
Department of Applied Mathematics
Faculty of EEMCS

�
University of Twente

The Netherlands

P.O. Box 217
7500 AE Enschede

The Netherlands

Phone: +31-53-4893400
Fax: +31-53-4893114

Email: memo@math.utwente.nl

www.math.utwente.nl/publications

Memorandum No. 1691

Spectral properties of the tandem

Jackson network, seen as a

quasi-birth-and-death process

D.P. Kroese,1 W.R.W. Scheinhardt

and P.G. Taylor2

October 7, 2003

ISSN 0169-2690

1Department of Mathematics, University of Queensland, Qld 4072, Australia
2Department of Mathematics and Statistics, University of Melbourne, Vic 3010, Australia



Spectral Properties of the Tandem Jackson Network,
seen as a Quasi-Birth-and-Death Process

D.P. Kroese∗ W.R.W. Scheinhardt† P.G. Taylor‡

October 7, 2003

Abstract

Quasi-Birth-and-Death (QBD) processes with infinite “phase spaces” can ex-
hibit unusual and interesting behaviour. One of the simplest examples of such
a process is the two-node tandem Jackson network, with the “phase” giving the
state of the first queue and the “level” giving the state of the second queue.

In this paper, we undertake an extensive analysis of the properties of this QBD.
In particular, we investigate the spectral properties of Neuts’R-matrix and show
that the decay rate of the stationary distribution of the “level” process is not
always equal to the convergence norm of R. In fact, we show that we can obtain
any decay rate from a certain range by controlling only the transition structure
at level zero, which is independent of R.

We also consider the sequence of tandem queues that is constructed by restrict-
ing the waiting room of the first queue to some finite capacity, and then allowing
this capacity to increase to infinity. We show that the decay rates for the finite
truncations converge to a value, which is not necessarily the decay rate in the
infinite waiting room case.

Finally, we show that the probability that the process hits level n before level
zero given that it starts in level one decays at a rate which is not necessarily
the same as the decay rate for the stationary distribution.
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1 Introduction

A Quasi-Birth-and-Death (QBD) process is a two-dimensional continuous-time
Markov chain for which the generator has a block-tridiagonal structure. The
first component of the QBD process is called the level, the second component
the phase.

A comprehensive discussion of the properties of QBD processes with finitely
many possible values of the phase variable can be found in the monographs of
Neuts [10] and Latouche and Ramaswami [6]. In particular, it is known that
the level process of a positive-recurrent QBD process with a finite phase space
possesses a stationary distribution which decays geometrically as the level is
increased. The decay parameter is equal to the spectral radius of Neuts’ R-
matrix, which is strictly less than one. Similarly, the probability that a QBD
process hits level n before level zero given that it starts in level one is known
to decay geometrically with the same parameter.

For QBD processes with an infinite phase space the situation becomes more
complicated. The R-matrix is now infinite-dimensional, and its spectral prop-
erties are not obvious. Also, the relationship between various decay parameters
is different from the finite-dimensional case.

This paper makes a contribution to the study of the behaviour of such infinite-
phase QBD processes by considering a special case which exhibits interesting
behaviour. This special case is a two-node tandem Jackson network, in which
the number of customers in the first queue gives the phase variable and the
number of customers in the second queue gives the level variable. This system
was studied via simulation in [5] where the authors used some of the results of
the current paper to calculate the relevant decay rates.

We show that when the first queue has an infinite waiting room, the decay rate
of the stationary distribution of the “level” process (the state of the second
queue) may not be equal to the convergence norm of R, which can be thought
of as the analogue of the spectral radius in the infinite-dimensional case. In
fact, we show that we can construct a range of decay rates for the stationary
distribution of the second queue by controlling only the transition structure
when the second queue is empty, that is at level zero. Futhermore, the decay
rate, as n→ ∞, of the probability that the number of customers in the second
queue hits n before zero given that it starts at one may not be the same as
the decay rate of the stationary distribution. Such behaviour does not occur in
finite-phase QBD processes.

We also consider the limiting behaviour of the tandem queue when the waiting
room of the first queue is finite, and increases to infinity. We show that the
eigenvalues of the R-matrix converge to a continuum, possibly with one addi-
tional isolated point; the latter being the case when the second buffer is the
bottleneck. A consequence of this is that the decay rate in the infinite waiting
room case, may not be the same as the limiting value of the decay rates in the
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finite waiting room case.

The rest of the paper is organized as follows. In Section 2 we present some
general results for QBD processes. We consider processes with both finite and
infinite phase spaces. In Section 3 we formulate the two-node tandem Jackson
network as a QBD process. In Sections 4 and 5, we discuss the decay rate
of the stationary distribution when the capacity of the first queue is infinite
and finite respectively. These sections make heavy use of the properties of
certain orthogonal polynomials. In Section 6, we show how we can obtain any
decay rate for the stationary distribution of the second queue by controlling
the transition structure when the second queue is empty. In Sections 7 and 8,
we turn to the question of the decay rate of the probabilities that the process
hits level n before level zero. Section 7 deals with general QBD processes, while
Section 8 deals with the specific case of the tandem Jackson network.

2 Quasi-Birth-and-Death Processes

A level-independent Quasi-Birth-and-Death process (QBD process) is a continuous-
time Markov chain (Yt, Jt, t ≥ 0) on the state space {0, 1, . . .} × {0, . . . ,m},
whose generator Q has a block tri-diagonal representation

Q =




Q̃1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

. . . . . . . . .


 . (1)

Here, the matrices Q0, Q1, Q2 and Q̃1 are (m + 1) × (m + 1) matrices. The
parameter m may be finite or infinite. The random variable Yt is called the
level of the process at time t and the random variable Jt is called the phase of
the process at time t.

To avoid complications, we assume that the following condition is satisfied. A
discrete-time version of this condition appeared in Latouche and Taylor [9].

Condition 2.1 The continuous-time Markov chain on the set Z ×{0, . . . ,m},
with generator 


. . . . . . . . .

Q2 Q1 Q0

Q2 Q1 Q0

. . . . . . . . .


 , (2)

is irreducible.

There are a number of consequences of Condition 2.1, which we shall use later.
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This condition is satisfied in the QBD process model for the tandem queue
which is presented in Section 3.

We set the stage by mentioning some well-known results, at the same time
fixing some notation. By Theorem 3.2 of [12], the limiting probabilities πkj :=
limt→∞ P(Yt = k, Jt = j) exist. Let us define the vectors πk = (πk0, . . . , πkm),
for k = 0, 1, . . ., and π = (π0,π1, . . .). Then

πk = π0R
k, k ≥ 0, (3)

where R is the minimal nonnegative solution to the equation

Q0 +RQ1 +R2Q2 = 0. (4)

The matrix R has a probabilistic interpretation. Let µi be the mean sojourn
time in state (k, i), for k ≥ 1. Then, R(i, j) is µi times the total expected time
spent in state (k + 1, j) before first return to level k, starting from state (k, i).

Before turning to the relation between the matrix R and the decay rates of
interest, we discuss the issue of ergodicity, both for m <∞ and m = ∞, noting
a small inaccuracy in the literature regarding the latter case.

Theorem 2.2 The QBD process is ergodic, that is π is positive and has com-
ponents which sum to unity, if and only if there exists a probability measure y0

such that
y0(Q̃1 +RQ2) = 0, (5)

and
y0 ν <∞, (6)

where ν = (I +R+R2 + · · · )1. In this case

π0 = y0/y0 ν. (7)

The matrix Q̃1 + RQ2 in (5) is the generator of the process of (Yt, Jt) filtered
so that it is observed only when it is in level zero. Thus, the condition that
there exists a probability measure satisfying (5) states that the filtered process
at level zero must be ergodic.

In [12], condition (6) is replaced by the elementwise condition

ν <∞. (8)

For the case m < ∞, both conditions are equivalent. However, when m = ∞,
the latter condition is not sufficient, since it does not guarantee that π0 is
non-zero; we may have y0 ν = ∞ even when ν is finite.

Specialising to the case m <∞, inequality (6) is satisfied if and only if

sp(R) < 1 , (9)
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with sp(R) denoting the spectral radius of R.

If m is finite and there exists a vector x with x1 = 1 such that

x (Q0 +Q1 +Q2) = 0 (10)

and
xQ01 < xQ21, (11)

then the QBD is positive recurrent, see [10] or [8]. Under the additional as-
sumption that Q̃1 = Q1 +Q2, this was proved for the infinite case by Tweedie
[16]. Equation (11) can be interpreted as requiring that “the average drift of
the level process is negative”.

We now turn to the decay rate of the stationary distribution, assuming that
the QBD process is ergodic. This decay rate is sometimes also referred to as
the caudal characteristic. We start with a known result for the case m < ∞,
stating that the geometric decay rate is given by the spectral radius of R. In
[6, page 205], it was shown that

lim
K→∞

∑
i πKi

(sp(R))K
= κ (12)

where κ is a constant. In other words, the marginal stationary probability that
the QBD is in level K decays geometrically with rate sp(R).

Turning to the case m = ∞ the situation becomes more complicated, and we
come to the core of one of the problems that are dealt with in this paper. We
are looking for an ‘infinite-dimensional’ analogue of the limiting result (12), and
in particular for the role of the spectral radius of R in it. Clearly, R is now a
square matrix of size ∞.

There are at least two candidates to consider for this analogue. One approach
would be to consider R to be a linear operator from the Banach space �1 to
itself. We could then hope that the decay rate we are looking for is given by the
spectral radius of this operator, if it exists. We shall take a different approach,
and use the infinite-dimensional analogue of the Perron-Frobenius eigenvalue of
R. This is the convergence norm of R.

Some relevant concepts about the Perron-Frobenius theory of nonnegative ma-
trices are recalled below. For details we refer to Rudin [14] and Seneta [15].

For a finite-dimensional, square, irreducible and nonnegative matrix A, there
exists a strictly positive eigenvalue which is simple and is greater than or equal
to the modulus of all the other eigenvalues. To this eigenvalue corresponds
a strictly positive eigenvector. The eigenvalue is called the Perron-Frobenius
eigenvalue of A.

To a large extent, this result can be extended to infinite-dimensional matrices.
Let A be a nonnegative, aperiodic and irreducible matrix. We would like to
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prove the existence of a strictly positive ξ and a strictly positive vector x such
that

xA = ξx. (13)

The power series
∞∑
k=0

Ak(i, j) zk ,

has a convergence radius α, 0 ≤ α < ∞, independent of i and j. This common
convergence radius is called the convergence parameter of the matrix A. When∑∞

k=0A
k(i, j)αk converges, the matrix is called α-transient. Otherwise it is

called α-recurrent.

The quantity 1/α is called the convergence norm of A. It can be shown to
satisfy

1/α = lim
k→∞

(
Ak(i, j)

)1/k
(14)

independently of i and j. This implies, in particular, that if the dimension of A
is finite, then the convergence norm is exactly the Perron-Frobenius eigenvalue
of A ([15, pages 200-201]).

For β > 0, a nonnegative vector x is called a β-subinvariant measure of A if

βxA ≤ x (15)

and a nonnegative vector y is called a β-subinvariant vector of A if

βAy ≤ y. (16)

The measure x and vector y are called β-invariant when equality holds in (15)
and (16) respectively.

The infinite-dimensional analogue of the Perron-Frobenius result is the follow-
ing, see for example, [15, Theorems 6.2 and 6.3].

• No β-subinvariant measure can exist for β > α. If A is α-recurrent, then
there exists a strictly-positive α-invariant measure. If A is α-transient,
then there exists an α-subinvariant measure that is not invariant: there
may or may not exist an α-invariant measure. By applying the above to
the transpose of A, similar conclusions can be reached about α-invariant
vectors.

It is a common misconception to believe that 1/α is the largest “eigenvalue”of A.
This is true in the finite-dimensional case, but not in the infinite-dimensional
case. The result above states only that there cannot be any nonnegative x
satisfying (13) with ξ < 1/α. In fact, in this paper we shall encounter examples
of matrices A such that (13) is satisfied by a positive vector x for ξ > 1/α.

For infinite-dimensional matrices A it is useful to know when the convergence
parameter α can be found as a limit of convergence parameters {α(k)} from a
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sequence {A(k)} of finite-dimensional matrices. For example, in Theorem 6.8 of
[15], it is shown that the convergence parameters of the (n×n) northwest corner
truncations of A converge to the convergence parameter of A. The following
result will be of use to us in the Sections 7 and 8.

Lemma 2.3 Let {A(k)} be a sequence of nonnegative matrices that increases
elementwise to an irreducible matrix A, as k → ∞. Let α(k) denote the con-
vergence parameter of A(k) and α be the convergence parameter of A. Then the
sequence α(k) is decreasing with limk→∞ α(k) = α.

Proof. By (14) and the fact that A(k)(i, j) ≤ A(k+1)(i, j), we have

α(k+1) ≤ α(k) .

Therefore the sequence {α(k)} is decreasing and its limit α(∞) must exist. Also,
by (14) and the fact that A(k)(i, j) ≤ A(i, j) for all k, we have

α ≤ α(∞) .

Now let y(k) = (y(k)
1 , y

(k)
2 , . . .)T be a α(k)-subinvariant vector of A(k), with y(k)

1 =
1, and let y∗ = lim infk y(k), elementwise. Then we know that α(k)A(k)y(k) ≤
y(k). Taking lim infk→∞ of both sides and using Fatou’s Lemma, we have for
each i,

α(∞)
∞∑
j=1

A(i, j) y∗j ≤ y∗i . (17)

Iterating this, we find that, for ν ≥ 1,

α(∞)ν
∞∑
j=1

Aν(i, j) y∗j ≤ y∗i .

Since y∗1 = 1 and A is irreducible, this shows that y∗j <∞ for all j and, by (17),
that y∗ is an α(∞)-subinvariant vector of A. Since no β-subinvariant vector can
exist for β > α, we must have α(∞) ≤ α and, thus α(∞) = α. �

Now let us turn back to the problem of determining the decay rate of Rn. ¿From
the definition, it follows that if

∑∞
n=0R

n(i, j) is convergent for all i and j then
the convergence norm of R must be less than or equal to 1. It is thus tempting
to think that the decay rate of the stationary distribution must be given by the
convergence norm. However, we have to be careful. As we noted above, it is
a common misconception to believe that the convergence norm is the largest
“eigenvalue”.

Assume that w is a z−1-invariant measure of R such that w
∑∞

i=0R
i is finite.

Then z must be less than one. To see this, note that the Monotone Convergence
Theorem implies that w

∑k
i=0R

i converges elementwise to w
∑∞

i=0R
i. This

means that w
∑k

i=0 z
i converges elementwise to a finite vector, which can be

the case only when z < 1. This leads to the following result.
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Theorem 2.4 Consider an irreducible QBD process with a finite or infinite
phase space. If there exists a nonnegative vector w ∈ �1 and a nonnegative
number z < 1 such that

w(Q̃1 +RQ2) = 0, (18)

and
wR = zw, (19)

then the QBD is ergodic, and for all fixed i = 0, 1, . . .

πKi
zK

= wi (20)

for all K.

Theorem 2.4 shows that if π0 is a z−1-invariant measure of R for some z, then
the stationary distribution of (Yt, Jt) has the level-phase independence property
(see Latouche and Taylor [7]) and decays at rate z. If π0 is a (finite) linear
combination of more than one w (not necessarily nonnegative) that satisfies
wR = ξw for some ξ, then the stationary distribution does not have this
property. The decay rate is then given by the value of ξ in the linear combination
for which |ξ| is the largest.

For the case m < ∞, any π0 is a finite linear combination of eigenvectors of
R. The left eigenvector of the eigenvalue sp(R) must always be in this linear
combination. To see this, recall that π0 must be positive, and the Perron-
Frobenius right-eigenvector v of R must be nonnegative and nonzero, which
implies that π0v > 0. Now write π0 =

∑m
i=1 aiwi where w1 is the Perron-

Frobenius eigenvector. Since, for i ≥ 2, the wi correspond to eigenvalues of
R distinct from sp(R), we know that wiv = 0 for these values of i. Therefore
π0v = a1w1v which shows that a1 �= 0. This explains why the stationary
distribution decays at rate sp(R) when m is finite.

As a final topic in this section, we quote a result that helps us to determine
z−1-invariant measures of R. In the general case m ≤ ∞ it is easy to see from
equation (4) that, if the row vector w and scalar z satisfy wR = zw, then

w(Q0 + z Q1 + z2Q2) = 0 (21)

whenever the change of order of summation involved in using the associative
law of matrix multiplication is permitted.

More importantly, under certain conditions the converse is true as well, again
irrespective of whether m <∞ or m = ∞. This is shown in the next theorem,
which is a statement of Theorem 5.4 of Ramaswami and Taylor [13]. See also
[3] for a more detailed analysis for the case where m <∞.

Theorem 2.5 Consider a continuous time ergodic QBD process with generator
of the form (1). Let qk = −Q1(k, k). If the complex variable z and the vector
w = {wk} are such that |z| < 1 and

∑
k |wk| qk <∞, then (21) implies (19).
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Specialising to the finite case m <∞, we obtain the following corollary.

Corollary 2.6 For an irreducible QBD process with a finite phase space, sat-
isfying (11), the eigenvalues of R are all the zeros of the polynomial

det(Q0 + z Q1 + z2Q2) (22)

that lie strictly within the unit circle.

Proof. From the discussion above it follows that all eigenvalues of R lie within
the unit circle. Each such eigenvalue z with corresponding left eigenvector w
satisfies (21). Conversely, by Theorem 2.5, all solutions (z,w) to (21) with z
within the unit circle must be eigenvalue/left-eigenvector pairs of R, because
the condition

∑
k |wk| qk < ∞ is automatically satisfied. In particular, the

eigenvalues of R are the zeros of (22) within the unit circle. �

3 The tandem Jackson network seen as a QBD pro-
cess

Queue 1 Queue 2
λ

µ µ1 2

Figure 1: A tandem Jackson network

We now turn to a specific class of QBD processes which may have infinitely-
many phases. It models a simple Jackson network consisting of two queues
in tandem, see Figure 1. Customers arrive at the first queue according to a
Poisson process with rate λ. The service time of customers at the first queue
is exponentially distributed with parameter µ1. On leaving the first queue,
customers enter the second queue where their service time has an exponential
distribution with parameter µ2. The capacity of the first queue is denoted by
m, which may be finite or infinite. In the case when m is finite, customers that
arrive to find the first queue full are rejected. For i = 1, 2 let

ρi =
λ

µi

and Jt and Yt denote the number of customers in the first and second queue at
time t, respectively.

We shall examine the behaviour of the two-dimensional Markov chain (Yt, Jt),
viewed as a QBD process in which Yt represents the level and Jt represents the
phase. The transition intensities of this QBD process are depicted in Figure 2.
When the capacity of the first queue is infinite, the phase space of this QBD
process is infinite and the boundary denoted by m in the figure is not present.
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µ
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µ

λ
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m0 1 2

buffer

second

1

Figure 2: The transition intensities for the tandem network.

For the case where m <∞, the (m+ 1)× (m+ 1)-matrices Q0, Q1, Q2 and Q̃1

in (1) are given by

Q0 =




0 . . .
µ1 0 . . .

µ1 0 . . .
. . . . . .

µ1 0




,
Q2 =




µ2

µ2

µ2

. . .
µ2


 ,

Q1 =




−(λ+ µ2) λ
−(λ+ µ1 + µ2) λ

−(λ+ µ1 + µ2) λ
. . . . . .

−(µ1 + µ2)


 ,

and

Q̃1 =




−λ λ
−(λ+ µ1) λ

−(λ+ µ1) λ
. . . . . .

−µ1


 .

Obviously, Condition 2.1 is satisfied in this case and the stability condition (11)
translates into

ρ2 <
1 − ρm+1

1

1 − ρm1
, ρ1 �= 1, (23)

ρ2 < 1 +
1
m
, ρ1 = 1. (24)

For the case where m = ∞, the tri-diagonal blocks are given by the infinite-
dimensional matrices
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Q0 =




0 . . .
µ1 0 . . .

µ1 0 . . .
. . . . . .


 ,

Q2 =



µ2

µ2

µ2

. . .


 ,

Q1 =



−(λ+ µ2) λ

−(λ+ µ1 + µ2) λ
−(λ+ µ1 + µ2) λ

. . . . . .


 ,

and

Q̃1 =



−λ λ

−(λ+ µ1) λ
−(λ+ µ1) λ

. . . . . .


 .

In this case, the well-known condition under which both queues are stable is

λ < min{µ1, µ2} . (25)

For both finite and infinite m, we are interested in the decay rate of the sta-
tionary distribution of the tandem network as the number in the second queue
becomes large and its relation to the spectral properties of the matrix R. It will
be convenient to index this matrix with the size of the waiting room at the first
queue. Thus we shall write Rm for the situation where the size of this waiting
room is m and, in particular, R∞ when the waiting room at the first queue is
unlimited.

For infinite m, under condition (25), it follows from the results of Burke [1] that
the arrival process to the second queue is a Poisson process with parameter λ
and so the second queue behaves like an M/M/1 queue with arrival rate λ
and service rate µ2. Thus the stationary distribution of the second queue is
geometric with parameter ρ2 and its decay rate is simply ρ2. However, it is not
at all clear how this decay rate corresponds to the spectral properties of the
infinite-dimensional matrix R∞.

To study the spectral properties of R∞ we shall make use of Theorem 2.5. To
facilitate our development, we introduce some notation.

For each z with |z| < 1, z �= 0, let Q(z) be the infinite-dimensional tri-diagonal
matrix (Q0 + zQ1 + z2Q2)/z, that is

Q(z) =



−λ− µ2 + µ2 z λ

µ1/z −λ− µ1 − µ2 + µ2 z λ

. . . . . . . . .


 , (26)
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and let Q(n)(z) denote the (n× n) northwest corner truncation of Q(z).

For the finite case, define the (n× n)-matrix Q̂(n)(z) as

Q̂(n)(z) =




−λ− µ2 + µ2 z λ

µ1/z −λ− µ1 − µ2 + µ2 z λ

. . . . . . . . .

µ1/z −µ1 − µ2 + µ2 z



.

(27)

The significance of these matrices follows from Theorem 2.5. The infinite-
dimensional row vector w satisfies wR∞ = zw for z �= 0 with |z| < 1, if∑

k |wk| qk <∞ and w satisfies

wQ(z) = 0. (28)

For the tandem queue, qk is constant for k ≥ 1 and so the condition that∑
k |wk| qk <∞ is equivalent to requiring that w ∈ �1.

For the case m <∞, the (m+1)-dimensional row vector w is a left eigenvector
of Rm corresponding to eigenvalue z �= 0 with |z| < 1, if and only if it satisfies

w Q̂(m+1)(z) = 0. (29)

Remark 3.1 Readers may note that equations (28) and (29) are not exactly
equivalent to equation (21). The latter follow from the former only if z �= 0.
In fact, for the tandem network model, the vector (1, 0, 0, . . .) satisfies equation
(21) with z = 0.

By using the physical interpretation of Rm, we can see that the interesting z−1-
invariant measures of Rm are the ones for which equations (28) and (29) are
satisfied. For the tandem Jackson network, the expected time spent in any state
at level k + 1 before the process returns to level k is non-zero if the process
starts in a state (k, i) with i > 0. Thus we know immediately from its physical
interpretation that Rm(i, j) is strictly positive for all i ≥ 1 and j ≥ 0. On the
other hand, it is impossible to visit level k + 1 starting in state (k, 0) without
visiting a state (k, i) with i ≥ 1 first, and so Rm(0, j) = 0 for all j. Thus
Rm decomposes its indices into two communicating classes, C1 ≡ {0} and C2 ≡
{1, 2, . . .}. The eigenvector (1, 0, 0, . . .) of Rm with corresponding eigenvalue
0 has support on C1. All other z−1-invariant measures of Rm have the form
(w0,w1) where w1 is a z−1-invariant measure of the positive submatrix R̃m
corresponding to C2. These are the w and z for which equations (28) and (29)
are satisfied.
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4 The case where m is infinite

Before we start studying equation (28), we first give some preliminaries. In this
and the following sections, we shall frequently use the function

τ(z) ≡ −λ− µ1 − µ2(1 − z) + 2

√
λµ1

z
. (30)

It is easy to see that τ(z) is convex on (0,1) with limz→0 τ(z) = ∞, and τ(1) =
−(

√
λ −√(µ1))2. Thus there is a unique value η ∈ (0, 1) with τ(η) = 0, and,

for z ∈ (0, 1), τ(z) < 0 if and only if z > η.

We shall also frequently refer to the relationship between η, ρ1 and ρ2 in the
respective cases when µ1 ≤ µ2 and µ1 > µ2. These are summarised in the
following lemma.

Lemma 4.1 (a) When µ1 ≤ µ2, 0 < η ≤ ρ2 ≤ ρ1 < 1.

(b) When µ1 > µ2, 0 < ρ1 < η < ρ2 < 1.

Proof. Observe that τ(ρ2) ≤ 0, which immediately gives us that ρ2 ≥ η, and
τ(ρ1) = (1 − λ/µ1)(µ1 − µ2), which gives us that ρ1 ≥ η when µ1 ≤ µ2 and
ρ1 < η when µ1 > µ2. Together with the fact that ρ1 ≥ ρ2 if and only if
µ1 ≤ µ2, this proves the lemma. �

Now consider the system of equations (28) where z is fixed such that z ∈
(−1, 1), z �= 0. Writing out the system, we have

−(λ+ µ2(1 − z))z w0 + µ1 w1 = 0 (31)

λz wk−1 − (λ+ µ1 + µ2(1 − z))z wk + µ1wk+1 = 0, k ≥ 1. (32)

After substituting wk = uk in (32), we derive the characteristic equation,

µ1 u
2 − (λ+ µ1 + µ2(1 − z))z u+ λ z = 0. (33)

Since the discriminant of (33) is positive if and only if z < 0 or τ(z) < 0, the
form of the solution now depends on the location of z relative to 0 and η. We
proceed by giving the solution for wk in the cases −1 < z < 0 and η < z < 1.
This is

wk = c1 u
k
1 + c2 u

k
2 , (34)

where

u1,2 =
(λ+ µ1 + µ2(1 − z))z ±√(λ+ µ1 + µ2(1 − z))2 z2 − 4λµ1z

2µ1
. (35)
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The coefficients c1 and c2 can be derived from

c1 + c2 = 1, (36)

c1 u1 + c2 u2 =
1
µ1

(λ+ µ2(1 − z))z, (37)

where the first equation is due to the (arbitrary) normalizing assumption that
w0 = 1, and the second equation follows from boundary equation (31). Thus,
we find

c1,2 =
1
2
± (λ− µ1 + µ2(1 − z))z

2
√

(λ+ µ1 + µ2(1 − z))2 z2 − 4λµ1z
.

When z = η, the vector w is given by

wk = uk (1 + c k), (38)

with u =
√
ρ1η and c = 1 −√η/ρ1, while for 0 < z < η the real solution is

given by
wk = (cos(kφ) + c sin(kφ))|u|k, (39)

with |u| = ρ1z,

φ = arctan

(√
4λµ1z − (λ+ µ1 + µ2(1 − z))2

(λ− µ1 + µ2(1 − z))z

)

and
c =

λ+ µ2(1 − z) − λ cos(φ)
λ sin(φ)

.

As we pointed out after equation (28), in order to use Theorem 2.5 to establish
whether w is indeed a z−1-invariant measure of R, we need to verify whether
w ∈ �1.

Lemma 4.2 The vector w is an element of �1 if and only if

z1 < z < µ1/µ2,

where z1 =
(
2λ+ µ1 + µ2 −

√
(2λ+ µ1 + µ2)2 + 4µ1µ2

)
/(2µ2) < 0.

Proof. First note that, for 0 < z ≤ η, the form of (38) and (39) shows that it
is certain that w ∈ �1. Thus we need only consider the case when the roots u1

and u2 are real. This occurs when −1 < z < 0 or η < z < 1.

Unless z = 1 or z = ρ2 both c1 and c2 are nonzero, so for w to be in �1 it is
necessary and sufficient that both u1 and u2 are in (−1, 1). To study when this
is the case, let f(u) be the left-hand side of (33). Then the statement that the
roots u1 and u2 are in (−1, 1) is equivalent to saying that both f(−1) > 0 and
f(1) > 0.

When −1 < z < 0, f(1) is always positive and the condition that f(−1) is
positive reduces to µ1 +(2λ+µ1 +µ2(1− z))z > 0, which is the same as saying
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that z1 < z. When η < z < 1, f(−1) is always positive and the condition that
f(1) is positive is (1 − z)(µ1 − zµ2) > 0, which reduces to z < µ1/µ2.

The observations that η < µ1/µ2, established by verifying that τ(µ1/µ2) < 0,
and −1 < z1 < 0 complete the proof. �

Corollary 4.3 When µ1 ≤ µ2, the system of equations

wR∞ = zw (40)

has solutions w ∈ �1 for all z ∈ (z1, µ1/µ2).

When µ1 > µ2, the system (40) has solutions w ∈ �1 for all z ∈ (z1, 1).

Note that if µ1 < µ2 it is not certain whether (40) has solutions for z ∈
[µ1/µ2, 1), but any such solutions will not be in �1. In Remark 6.3 we show
that such solutions exist only for z = µ1/µ2.

In order for us to be able to apply Theorem 2.4, the vector w must be non-
negative. To investigate this, we start by generalising equations (31) and (32)
to

P0(x; z) = 1, (41)
µ1

z
P1(x; z) = x+ λ+ µ2(1 − z), (42)

µ1

z
Pn(x; z) = (x+ λ+ µ1 + µ2(1 − z))Pn−1(x; z) − λPn−2(x; z),

n ≥ 2. (43)

For any given real and positive value of z, equations (41), (42) and (43) define
a sequence of orthogonal polynomials Pn(x; z). When x = 0, they reduce to
equations (31) and (32), from which we deduce the fact that wn = Pn(0; z).
Moreover, we shall see that Pn(0; z) is positive for all n if and only if the zeros
of all the Pn(x; z) are less than zero. Thus we can study conditions for the
positivity of w via the properties of the polynomials Pn(x; z).

Lemma 4.4 For z > 0, the sequence {Pn(x; z)} satisfies the orthogonality re-
lationship ∫

supp(ψ)
Pn(x; z)Pm(x; z)ψ(dx) =

(
zλ

µ1

)n
δn,m,

where

supp(ψ) =
{

[σ(z), τ(z)] if z ≤ ρ1,
[σ(z), τ(z)] ∪ {χ(z)} if z > ρ1,

τ(z) is given in equation (30),

σ(z) = −λ− µ1 − µ2(1 − z) − 2

√
λµ1

z
(44)
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and
χ(z) = (

λ

z
− µ2)(1 − z). (45)

The measure ψ is given by

ψ(dx) =
2
π

√
1 − (x+ λ+ µ1 + µ2(1 − z))2z/4λµ1

1 − (x+ λ+ µ2(1 − z))z/λ
dx, σ ≤ x ≤ τ,

ψ({χ(z)}) = 1 − λ

zµ1
, if z > ρ1.

Proof. For fixed z > 0, let

Tn(x) =
(√

µ1

zλ

)n
Pn

(
2x

√
λµ1

z
− λ− µ1 − µ2(1 − z); z

)
. (46)

It follows that T0(x) = 1, T1(x) = 2x − b, and Tn(x) = 2xTn−1(x) − Tn−2(x),
where

b =
√
z µ1

λ
.

The Tns are perturbed Chebyshev polynomials, for which the orthogonalizing
relationship is given (see [2, p.204, 205]) by

2
π

∫ 1

−1
Tn(x)Tm(x)

√
1 − x2

1 + b2 − 2bx
dx

+ 1{|b|>1} Tn
(
b

2
+

1
2b

)
Tm

(
b

2
+

1
2b

)
(1 − 1

b2
) = δn,m ,

where 1{|b|>1} = 1 if |b| > 1 and 0 otherwise. Substituting (46) and rewriting
yields the result. �

As a consequence we have the following.

Lemma 4.5 For each value of z > 0, Pn(x; z) has n distinct real zeros xn,1 <
. . . < xn,n and these zeros interlace. That is, for all n ≥ 2 and i = 1, . . . , n− 1,

xn,i < xn−1,i < xn,i+1 .

Proof. The lemma follows from a well-known result for orthogonal polynomial
sequences, see Chihara [2, Theorem 5.3]. �

The support of the measure ψ is intimately related to the limiting behaviour of
the zeros of the Pn(x; z). Some results are stated in the lemma below.

Lemma 4.6 The sequences of smallest, second-largest and largest zeros of the
Pn(x; z) possess the following properties.

{xn,1}∞n=1 is a strictly decreasing sequence with limit σ(z);

{xn,n−1}∞n=1 is a strictly increasing sequence with limit τ(z);

{xn,n}∞n=1 is a strictly increasing sequence with limit χ1(z)
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where

χ1(z) = sup(supp(ψ)) =
{
τ(z) if z ≤ ρ1,
χ(z) if z > ρ1.

Proof. See [2, Section II.4].

Lemma 4.7 Let z > 0. Then Pn(x; z) is positive for all n if and only if
x ≥ χ1(z).

Proof. The leading coefficient of Pn(x; z) is positive for all n, which implies
that Pn(x; z) is positive for x > xn,n. Since xn,n is strictly increasing, we
know that Pn(x; z) is positive for all n if x ≥ χ1(z). Conversely, Pk(x; z) is
negative for x ∈ (xk−1,k, xk,k) and so the interleaving property given in Lemma
4.5 implies that, for every x < xn,n, Pk(x; z) is less than zero for at least one
k ∈ {1, . . . , n}. Thus, if x < χ1(z), Pk(x; z) is less than zero for at least one
k ∈ Z+. �

Next, let us return to the question of when the vector w which solves equations
(31) and (32) is positive.

Lemma 4.8 The vector w is positive if and only if χ1(z) ≤ 0.

Proof. This follows immediately from Lemma 4.7 and the fact that, for a given
value of z, wn = Pn(0; z). �

Lemma 4.8 implies that, to decide whether w is positive, it is important to
know for which values of z the corresponding χ1(z) is less than or equal to 0.
Since

χ1(z) = max(χ(z), τ(z)) =

{
τ(z) for z ≤ ρ1

χ(z) for z > ρ1,

the statement that χ1(z) ≤ 0 implies that, for z ≤ ρ1,

τ(z) ≤ 0 and so z ≥ η

and, for z > ρ1,
χ(z) ≤ 0 and so z ≥ ρ2.

When µ1 ≤ µ2, we know from Lemma 4.1 that

η ≤ ρ2 ≤ ρ1

and so w is positive for all z ∈ [η, 1). When µ1 > µ2, Lemma 4.1 tells us that

ρ1 < η < ρ2.

Thus w is positive only for z ∈ [ρ2, 1).

Summarizing this and Corollary 4.3, we have the following theorem.
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Theorem 4.9 When µ1 ≤ µ2, the system of equations (19) has positive solu-
tions w ∈ �1 for all z ∈ [η, µ1/µ2).

When µ1 > µ2, the system (19) has positive solutions w ∈ �1 for all z ∈ [ρ2, 1).

Theorem 4.9 states a very interesting result. Together with Theorem 2.4, it
indicates that it might be possible to have level-phase independent stationary
distributions of the tandem queue for a range of different z. The key point is
whether the vector w that satisfies equation (19) also satisfies equation (18).

In fact it has been well-known since the work of Burke [1] and Jackson [4]
that the decay rate of the stationary number of customers in the second queue
is ρ2 irrespective of whether µ1 ≤ µ2 or µ1 > µ2, and not any of the other
possible values of z. Why should this be the case? The answer is that π0, the
distribution of J at level 0 satisfying equation (18), is precisely the vector w
that satisfies equation (19) with z = ρ2. In other words, the decay rate is that
value z for which R∞ which has the proper z−1-invariant measure.

This leads us to ask the question that if we varied Q̃1, and thus equation (18),
can we get a vector w that satisfies equation (19) for a value of z �= ρ2. If we
can do this, we shall have changed the decay rate of the stationary distribution
of the number in the second queue by changing the transition structure only
when the second queue is empty. In Section 6, we shall see that it is indeed
possible to do this.

5 The case where m is finite

In the case where m is finite, because the tandem queue is assumed to be sta-
ble, we know by Corollary 2.6 that the non-zero eigenvalues of Rm are given
by the values of z within the unit circle for which det Q̂(m+1)(z) = 0. Thus
(z,w) is an eigenvalue/eigenvector pair of Rm if and only if zero is an eigen-
value of Q̂(m+1)(z) with corresponding eigenvector w. In the first part of this
section, we shall explore the relationship between the values of x for which
det
(
xIm+1 − Q̂(m+1)(z)

)
= 0 and the zeros of a sequence of orthogonal poly-

nomials closely related to the Pn(x; z).

Let the sequence of polynomials P̂n(x; z), be defined such that P̂0(x; z) = 1 and
for n ≥ 1

P̂n(x; z) = Pn(x; z) − λz

µ1
Pn−1(x; z) .
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The polynomials P̂n(x; z) satisfy the recursion,

P̂0(x; z) = 1, (47)
µ1

z
P̂1(x; z) = x+ µ2(1 − z), (48)

µ1

z
P̂2(x; z) = (x+ λ+ µ1 + µ2(1 − z))P̂1(x; z) − λ(1 − z), (49)

µ1

z
P̂n(x; z) = (x+ λ+ µ1 + µ2(1 − z))P̂n−1(x; z) − λP̂n−2(x; z),

n ≥ 3. (50)

Lemma 5.1 For each value of z > 0, P̂n(x; z) has n distinct real zeros x̂n,1 <
. . . < x̂n,n which interlace. Moreover, x̂n,n > xn,n and

xn,i < x̂n,i < xn,i+1 i = 1, . . . , n− 1. (51)

Proof. The statement of the lemma follows from Exercise I.5.4 of [2]. �

Lemma 5.2 (a) The eigenvalues of Q(n)(z) are the zeros of Pn(x; z).

(b) The eigenvalues of Q̂(n)(z) are the zeros of P̂n(x; z) and for each such
eigenvalue x, the corresponding left eigenvector is given by

(P̂0(x; z), P̂1(x; z), . . . , P̂n−1(x; z)).

Proof. We have already observed (after equation (43)) that 0 is an eigenvalue
of Q(n)(z) if and only if it is a zero of Pn(x; z). For the general case, let In
denote the identity matrix of dimension n. Write Q(n) for Q(n)(z) and similarly
for Q̂(n)(z). The characteristic polynomial of Q(1) is

det
(
x I1 −Q(1)

)
= x+ λ+ µ2(1 − z),

Because the Q(n) are tri-diagonal, we have

det
(
x I2 −Q(2)

)
= (x+ λ+ µ1 + µ2(1 − z)) det

(
x I1 −Q(1)

)
− µ1

z
λ,

and for n ≥ 3,

det
(
x In −Q(n)

)
= (x+ λ+ µ1 + µ2(1 − z)) det

(
x In−1 −Q(n−1)

)
− µ1

z
λ det

(
x In−2 −Q(n−2)

)
.

Hence, we see that (µ1/z)n Pn(x; z) is the characteristic polynomial of Q(n),
and thus, for each n ≥ 1, the eigenvalues of Q(n) are the zeros of Pn(x; z). This
proves (a).
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To show the first part of (b), observe that the characteristic polynomial of Q̂(n)

satisfies

det
(
x In − Q̂(n)

)
= (x+ µ1 + µ2(1 − z)) det

(
x In−1 −Q(n−1)

)
−µ1

z
λ det

(
x In−2 −Q(n−2)

)
= det

(
x In −Q(n)

)
− λdet

(
x In−1 −Q(n−1)

)

=
(µ1

z

)n(
Pn(x; z) − λz

µ1
Pn−1(x; z)

)
.

Hence, the eigenvalues of Q̂(n) are the zeros of P̂n(x; z).

To prove the second part of (b), it is readily checked that for each eigenvalue x̂
of Q̂(n), for which Pn(x̂; z) = λzPn−1(x̂; z)/µ1, we have

(P̂0(x̂; z), . . . , P̂n−1(x̂; z))(x̂ In − Q̂(n)) = 0.

�

Since R̃m is positive (see Remark 3.1), an eigenvector w = (w0,w1) of Rm
can be positive if and only if w1 is the Perron-Frobenius eigenvector of R̃m.
By Theorem 2.5 w is an eigenvector of Q̂(m+1)(z) with eigenvalue zero and,
because Q̂(m+1)(z) is an ML-matrix (see, Seneta [15]), w can be positive if and
only if zero is the largest eigenvalue of Q̂(m+1)(z). In Lemma 5.3 below, we
shall show that there is exactly one z ∈ (0, 1) such that the largest eigenvalue
of Q̂(m+1)(z) is zero.

Lemma 5.3 For m ≥ 1 there exists a unique number ẑm+1 in the interval (0, 1)
such that x̂m+1,m+1(ẑm+1) = 0.

Proof. Consider the nonnegative matrix

Ξm+1(z) ≡ z(λ+ µ1 + µ2)Im+1 + zQ̂(m+1)(z)
λ+ µ1 + µ2

(52)

and let ξm+1(z) denote its largest eigenvalue. For z ∈ (0, 1), Ξm+1(z) is a
substochastic matrix, which is stochastic when z = 1. Thus Lemma 1.3.4 of
Neuts [10] can be applied. Specifically, under the appropriate stability condition
(23) or (24), the equation z = ξm+1(z) has exactly one solution ẑm+1 ∈ (0, 1).
It is readily seen that z = ξm+1(z) if and only if the maximum eigenvalue of
Q̂(m+1)(z) is equal to zero and the result follows. �

We have now proved the following theorem.

Theorem 5.4 When m is finite, the maximal eigenvalue of Rm is given by
the unique ẑm+1 ∈ (0, 1) such that x̂m+1,m+1(ẑm+1) = 0. The corresponding
eigenvector is strictly positive. The eigenvectors corresponding to any other
nonzero eigenvalue of Rm cannot be nonnegative.
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In view of (12), it is obvious that Theorem 5.4 determines the geometric decay
rate of the level process we were looking for. The following corollary concerns
the limiting behaviour of this decay rate as m, the size of the first buffer, tends
to infinity.

Corollary 5.5 Let rm be the Perron-Frobenius eigenvalue of Rm for finite m.

If µ1 ≤ µ2, then r1, r2, . . . strictly increases to η.

On the other hand, if µ1 > µ2, then r1, r2, . . . strictly increases to ρ2.

Proof. It was stated in Lemma 4.6 that {xn,n(z)} strictly increases to χ1(z).
To prove that {x̂n,n(z)} also increases to χ1(z), the interlacing property ensures
that we need only to show P̂n(χ1(z); z) > 0 for n ≥ 1.

For the case z ≥ ρ1 we have χ1(z) = χ(z), and from (47)–(50) it is easily
checked by induction that P̂n(χ(z); z) = (1 − z)(λ/µ1)n > 0.

For the case z < ρ1, where χ1(z) = τ(z), first note that

Pn(τ(z); z) −√
zρ1Pn−1(τ(z); z) > 0.

This can be shown easily by induction, using (41)–(43). Since we can write

P̂n(τ(z); z) = Pn(τ(z); z) −√
zρ1Pn−1(τ(z); z) + (

√
zρ1 − zρ1)Pn−1(τ(z); z),

0 < zρ1 < 1 and Pn−1(τ(z); z) > 0 (see Lemma 4.7), we conclude that
P̂n(τ(z); z) > 0.

Now, by Lemmas 5.3 and 4.5, the sequence rm = {ẑm+1} increases strictly to
a z∗ ∈ (0, 1) which is the unique zero of χ1(z) in the interval (0,1). Assume
that µ1 ≤ µ2. By Lemma 4.1, this can occur only when η ≤ ρ1. In this case
χ1(z) = τ(z), which has a zero at z = η. Thus rm = {ẑm+1} increases strictly
to η. On the other hand, when µ1 > µ2, Lemma 4.1 implies that z > ρ1 and
χ1(z) = χ(z), which has its zero at z = ρ2. The sequence rm = {ẑm+1} then
increases to ρ2. �

The above result shows that we must clearly distinguish between two possi-
ble regimes. These correspond with the different cases identified in Lemma
4.1. In the first regime, when µ1 ≤ µ2, the first queue is the bottleneck and
limm→∞ sp(Rm) = η. In the second regime, when µ1 > µ2, the second queue is
the bottleneck and limm→∞ sp(Rm) = ρ2. Note also that in this second regime,
Lemma 4.6 tells us that the limit of the sequence of the maximal eigenvalues of
Rm is different from the limit of the sequence of second-largest eigenvalues and
so the limiting spectrum of Rm has an isolated point.

We observed in Section 4 that the decay rate of the tandem Jackson network
with infinite waiting room at the first queue is always ρ2 irrespective of whether
µ1 ≤ µ2 or µ1 > µ2. We thus see that, when µ1 ≥ µ2 the limiting decay rate of
the finite truncations is indeed that of the infinite system. However if µ1 < µ2,
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the limiting decay rate of the finite truncations is different from that of the
infinite system. We have thus provided a counter-example to the idea that the
decay rate of a QBD process with infinitely many phases can be derived by
calculating the decay rates of finite truncations and then allowing the point at
which truncation occurs to grow to infinity.

6 Varying the decay rate

An interesting question arises from the observations at the end of Section 4. By
appropriately changing the transition intensities at level zero, in other words
changing the entries in Q̃1, can we ensure that the stationary distribution decays
at a rate that is given by any of the feasible values of z? In changing Q̃1 we
have a great deal of freedom, so we might expect that the answer is yes. In
fact it is. Below, we present two examples in which Q̃1 remains a tri-diagonal
matrix.

Example 1

Suppose µ1 > µ2. We wish to have a decay rate z, satisfying the conditions in
Theorem 4.9, which in this case means that z ∈ [ρ2, 1). By Lemmas 4.2 and
4.8 the vector w given in (34) will be positive and in �1. We now replace each
λ in Q̃1 by a phase dependent λ̃i. Specifically, we define λ̃i recursively by

λ̃0 = µ2 z,

λ̃i = λ̃i−1
wi−1

wi
+ µ2z − µ1, i = 1, 2, . . .

(53)

The following proposition shows that this defines proper transition intensities.

Proposition 6.1 The sequence {λ̃i}∞i=0 is strictly positive.

Proof. Let φ(v) be the generating function of the sequence w1, w2, . . .. From
(32) we find after some algebra that

φ(v) =
µ1(1 − vz)

λzv2 − z(λ+ µ1 + µ2(1 − z))v + µ1
.

Substituting v = 1 gives

φ(1) =
∞∑
i=0

wi =
µ1

µ1 − µ2z
. (54)

Now, consider the sequence y0, y1, . . ., with yi = λ̃iwi. This sequence satisfies
the recursion

yi = yi−1 + (µ2z − µ1)wi, i = 1, 2, . . . ,
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with y0 = µ2z > 0. If µ2z ≥ µ1, then all yi (and hence λ̃i) are obviously positive.
On the other hand, if µ2z < µ1, then y1, y2, . . . is monotone decreasing, with

lim
i→∞

yi = µ2z + (µ2z − µ1)
∞∑
i=1

wi = 0,

which shows that all λ̃i are positive in this case as well. �

The recursion (53) ensures that w is a (µ2z)−1-invariant measure of R∞Q2.
Moreover, w satisfies wQ̃1 = µ2zw. Hence w(Q̃1 +R∞Q2) = 0, so that by (5)
and Theorem 2.2 it follows that the stationary distribution π = (π0,π1, . . .) of
(Yt, Jt) is given by

πn = cwRn∞ = zn cw, n ≥ 0,

for some normalizing constant c. Thus, it is clear that z indeed is the decay
rate in this model.

This example has demonstrated the counter-intuitive result that, by changing
the arrival intensity to the first queue when the second is empty, such that
it becomes dependent of the number of customers in the first queue, we can
produce any decay rate in the range [ρ2, 1).

Example 2

Suppose µ1 < µ2. We wish to have a decay rate z, with z ∈ [η, ρ2]. Again,
the vector w given in (34) is positive and in �1. This time we leave the arrival
rate unchanged, but introduce an extra transition rate νi from state (0, i) to
(0, i−1). This corresponds to removing customers from the first queue, without
introducing them to the second queue. The values νi are recursively defined as:

ν1 =
(λ− µ2z)w0

w1
,

νi+1 =
(νi + λ+ µ1 − µ2z)wi − λwi−1

wi+1
.

Proposition 6.2 The sequence {νi}∞i=0 positive.

Proof. The proof is similar to the proof of Proposition 6.1. First, we claim
that

(λ+ µ1 − µ2z)wi < λwi−1, i = 1, 2, . . . (55)

To see this, consider the sequence of polynomials {Θn}, defined by Θn(x) =
(λ+µ1−µ2z)Pn(x)−λPn−1(x), n ≥ 1, with the polynomials {Pn} given in (41)–
(43). Imitating the proof of Lemma 4.5 for Θn instead of P̂n, we find that the
zeros of {Θn} interlace, that the largest zero of Θn is larger than the largest zero
of Pn and that the second largest zero of Θn is smaller than the largest zero of
Pn. Now, for z ∈ [η, ρ2], the largest zero of Pn is less than or equal to 0. Hence,

22



Θn can have at most one zero greater than 0. It is easily verified that the largest
zero of Θ1 is given by (λ−µ2z)(µ2z

2 − (λ+µ1 +µ2)z +µ1)/(z(λ− µ2z+µ1)),
which is strictly positive for all 0 < z ≤ ρ2. Hence, all Θn have exactly one
strictly positive zero. Thus, because the leading coefficient of Θn is positive,
Θn(0) must be strictly negative, which is equivalent to (55).

Second, let yi = λiwi, i = 1, 2, . . .. We have for all i = 2, 3, . . .

yi = yi−1 + (λ+ µ1 − µ2z)wi − λwi−1,

where y1 = λ − µ2z > 0. Thus, using (55), y1, y2, . . . is a strictly decreasing
sequence with limit

λ− µ2z + (λ+ µ1 − µ2z)
∞∑
i=1

wi − λ

∞∑
i=0

wi = 0,

where we have again used (54). This shows that all νi are positive. �

As above, the recursion ensures that w(Q̃1+R∞Q2) = 0, so that the stationary
distribution of (Yt, Jt) is given by

πn = cwRn∞ = c znw, n ≥ 0,

for some normalizing constant c, from which it is clear that z is the decay rate
in this model.

Thus, by allowing customers at the first queue to be removed at specified rates
when the second queue is empty, we have been able to produce any decay rate
in [η, ρ2]. Note that it is not possible using this scheme to produce a decay
rate greater than ρ2. However, we can do so using a scheme such as that in
Example 1, which is also applicable here, since the proof of Proposition 6.1 did
not use the fact that µ1 > µ2.

In the examples given above, Q̃1 was constructed such that the corresponding
π0 is exactly equal to some z−1-invariant measure of R∞. As a consequence, the
stationary distribution of (Yt, Jt) has a product form. However, it is also pos-
sible to construct Q̃1, so that π0 is a finite linear combination of z−1-invariant
measures of R∞. In that case the stationary distribution does not have a a
product form. The decay rate is then given by the largest value of z with
corresponding z−1-invariant measure in the linear combination.

Remark 6.3 When µ1 ≤ µ2, the minimal attainable decay rate cannot be less
than η and when µ1 > µ2 the minimal attainable decay rate cannot be less than
ρ2. This follows because η and ρ2 respectively are the smallest values of z for
which a z−1-invariant measure exists.
The maximal attainable decay rate is produced in a different way. Clearly, when
µ1 > µ2, any decay rate in [ρ2, 1) can be produced. However, when µ1 < µ2, it is
not immediately clear whether the matrix R∞ has a value z ∈ [µ1/µ2, 1) with a
corresponding z−1-invariant measure w that is not in �1. If such an measure did
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exist, the behaviour at level zero would be such that the first queue is unstable,
while the second remains stable and has decay rate z. A physical argument
tells us that this is possible only when z = µ1/µ2: if the first queue is unstable,
then the second queue behaves like a standard M/M/1 queueing system with
arrival rate µ1 and service rate µ2. This implies that its decay rate could never
be larger than µ1/µ2.

7 Hitting probabilities on high levels: general QBD

processes

In various applications one is interested in hitting or exit probabilities of the
level process. In this and the following section, we shall consider the decay
rate of these probabilities, first in the context of a general QBD with possibly
infinitely many phases and then in the context of the M/M/1 tandem.

For a < b, define T ba to be the first time that either level a or level b is hit. Also,
let Pki denote the probability measure under which the QBD process starts in
(k, i). For k ≥ 0, we are interested in the decay rate as K → ∞ of the first exit
probabilities

PKk (i, j) := Pki(JTK
0

= j, YTK
0

= K),

which we collect into a matrix PKk . Define the matrix Hk to be equal to P k+1
k .

Thus, H0 is the 0 matrix and it is not difficult to see that, for k ≥ 1, H1,H2, . . .
satisfy the recursion

Q0 +Q1Hk +Q2Hk−1Hk = 0,

and the matrix PKk is given by

PKk = HkHk+1 · · · HK−1. (56)

The following result is essentially a restatement of Lemma 8.2.1 of Latouche
and Ramaswami [6].

Lemma 7.1 The sequence of matrices, H1,H2, . . . increases elementwise to the
matrix H which is the minimal nonnegative solution to the matrix equation

Q0 +Q1H +Q2H
2 = 0. (57)

For the case when m is finite, it was shown in [9, Lemma 3.1] that, when
Condition 2.1 holds, either H is primitive or, by a suitable permutation of the
states, it can be written in the form

H =
[
L1 0
L•1 L•

]
(58)

24



where L1 is primitive and L• is lower triangular with its diagonal entries equal
to zero. A similar result can be established even when m is infinite1. Thus,
when m ≤ ∞, H has the decomposition (58) where L• is lower triangular and
L1 is irreducible and aperiodic. It follows from (14) that the convergence norm
c of L1 is well-defined and given by

c = lim
n→∞ (Ln1 (i, j))1/n .

Let Σ∗ be the set of indices corresponding to L1 and partition the matrices Hk,
conformally with our partition of the matrix H, so that

Hk =

[
L

(k)
1 0

L
(k)
•1 L

(k)
•

]
. (59)

The decay behaviour of the hitting probabilities is described in Theorem 7.3
below. However, first we need a lemma.

Lemma 7.2 For any phase i, there exist numbers k∗ and N∗ such that, for
k > k∗ and N > max(k,N∗), there is a ν ∈ Σ∗ with

PNk (i, ν) > 0. (60)

Proof. First note that, for any given N and k, say N0 and k0, there may not
be a ν0 ∈ Σ∗ such that PN0

k0
(i, ν0) > 0. Taking into account the irreducibility

of the doubly-infinite process with generator (2), this could be because every
path of positive probability from state (k0, i) to states of the form (N0, ν0) with
ν0 ∈ Σ∗ either

1. passes through a state of the form (N0,m) with m �∈ Σ∗. By the decom-
position (59), this can occur only if i �∈ Σ∗, or

2. goes through level zero, or

3. both.

Consider a path from (k, i) to a state (N0, ν0) with N0 > k and ν0 ∈ Σ∗ of
the form described in 1 above. Let N∗ be the highest level it reaches. Any
path from (N0, ν0) to level N∗ + 1 must hit level N∗ + 1 in a state (N∗ + 1, ν)
with ν ∈ Σ∗ and, by irreducibility of the process with generator (2), there must
be such a path. Concatenating these two paths, we have constructed a path
of positive probability from (k, i) to (N∗ + 1, ν) which first hits level N∗ + 1
in phase ν ∈ Σ∗. If this path does not pass through level zero, then we have
constructed a path as desired. If it does go through level zero, we modify it as
described below.

1At the time of writing, this result, due to Latouche and Taylor, is unpublished. An
explanation can be obtained from Peter Taylor at p.taylor@ms.unimelb.edu.au
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If, after performing the modification described above, all paths from state (k0, i)
to states of the form (N0, ν0) with ν0 ∈ Σ∗ pass through level zero, choose one
such path, let −k̃ be the lowest level reached by the path, and put k∗ = k0 + k̃.
Then if k > k∗, there is a path of positive probability from (k, i) to a state of
the form (N0 + k− k0, ν0) with ν0 ∈ Σ∗ which does not pass through level zero.
This shows that, for all phases i, we can choose k∗ such that when k > k∗ there
exists a path of positive probability which does not pass through level zero from
state (k, i) to any level N > max(k,N0). The lemma is thus proved. �

Theorem 7.3 Consider an irreducible QBD process with a finite or infinite
phase space, satisfying Condition 2.1 and (11). Then, for i ∈ {0, 1, . . .} and
j ∈ Σ∗ there exists k∗ such that, for k > k∗

lim
K→∞

logPKk (i, j)
K

= log(c), (61)

where c is the convergence norm of L1. For i, j �∈ Σ∗, there exists K∗ such that,
for K > K∗,

PKk (i, j) = 0. (62)

For i ∈ Σ∗, j �∈ Σ∗ and all k < K,

PKk (i, j) = 0. (63)

Proof. For the case where i, j ∈ Σ∗, we have

log(PKk (i, j))
K

=
log(L(k)

1 · · ·L(K−1)
1 (i, j))

K

≤ log((L1)K−k(i, j))
K

=
K − k

K
log((L1)K−k(i, j)1/(K−k))

so that, letting K → ∞, we find by equation (14) that

lim sup
K→∞

log(PKk (i, j))
K

≤ log(c). (64)

To show the opposite, choose k∗, N∗ and ν so that (60) is satisfied. Then, for
k > k∗, N > max(k,N∗) and K > N we have

PKk (i, j) =
∑
l

PNk (i, l)L(N)
1 · · ·L(K−1)

1 (l, j)

≥ PNk (i, ν)(L(N)
1 )K−N (ν, j). (65)

Now we have

log(PKk (i, j))
K

≥ log(PNk (i, ν))
K

+
log((L(N)

1 )K−N(ν, j))
K

=
log(PNk (i, ν))

K
+
K −N

K
log((L(N)

1 )K−N(ν, j)1/(K−N)),
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so that letting K → ∞, we find that

lim inf
K→∞

log(PKk (i, j))
K

≥ log(cN ).

where cN is the convergence norm of L(N)
1 . Since this holds for all N and, by

Lemma 2.3, cN → c as N → ∞, we see that

lim inf
K→∞

log(PKk (i, j))
K

≥ log(c) (66)

which, together with (64), gives the result in this case.

When i �∈ Σ∗ and j ∈ Σ∗, we can still use Lemma 7.2 to choose k∗ and N∗ so
that, when N > N∗ and k > k∗, there exists a ν ∈ Σ∗ such that (60) is satisfied,
and argue as above from (65) that (66) is satisfied.

To get the analogue of (64), observe that, by (56) and (59), we must be able to
write

PKk (i, j) =
K−1∑
r=k

L
(k)
• . . . L

(r−1)
• L

(r)
•1 L

(r+1)
1 . . . L

(K−1)
1 (i, j)

≤
K−1∑
r=k

Lr−k• L•1LK−1−r
1 (i, j).

Now, because L• is lower triangular, there is a positive integer s∗ such that
Ls•(i, ν) = 0 for all s > s∗ and ν �∈ Σ∗. Thus, for K > k + s∗ + 1,

PKk (i, j) ≤
s∗∑
s=0

Ls•L•1LK−1−k−s
1 (i, j)

= (DLK−1−k−s∗
1 )(i, j)

where

D =
s∗∑
s=0

Ls•L•1Ls
∗−s

1 .

Consider the Markov chain with transition matrix H. Let τ(j) be the first
time greater than or equal to s∗ + 1 that the chain visits state j ∈ Σ∗ and let
f (n)(i, j) be the probability that τ(j) = n, conditional on the chain starting in
state i �∈ Σ∗. Then it follows easily that

(DLK−1−k−s∗
1 )(i, j) =

K−k∑
n=s∗+1

f (n)(i, j)LK−k−n
1 (j, j)

and that
DL(i, j; z) =

F (i, j; z)L(j, j; z)
zs∗+1

, (67)
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where

DL(i, j; z) =
∞∑
n=0

(DLn1 )(i, j)zn,

F (i, j; z) =
∞∑

n=s∗+1

f (n)(i, j)zn

and

L(j, j; z) =
∞∑
n=0

Ln1 (j, j)zn.

It is clear that f (n)(i, j) ≤ (DLn1 )(i, j) and so the convergence radius of the
power series F (i, j; z) is greater than or equal to the convergence radius of the
power series DL(i, j; z). Therefore, by (67), the convergence radii of the series
DL(i, j; z) and L(j, j; z) are the same. Thus we have

lim
k→∞

log((DLK−1−k−s∗
1 )(i, j))
K

= log(c)

and so

lim sup
K→∞

log(PKk (i, j))
K

≤ log(c).

Thus, the result is proved for i �∈ Σ∗ and j ∈ Σ∗.

When i, j �∈ Σ∗, using the same definition of s∗ as above, it follows that, for all
K > k + s∗,

PKk (i, j) = 0, (68)

while we immediately have PKk (i, j) = 0 when i ∈ Σ∗ and j �∈ Σ∗. This proves
the second part of the theorem. �.

To finish off this section, we present some results for the matrix Hm, that are
analogous to Theorem 2.5 and Corollary 2.6 for the matrix Rm. This will allow
us to conclude that the eigenvalues of Rm and Hm coincide when m < ∞, see
Corollary 7.6.

As for equation (21) it is easy to see that, when the column vector v and scalar
z satisfy Hmv = zv, then

(Q0 + z Q1 + z2Q2)v = 0. (69)

Again, under certain conditions on v and z, the converse is true, irrespective
of whether m < ∞ or m = ∞. This is shown in the following theorem, which
is basically Theorem 5.3 of Ramaswami and Taylor [13].

Theorem 7.4 Consider a continuous time QBD process with generator of the
form (1). Then, if the complex variable z and the vector v = {vk} are such that
|z| < 1 and

∑
k |vk|qk <∞, then (69) implies that

Hmv = zv .
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Following essentially the same proof as for Corollary 2.6 we have a characteri-
zation for the case m <∞.

Corollary 7.5 For an irreducible QBD process with a finite phase space, sat-
isfying (11), the eigenvalues of Hm are all the zeros of the polynomial

det(Q0 + z Q1 + z2Q2) (70)

that lie strictly within the unit circle.

The following result is now immediate from Corollary 2.6 and Corollary 7.5.

Corollary 7.6 For an irreducible QBD process with a finite phase space, sat-
isfying (11), the eigenvalues of Hm and Rm coincide.

In particular, when m < ∞ the hitting probabilities PKk (i, j) have the same
geometric rate of decay as the stationary probabilities πKi in equation (12).

8 Hitting probabilities on high levels: the tandem
network

Assume that the tandem queue starts in state (1, i) with i ≥ 1, that is with
one customer in the second queue and i ≥ 1 customers in the first queue. It
is possible that the process can first hit level two before level zero with any
number j ≥ i− 1, customers in the first queue, that is in any state (2, j) with
j ≥ i− 1. If the queue starts in state (1, 0), then it can first hit level two before
level zero with any number of customers in the first queue. A consequence of
this is that the matrix Hm for this QBD process is irreducible. It then follows
from Theorem 7.3 that

lim
K→∞

logPK1 (i, j)
K

= log(c), (71)

where c is the convergence norm of Hm. Thus, to calculate the decay rate of
the hitting probabilities, we need to calculate the convergence norm of Hm.

To do this for the case m = ∞, we could follow a line of reasoning similar to
that we used in Section 4 based upon Theorem 7.4 instead of Theorem 2.5.
Thus, we would calculate conditions for a solution v to Q(z)v = 0 to be both
positive and in �1. However, unlike the z−1-invariant measure of R∞, which
affects the decay rate of the stationary distribution, the z−1-invariant vector of
H∞ has no effect on the decay rate of the hitting probabilities. We thus choose
to calculate the decay rate of the hitting probabilities in a more efficient way.

By Corollary 7.6, for finite m, the eigenvalues of Rm and Hm coincide. Thus
Theorem 5.4 and Corollary 5.5 apply to Hm as well as to Rm. In particular,
we have the following theorem.
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Theorem 8.1 When m is finite, the following results hold.

1. The maximal eigenvalue hm of Hm is given by the unique ẑm+1 ∈ (0, 1)
such that x̂m+1,m+1(ẑm+1) = 0.

2. If µ1 ≤ µ2, then h1, h2, . . . strictly increases to η. On the other hand, if
µ1 > µ2, then h1, h2, . . . strictly increases to ρ2.

By Lemma 2.3, it follows that the convergence norm of H∞ is then equal to
η if µ1 ≤ µ2 and ρ2 if µ1 > µ2. Together with Theorem 7.3, this gives us the
following theorem.

Theorem 8.2 1. When m is finite

lim
K→∞

logPK1 (i, j)
K

= log(hm). (72)

2. When m is infinite

(a) When µ1 ≤ µ2

lim
K→∞

logPK1 (i, j)
K

= log(η). (73)

(b) When µ1 > µ2

lim
K→∞

logPK1 (i, j)
K

= log(ρ2). (74)

The decay rate of the hitting probabilities in the case of infinite m is thus the
same as the decay rate of the stationary number in the second queue when
µ1 ≥ µ2, but it is not the same when µ1 < µ2. This is an interesting property
of the tandem Jackson network, which we believe was not known previously.

There are two further interesting questions about the decay rate of the hitting
probabilities that we have not addressed above. The first question involves the
decay rate of

∑
j P

K
k (i, j) as K → ∞ in the case m = ∞. It follows immediately

from Theorem 8.2 that this decay rate is larger than η and ρ2 when µ1 ≤ µ2 and
µ1 > µ2 respectively. We conjecture that it is equal to these values, although
we currently have no proof of this.

The second question involves the decay rate of the hitting probabilities on level
K if the process starts in level one according to some distribution x1. Of
particular interest is the situation when x1 is the stationary distribution π1 at
level one. These hitting probabilities are given by the components of

x1P
K
1 . (75)

When m < ∞, the decay rates of these probabilities are easily seen to be the
same as the decay rates of PK1 (i, j), given by Theorem 8.2. However, when
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m = ∞, this need not necessarily hold. Indeed, our experience with the matrix
R∞ would lead us to believe that we could achieve any decay rate in [η, µ1/µ2)
if µ1 ≤ µ2 and any decay rate in [ρ2, 1) if µ1 > µ2. However, since we have no
theorem analogous to Theorem 7.4 that can inform us about the z−1-invariant
measures, rather than the z−1-invariant vectors, of H∞ we do not currently see
how this problem can be approached.
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