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Abstract
We examine a replacement system with discrete-time Markovian deterioration and finite
state space {0, ..., N}. State 0 stands for a new system, and the higher the state the worse
the system; a system in state N is considered to be in a bad state. We impose the condition
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1 Introduction

We consider a model for a system which deteriorates stochastically in time but may
be replaced by a new system. The state of the system is an element of the set I =
{0, 1, ..., N}, 0 being the best and N being the worst state. We assume that the state
of the system is detected by inspection at times n = 0, 1, ... and that a decision to
replace the system can be taken immediately after inspection.

The most famous replacement models of this type are those of Derman [3] and Ross
[10]. They assume operating cost/rewards which are higher/lower as the system gets
worse, constant replacement cost and Markovian deterioration. Optimal replacement
strategies for these models are control limit policies, which are policies prescribing re-
placement if the system state exceeds a particular level. Also in many related models
optimal policies are of the control-limit type, e.g. Stadje and Zuckerman [11], Par-
lar and Perry [8], Perry and Posner [9] and Jensen [5]. A comprehensive review of
replacement models is given in Valdes-Florez [12].

Replacement models may also be interpreted as systems with minimal and maximal
repair. A repair without improving the system is called minimal repair. Different
interpretations of this kind of repair (black box minimal repair, physical minimal repair)
are described in detail in the recent book of Aven and Jensen [1], p.82f. Maximal repair
means to repair a system such that it is as good as new after repair, so the state after
repair is 0.

The model we are interested in has Markovian deterioration (also known as Der-
man’s condition) but there are no cost involved. Rather we want the fraction of re-
placements when the systems state is N (the bad state) to be not larger than a fixed
ε0 ∈ [0, 1]. A system which is in this bad state has to be replaced. We shall show that
the optimal policy is not a control limit policy but a randomized bang-bang strategy.
Since this is a control limit replacement policy with a randomized threshold, it may be
interpreted as a generalized control limit policy.

An example of a system whose status is an element of {0, ..., N} is a parallel N-
component system: the status reveals the number of failed components; the machine
functions if at least one component is working. Therefore only status N identifies
a failed system. Such a system with parallel components has been dealt with by
Nakagawa [7], for example. With his model, which will be mentioned again later, the
deterioration is caused by shocks. Since the components are identical and independent,
every component fails with a constant probability p. Nakagawa used constant cost c2

for a replacement and constant cost c1 (> c2) for a replacement of a failed system and
discovered that a control limit policy minimizes the long-term average cost.

Another example of a system whose status is an element of {0, ..., N} is a stand-by
system studied, e.g. by Kistner, Subramanian and Venkatakrishnan [6]. In this system
only one component is used and the other N−1 units are stand-by components. Again
the status reveals the number of failed components. State N stands for system-failure
in these models. An overview of N−component models was published by Cho and
Parlar [2].

A third example of a system with one bad state is a system identifying a chemical
fluid which is needed for production. The fluid becomes worse during production and
if it is replaced too late (meaning in state N), there will be a problem of recycling it.

The remainder of this paper is organized as follows. In Section 2 we introduce
some basic notation and terminology. In Section 3 we change the model to a cost
model by introducing a cost c for every replacement. In this new model we do not
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consider the restriction regarding the fraction of replacements taking place in state
N . The structure of the strategy minimizing the average cost of this new system will
be obtained. Using this result we find two different kinds of strategies optimizing our
original model in Section 4. In Section 5 we present formulas to compute the optimal
strategies and in Section 6 we present some numerical examples.

2 Preliminaries and notations

Our model deals with a system starting at time 0. X0 stands for the initial state of
the system. For all n ∈ IN we call the time period [n− 1, n) the nth interval.

We let pij be the probability of deterioration from state i to state j ≥ i in one
interval. Furthermore we assume, as previously mentioned, Markovian Deterioration
(MD), that is, the probability

∑N
j=k pij is non-decreasing in i for all k ∈ I.

Since we do not wish to deal with the trivial case in which deterioration is impos-
sible, we furthermore impose the condition pii < 1 for every state i ∈ I. Finally, we
assume p0N > 0, so MD implies piN > 0 for every i so that the system may be in the
bad state at the end of any time-interval with probability greater than zero.

At the end of each interval an inspection takes place after which the manager of
the system can choose between two actions: to replace or not to replace. If the state
of the system is N it has to be replaced. An admissible (randomized) strategy δ can
be represented as a family of random variables {δ(i), i ∈ I} with P (δ(i) ∈ {0, 1}) = 1
for all i ∈ I and δ(N) = 1. Decision δ(i) = 1 stands for replacing a system being in
state i and δ(i) = 0 stands for not replacing it. The space of all admissible strategies
is denoted by Π.

We let X−n be the state before and Xn be the state after the n−th action. Obviously,
under any strategy δ the processes (X−n )n∈IN and (Xn)n∈ZZ+ are Markov chains. We let(
qδij
)
i,j∈I

and
(
q̃δij
)
i,j∈I

be the transition probabilities, and (πδ(i))i∈I and (π̃δ(i))i∈I be
the stationary distributions of the stochastic processes (Xn)n∈IN and (X−n )n∈IN under
strategy δ, respectively. We observe that in a stationary setting

πδ(0) = Pδ(Xn = 0) = Pδ(Xn = 0, X−n = 0) + Pδ(Xn = 0, X−n 6= 0)
= Pδ(X−n = 0, Xn−1 = 0) + Pδ(Xn = 0, X−n 6= 0)
= πδ(0) = πδ(0)p00 + Pδ(Xn = 0, X−n 6= 0),

so that

Pδ(Xn = 0, X−n 6= 0) = πδ(0)(1− p00). (1)

We will show later that both processes are ergodic. Hence, the expected cycle length,
that is the time between two replacements, under δ is 1

πδ(0)(1−p00) , since πδ(0)(1−p00) is
the expected relative frequency of state 0 occurring under strategy δ, excluding direct
visits from state 0 (in this case there was no replacement).

¿From {X−n = N} ⊂ {Xn = 0, X−n 6= 0} and (1) we get

Pδ(X−n = N |Xn = 0, X−n 6= 0) =
Pδ(X−n = N)

Pδ(Xn = 0, X−n 6= 0)
=

π̃δ(N)
πδ(0)(1− p00)

. (2)

As a consequence, we can phrase our problem in the following way. We look for a
strategy δ ∈ Π which minimizes πδ(0)(1− p00) and observes the subsidiary condition

π̃δ(N)
πδ(0)(1− p00)

≤ ε0, (3)

2



since from (2) we know that the last fraction equals the probability that a replacement
at time n (that is, the event {Xn = 0, X−n 6= 0}) was caused by a failure (that is, the
event {X−n = N}).
We let

ε1 := ε0(1− p00).

In the next Theorem we give a condition for a strategy satisfying (3) to exist.

Theorem 1 There exists a strategy δ with π̃δ(N)
πδ(0) ≤ ε1 if and only if p0N ≤ ε1.

Proof: We note that

π̃δ(N) =
N∑
i=0

πδ(i)piN = πδ(0)p0N +
N∑
i=1

πδ(i)piN . (4)

The last summand is non-negative and vanishes if the strategy chosen is the control
limit policy with threshold one, defined as δ1. Thus p0N = π̃δ1(N)

πδ1(0) = minδ∈Π
π̃δ(N)
πδ(0) .

Next we define the strategies used in this paper.

Definition 1
(i) A control limit policy with threshold i∗, denoted by δi∗, is a policy which prescribes
replacement in state i if and only if i ≥ i∗.
(ii) A pre-randomized bang-bang strategy with parameter (i∗, p) ∈ I× [0, 1] is a replace-
ment strategy which is a control limit policy with threshold i∗ with probability 1−p and
a control limit policy with threshold i∗ + 1 with probability p. This strategy we identify
by (i∗, p)pre.
(iii) In contrast to a pre-randomized strategy a post-randomized bang-bang strategy is
not deterministic. It is a strategy in which a new decision is made for every machine
independent of the past either to choose the bang-bang strategy with threshold i∗ or the
bang-bang strategy with threshold i∗+1. We reselect threshold i∗ with probability (1−p)
and threshold i∗ + 1 with probability p. This strategy we identify by (i∗, p)post.

Using a pre-randomized strategy means making one decision before starting the pro-
cess; using a post-randomized strategy means making a new decision for every machine.
Obviously with the use of any bang-bang strategy δ (pre-, post-randomized) for the
process (Xn)n∈IN only one stationary distribution exists because of the Markovian de-
terioration and the condition pii < 1 for every state i: if δ ∈ Π meaning the threshold
i∗ is less than or equal to N state 0 is reachable from every other state. In the opposite
case (i∗ > N) this is valid for state N . Of course for the process (X−n )n∈IN there is only
one stationary distribution, too. In the next Lemma some properties of the stationary
probabilities are given. We write πi∗(i) instead of πδi∗ (i).

Lemma 1
(i) The stationary probability πi∗(0) is non-increasing in i∗.
(ii) The stationary probability π̃i∗(N) is non-decreasing in i∗.
(iii) π̃i∗(N) = π̃i∗+1(N) yields πi∗(i) = πi∗+1(i) or pi,N = pi+1,N = ... = pi∗,N for all
i ∈ {0, ..., i∗ − 1}.
(iv) The stationary probabilities π(i∗,p)pre(0) and π(i∗,p)post(0) are non-increasing in p on
[0, 1] for every threshold i∗.
(v) The stationary probabilities π(i∗,p)pre(i) and π(i∗,p)post(i) are continuous in p on [0, 1]

for every threshold i∗ and for every state i.
(vi) The stationary probabilities π̃(i∗,p)pre(i) and π̃(i∗,p)post(i) are continuous in p on [0, 1]
for every threshold i∗ and for every state i.
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Proof:
(i) For any subsets A,B ⊂ I and a family of random variables (Zn)n∈IN on I with
P (Zn+1 = j|Zn = i) = pij, i, j ∈ I, n ∈ IN , let

A
≥n→ B := {Z0 ∈ A, Z1 6∈ B, ..., Zn−1 6∈ B, ∃m ≥ n : Zm ∈ B} (5)

and

T (i) := inf {n ∈ IN : Zn = i |Z0 = i} (6)

be a stopping-time for (Zn)n∈IN . We define qnij(i
∗) as the probability that process

(Xn)n∈IN , using the bang-bang strategy with threshold i∗ and starting in state i, will
reach state j after at least n steps. If i 6= j process (Xn)n∈ZZ+ has to leave state i
before reaching it again. Furthermore, let (pnij) be the elements of the matrix P n,
where P = (pij){0≤i,j,≤N}. The condition pii 6= 0 for every i ∈ I yields that the process
(Zn)n∈IN will visit a state of {i∗+ 1, ..., N} after a visit in i∗ in a finite number of steps.
If i = j the process has to leave state i before reaching it again. Thus we have for
n ∈ IN :

{{i} ≥n→ {i∗, i∗ + 1, ..., N}} ⊂ {{i} ≥n→ {i∗ + 1, i∗ + 2, ..., N}},

so
P
(
{i} ≥n→ {i∗, i∗ + 1, ..., N}

)
≤ P

(
{i} ≥n→ {i∗ + 1, i∗ + 2, ..., N}

)
,

that is qni0(i∗) ≤ qni0(i∗ + 1) for all n ∈ IN . Hence

qnii(i
∗) =

n−1∑
m=1

qmi0 (i∗)P (Zn = i, Zn−1 6= i, ..., Zm+1 6= i|Zm = 0)

+
∞∑
m=n

P (Zm = i, Zm−1 6= i, ..., Z1 6= i|Z0 = 0) (7)

≤
n−1∑
m=1

qmi0 (i∗ + 1)P (Zn = i, Zn−1 6= i, ..., Zm+1 6= i|Zm = 0)

+
∞∑
m=n

P (Zm = i, Zm−1 6= i, ..., Z1 6= i|Z0 = 0) = qnii(i
∗ + 1). (8)

Now we explain (7). As mentioned before, qnii(i
∗) stands for the probability that process

(Xn)∞n=1 first visits state i after visiting a state which is different from i after at least n
steps, under the condition of starting at state i and using the bang-bang strategy with
threshold i∗. Thus during the time between these two visits there is a visit to state 0.
Now we define the random variable X as the number of steps until the first visit at
state 0 and the random variable Y as the number of steps to the subsequent visit at
state i. Then we get

P (X + Y ≥ n) =
n−1∑
m=1

P (X + Y ≥ n, Y = m) + P (Y ≥ n)

=
n−1∑
k=1

P (X ≥ n−m, Y = m) + P (Y ≥ n). (9)
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Hence equation (7) holds.
Furthermore we have for all i < i∗

1
πi∗(i)

= Eδi∗ (T (i)) =
∑
n∈IN

Pδi∗ (T (i) ≥ n) =
∑
n∈IN

qnii(i
∗) (10)

≤
∑
n∈IN

qnii(i
∗ + 1) = Eδi∗+1(T (i)) =

1
πi∗+1(i)

.

Therefore πi∗(i) is non-increasing in i∗ ∈ {i+ 1, ..., N} and the first part of the Lemma
is proven.
(ii) Part (i) yields to the existence of a constant ai∗(i) ≥ 0 for every state i < i∗ such
that the following identity holds.

πi∗(i) = πi∗+1(i) + ai∗(i). (11)

We have
i∗−1∑
i=0

ai∗(i) =
i∗−1∑
i=0

πi∗(i)−
i∗−1∑
i=0

πi∗+1(i) = πi∗+1(i∗)

and

π̃i∗(N) =
i∗−1∑
i=0

πi∗(i)piN =
i∗−1∑
i=0

πi∗+1(i)piN +
i∗−1∑
i=0

ai∗(i)piN (12)

≤
i∗−1∑
i=0

πi∗+1(i)piN + pi∗N
i∗−1∑
i=0

ai∗(i) since piN =
N∑
k=N

pik ↑ (i) (13)

(2)
=

i∗−1∑
i=0

πi∗+1(i)piN + πi∗+1(i∗)pi∗N =
i∗∑
i=0

πi∗+1(i)piN = π̃i∗+1(N). (14)

which proves the second part of the Lemma.
(iii) π̃i∗(N) = π̃i∗+1(N) yields

∑i∗−1
i=0 ai∗(i)pi∗N =

∑i∗−1
i=0 ai∗(i)piN (see (12), (13)) and

because of piN ≤ pi∗,N for every i ∈ {0, ..., i∗ − 1} the subsequent statement holds.
If ai∗(i) = 0 then πi∗(i) = πi∗+1(i) or piN = pi+1,N = ... = pi∗N .
Hence part (iii) is also proven.

(iv) For all j ∈ {1, ..., i∗−1}, i ∈ {0, ..., i∗} the following identities hold. q(i∗,p)post
ij = pij ,

q
(i∗,p)post
i,i∗ = p · pi,i∗ and q

(i∗,p)post
i0 = pi0 + (1− p)pii∗ +

N∑
k=i∗+1

pik so q(i∗,p)post
i0 .

Thus the probability q
(i∗,p)post
i,i∗ is non-decreasing and the probability q

(i∗,p)post
i0 is non-

increasing in p. This means the probability π(i∗,p)post(0) is non-increasing in p. The
reason is that this probability is equal to the reciprocal of the mean number of steps
process (Xn)∞n=1 uses from starting at state 0, leaving it and returning the first time: if
we increase the value p, probability q(i∗,p)

i,0 will decrease or not change and the probability
q

(i∗,p)
i,i∗ will increase or not change for every i ∈ {0, ..., i∗ − 1}; hence this mean number

either increases or stays the same. Part (iv) of the Lemma is therefore also proven.
(v) The continuity of π(i∗,p)pre in p follows from the identity

π(i∗,p)pre = (1− p)πi∗ + pπi∗+1.

Now we look at π(i∗,p)post. Define Q(i∗,p)post as the square matrix of size i∗ + 1 with
elements (q(i∗,p)post

ji ){(i,j)∈I2}. (x0, ..., xi∗) =
(
π(i∗,p)post(0), ..., π(i∗,p)post(N)

)
is the unique

solution of the system of equations
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 Q(i∗,p)post − Ii∗+1

1 · · · 1



x0
...
xi∗

 =


0
...
0
1

.

Thus the rank of the (i∗ + 2)× (i∗ + 1) matrix Q(i∗,p)post − Ei∗+1

1 · · · 1


is i∗ + 1. After elimination of one row being linear dependent on the others, this non-
singular quadratic matrix of size i∗+1 will be defined as A(p) = (aij(p)){0≤i,j≤i∗}, where

(A(p))−1 =
(
a−1
ij (p)

)
{0≤i,j≤i∗}

. Then

π(i∗,p)post =
(
a−1
ij (p)

)
ei∗+1 =

(
a∗ji(p)

)
| (aij) (p)|ei∗+1. (15)

Since the elements
(
a∗ji(p)

)
are also determinants and thus polynomials in p, π(i∗,p)post(i)

is continuous in p. Thus part (iv) is proven completely and it remains to prove the last
part.
(vi) To prove the continuity of the probabilities π̃(i∗,p)post(i), we are faced with the prob-
lem that the process (X−n ) using strategy δ(i∗,p)post does not form a Markov process, since
the probability P (X−n = j|Xn−1 = i∗, Xn−2 = i∗) is in general not equal to the prob-
ability P (X−n = j|X−n−1 = i∗, Xn−2 < i∗). We avoid this problem by splitting the
state X−n = i∗ into states X−n = (i∗, i∗) if Xn−1 = X−n = i∗ and X−n = (i∗, < i∗), if
Xn−1 < X−n = i∗. Then process (X−n )n∈IN forms a Markov chain with the following
transition probabilities: for i ∈ {0, ..., i∗ − 1, i∗ + 1, ..., N) we have

q̃
(i∗,p)post
ij = pij1{i<i∗}+p0j1{i>i∗}, q̃

(i∗,p)post
(i∗,i∗),(i∗,i∗) = pi∗i∗, q̃

(i∗,p)post
(i∗,<i∗),(i∗,i∗) = (1−p)pi∗i∗,

q̃
(i∗,p)post
(i∗,i∗),(i∗,<i∗) = 0, q̃

(i∗,p)post
(i∗,<i∗),(i∗,<i∗) = p·p0i∗, q̃

(i∗,p)post
(i∗,i∗),j = pi∗,j,

q̃
(i∗,p)post
(i∗,<i∗),j = (1−p) ·p0j+ppi∗j, q̃

(i∗,p)post
j,(i∗,i∗) = 0, q̃

(i∗,p)post
j,(i∗,<i∗) = pji∗1{j<i∗}+p0i∗1{j>i∗}.

Defining the corresponding matrix Q̃(i∗,p)post for these probabilities (dim Q̃(i∗,p)post

= dimQ(i∗,p)post + 1), the continuity of the probabilities π̃(i∗,p)post can be proven similiar
to the continuity of the probabilities π(i∗,p)post.

3 A cost model

In this section we look at the model of the previous section without the restriction on
the percentage of replacements in the bad state N . We introduce the following cost
function d(c) for c ∈ IR+.

d(c)(i, 0) = 0, i ∈ I, d(c)(i, 1) = 1, i ∈ {1, ..., N − 1} and d(c)(N, 1) = 1 + c. (16)

The first component is the status before repair and the second one represents the action
that is chosen at this replacement model. Hence we take the cost function Nakagawa [7]
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used with c2 = 1 and c1 = 1 + c. His model was already described in the introduction.
The value c may be identified as a penalty cost for being in the bad state N . Derman
[3], p. 125, has shown that the strategy optimizing this average cost replacement model
is a control limit policy. Next we look at the average cost of this new cost model.

With φδ(c) being the average cost function of this cost replacement problem under
strategy δ and cost function d(c), we have

φi∗(c) = πi∗(0)(1− p00) + cπ̃i∗(N) = πi∗(0)
(

1− p00 + c
π̃i∗(N)
πi∗(0)

)
. (17)

Hence, φi∗ is obviously continuous on IR+. (18)

The goal of this section is to find out how the strategy optimizing this cost model
depends on the constant c. This result is given in Theorem 2 and helps us finding a
strategy optimizing the original model in the next section. For the proof of Theorem
2 we need the next three lemmas.

Lemma 2 Let α := p0N > 0, then

φδ(c) = α
(
d(c)(N, 1) + Ṽ

(c)
δ,1−α(0))

)
, (19)

where Ṽ (c)
δ,1−α is the mean (1−α) discounted cost function of the cost model with functions

d̃(c) = d(c) · (1− α), p̃ij =
pij − α1{N}(j)

1− α ∈ [0, 1).

Proof: A simple computation (e.g. Hernandez-Lerma, Lasserre [4], formula (4.2.15))
leads to

Ṽ
(c)
δ,1−α(i) =

N∑
j=i

p̃ij
(
d̃(c)(j, δ(j)) + (1− α)Ṽ (c)

δ,1−α(j(1− δ(j)))
)

(20)

=
N∑
j=i

pij
1− α

(
(1− α)d(c)(j, δ(j)) + (1− α)Ṽ (c)

δ,1−α(j(1− δ(j)))
)

− α

1− α
(
(1− α)d(c)(N, 1) + (1− α)Ṽδ,1−α(0)

)
.

Thus

Ṽ
(c)
δ,1−α(i) + α

(
d(c)(N,N) + Ṽ

(c)
δ,1−α(0)

)
=

N∑
j=i

pij
(
d(c)(j, δ(j)) + Ṽ

(c)
δ,1−α(j(1− δ(j)))

}
. (21)

Using g(c) := α
(
d(c)(N,N) + Ṽ

(c)
δ,1−α(0)

)
and h(c) := Ṽ

(c)
δ,1−α (bounded because I is finite)

we get h(c)(i) + g(c) =
∑N
j=i pij

(
d(j, δ(j)) + h(c)(j(1− δ(j))

)
. Hence g(c) equals φδ(c)

(e.g. Ross [10], p. 93).

Lemma 3 Let 0 ≤ i∗ < j∗ and φi∗(c0) = φj∗(c0) for a constant c0 ∈ IR+. Then we
have for c ∈ IR+

φi∗(c) ≤ φj∗(c) ⇔ c ≥ c0. (22)
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Proof: We have
N∑
i=i∗

π̃i∗(i) + c0π̃i∗(N) = φi∗(c0) = φj∗(c0) =
N∑
i=j∗

π̃j∗(i) + c0π̃j∗(N).

Lemma 2 yields π̃j∗(N) ≥ π̃i∗(N). So if c0 becomes larger (smaller), φj∗(c0) will become
smaller (larger) than or equal to φi∗(c0). Hence this Lemma is also proven.

Lemma 4 Let cost c be fixed. If the control limit policies with thresholds i∗ and j∗(> i∗)
optimize the average cost, every control limit policy with threshold i ∈ ZZ+ : i∗ < i < j∗

is optimal, too.

Proof: From Lemma 2 we recall (19).

φδ(c) = (1− α)
(
d(c)(N, 1) + Ṽ

(c)
δ,α (0)

)
.

We have φδi∗ ≤ φδ and φδj∗ ≤ φδ for every strategy δ ∈ Π.

Hence Ṽ (c)
δi∗ ,α

(0) ≤ Ṽ
(c)
δ,α (0) and Ṽ (c)

δj∗ ,α
(0) ≤ Ṽ

(c)
δ,α (0) for every δ ∈ Π.

A control limit strategy with threshold i∗ optimizes V (c)
δ,α (0) in δ, if and only ifα N∑

j=0
p̃ijṼ

(c)
α (j) ≥ (1− α) + α

N∑
j=0

p̃0jṼ
(c)
α (j) or

∞∑
n=0

p̃
(n)
0i = 0

 for i ∈ {i∗, i∗+1, ..., N−1}

andα N∑
j=0

p̃ijṼ
(c)
α (j) ≤ (1− α) + α

N∑
j=0

p̃0jṼ
(c)
α (j) or

∞∑
n=0

p̃
(n)
0i = 0

 for i ∈ {1, 2, ..., i∗ − 1}.

This we prove indirectly. First we look at a state i with
∑∞
n=0 p

(n)
0i > 0. If the inequality

regarding this state i is not fulfilled, we will look at strategy δ being equal to δi∗, apart
from state i, where it will behave contrarily: we have Ṽ (c)

δ,α < Ṽ (c)
δi∗ ,α

, i.e. δi∗ is not
optimal. Now we look at a state i with

∑∞
n=0 p̃

(n)
0i = 0: starting at state 0 it is almost

sure that state i will never be visited. Thus for every strategy δ the value Ṽ (c)
δ,α (0) is

independent of δ’s behaviour in i. It makes no sense to look what to do in state N
since the condition δ(N) = 1 holds for every stategy δ ∈ Π. Using the function Ṽ (c,n)

α

defining the discounted cost up to the nth interval it is standard to prove that Ṽ (c)
α is

non-decreasing, since d̃ is non-decreasing and the Markovian deterioration of the (pij)
yields the Markovian deterioration of the (p̃ij) (e.g. Ross, [10], p. 37f). If the control
limit policies with thresholds i∗ and j∗ are both optimal, we get the following.

f(i) :=
N∑
j=0

p̃ijṼ
(c)
α (j) constant in {i∗, ..., j∗}\

{
i

∣∣∣∣∣
∞∑
n=0

p
(n)
0i = 0

}
.

If the state is an element of
{
i
∣∣∣∑∞n=0 p

(n)
0i = 0

}
both actions are optimal, so all control

limit policies with thresholds {i∗, ..., j∗} minimize Ṽδ,α(0) and hence also φδ in δ.

Theorem 2 There is a j0 in I and there are positive real numbers cj0 ≥ cj0+1 ≥ ... ≥
cN such that the control limit policy δi∗ with threshold

8



i∗ =


N if 0 ≤ c < cN ,
j if cj+1 ≤ c < cj ,
j0 if c ≥ cj0 ,

is optimal. The condition p0N 6= p1N is sufficient and if p01 6= 0 also necessary such
that j0 can be taken equal to 1.

We remark that we expect p01 > 0 since p01 = 0 yields π̃δ(1) = πδ(1) = 0 for every
replacement strategy δ so state 1 will never be visited.

Proof: First we look at the trivial case c = 0: Using the control limit policy with
threshold i∗ the average cost are πi∗(0)(1 − p00). These average cost decrease if i∗

increases, so the control limit policy with threshold N is optimal. Now there are two
possibilities:
Case a: The control limit policy with threshold N , δN , is optimal for every c ∈ IR+.
Case b: Suppose δN is not optimal for every c > 0, that is, for some c > 0 and some
state i 6= N we have φN(c) > φi(c). Then, let

c̃ = inf {c > 0 |φN(c) > φi(c) for some i ∈ I }

and
i0 = lim sup

ε↓0
{min {i ∈ I |φN(c̃+ ε) > φi(c̃+ ε)}} .

φi0(c̃) = φN(c̃) holds because of the continuity of the function φi0−φN (proven at (18))
and φi0(c) ≥ φN(c) for c > c̃. Obviously we have i0 < N . For all i with i0 < i ≤ N let
ci := c̃. We remark that if c = c̃, every control limit policy with threshold i ∈ {i0, ..., N}
is optimal because of Lemma 4. For every c less than c̃ we found the optimal strategy.
To do the same for a value of c being bigger than c̃ we look at the following recursive
procedure.
Case b(i): The control limit policy with threshold i0, δi0 , is optimal for every c ∈ [c̃,∞).
We choose j0 := ĩ and cĩ = c̃.
Case b(ii): Suppose δi0 is not optimal for every c ∈ [c̃,∞), that is, for some c ∈ [c̃,∞)
and for some state i ∈ {0, ..., i0 − 1}, φi(c) < φi0(c). Then, let

˜̃c = inf {c ∈ [c̃,∞) |φi0(c) > φi(c) for some i ∈ I }

and
i1 = lim sup

ε↓0

{
min

{
i ∈ I

∣∣∣φi0(˜̃c+ ε) > φi(˜̃c+ ε)
}}

.

We let ci = ˜̃c for all i with i1 < i ≤ i0. For every c less than ˜̃c we found the optimal
strategy. With i0 := i1 and c̃ := ˜̃c we repeat this procedure recursively until case b(i)
is valid. This will be the case at j0 = 1 at the latest.

Next we prove indirectly that the condition p0N < p1N is sufficient that j0 can be
taken equal to 1. We have p0N < p1N and see what happens if case j0 = 1 is not
suitable. ¿From (18) we recall the following identity for every threshold i∗.

φi∗(c) = πi∗(0)(1− p00) + π̃i∗(N) · c.

Case I: The probability π̃δ1(N) is less than the probability π̃δj0 (N). We get

φj0(c)− φ1(c) = (1− p00)(πδj0 (0)− πδ1(0)) + c(π̃δj0 (N)− π̃δ1(N)). (23)
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The first summand is indeed less than or equal to zero, but since the factor of c is
positive, there is a c0 ∈ IR so that the above term is positive for all values c > c0. For
these values c the control limit strategy δ1 is better than δj0. This contradiction yields
j0 = 1.
Case II: The probability π̃δ1(N) is equal to the probability π̃δj0 (N). Lemma 1(ii) yields
to π̃δ1(N) = ... = π̃δj0 (N) and Lemma 1(iii) to πδ1(0) = ... = πδj0 (0). Thus we have
φj0(c) = φ1(c) for every c ∈ IR+. So apart from the control limit policy with threshold
j0 the control limit policy with threshold 1 is optimal, too. Again we obtained a
contradiction.

Last we prove indirectly that if p01 6= 0 holds the condition p0N 6= p1N (so p0N <
p1N) is necessary to take j equal to 1. Under the condition p0N = p1N and if p01 > 0
the strategy δ2 is better than strategy δ1 for every penalty cost c ∈ IR+, as we now
compute.

πδ2(0) = 1− πδ2(1) ≤ 1− πδ2(0)p01,

so

πδ2(0) ≤ 1
1 + p01

< 1 = πδ1(0).

π̃δ2(N) = πδ2(0)p0N + πδ2(1)p1N

= p0N (πδ2(0) + πδ2(1)) = p0N = πδ1(0)p0N = π̃δ1(N),

since p0N = p1N . Hence we have for c ∈ IR+

φδ2(c) = πδ2(0) + cπ̃δ2(N) < πδ1(0) + cπ̃δ2(N) = φδ1(c).

Hence j0 > 1.

4 Optimal strategies for the original model

In this section we look again to the original model. Using Theorem 2 from the last
section we first prove that the search for an optimal strategy may be restricted to the
class of the pre-randomized strategies or to the class of the post-randomized strategies.
The existence and the construction of the optimal strategy will be shown in the next
section. Since we need that j0, defined in Theorem 2, can be taken equal to one, we
impose the following

probability-condition: 0 < p0N < p1N

which holds for the subsequent results.

Theorem 3 For every strategy δ satisfying π̃δ(N)
πδ(0) ≤ ε1, there are numbers j ∈ I and

λ ∈ [0, 1] with

π̃(j,λ)pre(N)
π(j,λ)pre(0)

=
λπ̃δj(N) + (1− λ)π̃δj+1(N)
λπδj(0) + (1− λ)πδj+1(0)

≤ ε1 (24)

and
π(j,λ)pre(0) = λπδj(0) + (1− λ)πδj+1(0) = πδ(0).
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Proof: Lemma 1(i) yields to

πδN (0) ≤ ... ≤ πδ1(0) = 1. (25)

Since a system in state N has to be replaced under every strategy, δN is the strategy
which replaces most seldom. Thus using δN the process (Xn)n∈IN visits state N most
seldom so this strategy minimizes πδ(0) in δ. So πδ(0) ≤ πδN (0) for every strategy δ.
Lemma 1 yields the same result if we look at the subset of control limit policies only.

For every strategy δ we have

1 = πδ1(0) ≥ πδ(0) ≥ πδN (0). (26)

(25) yields that for every δ there is a j ∈ I with

πδj+1(0) ≤ πδ(0) ≤ πδj (0). (27)

Define λ ∈ [0, 1) with : πδ(0) = λπδj(0) + (1− λ)πδj+1(0). (28)

The cost model with c := cj+1 defined in Theorem 2 will be optimized by both control
limit policies δj and δj+1. This is why for every strategy δ we have

φj(c) = φj+1(c) ≤ φδ(c). (29)

Hence

πj(0)(1− p00)+cπ̃j(N) = πj+1(0)(1− p00)+cπ̃j+1(N) ≤ πδ(0)(1− p00)+cπ̃δ(N). (30)

¿From the definiton of the pre-randomized bang-bang strategy we obtain

π(j,λ)pre(i) = λπj(i) + (1− λ)πj+1(i) for i ∈ I, (31)
π̃(j,λ)pre(i) = λπ̃j(i) + (1− λ)π̃j+1(i) for i ∈ I. (32)

The main idea of this proof stands behind the subsequent inequality.

π(j,λ)pre(0)(1− p00) + cπ̃(j,λ)pre(N)

=
(
λπδj(0) + (1− λ)πδj+1(0)

)
(1− p00) + c

(
λπ̃δj(N) + (1− λ)π̃δj+1(N)

)
= λ

(
πδj(0)(1− p00) + cπ̃δj(N)

)
+ (1− λ)

(
πδj+1(0)(1− p00) + cπ̃δj+1(N)

)
≤ λ (πδ(0)(1− p00) + cπ̃δ(N)) + (1− λ) (πδ(0)(1− p00) + cπ̃δ(N))
= πδ(0)(1− p00) + cπ̃δ(N). (33)

This, together with

π(j,λ)pre(0) = λπδj(0) + (1− λ)πδj+1(0) = πδ(0)

gives us
π̃(j,λ)pre(N) ≤ π̃δ(N).

Finally, the identity
π(j,λ)pre(0) = πδ(0)

yields
π̃(j,λ)pre(N)
π(j,λ)pre(0)

≤ π̃δ(N)
πδ(0)

≤ ε1.

For the proof of an analogous result regarding to the post-randomized strategies which
is formulated in the next Theorem we need the subsidiary Lemma.
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Lemma 5 (i) For every strategy (i, p)pre, i ∈ {1, ..., N − 1}, p ∈ [0, 1] there is a
q ∈ [0, 1] such that for the cost model the subsequent identity is valid.

φ(i,p)pre(c) = φ(i,q)post(c) for all c ∈ IR+. (34)

(ii) For every strategy (i, q)post, i ∈ {1, ..., N − 1}, q ∈ [0, 1] there is a p ∈ [0, 1] such
that for the cost model the subsequent identity is valid.

φ(i,q)post(c) = φ(i,p)pre(c) for all c ∈ IR+ with p :=
q

πδi∗ (0)
q

πδi∗ (0) + 1−q
πδi∗+1

(0)

. (35)

Proof: If p = 0 then φ(i,0)pre(c) = φδi(c) = φ(i,0)post(c) = φ(i,0)post(c) and if p = 1 then
φ(i,1)pre(c) = φ(i+1,0)pre(c) = φ(i+1,0)post(c) = φ(i,1)post(c) = φ(i,1)post , so that (34) holds
true. For p ∈ (0, 1) we look at the two statements separately.
(i) φ(i,p)pre(c) = pφi+1(c) + (1− p)φi(c). Thus for every i0 and c the function gci0 :
p→ φ(i0,p)pre(c) is a line on the unit-interval going through (0, φi∗(c)) and (1, φi∗+1(c)).
According to Lemma 1, φ(i0,p)post is continuous in p. Since φ(i,0)pre ≡ φ(i,0)post and
φ(i,1)pre ≡ φ(i,1)post hold and gci is linear according to the intermediat value Theorem
there must be a q of the unit interval with φ(i0,p)pre(c) = φ(i0,q)post(c).
(ii) For every n ∈ IN we define the random variable τn as the time at which the n−th
visit to state 0 takes place, not counting visits from 0. Let C̃c

δ(J) be the cost during
the interval J ⊂ ZZ+ using any strategy δ such that state 0 is positive recurrent for the
process (Xn) and using ’penalty cost’ c. Since state 0 is positive recurrent, we have

φδ(c) = lim
n→∞

E
(
C̃c
δ([τn−1, τn])

)
E(τn − τn−1)

=
E
(
C̃c
δ([τ1, τ2])

)
E(τ2 − τ1)

. (36)

So

φ(i∗,q)post(c)

=
E(C̃c

δ([τ1, τ2])|δ = δi∗) · P (δ = δi∗) + E(C̃c
δ([τ1, τ2])|δ = δi∗+1)) · P (δ = δi∗+1)

P (δ = δi∗) · E(τ2 − τ1|δ = δi∗) + P (δ = δi∗+1) · E(τ2 − τ1|δ = δi∗+1)

=
E(C̃c

δi∗
([τ1, τ2])) · (1− q) + E(C̃c

δi∗+1
([τ1, τ2])) · q

1−q
πδi∗ (0) + q

πδi∗+1
(0)

= E
(
C̃c
δi∗

([τ1, τ2])
)
· πδi∗ (0) ·

1−q
πδi∗ (0)

1−q
πδi∗ (0) + q

πδi∗+1
(0)

+E
(
C̃c
δi∗+1

([τ1, τ2])
)
·
πδi∗+1(0) · q

πδi∗+1
(0)

1−q
πδi∗ (0) + q

πδi∗+1
(0)

= φi∗(c)·(1−p)+φi∗+1(c)·p = φ(i∗,p)pre.

Theorem 4 For every strategy δ fulfilling the inequality π̃δ(N)
πδ(0) ≤ ε1 there are numbers

j ∈ ZZ+ and µ ∈ [0, 1] with

π̃(j,µ)post(N)
π(j,µ)post(0)

≤ ε1 and π(j,µ)post(0) = πδ(0).

Proof: Due to (27) there exists a number j ∈ ZZ+ with πδj+1(0) ≤ πδ(0) ≤ πδj (0).
Because of δj = δ(j,0)post, δj+1 = δ(j,1)post and the fact that π(j,µ)post(0) is continuous and
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non-increasing on the unit interval, there exists a µ ∈ [0, 1] with πδ(0) = π(j,µ)post(0).
Because of the last Lemma there exists a λ ∈ [0, 1], such that we have with c := cj+1

π(j,µ2)post(0)(1− p00) + cπ̃(j,µ2)post(N) = φ(j,µ2)post(c)
(35)
= φ(j,λ)pre(c)

= π(j,λ)pre(0)(1− p00) + cπ̃(j,λ)pre(N)
≤ πδ(0)(1− p00) + cπ̃δ(N). (37)

We prove (37): for every λ ∈ [0, 1] and for all i ∈ I we have

π(j,λ)pre(i)
(31)
= λπδj(i) + (1− λ)πδj+1(i) and π̃(j,λ)pre(i)

(32)
= λπ̃δj (i) + (1− λ)π̃δj+1(i).

π(j,µ)post(0) = πδ(0) yields π̃(j,µ)post(N) ≤ π̃δ(N), so
π̃(j,µ)post(N)
π(j,µ)post(0)

≤ π̃δ(N)
πδ(0)

≤ ε1.

Using the cost model we were able to prove the last two Theorems. The content of
the first was that for every strategy δ fulfilling the inequality π̃δ(N)

πδ(0) ≤ ε1 we find a pre-
randomized bang-bang strategy δpre with 1

πδpre(0)(1−p00) = 1
πδ(0)(1−p00) . The second Theo-

rem states that we find a post-randomized bang-bang strategy δpost with 1
πδpost(0)(1−p00) =

1
πδ(0)(1−p00) . Since we want a strategy δ fulfilling the inequality π̃δ(N)

πδ(0) ≤ ε1 and mini-
mizing the value 1

πδ(0)(1−p00) the search for an optimal strategy can be restricted to the
class of the pre-randomized strategies or to the class of the post-randomized strategies.

5 Construction of optimal strategies

First we look for an optimal strategy in the class of pre-randomized bang-bang strate-
gies. ¿From the monotonicity of πi∗(0) and π̃i∗(N) in i∗ (Lemma 1), we get from the
identities

π(i∗,p)pre(i) = (1− p)πi∗(i) + pπi∗+1(i) and π̃(i∗,p)pre(i) = (1− p)π̃i∗(i) + pπ̃i∗+1(i)

the monotonicity of π(i∗,p)pre(0) and π̃(i∗,p)pre(N) in i∗ and p. Thus
π̃(i∗,p)pre(N)
π(i∗,p)pre(0) and

1
π(i∗,p)pre(0) are non-decreasing in i∗ and in p. Since the first term may not larger be
than ε1 and the second has to be maximized, we look for parameters i∗ and p with

π̃(i∗,p)pre(N)
π(i∗,p)pre(0)

= ε1.

Thus we get

i∗ = max
{
i

∣∣∣∣∣ π̃i(N)
πi(0)

≤ ε1

}
(38)

and the value p we solve from the equation

(1− p)π̃i∗(N) + pπ̃i∗+1(N)
(1− p)πi∗(0) + pπi∗+1(0)

= ε1.

That is

p =
ε1πi∗+1(0)− π̃i∗+1(N)

(π̃i∗(N)− π̃i∗+1(N))− ε1(πi∗(0)− πi∗+1(0))
. (39)
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Hence we have obtained an optimal strategy in the class of pre-randomized bang-bang
strategies. Then this strategy optimizes our replacement system in the whole class Π.

Now we are also able to compute an optimal post-randomized bang-bang strategy.
We simply have to compute the second parameter, because the first is identical to that
of the optimal pre-randomized bang-bang strategy. We obtain the second parameter q
using Lemma 5. If p = 0 we choose q = 0 and if p 6= 0 the following identity holds.

p =
q

πi∗+1(0)
1−q
πi∗(0) + q

πi∗+1(0)

,

hence,

q =
πi∗+1(0)

πi∗+1(0)− (1− 1
p
)πi∗(0)

. (40)

6 Numerical Examples

Here we provide some examples of optimal strategies generated by a computer. We
look at the following class of transition probabilities holding Markovian deterioration.

p̃ij =


(
i+1
j+1

)β
−
(
i+1
j+2

)β
N > j ≥ i,(

i+1
N+1

)β
j = N,

0 otherwise.

In Table 1 the optimal strategies are given as examples.
The transition probabilities pij = 1

N−i−1 ·1{j≥i} yield similar results to those in Table
1, but the values of p of (i∗, p)pre are slightly larger than the corresponding values p of
(i∗, p)post. Looking at the identity

p = 0⇔ q = 0 else p =
q

πi∗+1(0)
1−q
πi∗(0) + q

πi∗+1(0)

,

where q is the parameter of the post-randomized strategy and p is the parameter of the
pre-randomized strategy, recalling the monotonicity of πi∗(0) in i∗ we see that param-
eter q of the optimal post-randomized strategy is always less than the corresponding
parameter of the pre-randomized strategy. Comparisons of both optimal strategies
would be an interesting topic for further research.

14



N β ε0 p0N i∗ p : (i∗, p)pre p : (i∗, p)post
2 0.75 0.75 0.738 1 0.056 0.047
2 0.75 0.9 0.738 1 0.663 0.619
2 0.75 0.99 0.738 1 0.968 0.962
10 0.5 0.5 0.426 1 0.793 0.768
10 0.5 0.9 0.426 7 0.915 0.912
10 0.5 0.99 0.426 9 0.789 0.785
100 0.75 0.1 0.053 3 0.710 0.694
100 0.75 0.25 0.053 14 0.908 0.907
100 0.75 0.5 0.053 39 0.082 0.082
100 0.75 0.75 0.053 67 0.824 0.824
100 0.75 0.99 0.053 98 0.656 0.656
100 0.9 0.1 0.029 6 0.827 0.821
100 0.9 0.25 0.029 20 0.648 0.646
100 0.9 0.5 0.029 45 0.758 0.758
100 0.9 0.9 0.029 88 0.842 0.842
100 0.9 0.99 0.029 98 0.879 0.878
100 1.0 0.05 0.02 4 0.053 0.050
100 1.0 0.5 0.02 49 0.501 0.500
100 1.0 0.9 0.02 89 0.900 0.900
100 1.0 0.99 0.02 98 0.990 0.990
100 2.0 0.001 0.0004 2 0.192 0.172
100 2.0 0.01 0.0004 9 0.098 0.096
100 2.0 0.1 0.0004 30 0.938 0.938
100 2.0 0.9 0.0004 94 0.816 0.816
100 2.0 0.99 0.0004 99 0.493 0.492

Table 1: Some examples for optimal strategies.
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