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1 Introduction

vp Tt A

Figure 1: The closed loop.

Is the above closed loop stable for alls in a given set of stable operatdss? That,
roughly, is the fundamental robust stability problem.

There is an intriguing result by Megretski and Treil [4] and Shamma [8] which says,
loosely speaking, that M is a stable LTI operator and the set®F is the set of contractive
linear time-varying operators of some fixed block diagonal structure

A= diag(Al, Ao, ..., AmF), (1)

that then the closed loop is robustly stable—that is, stable for all Algh-if and only if the
H..-norm of DM D1 is less than one for some constant diagonal mdrthat commutes
with the A’s. The problem can be decided in polynomial time, and it is a problem that
has since long been associated withugper boundof the structured singular value. The
intriguing part is that the result holds for any number of LTV blogks which is in stark
contrast with the case that te’s are assumed time-invariant.

Paganini [6] extended this result by allowing for the more general block diagonal struc-
ture

A:diag(allnl,...,S%Innb,A]_,...,AmF). (2)

A precise definition is given in Section 2. Paganini’s result is an exact generalization and
leads, again, to a convex optimization problem over the constant mabitiest commute
with A.

In view of the connection of these results with the upper bounds of the structured singu-
lar it is natural to ask if the well know(D, G)-scaling upper bound of thmixedstructured
singular value also has a similar interpretation. In this note we show that that is indeed the
case.

The (D, G)-scaling upper bound of the structured singular value was originally defined
as a means to provide an easy-to-verify condition that guarantees robust stability with re-
spect to the contractive lineéime-invariantoperatorsA of the form

A =dlag(31|ﬁ1, ,Smlﬁm,Sllnl, ,8nqclnmc, A]_, ,AmF), (3)

with §; denoting real-valued constants [1]. It is known that for general LTI plahtthis
sufficient condition isiecessaryas well if and only if,

2(my +me) + Mg < 3.



(See [5].) In this note we show that tki®, G)-scaling condition is in fact both necessary
and sufficient for robust stability with respect to the contractive LTV operatosf the

form (3) with nowd; denoting linear time-varyingelf-adjointoperators orf,. A precise
definition follows. Paganini [7] has gone through considerable trouble to show that for
his structure (2) one may assume causalityhofithout changing the condition. In the
extended structure (3) with self-adjoifitthis is no longer possible.

2 Notation and preliminaries

b ={X:Z—R:>\z x?(k) < co}. The norm|v||2 of v € £ is the usual norm
on ¢, and for vector-valued signats € £3 the norm|jv|, is defined as(||v1||§ + .4
lvnll3)Y/2. The induced norm is denoted Wiy ||. So, for F : ¢5 > €5 it is defined as
IFIl := SUR.eey I Full2/llull2. For matrices € C"™*™Mthe induced norm will be the spectral
norm, and for vectors this reduces to the Euclidean norm.

FH is the complex conjugate transposeFgfand HeF is the Hermitian parf defined
as HeF = 3(F + F").

An operatorA : €5 — ¢J is said to becontractiveif ||Av|> < ||v]> for everyv € £3.
Lower cases’s always denote operators frofg to ¢3. Then foru, y € £5 the expression
y =l uis defined to mean that the entrigsof y satisfyyx = dux. An operatos : £, +— €5
is self-adjointif (u, sv) = (du, v) for all u, v € £5.

The M and A throughout denote bounded operators fréjrto ¢5 and M is assumed
linear time invariant (LTI). Bounded operators ghare also calledtable

Hats will denoteZ-transforms, so if € £, theny(z) is defined ag(2) =) ., y(k)z .
To avoid clutter we shall use for functiorfsof frequency the notation

A A

f, = f(€).

2.1 Stability

The closed loop depicted in Fig. 1 is considemettrnally stableif the map from[lﬁg] to
[3] is bounded as a map froh§n to I%”. Because of stability oM and A the closed loop
is internally stable iff(l — AM)~! is bounded. The closed loop will be callediformly
robustly stablewith respect to some sBt of stable LTV operators if there is gn> 0 such

that
u V1
<
H [y} 2 Y H [UZ]

We only considerA’s with norm at most one and stabl. In that case (4) holds if and
only if there is are > 0 such that

VA €B, [Zj . 4)
2

I —AM)ull2 > ellullz YA €B, ue ;.

2.2 TheA’s and the (D, G)-scaling matrices

Throughout we assume that: £ — ¢3 and thatA is of the form

A =dlag(31|ﬁ1, ,Smlﬁm,Sllnl, ,8nqclnmc, A]_, ,AmF) (5)



with

§i o > LTV, self-adjoint and|8;|| < 1,
Si 1 Loa—> {4y LTVand|éil <1, (6)
Ai 1 d > ed LTVand Al < 1.

The dimensions and numbdis n;, g, my, M., Mg of the various identity matrices ant;
blocks are fixed, but otherwisé may vary over all possible x n LTV operators of the
form (5), (6). Given that, the sel® andG of D andG-scales are defined accordingly as

D - {D:d|ag(Dl,,Dm, Dla-~~anT”k;a dllql,...,delqmF)
:0<D=D"eR™M},

G = {G=diag(Gy,...,Gy.0,...,0,0,...,0)
1 G=G"e jR™").

Note that theD-scales are assumed real-valued and thaGHseales are taken to be purely
imaginary. As it turns out there is no need to consider a wider clagsarid G-scales.

3 The discrete-time result

Theorem 3.1. The discrete-time closed-loop in Fig. 1 with stable LTI plant with transfer
matrix M is uniformly robustly stable with respect #ds of the form (5, 6) if and only if
there is a constant matrix @ D and a constant matrix @ G such that

MADM, + j(GM, — MPG) - D <0 Vw €0, 27]. 7)

O

The existence of such andG can be tested in polynomial time. The remainder of this
paper is devoted to a proof of this result. Megretski [3] showed this for the full blocks case
(1), Paganini [6] derived this result for the case thatAligeare of the form (2). The proof
of the general case (5) follows the same lines as that of [6] and [5]. A key idea is to replace
the condition of the contractivA-blocks with an integral quadratic condition independent
of A:

Lemma 3.2. Letu y e Eg and consider the quadratic integral
2
TUY) = Jo—0,) 0+ 0,)"do € R, (8)
0
The following holds.

1. There is a contractive self-adjoint LBV £> — £ such that u= SIq y if and only if
>(u, y) is Hermitian and nonnegative definite.

2. There is a contractive LT¥: £, — ¢ such that u= 614y if and only if the Hermitian
part of X (u, y) is nonnegative definite.

3. There is a contractive LTX : Zg > Eg such that u= Ay if and only if the trace of
2(u, y) is nonnegative.



Proof. See appendix. n
A consequence of this result is the following.

Lemma 3.3. Let u be a nonzero element 6. Then(l — AM)u = 0 for someA of the
form (5, 6) if-and-only-if
2
2 (u, Mu) = (M, — D3, 0% (M, + HH dw (9)
0

is of the form

Zi ? ?|l? 2?2 2|2 2 2

2 Z, ?|?2 2?2 2|2 2?2 2

? ? ?2 0?2 20/? ? 2

2 ? 207 ? 20?2 ? 2

? 02 ?1? Zp ?2|? 2?2 ? | cpmn (10)
?2 0?2 2/? 2 ?2 0?2

2 2?2 212 2?2 ?2|zs ? ?

?2 ? 20? ? 20?2 Z, ?

2 2?2 21?2 2?2 2?22 2

with Z; = ZiT >0, Hez > 0, TrZ; > 0, and with “?” denoting an irrelevant entry. Here
the partitioning of (10) is compatible with that of.

Proof (sketch).The equation(l — AM)u = 0 is the same as
u= AMu.

With appropriate partitionings, the expressioa= AMu can be written row-block by row-
block as

U = SlM]_U
U = 52M2U
Uk = Am,: MKU.

By Lemma 3.2 there exist contractidg 8 and A; of the form (6) for which the above
equalities hold iff certain quadratic integraiy have certain properties. It is not to diffi-
cult to figure out that these quadratic integralsare exactly the blocks on the diagonal
of £(u, Mu), and that the conditions on these blocks are that they safisf X[ > 0,
HeX; > 0, or TrX; > 0, corresponding to the three types of uncertainties. n

Proof of Theorem 3.1Suppose sucld € D andG € G exist. Then a standard argument
will show that there is am > 0 such that|(I — AM)ul|> > ¢||u||, for all u and contractive
A of the form (5). This is the definition of uniformly robustly stable.



Conversely suppose the closed loop is uniformly robustly stable. For sen® then,
(I — AM)ul2 > ¢ for everyu of unit norm. Define

W :={Z(u, Mu) : Jlul, =1} c R™". (112)
By application of Lemma 3.3, the s does not intersect the convex cadalefined as
Z :={Z : Zis of the form (10) withZ; = Z > 0, HeZ; > 0, TrZ; > 0}.

In the appendix we show that in fadf is bounded away frord. Remarkably the closure
W of W is convex. This observation is from Megretski & Treil [4], and for completeness a
proof is listed in the appendix, Lemma 5.1. BecaWds bounded away frond, also the
closureW is bounded away frord, so there is & > 0 such thaWW' also does not intersect

Z,=Z+{ZeR™":|Z|| <y}

BothW andZ, are convex and have empty intersection, and therefore a hyper-plane exists
that separates the two sets [2, p.133]. In other words there is a nonzero Eatik™*"
(say of unit norm) such that

(E.W) < (E,Z,). (12)

As inner product takéX, Y) = Tr XTY. In particular (12) says thdE, Z) is bounded from
below. By Lemma 5.3 that is the case if and onl¥ifs of the form

E=diag(Es,...,Emn, E1,..., Em. &l ..., enl)

with E + ET > 0, E; = E] > 0 and 0< g € R, that s, if and only ifE € D + jG. In that
case infE,Z) =0, and so

a, :=inf(E,Z,) <O.

From (12) we thus see thaE,W) <a, <0.If |Jull2 =1, then

2
/ afl (He(M, + DPE(M,, — 1), do
0

_ ReTr/zn E(M,, — 0,0 (M, + DM do (13)
= (E, 2(8, Mu)) <suplE,W) <a, <O0.
This being at mosa, < 0 for everyu € £3, |Jull> = 1 implies that
He(M, + DY(E+el)(M,—1) <0 Vo €]0, 27], (14)

for some small enough > 0. ExpressE + ¢l asE + ¢l = D + jG for someD € D and
G € G. Then Equation (14) becomes (7). =

1In (12) the expressioftE, W) denotes the sék: x=(E,Y),Y e W} and the inequality in (12) is defined

to mean that every element of the set on the left-hand sk&ld)V ), is less than or equal to every element of the
set on the right-hand sidéE, Z,).



4 The continuous-time result

Analagous to the discrete-time case we say that a continuous-time systaiforsly ro-
bustly stabléf there is ay > 0 such that (4) holds for all;, v, € L,. Completely analagous
to the discrete-time case it can be shown that:

Theorem 4.1. The continuous-time closed-loop in Fig. 1 with stable LTI plant with transfer
matrix M is uniformly robustly stable with respectds of the form (5) with

§ : Ly Ly LTV, self-adjoint andsi|| < 1,
i : Lo Ly LTVand|éi| <1,
Ai 1 L L) LTVand|ail < 1.

if and only if there is a constant matrix BD and a constant matrix @ G such that
M(j)"DM(jo) + (GM(jw) = M(jo)"'G) ~D <0

for all w € RU oo. O

5 Appendix

Proof of Lemma 3.2ltems 2 and 3 are proved in [6] (note that the Hermitian part of (8) is
02” 9,9 — 0,0 dw, and its trace equalsi2||yl|3 — [[u]|3)).
If u:= Slqy with § self-adjoint and contractive then (8) is easily seen to be Hermitian
and> 0. Conversely suppose (8) is Hermitian and nonnegative. Nofflgto 1 2... be an

orthonormal basis of,, and expands € Zg in this basis:

y= > v(Of,  y()eRs

j=0.1,...

We may associate with this expansion the matfix R°°*9 of coefficients

y1(0) ¥2(0) -+ yq(0)
yi(D) y2(D) -y

12 y2(2) - (2

The matrixU is likewise defined fromu. In this matrix notation the expressian= Slqy
becomed) = AY, and the quadratic integral (8) becomes

T, y) = (YT =UT)(Y+U).
By assumption the above is Hermitian and nonnegative definite, that is,
Y'uU=U"Y and UTU <YTY. (15)

We may assume without loss of generality that the orthonormal Kdgjswas chosen
such that the first, sap, elements{ f1, ..., fy} span the space spanned by the entries
{y1,...,yq} of y. ThenY is of the form

Y = [0 p ] C for some full row rankC € RP*9,

coX P
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Then the second inequality of (15) is tHatU < CTC. This implies thau is of the form
U = VCfor someV. PartitionV asw;] with V; € RP*P, The two formulas of (15) then
become

C'viC=C"V/C and C"(V{Vi+V]V,)C < CTI,C. (16)
As C has full row rank, (16) is equivalent to that
Vi=V] and VJVi+V, Vo< Iy,

It is now immediate that) equalsU = AY for A defined as

. \ Al
A= 2 ) 17
|:V2 Voo (Il — Vf)_lvg] ( )

Itis easy to verify thaf\ is contractive. Furthermor& is symmetric and so the correspond-
ing operatos is self-adjoint.

(It may happen that — V2 is singular. In that case the inverse in (17) may be replaced
with the Moore-Penrose inverse.) n

Lemma 5.1. The closure of (11) is convex.

Proof. The proof hinges on the fact that lin, o (u, Nv) = 0 for every pairu, v € £ and
with oN denoting theN-step delay.

Letu, v € £5 both have unit norm, i.eX(u, Mu), (v, Mv) e W. GivenN € N and
A € [0, 1] definex as

X = v/AU+ 1 — roNo.
SinceX is linear in its two arguments, we have that

T(X, MX) =A (U, MU) + V1 — AVAZ (U, MaNv)
+ V1= 2VAZ (N, Mu) + (1 — 1) (v, Mu).

As N — oo the contributions of£ (u, MaNv) and = (aNv, Mu) tend to zero, so

NIim (X, MX) = A2 (u, Mu) + (1 — 1) X (v, Mv).

That this is an element of the closure of (11) follows from the fact thatyling ||x||§ =
MUl + @ = 1) [vllZ = 1. [

Lemma 5.2. Uniform robust stability implies thalV is bounded away frord .

Proof. Suppose to the contrary that

inf IZ(u, Mu) — Z|| =0.
uely, |lull2=1,ZeZ

This means that there is a sequefige Qylken C £5 x R™" such that

U MUY+ QeeZ, =1 lim [|Qdl =0.

8



For eactk defineyk := MuK e £5 and takezX to be any element af) whose entries are mu-
tually orthogonal and have unit norrtz}ﬂ z‘lf) = 4jj, and whose entries are also orthogonal
to all entries ofuk and yk With it define

l_Jk L= U + VI Qkllh — Q Zk,
ok : / |n k.
y = y ( ||Qk + — ,—”Q T Q )Z

The reason for this definition is that now

(T, ¥

1 QKl[Z)H

2
Aw - AE} +
A(¢ ! «WQ
= (UK Y+ Qe Z.

So we see thaE (0¥, §¥) is an element of and, hencej® = AXy¥ for some contractive\k
of the form (5,6). Finally consider

(1 — AkM)T¥ = 0K — AKM (UK + (0K — U¥))
= 0K — AR(Y* + M - u))
= 0 — AR+ (Y = 7)) — ARM(T* - U¥)
= —AK(YK = §) — AKM (¢ — u¥). (18)

Using the fact thaja® — u¥|l = O («/TQID, II¥* — y*Il2 = O (/TTQkI) and that lim « || Qkll =
0, we obtain from (18) that

lim (1 — AkMYT* =0,  lim Jja¥], = 1.
k— o0 k— o0
This contradicts uniform robust stability. =

Lemma 5.3. infzz TrET Z is bounded from below for somedER"*" if and only if E is
of the form

E=diag(Es, ..., En, E1...., Em. €l,....&n 1)
with i+ ET >0, ;= El > 0and g > 0.

Proof. Suppose that inf.z Tr ET Z is bounded from below. The off-diagonal blocks Bf
are then zero for the following reason: LEtbe equal toE but with its blocks on the
diagonal equal to zero. The off-diagonal blocksZo& Z are not restricted in any way so
Z := AF is an element oF for every € R. If F is nonzero then TE'Z = TrET(AF) =
ATrFTF and this is unbounded from below as a functiorhofThereforeF must be zero,
i.e., E is block-diagonal.

The general form of a block-diagonglis

E:d|ag(El, 5 Em, El,... 5 Emc, E]_,... 5 Em':)
ExpressZ as in (10). Then

TE'Z=) TEZ+) TEz+) TrE Z.



Each block ofZ € Z can vary independently of all other blocks 2f so the only way that
the above is bounded from below is that all

inf TrE'Z, inf TrE'z and _inf TrEz
- ~ | | |
2=27>0 HeZ>0 Trz>0

are bounded from below. It is fairly easy to show that
infez.0 TTEfZi > —00 & E=E >0
infrrz=0 TTETZi > —0c0 & Ei=¢l, 0<geR.

(This is considered in more detail in [5].) n
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