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Abstract

Two conjectures on admissible control operators by George Weiss are
disproved in this paper. One conjecture says that an operator B defined
on an infinite-dimensional Hilbert space U is an admissible control opera-
tor if for every element u ∈ U the vector Bu defines an admissible control
operator. The other conjecture says that B is an admissible control op-
erator if a certain resolvent condition is satisfied. The examples given in
this paper show that even for analytic semigroups the conjectures do not
hold. In the last section we show that this example leads to a semigroup
example showing that the first estimate in the Hille-Yosida Theorem is not
sufficient to conclude boundedness of the semigroup.

Keywords: Infinite-dimensional system, admissible control operator, conditional
basis, C0-semigroup.

Mathematics Subject Classification: 93C25, 93A05, 47D60

1 Introduction

For abstract differential equations the Cauchy problem is an important problem,
i.e., given the abstract differential equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 t ≥ 0. (1)

1



does for any input u(t) and any initial condition x0 there exists a unique solution
x(t) satisfying (weakly) the equation (1)? If A generates a C0-semigroup on the
Hilbert space H, and B is a bounded operator from the Hilbert space U to H,
i.e., B ∈ L(U, H), then for any input u ∈ L2(0,∞; U) and x0 ∈ H, there exists a
unique solution of (1). This solution is given by

x(t) = T (t)x0 +
∫ t

0
T (t− ρ)Bu(ρ)dρ, (2)

where T (t) is the C0-semigroup generated by A. An interesting question is
whether this result still holds if B is not an element of L(U, H). As is clear
from the linearity of the system, we only have to study the second part of the
solution (2). Weiss [12] showed that if the solution of (1) must take values in H
for any u ∈ L2(0,∞; U), then B ∈ L(U, D(A∗)′), where D(A∗) is the domain of
the adjoint of A, and ′ denotes the dual space. Note that this implies that B is
bounded if A is bounded on H.

One would like to characterize those B’s for which (1) has a unique solution.
These B’s are called admissible.

Definition 1.1 B ∈ L(U, D(A∗)′) is called an admissible control operator for
T (t), if for some (and hence any) t > 0 there exists a constant M > 0 such that∥∥∥∥∫ t

0
T (t− ρ)Bu(ρ) dρ

∥∥∥∥
H

≤M‖u‖L2(0,∞;U), u ∈ L2(0,∞; U).

For u ≡ 0 the Hille-Yosida Theorem gives necessary and sufficient conditions such
that (1) has a strongly continuous solution. For non-zero inputs one would like
to obtain simple conditions as well. Weiss [13] conjectured the following.

Conjecture 1.2 Let B ∈ L(U, D(A∗)′). Then the following statements are
equivalent.

1. B is an admissible control operator for T (t).

2. For every u ∈ U , Bu is an admissible control operator for T (t).

Clearly, Part 1 implies Part 2. Hansen and Weiss [6] showed that Part 2 implies
Part 1 if T (t) is a normal and analytic C0-semigroup and in Weiss [13] it is shown
that this implication also holds for left-invertible C0-semigroups.

In Weiss [13] the following stronger conjecture appeared.

Conjecture 1.3 Let B ∈ L(U, D(A∗)′). Then the following statements are
equivalent.
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1. B is an admissible control operator for T (t).

2. There exist constants K, ρ > 0 such that

‖(sI −A)−1B‖ ≤ K√
Re(s)

, s ∈ C, Re(s) > ρ.

Weiss [13] showed that Part 1 implies Part 2, and that the converse implication
holds for left-invertible semigroups, and for normal semigroups with a finite-
dimensional input space (see also Weiss [14]). Moreover, Partington and Weiss
[9] proved that Part 2 implies Part 1 if U is finite-dimensional and T (t) is the
right shift semigroup, and Jacob and Partington [7] used the techniques of [9]
to show the implication for contraction semigroups and finite-dimensional input
spaces.

We give an example which shows that the Conjecture 1.2 does not hold in general,
not even if we restrict the conjecture to analytic C0-semigroups. As a consequence
we get that the Conjecture 1.3 is wrong as well, since Weiss [13] showed that
Conjecture 1.3 implies Conjecture 1.2. Hence it seems that in general there are
no simple necessary and sufficient conditions for admissibility. We remark that in
Grabowski and Callier [5] a (more involved) necessary and sufficient condition is
given. Furthermore, in Zwart [15] the following sufficient condition is presented.
If there exist M > 0, ρ ∈ R, and α > 1

2 such that for all s with real part bigger
than ρ we have that Re(s)α‖(sI − A)−1B‖ ≤M , then B is admissible.

If one studies the limit behavior of solutions of (1), a stronger concept than
admissibility is needed, called infinite-time admissibility.

Definition 1.4 B ∈ L(U, D(A∗)′) is called an infinite-time admissible control
operator for T (t), if there exists a constant M > 0 such that∥∥∥∥∫ ∞

0
T (ρ)Bu(ρ) dρ

∥∥∥∥
H

≤M‖u‖L2(0,∞;U), u ∈ L2(0,∞; U).

Of course, every infinite-time admissible control operator for T (t) is an admissible
control operator for T (t), and if T (t) is exponentially stable, then admissibility
and infinite-time admissibility are equivalent notions. We give an example show-
ing that, even for compact operators A and B, that is, T (t) is an uniformly
continuous semigroup with a compact generator and B ∈ L(H) is compact, the
infinite-time admissibility of Bu for every u ∈ H, does in general not imply the
infinite-time admissibility of B. Note that the continuous semigroup T (t) in this
example is bounded and strongly stable. Moreover, this example shows that in
general the condition

‖(sI −A)−1B‖ ≤ K√
Re(s)

, s ∈ C, Re(s) > 0,
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for some K > 0, does not imply the infinite-time admissibility of B.

In the last section we show that our counterexamples leads to a semigroup exam-
ple showing that the first estimate in the Hille-Yosida Theorem is not sufficient
to conclude boundedness of the semigroup.

2 Construction of the counterexamples

Let H be a separable Hilbert space with orthonormal basis {φn}n∈N. We define
the conditional basis {en}n∈N of H as follows:

e2n := φ2n,

e2n−1 := φ2n−1 +
∞∑
k=n

αk−n+1φ2k,

where αn = 1
(n+1) log(n+1) . In Singer [10, page 429] it is shown that {en}n is a

conditional basis, but not a Riesz basis. Since {en}n is a basis we have that for
every x there exists a unique sequence of coefficients {xn}n, xn ∈ C, such that

x =
∞∑
n=1

xnen = lim
N→∞

N∑
n=1

xnen.

Note that the sequence {αn}n satisfies

∞∑
n=1

αn =∞ and
∞∑
n=1

nα2
n <∞.

The following lemma is useful and can be found in Singer [10, pp. 429–430].

Lemma 2.1 There exists a constant κ > 0 such that for all n ∈ N and all
{βk}2n

k=1 we have

n∑
j=1

|β2j−1|2 +
n∑
j=1

∣∣∣∣∣β2j +
j∑

k=1

β2k−1αj−k+1

∣∣∣∣∣
2

+
∞∑

j=n+1

∣∣∣∣∣
n∑
k=1

β2k−1αj−k+1

∣∣∣∣∣
2

=

∥∥∥∥∥
2n∑
j=1

βjej

∥∥∥∥∥
2

≤ κ
n∑
j=1

|β2j−1|2 +
n∑
j=1

∣∣∣∣∣β2j +
j∑

k=1

β2k−1αj−k+1

∣∣∣∣∣
2

.
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Note, that Lemma 2.1 immediately implies the following result. For an element

v =
∞∑
n=1

vnen ∈ H

we have ∞∑
j=1

|v2j−1|2 ≤ ‖v‖2. (3)

For diagonal operators on a basis of H there is the following nice result, which
can be found in Benamara and Nikolski [1, Lemma 3.2.5].

Lemma 2.2 Let {ϕn}n be a basis of H. If Q is defined as

Qϕn = qnϕn

with {qn}n∈N ⊂ C, and the total variation of the sequence {qn} is finite, i.e.,

V ar(qn) :=
∞∑
n=1

|qn+1 − qn| <∞,

then Q can be extended to a linear bounded operator on H, and

‖Q‖ ≤ K(V ar(qn) + lim sup |qn|),

where K is a constant independent of the sequence {qn}.

In order to calculate the total variation, the following observation is useful. If f
is a continuous function which is non-decreasing or non-increasing on the interval
(a, b), and if the sequence {qn}n ⊂ (a, b) is non-decreasing or non-increasing, then

V ar(f(qn)) ≤ |f(a)− f(b)|.

A sequence {γn}n ⊂ C+, here C+ denotes the open right half plane, is an in-
terpolating sequence if for every bounded sequence {γn}n ⊂ C there exists a
holomorphic and bounded function f on C+ such that

f(γn) = an, n ∈ N.

More information on interpolating sequences can be found in Garnett [4]. Con-
cerning interpolating sequences in the right half plane we need the following result
(see Garnett [4, page 316]).

Lemma 2.3 Let {γn}n be an interpolating sequence in the right half plane C+.
Then there exists a subspace U0 ⊂ L2(0,∞) such that
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1. {
√

Re(γn)û(γn)}n ∈ `2 for every u ∈ L2(0,∞), and for some M2 > 0

‖{
√

Re(γn)û(γn)}n‖`2 ≤M2‖u‖L2(0,∞), u ∈ L2(0,∞).

2. For some constant M1 > 0 we have

M1‖u‖L2(0,∞) ≤ ‖{
√

Re(γn)û(γn)}n‖`2, u ∈ U0.

3. For every {an}n ∈ `2 there exists an u ∈ U0 such that√
Re(γn)û(γn) = an.

We are now in a position to present the example showing that infinite-time ad-
missibility of Bu for T (t) for every u ∈ U in general not imply the infinite-time
admissibility of B for T (t). Note, that in the presented example the operators
A and B are compact elements of L(H) and that T (t) is bounded and strongly
stable.

Example 2.4 Let {µn}n ⊂ (−1, 0) be a monotonically increasing sequence with
limn→∞ µn = 0 such that {−µn}n is an interpolating sequence of the right half
plane C+ and

∑∞
n=1
√−µn <∞. We could for example choose µn := −2−n, see

Garnett [4, page 288]. We now define A by

Aen = µnen, n ∈ N,

where {en} is the conditional basis as defined at the beginning of this section.

Since the sequence {µn}n is monotonically increasing it is easy to see that {µn}n
is of bounded variation. Now by Lemma 2.2, we get that A has a linear bounded
extension to H, that is A ∈ L(H). Let T (t) be the C0-semigroup generated by
A, that is

T (t)en = eµnten, t ≥ 0, n ∈ N.

We define the operator B by

Ben =
{ √−µnen , n = 2k − 1, k ∈ N,

0 , otherwise.

It is easy to see that the sequence (
√−µ1, 0,

√−µ3, 0,
√−µ5, 0, . . .) is of bounded

variation. Lemma 2.2 shows that B has a linear bounded extension to H, that is
B ∈ L(H). We now get

1. T (t) is bounded and strongly stable.

Proof: By Lemma 2.2 we have for t ≥ 0

‖T (t)‖ ≤ 2K,
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and thus the C0-semigroup T (t) is bounded.

Next we show that T (t) is strongly stable. Let x =
∑∞

n=1 fnen ∈ H and
ε > 0. Then there exists an N ∈ N such that xN :=

∑N
n=1 fnen satisfies

‖x− xN‖H < ε.

Thus for sufficiently large t > 0 we have

‖T (t)x‖ ≤ ‖T (t)x− T (t)xN‖+ ‖T (t)xN‖

≤ ‖T (t)‖ ‖x− xN‖+

∥∥∥∥∥
N∑
n=1

eµntfnen

∥∥∥∥∥
≤ 2Kε +

N∑
n=1

eµnt|fn| ‖en‖

≤ 2Kε + ε,

and so T (t) is strongly stable.

2. The operator A is compact.

Proof: Define An, n ∈ N, by

Anek =
{

µkek, k ≤ n
0 , k > n

.

Using Lemma 2.2 we see that An ∈ L(H). Moreover, the operator An has
rank n. Again using Lemma 2.2 we get the estimate

‖A− An‖ ≤ 2K|µn+1| → 0 as n→∞,

which shows that A is compact.

3. Similarly to Part 2 it can be shown that B is compact.

4. B is not an infinite-time admissible control operator for T (t).

Proof: Assume that B is an infinite-time admissible control operator for
T (t). Then there exists a constant L > 0 such that∥∥∥∥∫ ∞

0
T (τ)Bu(τ) dτ

∥∥∥∥
H

≤ L‖u‖L2(0,∞;H), u ∈ L2(0,∞; H). (4)

We now choose scalar functions u2k−1 ∈ U0, k ∈ N, such that√
−µjû2k−1(−µj) = δj,2k−1, k, j ∈ N.
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Using Lemma 2.3, Part 2 and 3, this is possible with

‖u2k−1‖L2(0,∞) ≤
1

M1
, k ∈ N. (5)

Moreover, we define ũn ∈ L2(0,∞; H) by

ũn(t) :=
n∑
k=1

u2k−1(t)e2k−1, t ∈ [0,∞).

Next we calculate the norm of ũn.

‖ũn‖2
L2(0,∞;H) =

∫ ∞
0

∥∥∥∥∥
n∑
k=1

u2k−1(t)e2k−1

∥∥∥∥∥
2

dt

≤
∫ ∞

0

κ
n∑
k=1

|u2k−1(t)|2 +
n∑
j=1

∣∣∣∣∣
j∑

k=1

u2k−1(t)αj−k+1

∣∣∣∣∣
2
 dt

(using Lemma 2.1)

≤ κ

n∑
k=1

1
M2

1
+

n∑
j=1

∫ ∞
0

∣∣∣∣∣
j∑

k=1

u2k−1(t)αj−k+1

∣∣∣∣∣
2

dt (using (5))

≤ κ
1

M2
1
n +

1
M2

1

n∑
j=1

∞∑
l=1

∣∣∣∣∣
j∑

k=1

√
−µlû2k−1(−µl)αj−k+1

∣∣∣∣∣
2

(using Part 2 of Lemma 2.3)

= κ
1

M2
1
n +

1
M2

1

n∑
j=1

∞∑
l=1

∣∣∣∣∣
j∑

k=1

δl,2k−1αj−k+1

∣∣∣∣∣
2

= κ
1

M2
1
n +

1
M2

1

n∑
j=1

∞∑
l=1

|δl,1αj + δl,3αj−1 + . . . + δl,2j−1α1|2

= κ
1

M2
1
n +

1
M2

1

n∑
j=1

j∑
l=1

|αl|2

≤ κ
1

M2
1
n +

n

M2
1

∞∑
l=1

|αl|2 = κ̃n,

where κ̃ > 0 is independent of n ∈ N. Thus (4) implies∥∥∥∥∫ ∞
0

T (τ)Bũn(τ) dτ

∥∥∥∥2

H

≤ Lκ̃n. (6)
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However,∫ ∞
0

T (τ)Bũn(τ) dτ =
n∑
k=1

∫ ∞
0

T (τ)Be2k−1u2k−1(τ) dτ

=
n∑
k=1

∫ ∞
0

√
−µ2k−1e

µ2k−1τu2k−1(τ) dτe2k−1

=
n∑
k=1

√
−µ2k−1û2k−1(−µ2k−1)e2k−1

=
n∑
k=1

e2k−1,

and so∥∥∥∥∫ ∞
0

T (τ)Bũn(τ) dτ

∥∥∥∥2

H

=

∥∥∥∥∥
n∑
k=1

e2k−1

∥∥∥∥∥
2

H

≥ n +
n∑
j=1

∣∣∣∣∣
j∑

k=1

αj−k+1

∣∣∣∣∣
2

(using Lemma 2.1)

= n +
n∑
j=1

∣∣∣∣∣
j∑

k=1

αk

∣∣∣∣∣
2

≥
n∑
j=1

∣∣∣∣∫ j+2

2

1
k log k

dk

∣∣∣∣2
≥

n∑
j=1

|log(log j + 2)|2 ,

which contradicts (6). Thus B is not an infinite-time admissible control
operator for T (t).

5. For every v ∈ H we have that Bv is an infinite-time admissible control
operator for T (t).

Proof: Let v ∈ H. Then there exist scalars {fn}n such that

v =
∞∑
n=1

fnen.

Let vN :=
∑2N−1

n=1 fnen. For u ∈ L2(0,∞) we get∥∥∥∥∫ ∞
0

T (τ)BvNu(τ) dτ

∥∥∥∥
H

=

∥∥∥∥∥
∫ ∞

0

N∑
n=1

eµ2n−1τf2n−1
√
−µ2n−1e2n−1u(τ) dτ

∥∥∥∥∥
H
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=

∥∥∥∥∥
N∑
n=1

f2n−1
√
−µ2n−1

∫ ∞
0

eµ2n−1τu(τ) dτe2n−1

∥∥∥∥∥
H

=

∥∥∥∥∥
N∑
n=1

f2n−1
√
−µ2n−1û(−µ2n−1)e2n−1

∥∥∥∥∥
H

≤
N∑
n=1

|f2n−1
√
−µ2n−1û(−µ2n−1)|

≤
(

N∑
n=1

|f2n−1|2
)1/2( N∑

n=1

|
√
−µ2n−1û(−µ2n−1)|2

)1/2

≤ M2‖vN‖ ‖u‖L2(0,∞) (using Lemma 2.1 and Lemma 2.3).

Thus BvN is an infinite-time admissible control operator for T (t). Similarly,
we can show that for N > M we have∥∥∥∥∫ ∞

0
T (τ)BvNu(τ) dτ −

∫ ∞
0

T (τ)BvMu(τ) dτ

∥∥∥∥
H

≤
∥∥∥∥∥

2N−1∑
n=2M+1

fnen

∥∥∥∥∥
H

‖u‖L2(0,∞),

and so using the fact that the space of admissible control operators with
input space C is complete, see Weiss [12, Remark 4.6], we get that Bv is
an admissible control operator for T (t).

6. There exists a constant K > 0 such that

‖(sI −A)−1B‖ ≤ K√
Re(s)

, s ∈ C, Re(s) > 0.

Proof: In the previous part we proved that for every v ∈ H Bv is an
infinite-time admissible control operator for T (t). Thus Weiss [14] showed
that for every v ∈ H, ‖v‖ = 1, there exists a constant Mv > 0 such that

‖(sI − A)−1Bv‖ ≤Mv/
√

Re(s) for all s ∈ C+.

Using the uniform boundedness theorem this implies the existence of a
constant M > 0 such that

‖(sI −A)−1B‖ ≤M/
√

Re(s) for all s ∈ C+.

Next we give an example showing that Conjecture 1.2 and 1.3 do not hold in
general. Note that the C0-semigroup T (t) used in this example is analytic.
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Example 2.5 Let {µn}n ⊂ (−∞,−1) be a monotonically decreasing sequence
with limn→∞ µn = −∞ such that {−µn}n is an interpolating sequence of C+. We
could for example choose µn := −2n, see Garnett [4, page 288].

For t ≥ 0 we define T (t) by

T (t)en := eµnten, n ∈ N.

Since the sequence {µn}n is monotonically decreasing and since limn→∞ µn =
−∞, we get by Lemma 2.2 that T (t) has a linear bounded extension to H. Thus
T (t) ∈ L(H), and

‖T (t)‖ ≤ Ke−t, t ≥ 0. (7)

Clearly, T (0) = I and T (t)T (s) = T (t + s) for t, s ≥ 0. We will show that T (t)
is strongly continuous. For x ∈ H, there exists a sequence {fn}n of scalars such
that

x =
∞∑
n=1

fnen.

Choose ε > 0 and choose N such that ‖x − xN‖H < ε, where xN :=
∑N

n=1 fnen
Next choose t0 > 0 such that

∑N
n=1 |eµnt0 − 1| |fn| ‖en‖ ≤ ε. Then we have for

t ∈ (0, t0) that

‖T (t)x− x‖ ≤ ‖T (t)x− T (t)xN‖+ ‖T (t)xN − xN‖+ ‖xN − x‖

≤ Ke−t0ε +
N∑
n=1

|eµnt0 − 1| |fn| ‖en‖+ ε

≤ [Ke−t + 2]ε.

Thus T (t) is a C0-semigroup on H. From (7) we see that T (t) is exponentially
stable. Let A be the generator of T (t). It is easy to see that A is given by

Aen = µnen, n ∈ N.

We define the operator B by

Ben =
{ √−µnen , n = 2k − 1, k ∈ N,

0 , otherwise.

Noting that D(A∗)′ is the completion of H with respect to the norm

‖x‖D(A∗)′ = ‖A−1x‖H ,

it is easy to see that B ∈ L(H, D(A∗)′). We now get

11



1. The C0-semigroup T (t) is analytic.

Proof: Since the semigroup is uniformly bounded, it is sufficient, [8, The-
orem 2.5.2], to show that

‖(sI −A)−1‖ ≤ M

| Im s| , s ∈ C+.

Let s = sr + isi ∈ C+. Clearly,

(sI −A)−1en =
1

s− µn
en, n ∈ N.

In order to show the above estimate, we first prove that

γn :=
1

s− µn
, n ∈ N,

is of bounded variation. We get

γn =
1

s− µn
=

s̄

|s− µn|2
− µn
|s− µn|2

,

and we define

h1 : R− → R+, h1(x) :=
1

|s− x|2 ,

h2 : R− → R−, h2(x) :=
x

|s− x|2 .

Clearly, h1 is monotonically increasing on (−∞, 0), and h1(−∞) = 0 and
h1(0) = 1

|s|2 . Moreover, we have

h′2(x) =
|s− x|2 + 2x(sr − x)

|s− x|4 .

Thus

h′2(x) = 0⇔ |s− x|2 + 2x(sr − x) = 0⇔ −x2 + |s|2 = 0⇔ x = −|s|.

Thus h2 is monotonically decreasing on (−∞,−|s|) and monotonically in-
creasing on (−|s|, 0). Moreover, h2(−∞) = h2(0) = 0, and thus |h2| has its
maximum in −|s|. Note that

|h2(−|s|)| =
|s|

|s + |s||2 ≤
1
|s| .
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Using Lemma 2.1 we get the following estimate for ‖(sI − A)−1‖.

‖(sI − A)−1‖

≤ K(Var ({γn}) + | lim
n→∞

γn|) ≤ K

( ∞∑
n=1

|γn+1 − γn|
)

≤ K

(
|s|

∞∑
n=1

|h1(µn+1)− h1(µn)|+
∞∑
n=1

|h2(µn+1)− h2(µn)|
)

≤ 3K
|s| ≤

3K
| Im s|

where K > 0 is independent of s. Thus the statement is proved.

2. B is not an admissible control operator for T (t).

Since T (t) is exponentially stable it is enough to show that B is not an
infinite-time admissible control operator for T (t). The proof of this state-
ment is the same as the proof of Part 4 of Example 2.4.

3. For every v ∈ H we have that Bv is an admissible control operator for T (t).

Since T (t) is exponentially stable it is enough to show that for every v ∈ H
we have that Bv is an infinite-time admissible control operator for T (t).
Again the proof is the same as the proof of Part 5 of Example 2.4.

3 A semigroup example

A direct consequence of the Hille-Yosida Theorem is that a C0-semigroup Te(t) is
uniformly bounded if and only if there exists a constant M such that its generator
Ae satisfies

‖(sI −Ae)−n‖ ≤
M

Re(s)n
for all n ∈ N and s ∈ C+.

An interesting question is whether the first inequality is sufficient to conclude the
boundedness of the C0-semigroup. Using the example of the previous section we
will show that this is in general not true. Hence we construct a C0-semigroup for
which the infinitesimal generator Ae satisfies

‖(sI − Ae)−1‖ ≤ M

Re(s)
for all s ∈ C+, (8)

but the semigroup satisfies
lim
t→∞
‖Te(t)‖ =∞. (9)
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Consider the operators A and B of Example 2.4, and let T (t) denote the bounded
semigroup generated by A. With these operators we define the semigroup Te(t)
on H ⊕ L2(0,∞; H) as

Te(t)
(

x
f

)
=
(

T (t)x +
∫ t

0 T (t− τ)Bf(τ)dτ
f(t + ·)

)
.

Using that B is a bounded operator, and hence B is an admissible control operator
for T (t), Engel [3] showed that Te(t) is a C0-semigroup on H ⊕ L2(0,∞; H).
Since B is not infinite-time admissible we know that Te(t) cannot be a bounded
semigroup, we will show that it satisfies (9). By taking the Laplace transform of
the semigroup, we see that the resolvent is given by

(sI − Ae)−1
(

x
f

)
=

(
(sI −A)−1x + (sI − A)−1Bf̂(s)

̂f(t + ·)(s)

)

Since the left shift is a contraction semigroup we know that L2(0,∞; H)-norm
of ̂f(t + ·)(s) is bounded by ‖f‖ times 1/Re(s). Furthermore, since T (t) is a
bounded semigroup, a similar estimate holds for (sI − A)−1. Thus we have that
for s ∈ C+∥∥∥∥(sI −Ae)−1

(
x
f

)∥∥∥∥2

≤ M2

Re(s)2‖x‖
2 + ‖(sI − A)−1B‖2‖f̂(s)‖2 +

1
Re(s)2‖f‖

2.

(10)
Since f ∈ L2(0,∞; H) we have that

‖f̂(s)‖ ≤ ‖f‖/
√

2Re(s) for all s ∈ C+. (11)

In Example 2.4 we proved the existence of a constant K > 0 such that

‖(sI − A)−1B‖ ≤ K/
√

Re(s) for all s ∈ C+. (12)

Combining (10)–(12) gives that Ae satisfies the estimate (8). Since the corre-
sponding semigroup does not satisfy (9), we have shown that the first estimate
in the Hille-Yosida Theorem is not sufficient to conclude the boundedness of the
semigroup.

4 Underlying ideas

Although it is extremely hard to tell why the counterexample is constructed in
the way as it is, we would like to give some indications. For definitions and
background information on the system theoretic concepts we refer to Curtain
and Zwart [2].
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If a strongly stable system is infinite-time admissible and exactly controllable,
then there exists a coercive solution of the Lyapunov equation

AL + LA∗ = −BB∗.

In particular, this implies that A is similar to a contraction. Now it is well-
know that not every infinitesimal generator on a Hilbert space is similar to a
contraction. Last year A. Simard [11] showed that the operator eA, with A given
as in Example 2.4 is not similar to a contraction. Hence this could work as
A operator. Since for diagonal generators A = diag(µn) on a Riesz basis, the
input operator diag(

√−µn) is admissible, it seemed logically to try this on a
conditional basis. During the process of writing we found out that it was better
to use a variation of this candidate.
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