4

University of Twente
unnersity for techrical and
social sciences

MEMORANDA INFORMATICA-89-18

A VERIFICATION EXERCISE RELATING
TO SPECIFICATION STYLES IN LOTOS

Marten van Sinderen

March 1989

Memoranda Informatica

ISSN: 0923-1714
University of Twente,

Department of Computer Science,

P.0.Box 217,
7500 AE Enschede,
The Netherlands.

March 1989

University of Twente
Department of Informatics
P.O. Box 217

7500 AE Enschede

The Netherlands

MEMORANDUM INF-89-18
A VERIFICATION EXERCISE
RELATING TO
SPECIFICATION STYLES IN LOTOS

Marten van Sinderen

A Verification Exercise Relating to Specification Styles in LOTOS
Marten van Sinderen

University of Twente
Department of Informatics
P.O. Box 217
7500 AE Enschede, NL

Abstract

The design of complex distributed systems can be supported by a methodology where several,
increasingly implementation-oriented, formal specifications are successively developed. The
relative verification of such specifications is discussed in this memorandum in the context of some
example specifications in LOTOS. It is claimed that the adoption of common specification styles
can simplify the verification task. Two useful congruence laws which are not contained in the
LOTOS standard are presented.

1. Introduction

The notion that the use of formal description techniques (FDTs) for the specification of distributed
systems is to be preferred over the use of merely informal methods is gaining more and more
support. The successful formal specification of some OSI service and protocol standards (see, for
example, [Este89, Loto89]) may have contributed to this trend.

On the other hand, experience with the development of such complex formal specifications (FDs)
as those of the OSI standards has shown that the specification job is easily underestimated. One of
the major problems turned out to be finding the appropiate structure for a specification, i.e. a
structure that expresses functionality at the required level of abstraction, that is comprehensible,
and satisfies further stated design objectives. Clearly, agreement on a proper structure for an FD is
of prime concern for preserving homogeneity and consistency of the FD if it is produced by a
team, a situation we might expect as a rule in an industrial environment.

One way of tackling this problem is by adopting a limited number of specification styles, based on
specification experience and technical and/or formal arguments. In [Viss88] a design methodology
is presented that takes the use of specification styles as its fundament. Particular styles are used to
structure specifications that relate to different phases of the system design traject and thus pursue
different design objectives. The successive application of the styles is such that in each phase the
FD exhibits a refined structure compared with the FD developed in the previous phase. In this way
a step-by-step development of a final specification is permitted that will be used as the reference
basis for implementation.

An obvious requirement of this approach is that the specifications should be correct w.r.t. each
other, i.e. they should describe the same behaviour as the initial (architectural) specification,
which, in turn, must correctly capture the users’ requirements. This memorandum discusses the
relative verification of FDs in the context of some example specifications according to different
styles in the FDT LOTOS [ISO8807].

Section 2 presents the example specifications and summarizes the characteristics of the
specification styles. The examples are taken from [Viss88], which also includes a more detailed

1

presentation of each of the styles. In section 3 the relative verification of the examples is presented
together with two verification approaches that take advantage of the style-induced specification
structures. A brief discussion of the verification exercise is given in section 4. Two annexes are
attached: one containing the proofs of two (weak bisimulation) congruence laws which are used in
section 3, and the other containing a preliminary investigation of to which extent current service
and protocol FD structures support their relative verification, relating to section 4.

2. Examples

The examples presented in this section will be used to illustrate how a few related specification
styles can reduce the verification effort in the design of distributed systems. We will only consider
the verification of dynamic behaviour, not of data types, which means that the examples can be
expressed in basic LOTOS [Bolo87], a subset of standard LOTOS [ISO8807]. Considerations
w.r.t. styles for the specification of abstract data types can be found in [Gotz87], while approaches
to the verification of data types are contained in, for example, [Gogu78, Ehri85, Orej87].

2.1 Informal specification

The system architecture that is taken as the starting point supports a ’one-time’ interaction of two
users, Q and A:

- user Q can generate a question which is then transferred by the system to user A;
- in response to the question, user A must generate an answer which is transferred back by the

system to user Q.

Figure 1 shows the time-sequence diagram that corresponds to this simple ’question/answer’
service.

| o A

time
question ..
. " -dp-question -
... answer---
answered -

Figure 1: Time-sequence diagram of question/answer service.

2.2 Monolithic specification

In the monolithic style only observable interactions are presented and their temporal ordering
relationship is defined as a collection of alternative sequences of interactions.

A monolithic specification is extensional, i.e. it does not define internal boundaries of the system.
Moreover, a monolithic specification even lacks any useful structure associated with the external
boundary which could be used as a basis for possible decomposition. The specification below is
therefore a direct, implementation-independent, representation of the question/answer service
(synchronization at the gates Qg, Aq, Aa, and Qa represent, respectively: acceptance of question,
delivery of question, acceptance of answer, and delivery of answer).

process Sm[Qq,Aq,Aa,Qaj:noexit := Qq;Aq;Aa;Qa;stop endproc

2.3 Constraint-oriented specification

In the constraint-oriented style only observable interactions are presented, but their temporal
ordering relationship is composed as a conjunction of separate constraints. Each constraint is
defined on the subset of the interaction set that is relevant to it.

Also a constraint-oriented specification is extensional. The external behaviour, however, is
structured in terms of constraint specifications that may provide useful hints for internal
structuring. The following specification shows a separation of local constraints (process L) and
remote, or end-to-end, constraints (process A). Local constraints apply at each of the user
interfaces; remote constraints relate the two user interfaces and can be further decomposed into
two one-directional constraint parts (processes Aq and Ra).

process Sc[Qq,Aq,Aa,Qa]:noexit := (L[Qq,Qa] ||| L[Aq,Aa]) || R[Qq,Aq,Qa,Aa] where
process L[Xq,Xa]:noexit := Xq;Xa;stop endproc
process R[Qq,Aq,Qa,Aa]:noexit := Rq[Qq,Aq] ||| Ra[Aa,Qa] where
process Rq[Qq,Aq].noexit := Qq;Aq;stop endproc
process Ra[Aa,Qa]:noexit .= Aa;Qa;stop endproc
endproc
endproc

2.4 Resource-oriented specification

In the resource-oriented style both observable and internal interactions are presented. The
temporal ordering relationship of the observable interactions is defined by the composition of
separate ’resources’ that hides internal interactions. Each resource is defined by a temporal
ordering of external and internal interactions or of merely internal interactions.

A resource-oriented specification is called intensional since it defines internal boundaries resulting
from a composition of the overall specification from specification parts that reflect system
resources. The specification below illustrates the provision of the question/answer service by two
protocol entities (processes QF and AF) that interwork via an underlying service (process US). The
protocol entities are specified, according to the constraint-oriented style, in terms of local (as in
section 2.3), send and receive constraints. The underlying service is a simple connectionless
service for the transfer of data from UQs to UAr, or from UAs to UQr. No relationship between the
two directions of transfer is assumed by this service.

process Sr[Qq,Aq,Aa,Qaj:noexit :=
hide UQs,UQr,UAs,UAr In
((QE[Qq,Qa,UQs,UQr] ||| AE[Aq,Aa,UAs,UAr]) [[UQs,UQr,UAs, UAr]| US[UQs,UQr,UAs,UATr])
where
process QE[Qq,Qa,UQs,UQr]:noexit := L[Qq,Qa] [[Qq,Qa]l (QEs[Qq,UQs] ||| QEr[Qa,UQr]) where
process QEs[Qq,UQs]:noexit := Qq,UQs;stop endproc
process QEr[Qa,UQr]:noexit := UQr,Qa,;stop endproc
endproc
process AE[Aq,Aa,UAs,UAr]:noexit := L[Aq,Aa] [[Aq,Aa]| (AEs[Aa,UAs] ||| AEr{Aq,UAr]) where
process AEs[Aa,UAs]:noexit := Aa;UAs,stop endproc
process AEr[Aq,UAr]:noexit := UAr;Aq;stop endproc
endproc
process US[UQs,UQr,UAs,UAr]:noexit := UQs;UAr;stop ||| UAs,UQr;stop endproc
endproc

3. Verification
The previous examples present the same system architecture if we can show that:

1) the constraint-oriented specification of the question/answer service is equivalent to the
monolithic service specification; and

2) the resource-oriented specification of the question/answer service is equivalent to (i.e., the
protocol is correct with respect to) the constraint-oriented service specification.

There are different notions of equivalence: disregarding certain internal events, equating behaviour
that cannot be distinguished by classes of finite tests [Abra87], etc. The LOTOS standard contains
definitions of, and laws for, two well-established notions of observational equivalence, viz. weak
bisimulation equivalence (cf. [Park81]) and testing equivalence (cf. [Nico84, Brin87]). Of the two,
weak bisimulation is the strongest, i.e. if two behaviours B7 and B2 are weak bisimulation
equivalent, they are also testing equivalent, but not necessarily vice versa.

We will demonstrate weak bisimulation equivalence for the two cases mentioned and therefore
also their testing equivalence. Use is made of the congruence laws contained in Annex B of the
LOTOS standard. A congruence relation is generally stronger than the corresponding equivalence
relation: B7 and B2 are congruent if, and only if, C[B7] and C[B2] are equivalent for all contexts Cf].
If B1 and B2 are weak bisimulation congruent we will write this as B7 = B2. The laws which are
used for this exercise are listed in table 1. Three additional laws are included, namely (8), (10) and
(11), of which the last two prove useful especially when verifying the correctness of a protocol
against its service ((10) and (11) are proven in annex A; the proof of (8) follows directly from the
operational semantics of the parallel operator).

In the following, each replacement of a B1 by a B2 is accompanied by a reference to the law(s) in
table 1 justifying that replacement.
3.1 Verification of constraint-oriented specification against monolithic specification

This verification is straightforward and requires only the application of the laws for instantiation
and expansion.

Sc[Qq,Aq,Aa,Qa]

7O(<75;)Oa;st0p /Il Aq;Aa;stop) || (Qq;Aq;stop ||| Aa;Qa;stop)
Zc(l,?()(Qa;stop ||| Aq;Aa;stop) || (Aq;stop ||| Aa;Qa;stop))
=-(;?cg.?fzq;((Qa;stop ||| Aa;stop) || (stop |/| Aa;Qa;stop))
ZC(IQQ;A&'((Qa;stop ||| stop) || (stop ||| Qa;stop))
=-(;?c(y?/zq;Aa;Oa;stc:vp

=(5)
Sm[Qq,Aq,Aa,Qa]

3.2 Verification of resource-oriented specification against constraint-oriented specification

In this case we should exploit the structure of the specifications in order to reformulate the
equivalence of two specifications as the congruence of smaller (simpler) behaviours (depending on
the context, showing equivalence, instead of congruence, of the partial behaviours may suffice;
however, we will not bother with such cases). First, common parts in the specifications may be
identified, and subsequently be eliminated if their composition with the remaining part is the same
in both specifications. In other words, the equivalence of C[B,D] and C[B,E], where C[] is a context
and B, D and E behaviour expressions, is implied by the congruence of D and E.

Another approach is that of identifying ’corresponding’ parts, i.e. behaviours that describe
corresponding functionality, and for that reason are expected to be equivalent. If one can identify
such parts it is natural to investigate the congruence of the pairs independently: the equivalence of
C[D1,....Dn] and C[E1,...,En]is implied by the congruence of each of the pairs D7 and E7, D2 and E2,
etc.

The structures chosen for the specifications, and therefore also the specification styles adopted,
determine how easy or difficult it is to find common/corresponding parts. As stated before, a
constraint-oriented specification may provide hints for further (internal) structuring. Following
these hints in the development of a resource-oriented specification may thus be advantageous. This
is also illustrated in the following.

Sr{Qq,Aq,Aa,Qal

= (5)

hide UQs,UQr,UAs,UAr In

(((L[Qq,Qa]|[QqQa]l (QES[Qq,UQs] ||| QENQa,UQr]))
Il (L[Aq,Aa] [[AqAa]| (AEs[Aa,UAs] ||| AEfAq,UATr]))

)
J[UQs,UQr,UAs, UAT]|
US[UQs,UQr,UAs,UAr]
)

=(11)
hide UQs,UQr,UAs,UAr in
(((L[Qq.Qa] ||| L[Aq.Aa])
/[Qq,Qa,Aq,Aa]l
((QEs[Qq,UQs] ||| QErfQa,UQY]) ||| (AEs[Aa,UAs] ||| AErfAq,UAr]))

)
[[UQs,UQr,UAs, UAr]|
US[UQs,UQr,UAs, UAr]
)

=(10)
hide UQs,UQr,UAs,UAr In
((L[QqQa][]|L[Aq.Aa])
[Qq,Qa,Aq,Aaj/
(((QEs[Qq,UQs] ||| QErfQa,UQr)) ||| (AEs[Aa,UAs] ||| AEr[Aq,UAr)))
[[UQs, UQr,UAs, UAr]|
US[UQs,UQr,UAs,UAr]
))

=@
(hide UQs,UQr,UAs,UAr In (L[Qq,Q4] ||| L[Aq,A4d]))
I[Qq,Qa,Aq.Aajf
(hide UQs,UQr,UAs,UAr In
(((QEs[Qq,UQs] ||| QEr{Qa,UQr])) ||| (AEs[Aa,UAs] ||| AErfAq,UAr)))
J[UQs,UQr,UAs,UAr]/
US[UQs,UQr,UAs,UAr]
))

=(1)
(L[Qq,Qa] ||| L[Aq,Aa])
[Qq,Qa,Aq,Aaj|
(hide UQs,UQr,UAs,UAr in
(((QEs[Qq,UQs] ||| QErQa,UQr]) ||| (AEs[Aa,UAs] ||| AErfAq,UATr]))
[[UQs,UQr,UAs,UAr]|
US[UQs, UQr,UAs,UAr]
))

If we compare the latter behaviour expression with that defining the behaviour of Sc[Qq,Aq,Aa,Qa],
then we can observe that they have the first part in common (defining the local behaviour at the
interfaces) and that the parallel composition applies to the same gates. Hence it suffices to verify
the congruence of the remaining part of both expressions (describing the protocol remote
behaviour and the service remote behaviour). Let the protocol remote behaviour, i.e. the last hide
expression above, be denoted by ArfQq,Aq,Qa,Aal.

Rr[Qq,Aq,Qa,Aa]
=(5,10,9)
hide UQs,UQr,UAs,UAr In
(((QEs[Qq,UQs] ||| AEfAq,UAr]) ||| (QErQa,UQr] ||| AEs[Aa,UAs]))
j[UQs,UQr,UAs,UATr]|
(UQs;UAr;stop ||| UAs;UQr;stop)
)

=(11)
hide UQs,UQr,UAs,UAr in
(((QEs[Qq,UQs] ||| AEffAq, UAr]) [[UQs,UAr]| UQs;UAr;stop)

((QEr[Qa,UQr] ||| AEs[Aa,UAs])) [[UQr,UAs]| UAs;UQr;stop)

)
=(4,5)

(hide UQs,UQr,UAs,UAr In ((Qq;UQs;stop ||| UAr;Aq;stop) [[UQs,UAr]| UQs;UAr;stop))
/Il (hide UQs,UQr,UAs,UAr in ((UQr;Qa;stop ||| Aa;UAs;stop) |[[UQr,UAs]| UAs;UQr;stop))
=(7,3)

Qgq;(hide UQs,UQr,UAs,UAr In ((UQs;stop ||| UAr;Aq;stop) [[UQs,UAr]| UQs;UAr;stop))
Il Aa;(hide UQs,UQr,UAs,UAr In ((UQr;Qa;stop ||| UAs;stop) [[UQr,UAs]| UAs;UQr;stop))
=(7,2)

Qq;i;(hide UQs,UQr,UAs,UAr in ((stop ||| UAr;Aq;stop) [[UQs,UAr]| UAr;stop))
Il Aai;(hide UQs,UQr,UAs,UAr In ((UQr;Qa;stop ||| stop) [[UQr,UAs]| UQr;stop))
=(7,2)

Qqiii;(hide UQs,UQr,UAs,UAr In ((stop ||| Aq;stop) |[[UQs,UAr]| stop))
Il Aali;(hide UQs,UQr,UAs,UAr in ((Qa;stop ||| stop) [[UQr,UAs]| stop))

=(7,3,8)

Qq;i;l;Aq;stop ||| Aa;l;l;Qa;stop
= (6,5)

Rq[Qq,Aq] ||| Ra[Qa,Aa]

=(5)

R[Qq,Aq,Qa,Aa]

hiding

(1) hide SinB=Bif L(B)NS=D

(2) hide Sing;B=I(hideSinB)if ge S

(3) hideSingB=g;hideSinB)ifge S

(4) hide SIn (B1 [[S]] B2) = (hide S In B1) [[S]] (hide S In B2) if SNS'=D

instantiation

(5) bfat,....an] = Bblal/g1,..an/gn] if process bfg1,..gn]f := Bb endproc is the format of the
corresponding process abstraction for the process-identifier b

internal action

(6) aiIB=aB

expansion theorem
Let B1 [] B2[] ... [] Bn be written as [J{ B1,B2,...,.Bn}, with n finite, and let B = [J{bi;Bi | ie I} and
C = [J{¢j:Cj! je J}, with /and J finite sets. Then:

(7) BJ[SJIC = [I{bixBil[S]IC) | big S, ie I} [1{] {cj:(BI[S]IC)) | cje S, je J} [1[] { a:(Bil[S]ICj) | a=bi=cj, a€ S,
ie I, je J)

parallel

(8) stop |[S]| B = stopif L(B)CS

©) AjsiB=8B]|SIA

(10) (A [[S1]B) |[S2]] C = A [[S1]] (B [[S2]] C) if L(A)NS2CL(A)NS1 and L(C)NS1CL(C)NS2

(11) (A[S1]1B) Il (Cl[S2]ID) = (AJlIC) [[S1uS2]| (BJj|D) if (L(A)UL(B))NS2=D, (L(C)JL(D)NS1=L

Table 1: Some useful laws for weak bisimulation congruence (without value expressions).

4. Discussion

The sequence of the transformation steps above is suggested by the fact that it may be possible to
find expressions, say Rrg and Rra, corresponding to the independent behaviours that make up the
remote constraints of the constraint-oriented specification, viz. Ag and Ra. This is indeed possible,
and the relative verification of the corresponding parts is then simple (note that the independent
verifications are performed simultaneously).

From this it follows that, given a resource- and a constraint-oriented specification that are
structured as our example specifications, however with arbitrary complex parts (resources and
constraints, respectively), the equivalence of the two specifications can be verified by verifying
Rrg= Rqand Rra= Ra.

It appears that law (11) plays a crucial role in the verification: first it is used to separate the local
from the remote constraints in the composed behaviour of the two protocol entities and the
underlying service, and subsequently it allows to separate the constraints associated with the two
directions of transfer in the protocol remote behaviour. We may wonder whether this approach is
still viable if the specifications are not as simple as in the previous case. For example, in the
constraint-oriented specification the remote constraints for the two directions of transfer may be
interrelated (this is, for example, the case in the OSI session service specification [Sind88]) and
7

similarly the send and receive actions of a protocol entity in the resource-oriented specification
(this is normally the case). For such cases a generalized form of law (11) can be used with similar
specification parts as those of our examples, however with more complex parallel compositions
(annex B contains a preliminary investigation of exploiting general specification structures for
verification purposes). The verification then reduces to proving the congruence:

hide PUB In (PR1 |[P]| PR2) = SR1 [[T]| SR2, where

PR1 and PR2: the protocol remote constraints associated with one direction of transfer and those
associated with the other (however, withoutithe hiding gates in P);

SR1 and SR2: the service remote constraints associated with one direction of transfer and those
associated with the other;

P: a set of gates internal to the protocol entities;

T: a set of external gates that are needed to synchronize SR7 and SR2;

B: a set of gates used by the protocol entities to synchronize with the underlying service.

Here, one cannot prove the congruence by verifying PR7 = SR1 and PR2 = SR2, since PA1 and PR2
synchronize at a (set of) hidden gate(s). Such a proof of equivalence in general depends on the
structure of the parts which may give further structure to the proof.

A final remark should be made on the internal structuring of a system (e.g., the question/answer
service). Intuitively we know that this can, in principle, be done in an infinite number of ways.
Laws (2) and (6), in particular, illustrate how different decompositions of a system may provide
equivalent externally observable behaviour. Law (2) states that internal actions can be replaced by
internal events in the behaviours of the compositions; law (6) states that certain internal events in
the resulting behaviours cannot be distinguished from the same behaviours without the internal
events (there are also laws concerned with internal actions in other contexts). Hence, application
of these laws make the particular internal structures expressed by different (e.g. constraint-
oriented) specifications disappear and allow them to be transformed, with the help of the other
laws, into the same (e.g., constraint-oriented) specification.

References

[Abra87] S. Abramsky, "Observation Equivalence as a Testing Equivalence”, Th. Comput. Sci. 53
(1987) 225-241.

[Bolo87] T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language LOTOS",
Computer Networks and ISDN Systems, Vol. 14, No. 1 (1987) 25-59.

[Brin87] E. Brinksma, G. Scollo, C. Steenbergen, "LOTOS Specifications, their Implementations
and their Tests", Proc. IFIP WG6.1, Protocol Specification, Testing, and Verification VI,
Montreal, Canada, June 1986 (North-Holland 1987) 349-360.

[DeNi84] R. De Nicola, M.C.B. Hennessy, "Testing Equivalences for Processes”, Th. Comput.
Sci. 34 (1984) 83-133.

[Ehri85] H. Ehrig, B. Mahr, "Fundamentals of Algebraic Specification 1" (Springer-Verlag 1985).

[Este89] M. Diaz et al. (Eds.), "The Formal Description Technique Estelle, Results of the
ESPRIT/SEDOS Project" (North-Holland 1989).

[Gogu78] J.A. Goguen, J.W. Thatcher, E.G. Wagner, "An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types", in: R. Yeh (Ed.), Current
Trents in Programming Methodology IV (Prentice-Hall 1978) 80-149.

[Gotz87] R. Gotzhein, "Specifying Abstract Data Types with LOTOS", Proc. IFIP WG6.1,
Protocol Specification, Testing, and Verification VI, Montreal, Canada, June 1986 (North-Holland
1987) 13-22.

[ISO8807] ISO, "LOTOS - A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour", Int. Standard ISO 8807, 1989.

[Lage88] J. v.d. Lagemaat, G. Scollo, "On the Use of LOTOS for the Formal Description of a
Transport Protocol", Proc. FORTE 88, Formal Description Techniques I, Stirling, Scotland, Sept.
1988 (North-Holland, 1989) 247-261.

[Loto89] P.H.J. van Eijk et al. (Eds.), "The Formal Description Technique LOTOS, Results of the
ESPRIT/SEDOS Project” (North-Holland 1989).

[Miln80] R. Milner, "A Calculus of Communicating Systems" (Springer-Verlag 1980).

[Orej87] F. Orejas, "A Characterization of Passing Compatibility for Parameterized
Specifications", Th. Comput. Sci. 51 (1987) 205-214.

[Park81] D. Park, "Concurrency and Automata on Infinite Sequences", Proc. 5th GI Conference,
LNCS 104 (Springer-Verlag 1981).

[Scol87] G. Scollo, M. v. Sinderen, "On the Architectural Design of the Formal Specification of
the Session Standards in LOTOS", Proc. IFIP WG6.1, Protocol Specification, Testing, and
Verification VI, Montreal, Canada, June 1986 (North-Holland 1987) 3-14.

[Sind88] M. v. Sinderen, I. Ajubi, F. Caneschi, "The Application of LOTOS for the Formal
Description of the ISO Session Layer", Proc. FORTE 88, Formal Description Techniques I,
Stirling, Scotland, Sept. 1988 (North-Holland, 1989) 263-277.

[Viss88] C.A. Vissers, G. Scollo, and M. v. Sinderen, "Architecture and Specification Style in
Formal Descriptions of Distributed Systems", Proc. IFIP WG6.1, Protocol Specification, Testing,
and Verification VIII, Atlantic City, USA, June 1988 (North-Holland 1987) 189-204.

Annex A. Proofs

To prove the congruences (10) and (11) of table 1, we recall the operational semantics of the
LOTOS parallel operator as defined by the inference rules that express the transition possibilities
of a behaviour expression B7 I[S]| B2:

B1 -g-> B1'and ge L(BY) - S => B1I[S]| B2-g-> B1'I[S]| B2
B2 -g-> B2’and ge L(B2) - S => B1I[S]l B2-g-> B1[S]| B2’
B1 -g*-> B1’and B2-g*> B2'and g’e (L(B1)nL(B2)NS)L(8)} => B1I[S]l B2 -g-> B1'|[S]| B2’

Further, we use the notion of (strong) bisimulation equivalence [Park81], applied to LOTOS,
which is stronger than weak bisimulation congruence:

B1 ~ B2 iff a relation R over behaviour expressions exists with <B7,82>€ R, such that
V<A,B>e R and Vge GU{Id}, where G the set of user-definable gates

(i) A-g-> A'=>3B'. B-g-> B’'and <A',B>eR

(ii) B-g>B'=>3A. A-g-> A'and <A’,B>€R

We prove now the strong bisimulation equivalences corresponding to (10) and (11), and therefore
also the weak bisimulation congruences.

Theorem
(A |[S1]| B) J[S2]] C ~ A [[S1]] (B [[S2]] C) if L(A)NS2 = L(A)NST and L(C)NST c L(C)NS2

Proof
Let B1 =df (A [[S1]| B) [[S2]| C, B1 =df A [[S1]] (B [[S2]] C), and
R =df {<(E |[[S1]| F) |[S2]| G, E |[S1]](F |[S2]] G)> | E,F,G behaviour expressions}.

From the definition of R it follows that <B1,B2>e R. We enumerate the potential transition cases of
B1 and B2 in terms of transitions of A, B and C, and state the conditions such that B7 -g-> B1'=>
3B2'. B2 -g-> B2’ and B2 -g-> B2' => 3B1". B1 -g-> B1". The cases and conditions follow from the
inference rules defining the operational semantics of the parallel operator:

(a) A-g->A’:L(A) - (81US2) = L(A) - S1 <=> L(ANS2cL(ANST;

(b) B-g-> B’: no conditions, i.e. transitions of B7 and B2 depend in the same way on L(A), L(B),
L(C), S1,and S2;

(c) C-g>C':L(C)-S2=L(C) - (S1LS2) <=>L(C)NS1CL(C)NS2;

(d) A-g> A’and B-g-> B’: no conditions;

(e) A-g-> A’and C-g-> C’: (L(ANL(C)NS2) - S1 = (L(ANL(B)NST) - S2. This condition is
only true if the left- and righthand side are equal to & (in which case this transition cannot
occur), which is implied by L(A)NS2cL(ANS1 and L(C)NS1CL(C)NS2;

(H B-g->B’and C-g-> C’':no conditions;

(g) A-g>A’'and B-g-> B’and C-g-> C’: no conditions.

It follows directly from the definition of the parallel operator that also <B71’,B2>€ R.
QED.

Note that the conditions L(A)NS2cL(A)NS1 and L(C)NS1CL(C)NS2 of the theorem are the least
restrictive conditions under which associativity of the parallel operator holds. Special cases of the
theorem, that were also used in section 3, are (A [[S]/ B) [S]| C= A [S]| (B |[S]| C) = A [[S]| B [[S]| C,
and (A [[S1]] B) [[S2]] C = A [[S1]] (B [[S2]| C) if L(A)NS2=D and L(C)NS1=D.

10

Theorem
(Al[S1]IB) [[11012]] (C[[S2]|D) ~ (Al[I1]IC) [[STLS2]] (B][I2]/D) if L(A)h(S&)I2)=®, L(B)h(SZUH):@,
L(e)N(S1ui2)=3, and L(D)N(S1UI)=D

Proof

Let B1 =df (Al[S1]|B) [[11UI2]] (C/[S2]ID), B2 =df (A[[I1]IC) [[S1LS2]| (Bl[I2]|D), and

R =df (<(E[[S1]IF) [[11UlI2)] (GI[S2JH), (E[I1JIF) [[S1US2) (GIi2JH)> | E,F,G,H behaviour
expressions}.

Clearly, <B1,B2>e R. We check whether for all possible transition cases of B7 and B2 the
conditions that must apply if Bf -g-> B1'=>3B2". B2 -g-> B2'and B2 -g-> B2’ => 3B1". B1 -g-> B’
are implied by the conditions of the theorem:

(@) A-g-> A’ L(A) - (S1Ul1UI2) = L(A) - (S1US2u17). This is true since L(A)N(S2v12)=D ;

(b) B-g->B':L(B) - (S1UI1VI2) = L(B) - (S1US20L12). True, since L(B)YN(S2u11)=0 ;

(c) C-g>cC':L(C)- (SauItul2) = L(C) - (S1uS2ul1). True, since L(C)N(S1UI2)=D ;

(d) D-g->D':L(D)- (S2ultui2) = L(D) - (S1uS2u12). True, since L(D)N(S1LIN)=D ;

() A-g->A’and B-g-> B': (L(ANL(B)NST) - (11ul2) = (L(ANL(B)N(S1LS2)) - (11U12). True,
since L(A)NS2=D ;

() A-g> A’ and C -g> C': (LIANL(CN(I1UI2)) - (81LS2) = (L(ANL(C)NIT) - (S1US2).
True, since L(A)N/2=D ;

(g) B-g-> B and D -g-> D': (L(BINL(D)N(I1012)) - (§10S2) = (L(BYNL(D)NI2) - (S1US2).
True, since L(B)\NI1=D ;

(h) C-g->C'and D-g-> D’: (L(C)NL(D)NS2) - (11012) = (L(C)NL(D)N(S1VLS2)) - (11VI2). True,
since L(C)NS1= ;

i) A-g>A'andB-g>B'and C-g->C’'and D-g->D':
(L(ANL(B)L(C)NL(D)NS1INS2n(11u12)) L {8} =
(L(ANL(B)L(C)NL(D)N(S1uS2)N(11u12) U {8). True, since L(AN(S2012)=D .

Other transition cases are not possible for B1 and B2 with the conditions of the theorem: transitions
of B1 (B2, respectively) require a g action with g € /1U/2 (g € S1US2), while the parts involved
are such that some have no gates in common with /7 (S7) and the others have no gates in common
with /2 (S2).

It follows directly from the definition of the parallel operator that also <B1',B2>€ R.
QED.

Note that in this case we did not bother to find the least restrictive conditions under which the
stated congruence holds. Therefore, the theorem may presumably be formulated with more general
conditions. A special case of the theorem, used in section 3, 1is (A/[S1]/B) ||| (C/[S2]|D) = (A]||C)
[S1US2)] (BJ)ID) if (L(A)JL(B))NS2=D and (L(C)UL(D))NS1=D.

11

Annex B. Specification Structures

In the verification of a protocol against its intended service, it is desirable to be able to
immediately replace the required equivalence relation by one or more simpler ones, by making use
of the structures (that explicitly show the commonalities) of the service and protocol FDs. This
would be possible if commonly agreed specification styles, as opposed to ad-hoc styles, were used
to give the descriptions their suitable structure.

In the following, we are concerned with investigating what would be the simpler required
equivalence relations if we agree to use the constraint-oriented style for service FDs and the
resource- (constraint-) oriented style for protocol FDs. Both of these styles have been used in the
recent past for describing relatively complex system parts, and were considered useful in
producing well-structured, hence comprehensible, specifications (see, e.g., [Scol87, Lage88,
Sind88, Loto89]). We will assume specification structures which are expected, on basis of our
specification experience, to be general (i.e., with which different types of services and protocols
can be described) and useful (i.e., such that comprehensibility is improved when compared to, for
example, monolithic specifications).

We will make use of the weak bisimulation congruence laws contained in Annex B of the LOTOS
standard, the two laws of annex A above ((2) and (4) in the table below), and two additional laws
((1) and (3) in the table below, which can easily be proven in the same way as (4)).

(1) BJS)B=BifL(B)=S
(2) A[[S1]] (B [S2] C) = (A [S1]] B) [[S2]] C if L(A)NS2CL(A)NS1 and L(C)NS1CL(C)NS2
(3) A[[S1)] (B [S2]| C) = (A]} B) [[S1LUS2]] C if L(A)NS2=@ and L(A)NL(B)NS1=L
(4) (A [S1]]B) [[11v12]] (C [[S2)| D) = (A [[1]] C) [S1VS2]| (B [[I2]] D) if
L(A)N(S2u12)=0, L(B)N(S2ul1)=D, L(C)N(S1uI2)=D and L(D)N(S1UI1)= D

Consider a protocol level in a distributed system as illustrated by the figure below. The protocol
consists of two cooperating protocol entities, ‘entityl’ and entity2’, which exchange protocol data
units (PDUs) via a bottom service (the service provided by the service provider in the figure) in
order to provide a top service that supports two coordinating users, "userl’ and 'user2’.

useri user2

protocol
entity1 < = entity2

service provider

12

If the bottom service is a communication service, e.g. the OSI transport service, it can generally be
described in the constraint-oriented style as:

BS =df (BL1 J|| BL2) |[B]| (BR1 ||| BR2)

where

B the set of bottom service gates {bs1,br1,bs2,br1},

BL1 the local constraints at the entity] interface,

BL2 the local constraints at the entity2 interface,

BR1 the remote constraints related to data transfer from entity1 to entity2,

BR2 the remote constraints related to data transfer from entity2 to entityl, and

L(BL1) =df {bs1,br1}, L(BL2) =df {bs2,br1}, L(BRT) =df { bs1,br2}, L(BR2) =df {bs2,br1}.

Notice that the interfaces are each represented by two gates. At one of the two gates - say bs7 at
the entityl interface and bs2 at the entity2 interface - request and response (service primitive)
events occur, and at the other gate indication and confirm events.

The top service may be more complex than the bottom service and for that reason may be
described, again in the constraint-oriented style, as:

TS =df (TL1 Jjj TL2) [[T]] (TR1 |[T]| TR2)

where

T the set of top service gates {ts1,tr1,ts2,tr2},

TL 1 the local constraints at the userl interface,

TL2 the local constraints at the user2 interface,

TR1 the remote constraints related to data transfer from userl to user2,
TR2 the remote constraints related to data transfer from user2 to userl, and
L(TL1) =df {ts1,tr1}, L(TL2) =df {ts2,tr2}, L(TRT) =df L(TR2) =df T.

As opposed to the bottom service behaviour, the above expression allows the remote constraints
for both directions of transfer to be interrelated. The choice of the service gates is similar to that
for the bottom service description.

The protocol entities may then be described in the resource-constraint-oriented style as follows:

PE1 =df hide P1 in ((TL1 Jjj BL1) [[T1UB1]| (PEs1 |[P1]] PEr1)) and
PE2 =df hide P2 In (TL2 J|| BL2) |[T2UB2]J| (PEs2 [[P2]| PEr2))

where

T1=df (ts1,tr1), T2 =df {ts2,tr2}, B1 =df {bs1,br1}, B2 =df { bs2,br2},
P1 a set of internal gates used in the definition of entityl,

P2 a set of internal gates used in the definition of entity2,

PE1s the constraints on sending PDUs by entity1,

PE 1r the constraints on receiving PDUs by entity1,

PE2s the constraints on sending PDUs by entity2,

PE2r the constraints on receiving PDUs by entity2,

TL1, TL2, BL1and BL2 as above, and

L(PEs1) =df {ts1,bs1}UP1, L(PEr1} =df {tr1,br1}UP1, L(PEs2) =df (ts2,bs2}UP2, L(PEr2) =df
{tre,br2} P2,

To prove the correctness of the protocol it is necessary to verify that:

TS = hide B in (PE1 ||| PE2) |[B]] BS)

13

First we investigate the composition of the protocol entities and the bottom service. Since the
expression BL1 J|| BL2 occurs twice in the composition, one obvious aim is to eliminate one of
these occurrences.

Let PEa1 =df hide P1 In (PEs1 |[P1]] PEr1) and PEa2 =df hide P2 in (PEs2 |[P2]| PEr2), then:

(PE1 ||| PE2) |[B]| BS

= (instantiation, hiding)

(((TL1 || BL1) J[T1OBT]] PEa1) ||| ((TL2 [|| BL2) [[T20B2]| PEa2))
eyl

((BL1[|| BL2) [[B]] (BR1 ||| BR2))
=4)

((PEat ||| PEa2) [[TUB]| ((TL1 [|| BL1) ||| (TL2 []| BL2)))
eyl

((BL1 ||| BL2) [[B]] (BR1 ||| BR2))
=(3)

((PEat ||| PEa2) |[T]] (TL1 [/ TL2))
I8

(BL1 [l BL2)

eyl

(BL1] BL2)

I8Jl

(BR1 ||| BR2)

=(1)

((PEat ||| PEa2) [[T]] (TL1 ||| TL2))
nsjl

(BL1[j| BL2)

Bjl

(BR1 [|| BR2)

Hence, if we have a composition of a protocol and its bottom service with the above structures, we
may eliminate the local constraints related to the bottom service in either of the components.

Now we can check whether it is possible to simplify the equivalence relation. We start with trying
to transform the above expression such that it consists of a parallel composition of the local
constraints related to the top service and the protocol remote constraints.

((PEat ||| PEa2) |[T]| (TL1 [l| TL2)) |[B]] (BL1 [BL2)
eyl

(BR1 [/l BR2)

=(2)

(((PEat [|| PEa2) [[B]| (BL1 ||| BL2)) [[T]] (TL1 [TL2))
sjl

(BR1 ||| BR2)

=(2)

((PEat [|| PEa2) |[B]| (BL1 ||| BL2) [[B]| (BR1 ||| BR2))

Iy
(TL1 Jjj TL2)

14

Hiding the internal gates in the latter expression yields:

hide B in
(((PEat ||| PEa2) [[B]] (BL1 [l| BL2) |[B]| (BR1 [[| BR2)) [[T]] (TL1 J|| TL2))

(TL1]I TL2)

i
(hide B in ((PEat ||| PEa2) |[B]| (BL1 ||| BL2) [[B]| (BR1 ||| BR2)))

Since the same instance of the parallel operator is used in the above composition as in the parallel
composition of the local and remote constraints in the top service description, we may replace the
required equivalence relation by:

TR1/[T]| TR2 = hide B In ((PEa1 ||| PEa2) |[B]| (BL1 ||| BL2) |[B]| (BR1 ||| BR2))
thus eliminating the local constraints related to the top service.

Next, we may try to find expressions in the protocol remote constraints that correspond to the
’one-directional’ service remote constraints, TR7 and TR2, respectively.

Let Bs =df {bs1,br2} and Br =df {bs2,br1}, and suppose that we can separate the send and receive
concemns in the local constraints related to the bottom service, i.e.:

BL1 =df hide I1 in (BLs1 [[11]] BLr1), BL2 =df hide I2 In (BLs2 [[I2]| BLr2)
Further, let / =df /102 and P =df P1UP2.

hide B in ((PEa1 ||| PEa2) [B]] (BL1 Jj| BL2) |[B]| (BR1 ||| BR2))

hide BUP in
(((PEs1 |[P1]| PEr1) ||| (PEs2 |[P2]| PEr2))
sl
((hide 11 in (BLs1 [[I1]| BLr1)) ||| (hide 12 In (BLs2 [[I2]| BLr2)))
sl
(BR1 ||| BR2)
)
=(4)
hide BUPUI in
(((PEs1 ||| PEr2) [[P]] (PEs2 ||| PEr1))
ey
((BLs1[|| BLr2) [[l]] (BLs2 || BLr1))
sy
(BR1 ||| BR2)
)
=4
hide BUPUI in
((((PEs1 [|| PEr2) [[Bs]] (BLs1 [|| BLr2)) [[POI]] ((PEs2 ||| PEr1) [[Br]] (BLs2 ||| BLr1)))

8jl
(BR1 ||| BR2)

15

=@

hide BUPUI in
(((PEs1 ||| PEr2) |[Bs]| (BLs1 ||| BLr2) |[Bs]| BR1)
aSY/]

((PEs2 ||| PEr1) |[Br]] (BLs2 [j| BLr1) [[Br]| BR2)
)

With P’ =df PUI, PR1 =df (PEs1 J|| PEr2) |[Bs]| (BLs1 ||| BLr2) |[Bs]| BR1, and PR2 =df (PEs2 ||| PEr1)
|[Br]| (BLs2 ||| BLr1) [[Br]| BR2, we may write this as:

hide P\UB In (PR1 |[P]] PR2)

Because of the synchronization of PR and PR2 at the hidden gates in P it is not possible to
decompose the verification problem into smaller parts without assuming a further structuring of
the specification parts.

Whether a further structuring can be found that is still applicable to different protocol levels (i.e.,
that allows the convenient definition of a variety of protocol functions) is still open to further
investigation. So far, specification tasks mainly concentrated on finding an appropriate structure
for the specification of a specific protocol level, not on finding a suitable ‘common factor’. It is
worthwhile, however, to also consider how common specification structures, supported by the use
of a few specification styles, may prove advantageous in the overall design of distributed systems.

16

