluating
the right-hand side of (13). For completeness’ sake we note that the convergence

measures (2) and (3) for this process are given by
m(X) =r(X) = —. (17)
Our second example is the birth-death process X with rates
Aj=A0G+1) and pipi=p, j=0,

which may be interpreted as the process of the number of customers in a queue-
ing system in which customers are discouraged by queue length (see, for exam-
ple, [11]). In this case no simple expression for E(X (t)) is available. To evaluate

the right-hand side of (13) we write

a=\Np (18)
and note that

K =¢" and E(X) =a.

Moreover, letting

> (i 4 1)! ,
fj(a)zézl((‘;ie;!a’f, j>0, (19)



we readily obtain

1 _aajj_l .
T =€ Tka(‘W J=0,
J* k=0

so that
1 00 (lj J—1 fe'e) a [ee) (Ij J
T = XeiaZTka(a) and Z‘]TJ = XeiaZf'ka(a).
=17 =0 =1 i=0 7" k=0

Substitution of these results in (13) gives us
o0 a4 o= a

B - BE @)= $e Y % ffa),
=07’

which, after substitution of (18) and (19) and some algebra, reduces to

Amngmanﬁzigiﬁi (20)
It now follows that
() =252, )

while we know from [11] that the relaxation time of the process is given by

A 20+ VA2 + 4\
r(X) = 5 .

21

(22)

We will finally apply our results to the process of the number of customers in
an M /M /c queueing system — the setting in which Stadje and Parthasarathy [10]
proposed the integral (1) as a measure of the speed of convergence to station-
arity — and compare our findings with those in [10]. The process at hand is a

birth-death process X’ with rates
Aj =X and p; =min{j,ctp, jeN.
Writing
p=-2, (23)

we must have p < 1 for the system to be stable. The potential coefficients of

the process are given by

) gcji<e

' ) — —_
= ‘
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so, with

o0 1 c C
Kczzﬂj:fm ,
j=c '

we have

It is convenient to let

j-1
A; = (i)™ Z pe, Jj=0
k=0 (=k+1

(so that Ag = 0), which is readily seen to imply

1771 R ! (cp)é
A== +K.|, 0<j5<e¢
X Tr (Z 7

The quantities 7; of (9) can now be expressed as

4; (o) 0<j<e
sl
. p ¢ .
— A >
K<A0+(‘7 C))\:[p) C!’ J =6

from which it follows after some algebra that

1L, (ep)
]:

and

- cp 2 (cp)
> imi= 7 > A
=0 =0

where

> K. 1 p?
= r==5 (4412
JZCTJ K ( +A(1p)2>

(24)

(26)

(29)

The integral (1) can now easily be evaluated for specific values of ¢, A and

p from (13) and the expressions (23) — (29). In particular, for ¢ = 1 we obtain

> 1
/0 (E(X) ~ B @) dt = - s

As a consequence the measure (3) for the M/M/1 queue is given by

1 1

ML

(30)

(31)



while it is well known that the relaxation time of the M/M/1 queue satisfies

iy LA+
S 2

Evaluating (12) for ¢ = 2 leads to

> _ 1 2p(1 = p+p?)
1B — B ar = PR (33)

so in this case we have

1 1opp
i) (&4

while the relaxation time of the M /M /2 queue is given in [1] as

1 2
~ ., O0<p<i
r(X) = pltap+ ‘21—8p e (35)
1 (1+p) 1
T g g<p<l
2u (1-p)? ’

Comparing our results with those of Stadje and Parthasarathy [10], we find
agreement for ¢ = 1, but a discrepancy for ¢ = 2. As a check, we evaluated
the integral I; of (11) directly by using the representation for p;(t) derived in
Karlin and McGregor [6] for j = A = u = 1, and found that it equals 0, which
is consistent with (12), but not with Theorem 3 of Stadje and Parthasarathy
[10].

5 Discrete-time birth-death processes

A discrete-time birth-death process or random walk X = {X(n), n=0,1,...}
on the state space N' = {0,1,...} is a Markov chain with stationary one-step
transition probabilities p;; satisfying p;; = 0 for |[¢ — j| > 1. We shall only
consider honest random walks in which p; = p; ;411 >0, ¢j41 = pj+1,; > 0, and
r; = pj; > 0 for all j € N, but r; > 0 for at least one j € N (the latter to avoid
periodicity). We assume throughout that X (0) = 0 and let

pj(n) =Pr(X(n) =4 | X(0)=0), jEN, n>0.

Defining

_ bop1---Pj-1

7}0:1 and ﬁj s
q1q92 - - - 4j

j=1 (36)



it is well known that the process is ergodic if
~ oo
K=Y <o, (37)
§=0

in which case

- . - 4 .
p; = lim pj(n) = = G5eN, (38)
n—00 K
and
Tim B(X(n) = BR) = 3 i, (39)
=0

X denoting a random variable with distribution {pj, 7 € N'} (see, for example,
Karlin and McGregor [7]).

If E(X) is finite it seems natural to propose — in analogy to (1) — the sum
i ~ ~
> [BX) - B(X ()] (40)
n=0

as a measure of the speed of convergence of X (n) to X, provided E(X(n))
converges monotonically to E(f( ). However, it is easy to construct examples of
random walks starting in 0 in which the latter does not happen, so that (40) is
less attractive than its continuous-time counterpart as a measure of the speed

of convergence to stationarity. For completeness’ sake we shall nevertheless

evaluate the sum (40) explicitly, under the condition that

E(X(n)) < E(X), n>0. (41)

We note that a sufficient condition for E(X(n)) to converge monotonically to
its limit E(X) as n — oo (and hence for (41)), is stochastic monotonicity of X,

which prevails if and only if
pit+g <1, jeEN (42)

(see Kijima [9, Example 3.12]).
To evaluate the sum (40) we associate with X a continuous-time birth-death

process X = {X(t), t > 0} with rates

Aj=p; and pj=gq;, jEN. (43)



Since A\j + p; = p; +¢q; < 1 for all j, the process X is uniformizable with
uniformization parameter 1 and we get X back as the uniformized process.
Moreover, with {N(t), t > 0} denoting a Poisson process with intensity 1, we

have
{X(t), t >0} £ {X(N(1)), t >0} (44)

(see, for example, [9, Section 4.4] for these results on uniformization). The next
theorem shows that the problem of evaluating (40) can now be reduced to that

of evaluating the integral (1) for the continuous-time process X.
Theorem 2 If E(X(n)) < E(X) for alln >0, then

io [E(X) - B(X(n))] = /0 B0 - BX @) d.
where {X(t), t > 0} is the birth-death process with rates (43).

Proof. It is obvious from (44) that E(X) = E(X). Moreover, by conditioning

on the value of N(t) we get
| B0 — Bexnae = [ [B%) - BEROV@))] d
= /0°° {Z [B(X) - B(X(n))] t—} dt =" |E(X) - B(X(n)],

|
n=0 n: n=0
where the interchange of integration and summation is allowed by Fubini’s

theorem. O
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