# Faculty of Mathematical Sciences

# University of Twente

University for Technical and Social Sciences

P.O. Box 217 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114

Email: memo@math.utwente.nl

Memorandum No. 1471

On stability robustness with respect to LTV uncertainties

G. Meinsma, T. Iwasaki $^1$  and M. Fu $^2$ 

November 1998

ISSN 0169-2690

 $<sup>^1\</sup>mathrm{Dept.}$ of Control Systems Engineering, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro, Tokyo 152, Japan

Japan <sup>2</sup>Dept. of Electrical and Computer Engineering, University of Newcastle, Callaghan, NSW 2308, Australia

# On stability robustness with respect to LTV uncertainties

# Gjerrit Meinsma

Department of Systems, Signals and Control Faculty of Mathematical Sciences University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands g.meinsma@math.utwente.nl

# Tetsuya Iwasaki

Department of Control Systems Engineering Tokyo Institute of Technology 2-12-1 Oookayama, Meguro, Tokyo 152 Japan iwasaki@ctrl.titech.ac.jp

### Minyue Fu

Department of Electrical and Computer Engineering
University of Newcastle
Callaghan, NSW 2308
Australia.
eemf@ee.newcastle.edu.au

#### **Abstract**

It is shown that the well-known (D,G)-scaling upper bound of the structured singular value is a nonconservative test for robust stability with respect to certain linear time-varying uncertainties.

#### Keywords

Mixed structured singular values, Duality, Linear matrix inequalities, Time-varying systems, Robustness, IQC.

**1991 Mathematics Subject Classification:** 93B36, 93C50, 93D09, 93D25.

# 1 Introduction



Figure 1: The closed loop.

Is the above closed loop stable for all  $\Delta$ 's in a given set of stable operators B? That, roughly, is the fundamental robust stability problem.

There is an intriguing result by Megretski and Treil [4] and Shamma [8] which says, loosely speaking, that if M is a stable LTI operator and the set of  $\Delta$ 's is the set of contractive linear time-varying operators of some fixed block diagonal structure

$$\Delta = \operatorname{diag}(\Delta_1, \Delta_2, \dots, \Delta_{m_F}), \tag{1}$$

that then the closed loop is robustly stable—that is, stable for all such  $\Delta$ 's—if and only if the  $H_{\infty}$ -norm of  $DMD^{-1}$  is less than one for some constant diagonal matrix D that commutes with the  $\Delta$ 's. The problem can be decided in polynomial time, and it is a problem that has since long been associated with an *upper bound* of the structured singular value. The intriguing part is that the result holds for any number of LTV blocks  $\Delta_i$ , which is in stark contrast with the case that the  $\Delta_i$ 's are assumed time-invariant.

Paganini [6] extended this result by allowing for the more general block diagonal structure

$$\Delta = \operatorname{diag}\left(\delta_1 I_{n_1}, \dots, \delta_{m_c} I_{n_{m_c}}, \Delta_1, \dots, \Delta_{m_F}\right). \tag{2}$$

A precise definition is given in Section 2. Paganini's result is an exact generalization and leads, again, to a convex optimization problem over the constant matrices D that commute with  $\Delta$ .

In view of the connection of these results with the upper bounds of the structured singular it is natural to ask if the well known (D, G)-scaling upper bound of the *mixed* structured singular value also has a similar interpretation. In this note we show that that is indeed the case.

The (D,G)-scaling upper bound of the structured singular value was originally defined as a means to provide an easy-to-verify condition that guarantees robust stability with respect to the contractive linear *time-invariant* operators  $\Delta$  of the form

$$\Delta = \operatorname{diag}\left(\tilde{\delta}_{1} I_{\tilde{n}_{1}}, \dots, \tilde{\delta}_{m_{r}} I_{\tilde{n}_{m_{r}}}, \delta_{1} I_{n_{1}}, \dots, \delta_{m_{c}} I_{n_{m_{c}}}, \Delta_{1}, \dots, \Delta_{m_{F}}\right), \tag{3}$$

with  $\tilde{\delta}_i$  denoting real-valued constants [1]. It is known that for general LTI plants M this sufficient condition is *necessary* as well if and only if,

$$2(m_r + m_c) + m_F < 3$$
.

(See [5].) In this note we show that the (D, G)-scaling condition is in fact both necessary and sufficient for robust stability with respect to the contractive LTV operators  $\Delta$  of the form (3) with now  $\tilde{\delta}_i$  denoting linear time-varying *self-adjoint* operators on  $\ell_2$ . A precise definition follows. Paganini [7] has gone through considerable trouble to show that for his structure (2) one may assume causality of  $\Delta$  without changing the condition. In the extended structure (3) with self-adjoint  $\tilde{\delta}_i$  this is no longer possible.

# 2 Notation and preliminaries

 $\ell_2 := \{x : \mathbb{Z} \mapsto \mathbb{R} : \sum_{k \in \mathbb{Z}} x^2(k) < \infty \}$ . The norm  $\|v\|_2$  of  $v \in \ell_2$  is the usual norm on  $\ell_2$  and for vector-valued signals  $v \in \ell_2^n$  the norm  $\|v\|_2$  is defined as  $(\|v_1\|_2^2 + \cdots + \|v_n\|_2^2)^{1/2}$ . The induced norm is denoted by  $\|\cdot\|$ . So, for  $F : \ell_2^n \mapsto \ell_2^n$  it is defined as  $\|F\| := \sup_{u \in \ell_2^n} \|Fu\|_2 / \|u\|_2$ . For matrices  $F \in \mathbb{C}^{n \times m}$  the induced norm will be the spectral norm, and for vectors this reduces to the Euclidean norm.

 $F^{\rm H}$  is the complex conjugate transpose of F, and  ${\rm He}\,F$  is the Hermitian part F defined as  ${\rm He}\,F = \frac{1}{2}(F + F^{\rm H})$ .

An operator  $\Delta: \ell_2^n \mapsto \ell_2^n$  is said to be *contractive* if  $\|\Delta v\|_2 \leq \|v\|_2$  for every  $v \in \ell_2^n$ . Lower case  $\delta$ 's always denote operators from  $\ell_2^1$  to  $\ell_2^1$ . Then for  $u, y \in \ell_2^n$  the expression  $y = \delta I_n u$  is defined to mean that the entries  $y_k$  of y satisfy  $y_k = \delta u_k$ . An operator  $\delta: \ell_2 \mapsto \ell_2$  is *self-adjoint* if  $\langle u, \delta v \rangle = \langle \delta u, v \rangle$  for all  $u, v \in \ell_2$ .

The M and  $\Delta$  throughout denote bounded operators from  $\ell_2^n$  to  $\ell_2^n$  and M is assumed linear time invariant (LTI). Bounded operators on  $\ell_2^n$  are also called *stable*.

Hats will denote Z-transforms, so if  $y \in \ell_2$  then  $\hat{\hat{y}}(z)$  is defined as  $\hat{y}(z) = \sum_{k \in \mathbb{Z}} y(k) z^{-k}$ . To avoid clutter we shall use for functions  $\hat{f}$  of frequency the notation

$$\hat{f}_{\omega} := \hat{f}(e^{i\omega}).$$

#### 2.1 Stability

The closed loop depicted in Fig. 1 is considered *internally stable* if the map from  $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$  to  $\begin{bmatrix} u \\ y \end{bmatrix}$  is bounded as a map from  $l_2^{2n}$  to  $l_2^{2n}$ . Because of stability of M and  $\Delta$  the closed loop is internally stable iff  $(I - \Delta M)^{-1}$  is bounded. The closed loop will be called *uniformly robustly stable* with respect to some set B of stable LTV operators if there is an  $\gamma > 0$  such that

$$\left\| \begin{bmatrix} u \\ y \end{bmatrix} \right\|_{2} \le \gamma \left\| \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \right\|_{2} \quad \forall \Delta \in B, \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \in \ell_{2}^{2n}. \tag{4}$$

We only consider  $\Delta$ 's with norm at most one and stable M. In that case (4) holds if and only if there is an  $\epsilon > 0$  such that

$$||(I - \Delta M)u||_2 \ge \epsilon ||u||_2 \quad \forall \Delta \in B, \ u \in \ell_2^n.$$

## **2.2** The $\Delta$ 's and the (D, G)-scaling matrices

Throughout we assume that  $\Delta: \ell_2^n \mapsto \ell_2^n$  and that  $\Delta$  is of the form

$$\Delta = \operatorname{diag}\left(\tilde{\delta}_{1} I_{\tilde{n}_{1}}, \dots, \tilde{\delta}_{m_{r}} I_{\tilde{n}_{m_{r}}}, \delta_{1} I_{n_{1}}, \dots, \delta_{m_{c}} I_{n_{m_{c}}}, \Delta_{1}, \dots, \Delta_{m_{F}}\right)$$
(5)

with

$$\begin{cases} \tilde{\delta}_{i} : \ell_{2} \mapsto \ell_{2} & \text{LTV, self-adjoint and } \|\tilde{\delta}_{i}\| \leq 1, \\ \delta_{i} : \ell_{2} \mapsto \ell_{2} & \text{LTV and } \|\delta_{i}\| \leq 1, \\ \Delta_{i} : \ell_{2}^{q_{i}} \mapsto \ell_{2}^{q_{i}} & \text{LTV and } \|\Delta_{i}\| \leq 1. \end{cases}$$

$$(6)$$

The dimensions and numbers  $\tilde{n}_i$ ,  $n_i$ ,  $q_i$ ,  $m_r$ ,  $m_c$ ,  $m_F$  of the various identity matrices and  $\Delta_i$  blocks are fixed, but otherwise  $\Delta$  may vary over all possible  $n \times n$  LTV operators of the form (5), (6). Given that, the sets D and G-scales are defined accordingly as

$$D = \{D = \operatorname{diag}(\tilde{D}_{1}, \dots, \tilde{D}_{m_{r}}, D_{1}, \dots, D_{m_{c}}, d_{1}I_{q_{1}}, \dots, d_{m_{F}}I_{q_{m_{F}}}) : 0 < D = D^{T} \in \mathbb{R}^{n \times n}\},$$

$$G = \{G = \operatorname{diag}(\tilde{G}_{1}, \dots, \tilde{G}_{m_{r}}, 0, \dots, 0, 0, \dots, 0) : G = G^{H} \in i\mathbb{R}^{n \times n}\}.$$

Note that the D-scales are assumed real-valued and that the G-scales are taken to be purely imaginary. As it turns out there is no need to consider a wider class of D and G-scales.

# 3 The discrete-time result

**Theorem 3.1.** The discrete-time closed-loop in Fig. 1 with stable LTI plant with transfer matrix M is uniformly robustly stable with respect to  $\Delta$ 's of the form (5, 6) if and only if there is a constant matrix  $D \in D$  and a constant matrix  $G \in G$  such that

$$M_{\omega}^{\mathrm{H}}DM_{\omega} + j(GM_{\omega} - M_{\omega}^{\mathrm{H}}G) - D < 0 \quad \forall \omega \in [0, 2\pi].$$
 (7)

The existence of such D and G can be tested in polynomial time. The remainder of this paper is devoted to a proof of this result. Megretski [3] showed this for the full blocks case (1), Paganini [6] derived this result for the case that the  $\Delta$ 's are of the form (2). The proof of the general case (5) follows the same lines as that of [6] and [5]. A key idea is to replace the condition of the contractive  $\Delta$ -blocks with an integral quadratic condition independent of  $\Delta$ :

**Lemma 3.2.** Let  $u, y \in \ell_2^q$  and consider the quadratic integral

$$\Sigma(u, y) := \int_0^{2\pi} (\hat{y}_\omega - \hat{u}_\omega)(\hat{y}_\omega + \hat{u}_\omega)^{\mathrm{H}} d\omega \in \mathbb{R}^{q \times q}.$$
 (8)

The following holds.

- 1. There is a contractive self-adjoint LTV  $\tilde{\delta}: \ell_2 \mapsto \ell_2$  such that  $u = \tilde{\delta}I_q$  y if and only if  $\Sigma(u, y)$  is Hermitian and nonnegative definite.
- 2. There is a contractive LTV  $\delta: \ell_2 \mapsto \ell_2$  such that  $u = \delta I_q$  y if and only if the Hermitian part of  $\Sigma(u, y)$  is nonnegative definite.
- 3. There is a contractive LTV  $\Delta : \ell_2^q \mapsto \ell_2^q$  such that  $u = \Delta y$  if and only if the trace of  $\Sigma(u, y)$  is nonnegative.

Proof. See appendix.

A consequence of this result is the following.

**Lemma 3.3.** Let u be a nonzero element of  $\ell_2^n$ . Then  $(I - \Delta M)u = 0$  for some  $\Delta$  of the form (5, 6) if-and-only-if

$$\Sigma(u, Mu) := \int_0^{2\pi} (M_\omega - I)\hat{u}_\omega \hat{u}_\omega^{\mathrm{H}} (M_\omega + I)^{\mathrm{H}} d\omega \tag{9}$$

is of the form

with  $\tilde{Z}_i = \tilde{Z}_i^T \geq 0$ , He  $\bar{Z}_i \geq 0$ , Tr  $Z_i \geq 0$ , and with "?" denoting an irrelevant entry. Here the partitioning of (10) is compatible with that of  $\Delta$ .

*Proof (sketch).* The equation  $(I - \Delta M)u = 0$  is the same as

$$u = \Delta M u$$
.

With appropriate partitionings, the expression  $u = \Delta Mu$  can be written row-block by row-block as

$$u_{1} = \tilde{\delta}_{1} M_{1} u$$

$$u_{2} = \tilde{\delta}_{2} M_{2} u$$

$$\vdots \quad \vdots \quad \vdots$$

$$u_{K} = \Delta_{m_{F}} M_{K} u$$

By Lemma 3.2 there exist contractive  $\tilde{\delta}_i$ ,  $\delta_i$  and  $\Delta_i$  of the form (6) for which the above equalities hold iff certain quadratic integrals  $\Sigma_i$  have certain properties. It is not to difficult to figure out that these quadratic integrals  $\Sigma_i$  are exactly the blocks on the diagonal of  $\Sigma(u, Mu)$ , and that the conditions on these blocks are that they satisfy  $\Sigma_i = \Sigma_i^T \geq 0$ , He  $\Sigma_i \geq 0$ , or Tr  $\Sigma_i \geq 0$ , corresponding to the three types of uncertainties.

Proof of Theorem 3.1. Suppose such  $D \in D$  and  $G \in G$  exist. Then a standard argument will show that there is an  $\epsilon > 0$  such that  $\|(I - \Delta M)u\|_2 \ge \epsilon \|u\|_2$  for all u and contractive  $\Delta$  of the form (5). This is the definition of uniformly robustly stable.

Conversely suppose the closed loop is uniformly robustly stable. For some  $\epsilon > 0$ , then,  $\|(I - \Delta M)u\|_2 \ge \epsilon$  for every u of unit norm. Define

$$W := \{ \Sigma(u, Mu) : ||u||_2 = 1 \} \subset \mathbb{R}^{n \times n}.$$
(11)

By application of Lemma 3.3, the set W does not intersect the convex cone Z defined as

$$Z := \{Z : Z \text{ is of the form (10) with } \tilde{Z}_i = \tilde{Z}_i^T \ge 0, \text{ He } \bar{Z}_i \ge 0, \text{ Tr } Z_i \ge 0\}.$$

In the appendix we show that in fact W is bounded away from Z. Remarkably the closure  $\overline{W}$  of W is convex. This observation is from Megretski & Treil [4], and for completeness a proof is listed in the appendix, Lemma 5.1. Because W is bounded away from Z, also the closure  $\overline{W}$  is bounded away from Z, so there is a  $\gamma > 0$  such that  $\overline{W}$  also does not intersect

$$Z_{\gamma} := Z + \{ Z \in \mathbb{R}^{n \times n} : ||Z|| \le \gamma \}.$$

Both  $\overline{W}$  and  $Z_{\gamma}$  are convex and have empty intersection, and therefore a hyper-plane exists that separates the two sets [2, p.133]. In other words there is a nonzero matrix  $E \in \mathbb{R}^{n \times n}$  (say of unit norm) such that  $\mathbb{R}^n$ 

$$\langle E, \overline{W} \rangle \le \langle E, Z_{\nu} \rangle.$$
 (12)

As inner product take  $\langle X, Y \rangle = \text{Tr } X^T Y$ . In particular (12) says that  $\langle E, Z \rangle$  is bounded from below. By Lemma 5.3 that is the case if and only if E is of the form

$$E = \operatorname{diag}(\tilde{E}_1, \dots, \tilde{E}_{m_r}, E_1, \dots, E_{m_c}, e_1 I, \dots, e_{m_F} I)$$

with  $\tilde{E}_i + \tilde{E}_i^T \ge 0$ ,  $E_i = E_i^T \ge 0$  and  $0 \le e_i \in \mathbb{R}$ , that is, if and only if  $E \in \overline{D + jG}$ . In that case inf $\langle E, Z \rangle = 0$ , and so

$$a_{\nu} := \inf \langle E, Z_{\nu} \rangle < 0.$$

From (12) we thus see that  $\langle E, \overline{W} \rangle \leq a_{\gamma} < 0$ . If  $||u||_2 = 1$ , then

$$\int_{0}^{2\pi} \hat{u}_{\omega}^{H} \left( \operatorname{He} \left( M_{\omega} + I \right)^{H} E(M_{\omega} - I) \right) \hat{u}_{\omega} d\omega$$

$$= \operatorname{Re} \operatorname{Tr} \int_{0}^{2\pi} E(M_{\omega} - I) \hat{u}_{\omega} \hat{u}_{\omega}^{H} (M_{\omega} + I)^{H} d\omega$$

$$= \langle E, \Sigma(u, Mu) \rangle \leq \sup \langle E, W \rangle \leq a_{\gamma} < 0. \tag{13}$$

This being at most  $a_{\gamma} < 0$  for every  $u \in \ell_2^n$ ,  $||u||_2 = 1$  implies that

$$\operatorname{He}(M_{\omega} + I)^{\operatorname{H}}(E + \epsilon I)(M_{\omega} - I) < 0 \quad \forall \omega \in [0, 2\pi], \tag{14}$$

for some small enough  $\epsilon > 0$ . Express  $E + \epsilon I$  as  $E + \epsilon I = D + jG$  for some  $D \in D$  and  $G \in G$ . Then Equation (14) becomes (7).

<sup>&</sup>lt;sup>1</sup>In (12) the expression  $\langle E, \overline{W} \rangle$  denotes the set  $\{x : x = \langle E, \underline{Y} \rangle, Y \in \overline{W} \}$  and the inequality in (12) is defined to mean that every element of the set on the left-hand side,  $\langle E, \overline{W} \rangle$ , is less than or equal to every element of the set on the right-hand side,  $\langle E, Z_{\gamma} \rangle$ .

### 4 The continuous-time result

Analogous to the discrete-time case we say that a continuous-time system is *uniformly robustly stable* if there is a  $\gamma > 0$  such that (4) holds for all  $v_1, v_2 \in L_2$ . Completely analogous to the discrete-time case it can be shown that:

**Theorem 4.1.** The continuous-time closed-loop in Fig. 1 with stable LTI plant with transfer matrix M is uniformly robustly stable with respect to  $\Delta$ 's of the form (5) with

$$\begin{cases} & \tilde{\delta}_i : L_2 \mapsto L_2 & LTV, self-adjoint \ and \ \|\tilde{\delta}_i\| \leq 1, \\ & \delta_i : L_2 \mapsto L_2 & LTV \ and \ \|\delta_i\| \leq 1, \\ & \Delta_i : L_2^{q_i} \mapsto L_2^{q_i} & LTV \ and \ \|\Delta_i\| \leq 1. \end{cases}$$

if and only if there is a constant matrix  $D \in D$  and a constant matrix  $G \in G$  such that

$$M(i\omega)^{\mathrm{H}}DM(i\omega) + i(GM(i\omega) - M(i\omega)^{\mathrm{H}}G) - D < 0$$

for all  $\omega \in \mathbb{R} \cup \infty$ .

# 5 Appendix

*Proof of Lemma 3.2.* Items 2 and 3 are proved in [6] (note that the Hermitian part of (8) is  $\int_0^{2\pi} \hat{y}_\omega \hat{y}_\omega^H - \hat{u}_\omega \hat{u}_\omega^H d\omega$ , and its trace equals  $2\pi(\|y\|_2^2 - \|u\|_2^2)$ ).

If  $u := \tilde{\delta} I_q y$  with  $\tilde{\delta}$  self-adjoint and contractive then (8) is easily seen to be Hermitian and  $\geq 0$ . Conversely suppose (8) is Hermitian and nonnegative. Now let  $\{f_i\}_{i=0,1,2,\dots}$  be an orthonormal basis of  $\ell_2$ , and expand  $y \in \ell_2^q$  in this basis:

$$y = \sum_{j=0,1,...} \gamma(j) f_j, \qquad \gamma(j) \in \mathbb{R}^q.$$

We may associate with this expansion the matrix  $Y \in \mathbb{R}^{\infty \times q}$  of coefficients

$$Y = \begin{bmatrix} \gamma_1(0) & \gamma_2(0) & \cdots & \gamma_q(0) \\ \gamma_1(1) & \gamma_2(1) & \cdots & \gamma_q(1) \\ \gamma_1(2) & \gamma_2(2) & \cdots & \gamma_q(2) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

The matrix U is likewise defined from u. In this matrix notation the expression  $u = \delta I_q y$  becomes  $U = \tilde{\Delta} Y$ , and the quadratic integral (8) becomes

$$\Sigma(u, y) = (Y^{\mathrm{T}} - U^{\mathrm{T}})(Y + U).$$

By assumption the above is Hermitian and nonnegative definite, that is,

$$Y^{\mathrm{T}}U = U^{\mathrm{T}}Y$$
 and  $U^{\mathrm{T}}U \le Y^{\mathrm{T}}Y$ . (15)

We may assume without loss of generality that the orthonormal basis  $\{f_j\}$  was chosen such that the first, say p, elements  $\{f_1, \ldots, f_p\}$  span the space spanned by the entries  $\{y_1, \ldots, y_q\}$  of y. Then Y is of the form

$$Y = \begin{bmatrix} I_p \\ 0_{\infty \times p} \end{bmatrix} C$$
 for some full row rank  $C \in \mathbb{R}^{p \times q}$ .

Then the second inequality of (15) is that  $U^TU \leq C^TC$ . This implies that U is of the form U = VC for some V. Partition V as  $\begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$  with  $V_1 \in \mathbb{R}^{p \times p}$ . The two formulas of (15) then become

$$C^{\mathrm{T}}V_{1}C = C^{\mathrm{T}}V_{1}^{\mathrm{T}}C$$
 and  $C^{\mathrm{T}}(V_{1}^{\mathrm{T}}V_{1} + V_{2}^{\mathrm{T}}V_{2})C \le C^{\mathrm{T}}I_{p}C.$  (16)

As C has full row rank, (16) is equivalent to that

$$V_1 = V_1^{\mathrm{T}}$$
 and  $V_1^{\mathrm{T}} V_1 + V_2^{\mathrm{T}} V_2 \le I_p$ .

It is now immediate that U equals  $U = \tilde{\Delta} Y$  for  $\tilde{\Delta}$  defined as

$$\tilde{\Delta} := \begin{bmatrix} V_1 & V_2^{\mathrm{T}} \\ V_2 & -V_2 V_1 (I - V_1^2)^{-1} V_2^{\mathrm{T}} \end{bmatrix}. \tag{17}$$

It is easy to verify that  $\tilde{\Delta}$  is contractive. Furthermore  $\tilde{\Delta}$  is symmetric and so the corresponding operator  $\tilde{\delta}$  is self-adjoint.

(It may happen that  $I - V_1^2$  is singular. In that case the inverse in (17) may be replaced with the Moore-Penrose inverse.)

### **Lemma 5.1.** The closure of (11) is convex.

*Proof.* The proof hinges on the fact that  $\lim_{N\to\infty}\langle u,\sigma^N v\rangle=0$  for every pair  $u,v\in\ell_2^n$  and with  $\sigma^N$  denoting the N-step delay.

Let  $u, v \in \ell_2^n$  both have unit norm, i.e.,  $\Sigma(u, Mu), \Sigma(v, Mv) \in W$ . Given  $N \in \mathbb{N}$  and  $\lambda \in [0, 1]$  define x as

$$x := \sqrt{\lambda}u + \sqrt{1 - \lambda}\sigma^N v.$$

Since  $\Sigma$  is linear in its two arguments, we have that

$$\Sigma(x, Mx) = \lambda \Sigma(u, Mu) + \sqrt{1 - \lambda} \sqrt{\lambda} \Sigma(u, M\sigma^N v) + \sqrt{1 - \lambda} \sqrt{\lambda} \Sigma(\sigma^N v, Mu) + (1 - \lambda) \Sigma(v, Mv).$$

As  $N \to \infty$  the contributions of  $\Sigma(u, M\sigma^N v)$  and  $\Sigma(\sigma^N v, Mu)$  tend to zero, so

$$\lim_{N \to \infty} \Sigma(x, Mx) = \lambda \Sigma(u, Mu) + (1 - \lambda) \Sigma(v, Mv).$$

That this is an element of the closure of (11) follows from the fact that.  $\lim_{N\to\infty} \|x\|_2^2 = \lambda \|u\|_2^2 + (1-\lambda)\|v\|_2^2 = 1$ .

**Lemma 5.2.** Uniform robust stability implies that W is bounded away from Z.

*Proof.* Suppose to the contrary that

$$\inf_{u \in \ell_2^n, \|u\|_2 = 1, Z \in Z} \|\Sigma(u, Mu) - Z\| = 0.$$

This means that there is a sequence  $\{u^k, Q_k\}_{k \in \mathbb{N}} \subset \ell_2^n \times \mathbb{R}^{n \times n}$  such that

$$\Sigma(u^k, Mu^k) + Q_k \in \mathbb{Z}, \quad ||u^k||_2 = 1, \quad \lim_{k \to \infty} ||Q_k|| = 0.$$

For each k define  $y^k := Mu^k \in \ell_2^n$  and take  $z^k$  to be any element of  $\ell_2^n$  whose entries are mutually orthogonal and have unit norm,  $\langle z_i^k, z_j^k \rangle = \delta_{ij}$ , and whose entries are also orthogonal to all entries of  $u^k$  and  $y^k$ . With it define

$$\bar{u}^{k}: = u^{k} + \frac{1}{2}(\sqrt{\|Q_{k}\|}I_{n} - \frac{1}{\sqrt{\|Q_{k}\|}}Q_{k})z^{k},$$
  
$$\bar{y}^{k}: = y^{k} + \frac{1}{2}(\sqrt{\|Q_{k}\|}I_{n} + \frac{1}{\sqrt{\|Q_{k}\|}}Q_{k})z^{k}.$$

The reason for this definition is that now

$$\Sigma(\bar{u}^{k}, \bar{y}^{k}) = \int_{0}^{2\pi} (\hat{y}_{\omega}^{k} - \hat{u}_{\omega}^{k} + \frac{1}{\sqrt{\|Q_{k}\|}} Q_{k} \hat{z}_{\omega}^{k}) (\hat{y}_{\omega}^{k} + \hat{u}_{\omega}^{k} + \sqrt{\|Q_{k}\|} \hat{z}_{\omega}^{k})^{H} d\omega$$
$$= \Sigma(u^{k}, y^{k}) + Q_{k} \in Z.$$

So we see that  $\Sigma(\bar{u}^k, \bar{y}^k)$  is an element of Z and, hence,  $\bar{u}^k = \Delta^k \bar{y}^k$  for some contractive  $\Delta^k$  of the form (5,6). Finally consider

$$(I - \Delta^{k} M) \bar{u}^{k} = \bar{u}^{k} - \Delta^{k} M (u^{k} + (\bar{u}^{k} - u^{k}))$$

$$= \bar{u}^{k} - \Delta^{k} (y^{k} + M (\bar{u}^{k} - u^{k}))$$

$$= \bar{u}^{k} - \Delta^{k} (\bar{y}^{k} + (y^{k} - \bar{y}^{k})) - \Delta^{k} M (\bar{u}^{k} - u^{k})$$

$$= -\Delta^{k} (y^{k} - \bar{y}^{k}) - \Delta^{k} M (\bar{u}^{k} - u^{k}).$$
(18)

Using the fact that  $\|\bar{u}^k - u^k\|_2 = O(\sqrt{\|Q_k\|})$ ,  $\|\bar{y}^k - y^k\|_2 = O(\sqrt{\|Q_k\|})$  and that  $\lim_{k \to \infty} \|Q_k\| = 0$ , we obtain from (18) that

$$\lim_{k \to \infty} (I - \Delta^k M) \bar{u}^k = 0, \quad \lim_{k \to \infty} \|\bar{u}^k\|_2 = 1.$$

This contradicts uniform robust stability.

**Lemma 5.3.**  $\inf_{Z \in Z} \operatorname{Tr} E^T Z$  is bounded from below for some  $E \in \mathbb{R}^{n \times n}$  if and only if E is of the form

$$E = diag(\tilde{E}_1, \ldots, \tilde{E}_{m_r}, E_1, \ldots, E_{m_c}, e_1 I, \ldots, e_{m_F} I)$$

with 
$$\tilde{E}_i + \tilde{E}_i^T \ge 0$$
,  $E_i = E_i^T \ge 0$  and  $e_i \ge 0$ .

*Proof.* Suppose that  $\inf_{Z\in Z}\operatorname{Tr} E^TZ$  is bounded from below. The off-diagonal blocks of E are then zero for the following reason: Let F be equal to E but with its blocks on the diagonal equal to zero. The off-diagonal blocks of  $Z\in Z$  are not restricted in any way so  $Z:=\lambda F$  is an element of Z for every  $\lambda\in\mathbb{R}$ . If F is nonzero then  $\operatorname{Tr} E^TZ=\operatorname{Tr} E^T(\lambda F)=\lambda\operatorname{Tr} F^TF$  and this is unbounded from below as a function of  $\lambda$ . Therefore F must be zero, i.e., E is block-diagonal.

The general form of a block-diagonal E is

$$E = \text{diag}(\tilde{E}_1, \dots, \tilde{E}_{m_r}, E_1, \dots, E_{m_c}, \bar{E}_1, \dots, \bar{E}_{m_F})$$

Express Z as in (10). Then

$$\operatorname{Tr} E^{\operatorname{T}} Z = \sum \operatorname{Tr} \tilde{E}_i^{\operatorname{T}} \tilde{Z}_i + \sum \operatorname{Tr} E_i^{\operatorname{T}} \bar{Z}_i + \sum \operatorname{Tr} \bar{E}_i^{\operatorname{T}} Z_i.$$

Each block of  $Z \in \mathbb{Z}$  can vary independently of all other blocks of Z, so the only way that the above is bounded from below is that all

$$\inf_{\tilde{Z}_i = \tilde{Z}_i^T \geq 0} \operatorname{Tr} \tilde{E}_i^T \tilde{Z}_i, \quad \inf_{\operatorname{He} \tilde{Z}_i \geq 0} \operatorname{Tr} E_i^T \tilde{Z}_i \quad \text{and} \quad \inf_{\operatorname{Tr} Z_i \geq 0} \operatorname{Tr} \tilde{E}_i^T Z_i$$

are bounded from below. It is fairly easy to show that

$$\begin{split} \inf_{\tilde{Z}_i = \tilde{Z}_i^{\mathrm{T}} \geq 0} \, \operatorname{Tr} \, \tilde{E}_i^{\mathrm{T}} \tilde{Z}_i > -\infty & \Leftrightarrow & \operatorname{He} \, \tilde{E}_i \geq 0 \\ \inf_{\operatorname{He} \, \tilde{Z}_i \geq 0} \, \operatorname{Tr} \, E_i^{\mathrm{T}} \tilde{Z}_i > -\infty & \Leftrightarrow & E_i = E_i^{\mathrm{T}} \geq 0 \\ \inf_{\operatorname{Tr} \, Z_i \geq 0} \, \operatorname{Tr} \, \tilde{E}_i^{\mathrm{T}} Z_i > -\infty & \Leftrightarrow & \bar{E}_i = e_i I, \, 0 < e_i \in \mathbb{R}. \end{split}$$

(This is considered in more detail in [5].)

**Acknowledgement:** The authors would like to thank Fernando Paganini for his emails.

### References

- [1] M. Fan, A. Tits, and J. Doyle. Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. *IEEE Trans. on Aut. Control*, 36(1):25–38, 1991.
- [2] D. G. Luenberger. *Optimization by Vector Space Methods*. John Wiley, New York, 1969.
- [3] A. Megretski. Necessary and sufficient conditions of stability: A multiloop generalization of the circle criterion. *IEEE Trans. on Aut. Control*, 38(5), 1993.
- [4] A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. *J. Math. Syst. Estimation and Control*, 3(3):301–319, 1993.
- [5] G. Meinsma, Y. Shrivastava, and M. Fu. A dual formulation of mixed  $\mu$  and on the losslessness of (D, G)-scaling. *IEEE Trans. Aut. Control*, 42(7):1032–1036, 1997.
- [6] F. Paganini. Analysis of implicitly defined systems. In *Proceedings of the 33rd CDC*, pages 3673–3678, 1994.
- [7] F. Paganini. Sets and Constraints in the Analysis of Uncertain Systems. PhD thesis, Caltech, USA, 1996.
- [8] J. Shamma. Robust stability with time-varying structured uncertainty. *IEEE Transactions on Automatic Control*, 39(4):714–724, 1994.