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1 Introduction
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Figure 1: The closed loop.

Is the above closed loop stable for all1’s in a given set of stable operatorsB? That,
roughly, is the fundamental robust stability problem.

There is an intriguing result by Megretski and Treil [4] and Shamma [8] which says,
loosely speaking, that ifM is a stable LTI operator and the set of1’s is the set of contractive
linear time-varying operators of some fixed block diagonal structure

1 = diag.11;12; : : : ;1mF /; (1)

that then the closed loop is robustly stable—that is, stable for all such1’s—if and only if the
H∞-norm of DM D−1 is less than one for some constant diagonal matrixD that commutes
with the1’s. The problem can be decided in polynomial time, and it is a problem that
has since long been associated with anupper boundof the structured singular value. The
intriguing part is that the result holds for any number of LTV blocks1i , which is in stark
contrast with the case that the1i ’s are assumed time-invariant.

Paganini [6] extended this result by allowing for the more general block diagonal struc-
ture

1 = diag.Ž1 In1; : : : ; Žmc Inmc
;11; : : : ;1mF /: (2)

A precise definition is given in Section 2. Paganini’s result is an exact generalization and
leads, again, to a convex optimization problem over the constant matricesD that commute
with 1.

In view of the connection of these results with the upper bounds of the structured singu-
lar it is natural to ask if the well known.D;G/-scaling upper bound of themixedstructured
singular value also has a similar interpretation. In this note we show that that is indeed the
case.

The.D;G/-scaling upper bound of the structured singular value was originally defined
as a means to provide an easy-to-verify condition that guarantees robust stability with re-
spect to the contractive lineartime-invariantoperators1 of the form

1 = diag.Ž̃1 Iñ1; : : : ; Ž̃mr Iñmr
; Ž1In1; : : : ; Žmc Inmc

;11; : : : ;1mF /; (3)

with Ž̃i denoting real-valued constants [1]. It is known that for general LTI plantsM this
sufficient condition isnecessaryas well if and only if,

2.mr +mc/+mF ≤ 3:
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(See [5].) In this note we show that the.D;G/-scaling condition is in fact both necessary
and sufficient for robust stability with respect to the contractive LTV operators1 of the
form (3) with now Ž̃i denoting linear time-varyingself-adjointoperators oǹ 2. A precise
definition follows. Paganini [7] has gone through considerable trouble to show that for
his structure (2) one may assume causality of1 without changing the condition. In the
extended structure (3) with self-adjointŽ̃i this is no longer possible.

2 Notation and preliminaries

`2 := { x : Z 7→ R :
∑

k∈Zx2.k/ < ∞}. The norm‖v‖2 of v ∈ `2 is the usual norm
on `2 and for vector-valued signalsv ∈ `n

2 the norm‖v‖2 is defined as.‖v1‖22 + · · · +
‖vn‖22/1=2. The induced norm is denoted by‖ · ‖. So, for F : `n

2 7→ `n
2 it is defined as

‖F‖ := supu∈`n
2
‖Fu‖2=‖u‖2. For matricesF ∈ Cn×m the induced norm will be the spectral

norm, and for vectors this reduces to the Euclidean norm.
FH is the complex conjugate transpose ofF, and HeF is the Hermitian partF defined

as HeF = 1
2.F+ FH/.

An operator1 : `n
2 7→ `n

2 is said to becontractiveif ‖1v‖2 ≤ ‖v‖2 for everyv ∈ `n
2.

Lower caseŽ’s always denote operators from̀1
2 to `1

2. Then foru; y ∈ `n
2 the expression

y= Ž In u is defined to mean that the entriesyk of y satisfyyk= Žuk. An operatorŽ : `2 7→ `2

is self-adjointif 〈u; Žv〉 = 〈Žu; v〉 for all u; v ∈ `2.
The M and1 throughout denote bounded operators from`n

2 to `n
2 and M is assumed

linear time invariant (LTI). Bounded operators on`n
2 are also calledstable.

Hats will denoteZ-transforms, so ify∈ `2 thenŷ.z/ is defined aŝy.z/=∑k∈Zy.k/z−k.
To avoid clutter we shall use for functionŝf of frequency the notation

f̂! := f̂ .ei!/:

2.1 Stability

The closed loop depicted in Fig. 1 is consideredinternally stableif the map from
[
v1
v2

]
to[ u

y
]

is bounded as a map froml2n
2 to l2n

2 . Because of stability ofM and1 the closed loop
is internally stable iff. I −1M/−1 is bounded. The closed loop will be calleduniformly
robustly stablewith respect to some setB of stable LTV operators if there is an > 0 such
that ∥∥∥∥[u

y

]∥∥∥∥
2

≤ 
∥∥∥∥[v1

v2

]∥∥∥∥
2

∀1 ∈ B ;
[
v1

v2

]
∈ `2n

2 : (4)

We only consider1’s with norm at most one and stableM. In that case (4) holds if and
only if there is anž > 0 such that

‖. I −1M/u‖2 ≥ ž‖u‖2 ∀1 ∈ B ; u ∈ `n
2:

2.2 The1’s and the .D;G/-scaling matrices

Throughout we assume that1 : `n
2 7→ `n

2 and that1 is of the form

1 = diag.Ž̃1 Iñ1; : : : ; Ž̃mr Iñmr
; Ž1In1; : : : ; Žmc Inmc

;11; : : : ;1mF / (5)
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with 
Ž̃i : `2 7→ `2 LTV, self-adjoint and‖Ž̃i‖ ≤ 1;
Ži : `2 7→ `2 LTV and‖Ži‖ ≤ 1;
1i : `

qi
2 7→ `

qi
2 LTV and‖1i‖ ≤ 1.

(6)

The dimensions and numbersñi ;ni;qi ;mr;mc;mF of the various identity matrices and1i

blocks are fixed, but otherwise1 may vary over all possiblen× n LTV operators of the
form (5), (6). Given that, the setsD andG of D andG-scales are defined accordingly as

D = {D = diag.D̃1; : : : ; D̃mr ; D1; : : : ; Dmc; d1 Iq1; : : : ;dmF IqmF
/

: 0< D = DT ∈ Rn×n};
G = {G= diag.G̃1; : : : ; G̃mr ; 0; : : : ;0; 0; : : : ;0/

: G= GH ∈ jRn×n}:
Note that theD-scales are assumed real-valued and that theG-scales are taken to be purely
imaginary. As it turns out there is no need to consider a wider class ofD andG-scales.

3 The discrete-time result

Theorem 3.1. The discrete-time closed-loop in Fig. 1 with stable LTI plant with transfer
matrix M is uniformly robustly stable with respect to1’s of the form (5, 6) if and only if
there is a constant matrix D∈D and a constant matrix G∈ G such that

MH
! DM!+ j.GM!− MH

!G/− D < 0 ∀! ∈ [0;2³]: (7)

�

The existence of suchD andG can be tested in polynomial time. The remainder of this
paper is devoted to a proof of this result. Megretski [3] showed this for the full blocks case
(1), Paganini [6] derived this result for the case that the1’s are of the form (2). The proof
of the general case (5) follows the same lines as that of [6] and [5]. A key idea is to replace
the condition of the contractive1-blocks with an integral quadratic condition independent
of 1:

Lemma 3.2. Let u; y ∈ `q
2 and consider the quadratic integral

6.u; y/ :=
∫ 2³

0
. ŷ! − û!/. ŷ!+ û!/

H d! ∈ Rq×q: (8)

The following holds.

1. There is a contractive self-adjoint LTṼŽ : `2 7→ `2 such that u= Ž̃ Iq y if and only if
6.u; y/ is Hermitian and nonnegative definite.

2. There is a contractive LTVŽ : `2 7→ `2 such that u= Ž Iq y if and only if the Hermitian
part of6.u; y/ is nonnegative definite.

3. There is a contractive LTV1 : `q
2 7→ `

q
2 such that u= 1y if and only if the trace of

6.u; y/ is nonnegative.
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Proof. See appendix. �

A consequence of this result is the following.

Lemma 3.3. Let u be a nonzero element of`n
2. Then. I −1M/u= 0 for some1 of the

form (5, 6) if-and-only-if

6.u;Mu/ :=
∫ 2³

0
.M!− I /û!ûH

!.M!+ I /H d! (9)

is of the form

Z̃1 ? ? ? ? ? ? ? ?
? Z̃2 ? ? ? ? ? ? ?

? ?
.. . ? ? ? ? ? ?

? ? ? Z̄1 ? ? ? ? ?
? ? ? ? Z̄2 ? ? ? ?

? ? ? ? ?
. . . ? ? ?

? ? ? ? ? ? Z1 ? ?
? ? ? ? ? ? ? Z2 ?

? ? ? ? ? ? ? ?
. . .


∈ Rn×n; (10)

with Z̃i = Z̃T
i ≥ 0, He Z̄i ≥ 0, Tr Zi ≥ 0, and with “?” denoting an irrelevant entry. Here

the partitioning of (10) is compatible with that of1.

Proof (sketch).The equation. I −1M/u= 0 is the same as

u=1Mu:

With appropriate partitionings, the expressionu= 1Mu can be written row-block by row-
block as

u1 = Ž̃1M1u
u2 = Ž̃2M2u

...
...

...
uK = 1mF MKu:

By Lemma 3.2 there exist contractiveŽ̃i , Ži and1i of the form (6) for which the above
equalities hold iff certain quadratic integrals6i have certain properties. It is not to diffi-
cult to figure out that these quadratic integrals6i are exactly the blocks on the diagonal
of 6.u;Mu/, and that the conditions on these blocks are that they satisfy6i = 6T

i ≥ 0,
He6i ≥ 0, or Tr6i ≥ 0, corresponding to the three types of uncertainties. �

Proof of Theorem 3.1.Suppose suchD ∈ D andG ∈ G exist. Then a standard argument
will show that there is anž > 0 such that‖. I −1M/u‖2 ≥ ž‖u‖2 for all u and contractive
1 of the form (5). This is the definition of uniformly robustly stable.
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Conversely suppose the closed loop is uniformly robustly stable. For somež > 0, then,
‖. I −1M/u‖2 ≥ ž for everyu of unit norm. Define

W := {6.u;Mu/ : ‖u‖2 = 1} ⊂ Rn×n: (11)

By application of Lemma 3.3, the setW does not intersect the convex coneZ defined as

Z := {Z : Z is of the form (10) withZ̃i = Z̃T
i ≥ 0, HeZ̄i ≥ 0, TrZi ≥ 0}:

In the appendix we show that in factW is bounded away fromZ. Remarkably the closure
W of W is convex. This observation is from Megretski & Treil [4], and for completeness a
proof is listed in the appendix, Lemma 5.1. BecauseW is bounded away fromZ, also the
closureW is bounded away fromZ, so there is a > 0 such thatW also does not intersect

Z := Z + {Z ∈ Rn×n : ‖Z‖ ≤ }:

BothW andZ are convex and have empty intersection, and therefore a hyper-plane exists
that separates the two sets [2, p.133]. In other words there is a nonzero matrixE ∈ Rn×n

(say of unit norm) such that1

〈E;W 〉 ≤ 〈E;Z〉: (12)

As inner product take〈X;Y〉 = Tr XTY. In particular (12) says that〈E;Z〉 is bounded from
below. By Lemma 5.3 that is the case if and only ifE is of the form

E= diag.Ẽ1; : : : ; Ẽmr ; E1; : : : ; Emc; e1I; : : : ;emF I /

with Ẽi + ẼT
i ≥ 0, Ei = ET

i ≥ 0 and 0≤ ei ∈ R, that is, if and only ifE ∈D + jG . In that
case inf〈E;Z〉 = 0, and so

a := inf〈E;Z〉 < 0:

From (12) we thus see that〈E;W 〉 ≤ a < 0. If ‖u‖2 = 1, then∫ 2³

0
ûH
!

(
He.M!+ I /HE.M!− I /

)
û! d!

= ReTr
∫ 2³

0
E.M!− I /û!ûH

!.M!+ I /H d!

= 〈E;6.u;Mu/〉 ≤ sup〈E;W 〉 ≤ a < 0:

(13)

This being at mosta < 0 for everyu ∈ `n
2; ‖u‖2 = 1 implies that

He.M!+ I /H.E+ ž I /.M!− I / < 0 ∀! ∈ [0;2³]; (14)

for some small enoughž > 0. ExpressE+ ž I as E+ ž I = D+ jG for someD ∈ D and
G ∈ G . Then Equation (14) becomes (7). �

1In (12) the expression〈E;W 〉 denotes the set{x : x= 〈E;Y〉;Y∈W } and the inequality in (12) is defined
to mean that every element of the set on the left-hand side,〈E;W 〉, is less than or equal to every element of the
set on the right-hand side,〈E;Z〉.
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4 The continuous-time result

Analagous to the discrete-time case we say that a continuous-time system isuniformly ro-
bustly stableif there is a > 0 such that (4) holds for allv1; v2 ∈ L2. Completely analagous
to the discrete-time case it can be shown that:

Theorem 4.1. The continuous-time closed-loop in Fig. 1 with stable LTI plant with transfer
matrix M is uniformly robustly stable with respect to1’s of the form (5) with

Ž̃i : L2 7→ L2 LTV, self-adjoint and‖Ž̃i‖ ≤ 1;
Ži : L2 7→ L2 LTV and‖Ži‖ ≤ 1;
1i : Lqi

2 7→ Lqi
2 LTV and‖1i‖ ≤ 1.

if and only if there is a constant matrix D∈D and a constant matrix G∈ G such that

M. j!/HDM. j!/+ j.GM. j!/− M. j!/HG/− D < 0

for all ! ∈ R∪∞. �

5 Appendix

Proof of Lemma 3.2.Items 2 and 3 are proved in [6] (note that the Hermitian part of (8) is∫ 2³
0 ŷ! ŷH

! − û!ûH
! d!, and its trace equals 2³.‖y‖22−‖u‖22/).

If u := Ž̃ Iqy with Ž̃ self-adjoint and contractive then (8) is easily seen to be Hermitian
and≥ 0. Conversely suppose (8) is Hermitian and nonnegative. Now let{ fi}i=0;1;2;··· be an
orthonormal basis of̀2, and expandy ∈ `q

2 in this basis:

y=
∑

j=0;1;:::

. j/ f j ; . j/ ∈ Rq:

We may associate with this expansion the matrixY ∈ R∞×q of coefficients

Y=


1.0/ 2.0/ · · · q.0/
1.1/ 2.1/ · · · q.1/
1.2/ 2.2/ · · · q.2/

...
...

...
...

 :
The matrixU is likewise defined fromu. In this matrix notation the expressionu= Ž̃ Iqy
becomesU = 1̃Y, and the quadratic integral (8) becomes

6.u; y/ = .YT−UT/.Y+U/:

By assumption the above is Hermitian and nonnegative definite, that is,

YTU = UTY and UTU ≤ YTY: (15)

We may assume without loss of generality that the orthonormal basis{ f j} was chosen
such that the first, sayp, elements{ f1; : : : ; f p} span the space spanned by the entries
{y1; : : : ; yq} of y. ThenY is of the form

Y=
[

I p

0∞×p

]
C for some full row rankC ∈ Rp×q:

7



Then the second inequality of (15) is thatUTU ≤ CTC. This implies thatU is of the form
U = VC for someV. PartitionV as

[ V1
V2

]
with V1 ∈ Rp×p. The two formulas of (15) then

become

CTV1C= CTVT
1 C and CT.VT

1 V1+ VT
2 V2/C≤ CT I pC: (16)

As C has full row rank, (16) is equivalent to that

V1 = VT
1 and VT

1 V1+ VT
2 V2 ≤ I p:

It is now immediate thatU equalsU = 1̃Y for 1̃ defined as

1̃ :=
[

V1 VT
2

V2 −V2V1. I − V2
1 /
−1VT

2

]
: (17)

It is easy to verify that̃1 is contractive. Furthermorẽ1 is symmetric and so the correspond-
ing operator̃Ž is self-adjoint.

(It may happen thatI − V2
1 is singular. In that case the inverse in (17) may be replaced

with the Moore-Penrose inverse.) �

Lemma 5.1. The closure of (11) is convex.

Proof. The proof hinges on the fact that limN→∞〈u; ¦Nv〉 = 0 for every pairu; v ∈ `n
2 and

with ¦N denoting theN-step delay.
Let u; v ∈ `n

2 both have unit norm, i.e.,6.u;Mu/;6.v;Mv/ ∈W . Given N ∈ N and
½ ∈ [0;1] definex as

x :=
√
½u+

√
1− ½¦Nv:

Since6 is linear in its two arguments, we have that

6.x;Mx/ =½6.u;Mu/+
√

1− ½
√
½6.u;M¦Nv/

+
√

1− ½
√
½6.¦Nv;Mu/+ .1− ½/6.v;Mv/:

As N→∞ the contributions of6.u;M¦Nv/ and6.¦Nv;Mu/ tend to zero, so

lim
N→∞

6.x;Mx/ = ½6.u;Mu/+ .1− ½/6.v;Mv/:

That this is an element of the closure of (11) follows from the fact that. limN→∞‖x‖22 =
½‖u‖22+ .1− ½/‖v‖22 = 1. �

Lemma 5.2. Uniform robust stability implies thatW is bounded away fromZ.

Proof. Suppose to the contrary that

inf
u∈`n

2;‖u‖2=1;Z∈Z
‖6.u;Mu/− Z‖ = 0:

This means that there is a sequence{uk;Qk}k∈N ⊂ `n
2×Rn×n such that

6.uk;Muk/+ Qk ∈ Z; ‖uk‖2 = 1; lim
k→∞
‖Qk‖ = 0:
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For eachk defineyk := Muk ∈ `n
2 and takezk to be any element of̀n2 whose entries are mu-

tually orthogonal and have unit norm,〈zk
i ; z

k
j〉 = Ži j , and whose entries are also orthogonal

to all entries ofuk andyk. With it define

ūk : = uk+ 1
2
.
√
‖Qk‖In− 1√‖Qk‖

Qk/z
k;

ȳk : = yk+ 1
2
.
√
‖Qk‖In+ 1√‖Qk‖

Qk/z
k:

The reason for this definition is that now

6.ūk; ȳk/ =
∫ 2³

0
. ŷk
! − ûk

! +
1√‖Qk‖

Qkẑk
!/ . ŷ

k
! + ûk

! +
√
‖Qk‖ẑk

!/
H d!

= 6.uk; yk/+ Qk ∈ Z :

So we see that6.ūk; ȳk/ is an element ofZ and, hence,̄uk =1k ȳk for some contractive1k

of the form (5,6). Finally consider

. I −1kM/ūk = ūk−1kM.uk+ .ūk− uk//

= ūk−1k.yk+ M.ūk− uk//

= ūk−1k. ȳk+ .yk− ȳk// −1kM.ūk− uk/

= −1k.yk− ȳk/−1kM.ūk− uk/: (18)

Using the fact that‖ūk−uk‖2=O.
√‖Qk‖/, ‖ȳk− yk‖2=O.

√‖Qk‖/ and that limk→∞‖Qk‖ =
0, we obtain from (18) that

lim
k→∞

. I −1kM/ūk = 0; lim
k→∞
‖ūk‖2 = 1:

This contradicts uniform robust stability. �

Lemma 5.3. inf Z∈Z Tr ET Z is bounded from below for some E∈ Rn×n if and only if E is
of the form

E= diag.Ẽ1; : : : ; Ẽmr ; E1; : : : ; Emc; e1I; : : : ;emF I /

with Ẽi + ẼT
i ≥ 0, Ei = ET

i ≥ 0 and ei ≥ 0.

Proof. Suppose that infZ∈Z Tr ET Z is bounded from below. The off-diagonal blocks ofE
are then zero for the following reason: LetF be equal toE but with its blocks on the
diagonal equal to zero. The off-diagonal blocks ofZ ∈ Z are not restricted in any way so
Z := ½F is an element ofZ for every½ ∈ R. If F is nonzero then TrET Z = Tr ET.½F/ =
½Tr FT F and this is unbounded from below as a function of½. ThereforeF must be zero,
i.e., E is block-diagonal.

The general form of a block-diagonalE is

E= diag.Ẽ1; : : : ; Ẽmr ; E1; : : : ; Emc; Ē1; : : : ; ĒmF /

ExpressZ as in (10). Then

Tr ET Z =
∑

Tr ẼT
i Z̃i +

∑
Tr ET

i Z̄i +
∑

Tr ĒT
i Zi :

9



Each block ofZ ∈ Z can vary independently of all other blocks ofZ, so the only way that
the above is bounded from below is that all

inf
Z̃i=Z̃T

i ≥0
Tr ẼT

i Z̃i; inf
He Z̄i≥0

Tr ET
i Z̄i and inf

Tr Zi≥0
Tr ĒT

i Zi

are bounded from below. It is fairly easy to show that

inf Z̃i=Z̃T
i ≥0 Tr ẼT

i Z̃i > −∞ ⇔ HeẼi ≥ 0

infHe Z̄i≥0 Tr ET
i Z̄i > −∞ ⇔ Ei = ET

i ≥ 0

infTr Zi≥0 Tr ĒT
i Zi > −∞ ⇔ Ēi = ei I; 0< ei ∈ R:

(This is considered in more detail in [5].) �
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