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Abstract

In this paper, we present a mechanism for securing group
communications in Wireless Sensor Networks (WSN).
First, we derive an extension of Logical Key Hierarchy
(LKH). Then we merge the extension with directed dif-
fusion. The resulting protocol, LKHW, combines the ad-
vantages of both LKH and directed diffusion: robustness
in routing, and security from the tried and tested con-
cepts of secure multicast. In particular, LKHW enforces
both backward and forward secrecy, while incurring an
energy cost that scales logarithmically with the group
size. This is the first security protocol that leverages
directed diffusion, and we show how directed diffusion
can be extended to incorporate security in an efficient
manner.

1 Introduction

Imagine sensor networks being deployed in public ar-
eas to detect SARS viruses. The sensors spend most
of their time in a dormant state and only report their
measurements when requested. Health officers gather
readings from the network by posting requests such as
“start sending me your readings 5 times a minute if you
are currently detecting the virus”. Assuming the net-
work is heterogeneous (in that apart from SARS virus
sensors, there are other types of sensors in the network),
there are generally two ways of executing this request:
(1) remember the IDs/names of the virus sensors and
send the request explicitly to the sensors using an ID-
based routing protocol (like AODV [28] or DSR [22]),
or (2) never remember any ID, and instead, flood the
network with the request.

Method (1) is most effective when the number of

∗This work is partially supported by the EU under the IST-
2001-34734 EYES project.

SARS sensors is fixed and known beforehand, and sen-
sors are static (i.e. not mobile, so that a new route does
not need to be set up everytime a send is requested).
However these conditions may not be practical, because
these sensors exist in large quantity; the bookkeeping
overhead would be unmanageable if at the same time
we allow arbitrary addition (or removal) of sensors to (or
from) the network. On the other hand, if all the SARS
sensors share a common ID/address, ID-based routing
does not work. We would not go as far as suggesting
setting up directory services for sensor lookup, as the
problem of keeping these directory services up-to-date
and the problem of locating these directory services only
elevate the original problem to a higher level.

Method (2) may seem inefficient, however with the
help of directed diffusion [21] that facilitates attribute-
based naming and in-network processing, significant traf-
fic reduction is possible (Heidemann et al. report a re-
duction of 42% [17]). In a nutshell, the energy expended
in flooding the network with the request, is (more than)
compensated by savings obtained from the exploitation
of local interaction and caching. Furthermore, with
cached information, after the initial flood, further flood-
ing is often not necessary.

All is well until the health officers require that the
communication between the requesting device (i.e. sink)
and the SARS sensors (i.e. sources) to be secure. In
other words, directed diffusion does not cater for secure
group communication. By secure we mean just three
aspects: (1) data confidentiality, (2) data integrity, and
(3) data authentication. And by group communication,
we mean a secure communication channel shared by the
sources and the sink – the näıve approach of using pair-
wise secure channels between each individual source and
the sink rules out in-network processing, which is es-
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sential for the success of directed diffusion. However
our communication model is specific for WSN in that
messages flow in a certain direction: interest (or query)
messages from sinks to sources, and data messages from
sources to sinks. We do not cater for general n-to-n
communication, which is not common for WSN.

In this paper, we propose LKHW (Logical Key Hi-
erarchy for Wireless sensor networks), a secure group
communication scheme based on directed diffusion and
LKH. Our contribution is two-fold:

1. Integration of security and routing: Our scheme in-
tegrates security and routing in a single framework,
by leveraging secure multicast techniques and the
tried and tested concepts of directed diffusion. Such
integration allows our security protocols to be opti-
mized for directed diffusion in terms of energy effi-
ciency, reducing the overhead that would otherwise
be necessitated by a routing-unaware alternative.

2. Efficiency: We present a performance evaluation
model that, unlike the conventional evaluation
model for secure multicast schemes, is centered
around energy consumption and that takes into ac-
count the dynamic nature of the topology of WSN.
And with the model, we show that the energy ef-
ficiency of LKHW scales logarithmically with the
group size.

This paper is organized as follows. Section 2 intro-
duces directed diffusion. Section 3 contains the essen-
tials of LKHW. It starts by introducing LKH, then pro-
ceeds to discuss the initialization aspects of LKHW, and
the central problems of user-leave and user-join opera-
tions. We back up our theories with performance evalua-
tion in Section 4 and security analysis in Section 5, while
we discuss related work in Section 6. Finally, Section 7
gives the conclusion and some ideas for future work.

2 Overview of Directed Diffusion
Basic Terminology Picture the classic directed diffu-
sion scenario in which a WSN is deployed in a wilderness
refuge to track animals [17, 21]. A tracking request rep-
resents an interest. The node that broadcasts the initial
exploratory interest is the sink, i.e. the final destination
of the requested data. In directed diffusion, the adjec-
tive “exploratory” indicates unoptimized flow, and that
the flow will cease if it is not reinforced. Interest and
data are named using attribute-operation-value tuples.
(i.e. attr1 op1 val1; attr2 op2 val2...). For exam-
ple, an interest I might look like “class IS interest;
x GT 0”, where GT is a formal operator meaning “greater
than”; a data D might look like “class IS data; x IS

1”, where IS is an actual operator meaning “equals”.
Obviously this particlar data D matches this particular
interest I because D’s value ‘1’ is greater than I’s value
‘0’ as required by I’s formal operator. Other formal
operators are described by Intanagonwiwat et al. [21].
Every node tries to match every data message it re-
ceives with every interest in its interest cache, and if
a match is found, the data message will be sent to who-
ever originated the matching interest. It is important
to note that an interest does not contain any attribute-
operation-value tuple that describes the sink that orig-
inates it, nor does a data describe the source that pro-
duces it. An “interest about interests” is just a nested in-
terest, e.g. an interest about interests in four-legged an-
imals. The restriction is that interests cannot be further
nested, i.e. there is no “interest about interest about
interests” and so on. The concept of “interest about in-
terests” is used extensively in LKHW, as shall be seen
later.

Directed diffusion consists of three phases:

1. Interest diffusion: As the interest is diffused
across the network, every sensor that receives the
interest remembers the neighbour(s) from which
the interest came, using their interest cache (which
are essential for suppressing duplicate messages and
preventing loops), before re-broadcasting the inter-
est to all their neighbours. Moreover, every sensor
node is task-aware and any node that matches the
traveling interest will apart from forwarding the in-
terest, reply with the relevant data and thus be-
come a source. The traveling interest sets up gra-
dients along the paths it has taken. A direction is
downstream if it is from a source to the sink, and
upstream if otherwise.

2. Exploratory reply: The first replies from the
sources are exploratory. These replies, containing
data, flow downstream along the gradients set up
by the interest. Along the gradients, each node
caches the data message in their data cache (which,
similar to the interest cache, is used to suppress du-
plicate messages and to prevent loops). The fact
that movements through the gradients are actually
merely time progressions of matching events, i.e.
matching of data with interest, along the communi-
cation links cannot be stressed enough.

3. Gradient reinforcement: On receiving the ex-
ploratory data messages, the sink stores them in its
data cache, and according to some system-defined
parameters (e.g. latency), the sink reinforces its
neighbours which satisfy these parameters (e.g.
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Figure 1: The three phases of directed diffusion.

neighbours which delivered the exploratory data
messages with the lowest latency). These neigh-
bours in turn reinforce their upper-stream neigh-
bours, according to the same principle. The effect
of reinforcement is system-defined, e.g. possibly
bumping up the data output rate of the sources
connected to the reinforced gradients, and hence
the data transfer rate along the reinforced gradients.
Note that the meaning of “x reinforces y” is equiva-
lent to the meaning of “x reinforces the downstream
gradient from y to x”. Future data messages from
the sources only travel down these reinforced gra-
dients, and with priority given to the more heavily
reinforced gradients. That said, gradients can also
be negatively reinforce for increasing performance,
for load-balancing, or for gradient maintenance in
response to topological changes, node failures, en-
vironmental effects etc.

The concepts surrounding gradients are vital to the un-
derstanding of the ensuing discussion, and hence would
be illustrated in detail with an example (cf Figure 1).
In the following, we introduce the notation that will be
employed throughout the rest of the paper.
Notation

• Denote the sink as S and an interest as ζ . Specif-
ically, the i-th distinct interest is ζi, where i =
0, 1, . . .. A copy of ζi broadcast (not necessarily
originated) by a node x is ζi

~x.

• We express a gradient as a tuple of the form
(ζi, x, γi) where ζi is the interest, x is the identi-
fier of the downstream neighbour the gradient is
directed at, and γi is the gradient value. Note that
Intanagonwiwat et al [21] define gradient as a pair
of direction and a ‘generic value’, but implement
the ‘generic value’ as a tuple of direction, data rate
and duration. Our ‘gradient value’ maps to their
‘data rate’, but we omit duration for the simplicity

of our discussion. Intuitively, the gradient value γi

is derived from the interest ζi, and we write this
relationship as γi = g(ζi).

• For clarity we denote nodes that match the interest
as ui and nodes that do not match the interest as
xi (where i = 0, 1, . . .).

• The i-th data message from a source u is denoted
as ξi

u.

Gradient Setup The example begins by S broadcast-
ing the 0-th interest ζ0

~S
. When node x0 (Figure 1) re-

ceives ζ0
~S
, x0 caches the tuple (ζ0, S, γ0) in its interest

cache. Note that for the initial interest, the gradient
value γ0 = g(ζ0) should be a low value. Moreover, be-
fore x0 re-broadcasts the interest, if x0 receives ζ0

~x1
from

x1, x0 would also cache the tuple (ζ0, x1, γ
0). Now x0

re-broadcasts the interest as ζ0
~x0

to all its neighbours. S

and x1 simply ignore ζ0
~x0

. If ζ0
~x1

arrives after ζ0
~x0

has been
broadcast, x0 would just ignore ζ0

~x1
. All other nodes be-

have likewise. One important point to summarize from
this is that all nodes only remember downstream inter-
ests.

Gradient Reinforcement Suppose u0 matches the
interest. As a source, u0 replies with data message ξ0

u0
,

which travels down the gradients to S, and suppose
x0 is unavailable and S receives ξ0

u0
only from x1 and

x2. Depending on some system-dependent parameters
(e.g. data rate, latency, energy etc.), S would choose
to reinforce either x1 or x2. Reinforcement is actually
the selective/directional sending of a refined version of
the initial interest. If S chooses to reinforce x1, then
S would unicast ζ1 to x1, and x1 would update the
corresponding gradient entry in its interest cache from
(ζ0, S, γ0) to (ζ1, S, γ1), where γ1 > γ0. At the same
time, without reinforcement, x2’s gradient entry remains
as (ζ0, S, γ0); x5’s gradient entries remain as (ζ0, x1, γ

0)
and (ζ0, x2, γ

0). Future data messages from u0 and u1
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would only travel down reinforced gradients, i.e. through
nodes that store a gradient value larger than a certain
system-defined threshold τ , where γ1 > τ > γ0.

Multipath Delivery After x4 has reinforced u1, u1

has to decide whether to reinforce u0 since apart from
x3, ξ0

u0
also passes through u1. Since u1 does not know

whether there are any other downstream gradients from
u0 to S, u1 has to reinforce u0. Consequently, u0 have
two reinforced gradients to S: one via x3 and one via
u1. In other words, multipath delivery is inherent (but
not inevitable) in the directed diffusion model. In fact,
Ganesan et al. [15] have a multipath extension of di-
rected diffusion. LKHW can be implemented on top of
either the original or the multipath version of directed
diffusion, but in our discussion, we only focus on the
original version for simplicity’s sake.

Data Aggregation When u0’s data messages pass
through u1, u1 can potentially, instead of sending u0’s
messages and its own messages separately, aggregate the
data and perform some in-network processing before dis-
patching them downstream, thus saving bandwidth and
energy. Data aggregation is an essential part of directed
diffusion.

Gradient Maintenance The dynamics of WSN are
characterized, among other things, by the addition and
expiration of nodes, node mobility and link volatility.
When for some reason (e.g. relative movement, envi-
ronmental jamming, energy depletion) the link u1-x4

starts to deteriorate, while the link u1-x5 is still good, we
would logically want x5 to take over x4’s work of routing
u1’s data messages toward S. Unless there is a feedback
channel from x4 to u1, u1 cannot tell when the link is
failing. This is an important point because it means
only downstream nodes can take appropriate measure.
Assuming data rate is the criterion by which x4 observes
whether the link u1-x4 is failing or has failed, when x4

detects much lower data rate than normal or even zero
data rate, x4 re-sends the interest ζi stored in its inter-
est cache to its neighbours except x1. On receiving ζi

~x4
,

x5 starts routing u1’s data messages. It goes without
saying that x4 would then reinforce x5.

In conclusion, the directed diffusion model provides
the basic primitives for data communications in WSN.
It uses caches for data-interest matching, to suppress
duplicate messages and to prevent loops. It uses data
aggregation to optimize bandwidth usage. As a result
of performing only local interaction, nodes require lit-
tle local storage and the resulting network is capable of
self-repairing. However this also implies a trade-off for
robustness and scalability with energy efficiency.

3 The LKHW Model
After an overview of directed diffusion, we describe
LKHW in this section. There are two basic aspects to a
tree-based multicast model like LKHW: (1) the key tree
structure, and (2) the re-keying scheme. As the name
implies, LKHW adopts the key tree structure of Logi-
cal Key Hierarchy (LKH) [39]. The re-keying scheme of
LKHW is based on Wong et al’s group-oriented re-keying
scheme [40] and an improvement of ours (described in
Section 3.3.1). In Section 3.1, we describe the key tree
structure. We then proceed to describe our strategy for
group initialization in Section 3.2. Group dynamics and
the associated aspects of re-keying are detailed in Sec-
tion 3.3.

3.1 Key Tree

n Number of users in a multicast group
a Degree or a-rity of a LKH tree
h Height of a LKH tree, i.e. dlogane
L The set of hierarchical levels of a LKH

tree, i.e. L = {0, . . . , h− 1}
A|B Concatenation of A and B, where A and

B are strings
K ′ Refreshed version of a key K
EK(M) Encryption function that takes key K

and plaintext M
MACK(M) Message Authentication Code (MAC)

function that takes key K and plaintext
M

Table 1: Notation.

In LKH, keys (symmetric keys unless stated otherwise,
e.g. K0, . . . ,K15, P0, . . . , P15 in Figure 2) are logically
distributed in a tree rooted at the key distribution center
(KDC). The leaves of the tree correspond to the users
(e.g. u0, . . . , u15 in Figure 2). By ‘user’, we mean a user
process on a sensor. Every user stores all the keys on its
key path, i.e. the path from the leaf node (corresponding
to the user) up to the root. These keys comprise the
user’s key set,

Ki = {Kj | j = j(i, l) = Sa(l) +
⌊

i

ah−l

⌋
,∀l ∈ L } (1)

where i represents user ui; keys of the form Kj are as
illustrated in Figure 2; a, n, L are as defined in Table 1;
and Sa(l) is the sum of the first l terms of a geometric
progression with ratio a, i.e.

Sa(l) =

{
0 if l = 0∑l−1

i=0 ai if l > 0
(2)

In Equation 1, although it may not be obvious now, we
find it useful to express j as a function of i and l.
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For an example using Equation 1, u0 stores key P0,
K7, K3, K1, K0, where in particular P0 is the unique
individual key u0 shares with the KDC; K0 is the group
key that is shared by all users in the group and is used
to encrypt all group communication traffic; and K7, K3,
K1 are so-called key encryption keys which serve the
sole purpose of encrypting new keys during re-keying (cf
Section 3.3). The KDC maintains the structure of the
key tree and stores all the keys in the key tree.

Note that the tree illustrated here is for simplicity
binary and balanced, but in reality key trees need not be.
Therefore in general, if we use the notation in Table 1,
then the total number of stored keys per user is h+1, and
the total number of stored keys by the KDC is ah+1−1

a−1 ,
or an−1

a−1 if the tree is balanced.
The main reason for using such a key tree compared

with more traditional structure-less approaches such as
Blundo et al’s [6] is that re-keying can be more effi-
ciently executed. Re-keying is the operation that re-
freshes a subset of the keys in the key tree, when one or
more users join or leave the group, in such a way that
ensures added users are unable to decrypt past traffic,
while evicted users are not able to decrypt future traf-
fic – or in other words, ensures backward secrecy and
respectively forward secrecy. Up to this point, only the
basic LKH model has been described. Details of LKHW-
specific group initialization and re-keying follow.

3.2 Group Initialization

Continuing with our previous example of tracking an-
imals, now suppose that the sensor results have to be
protected from potential poachers, confidential and au-
thenticated group communication has to be established
among the sources and the sink. To achieve this effi-
ciently, we apply LKHW: directed diffusion sources are
treated as multicast group members, whereas the sink is
treated as the KDC.

Before the normal directed diffusion process can be-

gin, a secure group has to be established first, with the
group initialization process. The rationale is that the
confidentiality of the query a node posts to the other
nodes is just as important as the confidentiality of the
data supplied by the nodes. From a system point of
view, the algorithm is:

1. S → ∗ : interest about interests to join
2. ui → S: interests to join
3. S → ui: data for joining
4. S → ui: encrypted normal interest, i.e. secure interest
5. ui → S encrypted normal data, i.e. secure data

where i = 0, . . . , n − 1. Since a source in the directed
diffusion sense can become a sink in the group initial-
ization phase by emitting an “interest to join”, we are
careful to not refer ui (i = 0, . . . , n−1) as sources, but as
users/members, and S as the KDC in the discussion be-
low to avoid confusion. Formally, the protocol between
a user ui and a KDC S is:

Protocol 1

1. S → ui: T,GID , NS

2. ui → S: T,GID , ID , Nui ,MACPi(T |GID |ID |Nui)
3. S → ui: GID , ID , NS , EPi

(i|C(Ki)),
MACPi(GID |ID |NS |Nui |EPi(i|C(Ki)))

4. S → ui: secure interest
5. ui → S: EK0(D),MACK0(NS |EK0(D))

where

• T specifies the task(s) that the sources should be
capable of.

• GID is the group ID.

• ID is a generic identifier that identifies the key Pi.
For example, it can be a node ID if the underlying
key management architecture is such that a unique
key is bound to a unique node ID [26, 30]; or it
can be a key ID in a random key pre-distribution
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model [10, 14]. As long as a shared key Pi exists
between S and ui, the protocol will succeed. We are
not particular about the key pre-distribution model
but we do assume that there is no single system-
wide key. To emphasize, LKHW is independent of
the underlying key pre-distribution model.

• Nui and NS are nonces.

• i is the index S assigns to ui.

• C(Ki) is a concatenation of all the keys in Ki, i.e.
the key set of ui as expressed by Equation 1.

• D stands for an arbitrary piece of data that ui sends
to S in response to S’s interest.

The protocol has been verified using the proto-
col verifier CoProVe (http://wwwes.cs.utwente.nl/
24cqet/) but the security analysis of the protocol is
deferred to Section 5. According to standard security
practice, it is to be understood that the K’s in EK(·)
and MACK(·) are in fact two different keys Kenc and
Kmac derived from K [2]. The message at step 4 can
piggyback on the message at step 3 for efficiency. The
problem with protocol specification is that formal and
actual operators cannot be shown, so Figure 3 is given
for this purpose. Note how “interest to join” structurally
matches “interest about interests to join” and how “data
for joining” matches “interest to join”.

Detailed description of the group initialization algo-
rithm follows:

1. Interest about interests to join: By sending out
an exploratory “interest about interests to join” at
step 1, S finds out which among the nodes that are
capable of the task(s) specified, are ‘interested’ in
joining its secure group. This “interest about inter-
ests” would be cached in the nodes that received it,
and would match any future interest expressed by
whichever nodes that want to join the group. This
“interest about interests to join”, like normal inter-
ests, creates an initial, exploratory set of gradients
that diffuse across the network (cf Figure 1a).

2. Interests to join: ‘Interested’ nodes reply with an
interest to join, by declaring the task(s) they are ca-
pable of, the ID of the group they are joining, their
key ID, a nonce and the MAC of the entire mes-
sage. These “interests to join” travel down the gra-
dients created by the the previous “interest about
interests to join”. The interesting observation here
is that by originating interests, these ‘interested’
nodes have actually become both sources and sinks
– they are sources for “interest about interests to

class EQ interest

task EQ ...

(more "task EQ ..." tuples)

groupID IS ...

class IS interest

task IS ...

groupID EQ ...

id IS ...

nonce IS ...

mac IS ...

(a) Interest about interests to
join

(b) Interest to join

class IS data

groupID IS ...

id EQ ...

nonce IS ...

index IS ...

keyset IS <encrypted>

reinforce IS true

mac IS ...

class IS interest

groupID IS ...

task EQ ...

task-specific1 EQ <encrypted>

task-specific2 EQ <encrypted>

(other encrypted task

-specific tuples...)

mac IS ...

(c) Data for joining (d) Sample secure interest

class IS data

groupID EQ ...

task IS ...

task-specific1 IS <encrypted>

task-specific2 IS <encrypted>

(other encrypted task

-specific tuples...)

mac IS ...

(e) Sample secure data

Figure 3: Message formats for group initialization (en-
crypted entries are marked as < encrypted >.

join” but sinks to which S is going to dispatch their
respective “data for joining” (i.e. keying material
that includes a member’s assigned index and its key
set). Similarly, S is simultaneously a sink for “in-
terest to join” and a source for “data for joining”.

3. Data for joining: After collecting enough re-
quests or after a timeout, S proceeds to supply ui

(i = 0, . . . , n − 1) with their assigned index (i.e.
the i of ui) and their respective key set. Note that
prior to this stage ui does not know it is user i;
ui is just a name by which we call a node consis-
tently. From this point onward, S can start dis-
patching normal interests encrypted with the group
key K0, called secure interests (Figure 3d); and ui

(i = 0, . . . , n−1) can reply with data, encrypted too
with the same group key (Figure 3e), called secure
data. Consequently, in-networking processing and
data aggregation can start to take place, securely.

Required Extension of Directed Diffusion It is
important to note that secure interests and secure data
are not encrypted as a whole. Instead, only task-specific
values as depicted in Figure 3 are encrypted. This is to
allow data-interest matching to be carried out on non-
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task-specific fields so that non-member nodes know how
to forward secure data. Specifically, when a node re-
ceives a secure data:

• If the node sees that it is not in the group specified
by the groupID of the data, the node would per-
form the usual matching algorithm on the groupID
and the task; ignoring the encrypted task-specific
tuples.

• Otherwise, if the node sees that it is in the the group
specified by the groupID, the node will decrypt the
task-specific tuples, and perform the usual match-
ing algorithm on the groupID, the task and the
task-specific tuples.

As a result of this extension, members of group groupID
would potentially receive data that do not match their
interest. However this is just an efficiency issue, the
security of the data is not compromised.

As mentioned, since S is both a sink and a source,
the keying materials S dispatches, double as data and
reinforcements. To be precise, not only a “data for join-
ing” (Figure 3c) structurally matches an “interest to
join” (Figure 3b), but also S as a sink decides which
neighbour to send the “data for joining” to, i.e. de-
cides on which neighbour to reinforce based on some
system-defined parameters. These reinforcements limit
the direction/paths of transmissions, and hence increase
efficiency. They also provide another advantage that will
become clear in Section 3.3.2.

The catch is that in the original directed diffusion
model, reinforcements are actually refined versions of
the initial interest. In our case, “data for joining” do
not qualify as reinforcements per se, but re-sending “in-
terest about interests” as reinforcements is expensive.
Therefore LKHW has to add on top of directed diffu-
sion an extra layer of logic that treats “data for joining”
as reinforcements. This explains the reinforce tuple in
Figure 3c.

3.3 Group Dynamics
In this section, we describe the algorithms for leave and
join operations, starting with the leave operation. Mul-
tiple leaves and multiple joins are deferred to a later
paper.

3.3.1 Leave
When a source leaves the group, it can either be due
to voluntary leave or forced eviction. Voluntary leave
maybe the result of load control, or the leaving node’s
self-awareness that it is exiting the region of sensing in-
terest, or that it is in the process of being compromised.

On the other hand, forced eviction maybe a result of in-
trusion detection that decides the node in question is no
longer trustable. Or it may just be that the sink is no
longer interested in the readings of the particular node.

Example Regardless of the reason, after a node, say
uv has left the group, to ensure forward secrecy all the
keys on the path Nv-root need to be refreshed, where Nv

is the key tree node from which uv is detached. Below,
we illustrate an example before giving the mathematical
formalization.

Evicting uv = u12 in Figure 2 implies that all the
keys in key set K12 , i.e. K0, K2, K6 and K13 have
to be refreshed. Our scheme is to refresh K0, K2, K6

according to Equation 3:

K ′
0 = H(K ′

2) = H(2)(K ′
6) = H(3)(K ′

13) (3)

We also need to forward-securely generate K ′
13. We call

the set of K ′
0, K ′

2, K ′
6 and K ′

13 the refreshed key set,
denoted Rv = R12. The next step is to deliver these
refreshed keys to appropriate members other than u12

securely and efficiently. In LKHW,

• u0, . . . , u7 would receive EK1(K
′
0);

• u8, . . . , u11 would receive EK5(K
′
2), and compute K ′

0

according to Equation 3;

• u14, u15 would receive EK14(K
′
6), and compute K ′

2,
K ′

0 according to Equation 3;

• u13 would receive EP13(K
′
13), and compute

K ′
6,K

′
2,K

′
0 according to Equation 3.

Note that according to Figure 2, K0 is at level 0, K2

is at level 1 and so on, that is, only one key is re-
freshed at a level. If we denote T l

v as the transmitted
key set at level l on the eviction of node uv, then T 0

12 =
{EK1(K

′
0)}, T 1

12 = {EK5(K
′
2)}, T 2

12 = {EK14(K
′
6)},

T 3
12 = {EP13(K

′
13)}.

Similarly we define U l
v as the recipient set at level l

on the eviction of node uv , i.e. the set of members who
receive T l

v . So U 0
12 = {u0, . . . , u7}, U 1

12 = {u8, . . . , u11},
U 2

12 = {u14, u15}, U 3
12 = {u13}.

Mathematical Formalization We now proceed to
define the aforementioned notions mathematically. First
the refreshed key set is

Rv = {K ′
j(v,l) |

K ′
j(v,l) =

{
H(K ′

j(v,l+1)) if l = 0, . . . , h− 2
regenerated if l = h− 1

,

∀l ∈ L }

(4)
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where function j(v, l) is as defined in Equation 1. The
transmitted key set at level l, T l

v is

T l
v = {Eχ(K ′

j(v,l)) |

χ =

{
Kk if l = 0, . . . , h− 2
Pk−ah+1 if l = h− 1

,

k = aj(v, l) + m,

∀m ∈ {1, . . . , a} \
{⌊ v

ah−l−1

⌋
− a

⌊ v

ah−l

⌋
+ 1

}
}

(5)

Lastly, the recipient set, U l
v can be expressed by

U l
v ={ur | r = ah−l−1

(
a

⌊ v

ah−l

⌋
+ m− 1

)

. . . ah−l−1
(
a

⌊ v

ah−l

⌋
+ m

)
− 1,

∀m ∈ {1, . . . , a} \
{⌊ v

ah−l−1

⌋
− a

⌊ v

ah−l

⌋
+ 1

}
}

(6)

Algorithm The only difference between voluntary
leave and forced eviction is that for voluntary leave, the
node, say uv starts by flowing down an eviction message
to the sink. Otherwise, from then on, both voluntary
and forced eviction are the same. From a system point
of view, the algorithm is:

1. S → ∗ : interest about interests to re-key
2. Uv → S : interests to re-key

3. S → U l
v : T l

v ,∀l ∈ L

The following is a step-by-step description of the algo-
rithm:

1. Interest about interests to re-key: S broad-
casts an “interest about interests to re-key”, the
format of which is depicted in Figure 4a, where
evictIndex specifies the index of the evicted node.
This interest diffuses across the network, establish-
ing a new set of gradients.

2. Interests to re-key: All members except uv, i.e.
ui(i = 0, . . . , n−1, i 6= v), upon receiving the “inter-
est about interests”, set off a timer with a random
time-out value ρi∆, where ρi is the time-out ratio,
0 ≤ ρi ≤ 1 and ∆ is the maximum time-out value.
The rationale of using a random time-out value is
basically to facilitate data aggregation but the de-
tails are explained later. Denote li as the level at
which node ui has to re-key, i.e. the re-key level
of ui. Then for every member ui, after the time-
out ρi∆ has elapsed, ui replies with an interest that
specifies the transmitted key set, T li

v , it should re-
ceive. See Figure 4b for the message format and
notice the use of the level tuple, which specifies
li and essentially T li

v . Notice further that there
can be more than one level tuple to cater for data

aggregation. These interests travel down the gra-
dients that have previously been established by S’s
“interest about interests”.

To further illustrate the details, we borrow the help
of a sample topology depicted in Figure 5, where
node u12 is in the process of being evicted. First we
justify the use of random time-outs with Proposi-
tion 1:

Proposition 1 Given a member ui, which has
N ≤ n − 2 upstream neighbours, and given that
the N neighbours are also group members, assum-
ing the the link latency is negligible, the probability
that there exists at least one uj among the N neigh-
bours such that lj 6= li and ρj < ρi is given by

N

N + 1

[
1−

Lmax∑

l=0

(
(a− 1)ah−l−1

N + 1

)
/

(
n− 1
N + 1

)]

where Lmax = bh− lga [a(N+1)
a−1 ]c.

The proof of Proposition 1 can be found in Ap-
pendix A. While the probability that ui is able to
perform at least one aggregation is given by Propo-
sition 1, the other three conditions under which ag-
gregation is not facilitated are summarized as fol-
lows:

(a) lj 6= li and ρj ≥ ρi: ui should ideally send both
li and lj downstream, but ui will only receive
lj after sending li, due to the later time-out of
uj .

(b) lj = li and ρj < ρi: although uj times out
before ui, the identical value of li and lj does
not require data aggregation anyway.

(c) lj = li and ρj ≥ ρi: not only the identical value
of li and lj does not require data aggregation,
but also uj will time out later than ui anyway.

To see how significant the probability is, let us use
a binary key tree (a = 2), and suppose there are
16 members in the group before eviction (n = 16,
h = 4). Suppose for the particular node ui we are
considering, ui has 3 neighbours (N = 3), then ac-
cording to Proposition 1, ui has a probability of 71%
for performing at least one aggregation.

For example, pick a random node, say u7 in Fig-
ure 5. According to Figure 2, l7 = l0 = 0, and
l8 = 1. When u8 receives u7’s “interest to re-key”,
u8 will cache and re-broadcast u7’s interest because
l7 6= l8. Similarly when u0 receives u7’s and u8’s
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interest, u0 will cache both interests, but only re-
broadcast u8’s interest because l0 = l7 6= l8. Even-
tually, S receives l0 = 0 and l8 = 1 from u0 (ignoring
the level of other nodes than u7, u8, u0 for this ex-
ample).

Since u8 needs to send u7’s and its own interest,
and similarly, u0 needs to send u8’s and its own
interest, both u8 and u0 should ideally aggregate the
interests they have to send, before sending them.
Proposition 1 suggests that this will happen with a
high probability.

3. Data for re-keying: Continuing with the exam-
ple, S then knows T 0

12 and T 1
12 are needed and

would deliver them upstream in the direction of
u0. u0, remembering that T 0

12 and T 1
12 are needed,

would likewise deliver the key sets upstream. Fi-
nally u8 would send only T 0

12 upstream since it is
only u7 who needs it (but of course u8 does not
know it is u7 who needs it – u8 only knows some
node needs it). The importance of the data cache
cannot be emphasized more here. For example, if
u0 has sent and got T 0

12 before u7’s “interest to re-
key” arrives, u0 can easily retrieve T 0

12 from its data
cache and hand it over to u7 without going through
S again.

class EQ interest

groupID IS ...

evictIndex IS ...

mac IS ...

class IS interest

groupID EQ ...

evictIndex EQ ...

level IS ...

(possibly more

level tuples...)

mac IS ...

(a) Interest about interests to
re-key

(b) Interest to re-key

Figure 4: Message formats for leaving.

3.3.2 Join

For a system to be scalable in general and for sensing
tasks that require dynamic adjustment of sensing res-
olution in particular, the capability to add computing
power dynamically to the network is essential. The join
operation of LKHW makes this possible.
Algorithm As it happens in many secure multicast
schemes, the join algorithm and the leave algorithm are
asymmetrical with the join algorithm being more effi-
cient because the joining node does not know any exist-
ing key of the system. Similar to a leave operation, a join
operation can either be initiated by S or by whichever
node uv that wants to join. Suppose S requires higher
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l7 = 0

added

cf Section 3.3.2

cf Section 3.3.1

u2

u3

u9

u10

u14

u15

u13

x0

x1

u12
u5

x2

x3

x4

u0

u6

u8

u7

u1

u4

u11

S

l0 = 0, l8 = 1

l7 = 0
l8 = 1

To be evicted/

Figure 5: A sample random topology for LKHW. S
denotes the sink/KDC; members are named ui (i =
0, . . . , 15); non-members are named xj (j = 0, . . . , 4); ar-
rows represent sample “interests to re-key”; nodes with
similar hatch pattern belong to the same recipient set
U l

12, where l = 0, 1, 2, 3.

sensing resolution, S can start sending “interest for in-
terests to join” again. Moreover, recall that in Sec-
tion 3.2, S’s “interest about interests to join” is cached
in the network, so for any uv which sends out its “in-
terest to join”, its “interest to join” would syntactically
match the cached “interest about interests to join” –
with a catch: The format of Figure 3b specifies the ID
of the group a node wants to join. As it is unrealistic for
a node to find out the group ID beforehand, it should
just omit the groupID tuple in its “interest to join” and
the matching will still work.

From a system point of view, the algorithm is:

1. uv → ∗ : interest to join
2. S → uv: Kv

3. S → ui : seed, ∀i ∈ {0, . . . , n− 1} \ {v}

where “seed” is the key regeneration seed. Detailed ex-
planation of the algorithm follows:

1. Interest to join: Section 3.2 mentioned the dual
role of “data for joining”, i.e. as data cum rein-
forcements. We will clarify the advantage of doing
so here. First, it is clear that when uv broadcasts its
“interest to join”, in the directed diffusion model,
the interest has to diffuse across the network. Now
the good news is that since S has planted the seed
of reinforced gradients in the group initialization
phase, uv’s “interest to join” can simply take ad-
vantage of the reinforced gradients, i.e. any node
that receives the “interest to join” would flow it
down the reinforced gradients if it happens to be
on one or more of the reinforced gradients.
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See for example in Figure 5, the possible reinforced
gradients that take uv = u12’s “interest to join”
to S. In this case, u12’s neighbors u13, u5, u9 send
u12’s “interest to join” only along the reinforced gra-
dients.

2. Data for joining: Once S receives uv’s message,
S would, as in the group initialization phase, dis-
patch Kv (among other things) to uv as data cum
reinforcement.

3. Seed diffusion: The key regeneration seed is used
by existing members to refresh their respective key
sets. The seed does not need to be encrypted but
must be authenticated with the group key. Every
member ui (i 6= v) that receives the seed would
derive its new key set K ′

i from its existing key set
Ki as follows:

K ′
i = {K ′|K ′ = MACK(seed),∀K ∈ Ki} (7)

The forward security of the seed can be ensured by
Bellare and Yee’s construction [5].

Formally, the protocol between uv and S is the same
as Protocol 1. In the next section, we discuss the per-
formance of the join and leave algorithm.

4 Performance Evaluation
In this section, we perform a theoretical evaluation of
the performance of LKHW. The performance criterion
for WSN is energy efficiency instead of throughput. We
note that while it is a convention to evaluate compu-
tational as well as communication cost as benchmarks
for secure multicast schemes, for WSN however com-
munication cost dominates computational cost by typ-
ically three orders of magnitude [9], therefore we only
consider communication cost. For large messages, en-
ergy consumption is proportional to the message length,
however for small messages, the transmission overhead
and hence the number of messages has a more significant
effect on the energy cost. Therefore we will take both
message length and number of messages into account.
Moreover, the energy for reception is not insignificant,
at least for the transceiver we are using, RF Monolithics
TR1001 [34], it can be as high as 40% of the energy
required for transmission. We denote the ratio of recep-
tion power to transmission power as r for the discussion
below. We will discuss the leave and join operation sep-
arately.

4.1 Leave
Let us consider the sink S and the sources ui (i =
0, . . . , n − 1, i 6= v, v is the index of the evicted node)
separately. In LKHW, for S, the number and the total

length of messages sent, and hence energy cost is network
topology-dependent. For example, in Figure 5, S would
potentially receive requests for the transmitted key set
at level 0, T 0

v , from all its neighbours, i.e. u0, u1, u2

and x0. Directed diffusion dictates that S would send,
instead of broadcast, T 0

v as data replies to u0, u1, u2 and
x0 individually. So S would send T 0

v three times. On
the other hand, requests for T 3

v would potentially only
come from u1 and u2, and hence S would send T 3

v two
times. Intuitively, we can certainly do better than what
directed diffusion restricts us to. Observe that instead
of unicasting to each requesting neigbhour, we might be
able to save energy by broadcasting all the key sets T l

v ,
l = 0, . . . , h− 1 at once because each key set T l

v would
have to be sent at least once anyway. To formalize our
argument, suppose S receives “interests to re-key” from
N ′ out of a total of N neighbours. Using unicasts, the
energy cost for S to dispatch the requested key sets is

Eunicasts = (1 + r)
N ′∑

i=1

CiEks + (1 + r)N ′Eo (8)

where

• Ci is the number of key sets requested by neighbour
i, i = 1, . . . , N ′;

• Eks is the energy associated with sending a key set;

• Eo is the energy associated with the overhead of a
single “data for re-keying” message.

Notice that apart from considering the energy cost for S,
we also consider the energy cost incurred on S’s neigh-
bours for listening, hence the terms containing r. The
energy cost for broadcasting all key sets at once is

Ebroadcast = (1 + Nr)hEks + (1 + Nr)Eo (9)

The terms N ′, N ,
∑N ′

i=1 Ci are entirely topology-
dependent, hence there is no way of determining whether
Eunicasts is larger or smaller than Ebroadcast without con-
sidering the topology. Now, we can make S adopt this
adaptive policy: after collecting enough “interests to re-
key”, compute Eunicasts and Ebroadcasts, if Eunicasts >
Ebroadcasts, then aggregate and unicast the requested key
sets to each requesting neighbour, otherwise broadcasts
all key sets at once.

In practice, we expect N ′ ≈ N , and the term (1 +
r)

∑N ′
i=1 Ci to often be larger than (1 + Nr)h, in which

case, S will choose to broadcast. Since N is related to
the network density which does not vary much for the
same type of applications. Intuitively then, Ebroadcast in-
creases with the number of levels h, which is logarithmic
to the group size. Therefore Ebroadcast scales logarithmi-
cally with the group size.
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This adaptive policy does not break directed diffusion,
because it needs only apply to S. In the event that S
decides to use broadcast instead of unicasts, the neigh-
bours of S which have not submitted any request for key
sets but have received S’s broadcast, would just drop the
broadcast data, since there is no matching interest.

l = 3,then l = 0, then l = 1, then l = 2

x1

x2

x3ui

l = 0 l = 1

l = 2

Figure 6: Worst case of receiving re-key levels from up-
stream neighbours (L = {0, 1, 2, 3}).

Now we consider the sources. The upper bound of the
energy cost for a source ui applies when the N upstream
neighbours of ui time out later than ui, and the re-key
levels received from these N neighbours span the set L
(Figure 6). The upper-bound energy cost is therefore:

Eupper = r
N∑

i=1

(CiEl + Eo) + (El + Eo) + (h− 1)(El + Eo)

= (h + r
N∑

i=1

Ci)El + (h + Nr)E0

≈ (h + Nr)E0

(10)

where

• Ci is the number of re-key levels sent by neighbour
i, i = 1, . . . , N ;

• El is the energy required for sending a re-key value;

• Eo is the energy associated with the overhead of a
single “interest to re-key” message.

Note that the number of bits to represent a re-key level
is potentially very small compared with the the length of
an “interest to re-key” message (Figure 4) which is taken
into account by Eo, or in other words El ¿ Eo. N is
related to the network density which does not vary much
for the same type of applications. Using the same logic
as described before, Eupper scales logarithmically with
the group size. On the other hand, the lower bound
applies when ui receives no request from its neighbours,
and needs only to send its own re-key level:

Elower = (El + Eo) ≈ E0 (11)

4.2 Join

The case of join is much simpler because it simply in-
volves dispatching the relevant key set to the new mem-
ber, and flooding the network with the key regeneration
seed. The transmission energy cost for S alone is inde-
pendent of the topology:

E = Eks + Eseed + Eo(unicast) + Eo(broadcast) (12)

where Eseed is obviously the energy for broadcasting the
seed; Eo(unicast) and Eo(broadcast) are associated with the
overhead of a single unicast and a single broadcast re-
spectively. For the new joining member, the cost in-
volves dispatching its “interest to join” and receiving the
allocated key set. The existence of reinforced gradients
ensures that the energy cost for propagating the “inter-
est to join” across the network to the sink is low. For
existing members, the cost primarily involves receiving
the seed.

5 Security Analysis
After evaluating the performance of LKHW, we now in-
vestigate the security aspects of LKHW. To model the
attackers, we adopt, as usual, the Dolev-Yao model [12],
in which an attacker can eavesdrop, intercept, modify
and replay any message in the network. The back-
ward and forward secrecy of our scheme relies on the
security properties of MAC and pseudorandom genera-
tor which are standard cryptographic primitives. As for
other properties, our analysis is performed against secu-
rity protocol attacks and known routing protocol attacks.

5.1 Security Protocol Attacks
During group initialization, Protocol 1 is applied be-
tween pairs of S and ui. As mentioned, the protocol
has been verified using the protocol verifier CoProVe
(http://wwwes.cs.utwente.nl/24cqet/), to be (1) se-
cure in the confidentiality of K0, (2) secure against re-
play attacks on S and (3) secure against replay attacks
on ui. The principles of verification have been detailed
in our previous work [26]. Security against replay at-
tacks on S means an adversary cannot replay any past
message of S to impersonate S. The definition applies
similarly to ui. Note that the notion of node-to-node au-
thentication is meaningless in the data-centric paradigm
of directed diffusion, i.e. names are applied to data in-
stead of to the nodes themselves.

5.2 Routing Protocol Attacks
Routing protocols that are not designed with security
in mind are particularly susceptible to attacks (with en-
ergy deprivation or denial-of-service being the most sig-
nificant result), and directed diffusion is no exception.
According to Karlof and Wagner [24], directed diffusion
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is especially susceptible to selective forwarding, flow sup-
pression, cloning, data tampering, flow redirection, bogus
routing information. Note that these attacks relate to
each other in one way or another, hence this classifica-
tion is by no means unique nor universal, we will however
analyze LKHW according to this very classification.

Selective forwarding is the most generic and effort-
less form of attack in WSN, because any node in the
network is capable of launching such attack without the
knowledge of any cryptographic information. One spe-
cific instance of selective forwarding is flow suppres-
sion. Fortunately due to the exploratory nature of ini-
tial interests and initial data replies, there is usually
too much redundancy in the interest diffusion and ex-
ploratory reply phase for a selectively forwarding adver-
sary to wield its disruptive power. However once on one
of the reinforced gradients, an adversary can arbitrarily
influence the data flow. In response to the resultant flow
irregularity, the sink has to initiate new rounds of inter-
est diffusion. We expect that the multipath extension of
directed diffusion [15] is able to resist this attack.

Cloning is an attack whereby an adversary clones the
interest of a sink, thus inducing an alternative data flow
to itself. In LKHW, outsider adversaries cannot forge
interests nor data within a group because they do not
know the group key. Insider adversaries are however able
to forge interests and data with the group key. Apart
from forging data, they are also capable of data tam-
pering. Depending on the application scenario, forging
interests might not mean more harm than being a pas-
sive eavesdropper, a role any insider adversary is readily
capable of. To solve the problem of interest forging, we
believe asymmetric cryptography is required, but it has
more to do with key management than the current issue
we are solving at hand. As for the problem of data forg-
ing or tampering, we believe in typical scenarios, there
are many more legitimate than malicious sources, aver-
aging out the undesirable effect of forged or tampered
data.

Flow redirection can be achieved in the original di-
rection diffusion model, by an attacker launching sink-
hole and wormhole attacks. In general, an attacker can
draw traffic towards itself (as if it were a sinkhole) by
appearing attractive to neighbouring nodes in terms of
routing cost. In directed diffusion, an attacker can eas-
ily achieve this by sending interests with high data rate
and at a high frequency. Moreover, since the attacker
can also spoof positive and negative reinforcements, it
can suppress data flows to other parts of the network
while concentrating the flows to itself.

Suppose there are attackers, with attacker A located
near the sink, and attacker B located near the sources.

If A and B collude to establish an exclusive, out-of-band
channel known as wormhole [19] between each other, A
can send the sink’s interests directly to B through the
wormhole. With A spoofing negative reinforcements and
B spoofing positive reinforcements to their neighbouring
nodes, they can push traffic away from the sink and to-
wards B instead.

In LKHW, recall in Section 3.2 that reinforcements
during group initialization are the directional sendings
of “data for joining”. “Data for joining” do not spec-
ify any data rate, thus the most an adversary can do is
to disrupt the propagation of these reinforcements and
not bump up or pin down the “degree” of these rein-
forcements. After a secure group is setup up, insider
attackers, with the knowledge of the group key, are how-
ever able launch sinkhole or wormhole attacks to redirect
data flows. On the bright side, we believe this problem
can be mitigated by adopting the multipath extension
of directed diffusion [15], and using link-layer encryp-
tion and authentication (for curbing Sybil attacks [13]
that easily defeat multipath routing).

Bogus routing information includes arbitrary de-
viations from the normal flow of messages, e.g. the
advertisement of bogus interests or the supply of bo-
gus data. In LKHW, any node, insider or outsider, can
advertise “interest about interests to join” in the form
of plaintext tuple (T,GID) as in Protocol 1, thus any
node can trigger unnecessary propagation of “interests
to join”. Our response to this is as follows:

First of all, we cannot encrypt (T,GID) because due
to our “no system-wide key” assumption/requirement,
we cannot make sure intermediate nodes (nodes between
the sink and potential sources) can decrypt the interests
and hence perform data-interest matching. In fact, in-
sider attackers are still able to generate bogus (T,GID)
even if we require the messages to be encrypted. A sim-
ple solution is

1. to limit the propagation of (T,GID), and

2. to make sure that algorithm-wise the generation of
GID consumes much more energy and computa-
tional resources than the verification of GID .

To the effect of strategy (1), the original mechanism
of directed diffusion already ensures that duplicates of
(T,GID) are discarded, forcing the adversary to gener-
ate different T or GID each time. The number of choices
for T , i.e. the number of task types, is conceivably lim-
ited, and strategy (2) makes sure that the adversary has
to pay a heavier price compared to its victims to fulfill
its own malicious intent. For the algorithm, we can use
moderately hard, memory bound functions [1].
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Lastly, outsider attackers are not able to forge “inter-
ests to join” because they are protected by the individ-
ual keys. Outsider attackers are also not able to forge
“interests to re-key” because they are protected by the
group key.

6 Related Work

LKHW is, as far as we know, the first secure group
communication scheme to reap the benefits of directed
diffusion. We have already reviewed directed diffu-
sion [17, 21] in Section 2 in details. Krishnamachari
et al. [25] offer further insight into the energy efficiency
of directed diffusion. In the following, we will compare
LKHW with other group communication schemes from
two perspectives, the distributed approaches and the hi-
erarchical approaches.

6.1 Distributed Approaches

Also called conference key distribution schemes, the ap-
proaches in this category try to solve the key agreement
problem, i.e. the problem of deriving a secure common
key among n users. Ingermasson et al. [20] are the first to
extend the Diffie-Hellman (DH) problem [11] to groups.
Burmester and Desmedt [7] correct Ingermasson et al.’s
security flaw by using cyclic instead of symmetric func-
tions. Just and Vaudenay [23] patch the key authentica-
tion flaw of the Burmester-Desmedt scheme and gener-
alize it. Steiner et al. [37, 38] begin to consider dynamic
peer groups instead of a fixed number n of users, and
introduce CLIQUES, a suite of contributory key agree-
ment protocols which require less communication than
the Burmester-Desmedt scheme does. Ateniese et al. [3]
provide CLIQUES with authentication properties. The
problem with these conference key distribution schemes
is that they require a lot of exponentiation computations
that are prohibitively expensive for sensors [9, 18], and
re-keying is inefficient. Blundo et al. [6] did the pioneer-
ing investigative work on the storage requirements of
k-secure t-conference key distribution scheme. The pro-
posed scheme is information-theoretically secure, does
not require exponentiation, but requires O(nt) amount
of keying material per node (where n is the total num-
ber of users), which is impractically large. In particular,
Carman et al. [9] have concrete figures of the storage
requirements. Furthermore, Beimel and Chor [4] prove
that interaction among the group members does not im-
prove space efficiency. The conclusion is that both DH-
based and information-theoretically secure schemes have
their share of scalability problems.

6.2 Hierarchical Approaches

By imposing a hierarchial structure – binary tree be-
ing the mainstream – on dynamic peer groups, these
approaches have been able to achieve better scalability
than the distributed approaches. There is the pioneering
work by Wallner et al. [39, 16] who propose the logical
key hierarchy (LKH) model. The LKH model is scalable
because the total number of keys in the system is lin-
early proportional to the number of users, and both the
number of keys per user and the number of messages re-
quired to manage group dynamics, are logarithmic in the
number of users. Wong et al. [40] investigate and com-
pare three re-keying paradigms, i.e. key-oriented, user-
oriented and group-oriented re-keying. The re-keying
paradigm of LKHW is an improved form of group-
oriented re-keying. McGrew et al. [27] introduce the
one-way function tree (OFT), where the KDC needs
only dispatch dlga ne keys during re-keying, the same
number as LKHW’s, instead of the 2dlga ne required by
the basic LKH model. Canetti et al. [8] replace Mc-
Grew et al.’s non-standard cyptographic primitive with
pseudorandom generator. The EHBT scheme proposed
by Rafaeli et al. [33] uses a non-standard cryptographic
primitive similar to OFT’s, i.e. one-way function of
the form h(key ⊕ index) for key refreshment. In all the
schemes mentioned so far, affected group members need
to receive refreshed keys from the KDC during user-
join events. Members in Perrig et al.’s ELK [29] how-
ever avoid that overhead by locally and periodically re-
generating their keys. This is in the same spirit as Setia
et al.’s Kronos [35], where re-keying is driven by time
rather than membership changes. Di Pietro et al. [31]
provide further improvement by exploiting pseudoran-
dom function and the “level-awareness” of a node in a
scheme called LKH++.

LKHW requires the same number of keys for the KDC,
i.e. 2n − 1; and the same number of keys for a mem-
ber, i.e. h + 1, as OFT, ELK, EHBT and LKH++ do.
LKHW’s handling of user-join events might seem inef-
ficient since a seed is flooded across the network, but
due to the multihop nature of WSN (where every node
behaves as a router) and the data caching property of
directed diffusion, this method is in fact not only effi-
cient but also robust. That said, time-driven re-keying
strategy like the one proposed by Di Pietro et al. [32] is
indeed an avenue of research for improving LKHW.

7 Conclusion and Future Work
We have presented a secure group communication
scheme that is optimized for directed diffusion. The
scheme is independent of the underlying key manage-
ment architecture. We have given the details of handling
group dynamics. In terms of efficiency, the re-keying
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overhead in terms of energy cannot be concretely quan-
tified without considering the topology, but it is found to
be approximately logarithmic to the group size. In fact,
the conventional evaluation methodology is no longer
apt in the WSN context. In view of this, we have pre-
sented a novel evaluation methodology that is entirely
based on energy efficiency.

This paper involves a lot of details, so much so that
the details for multiple join and multiple leave have been
left out. We also have not addressed the efficient re-
balancing of the LKH tree in the directed diffusion con-
text. The other issues currently under assessment in-
clude self-healing key distribution schemes (e.g. [36]).
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Appendix A Proof of Proposition 1
Denote X as the event that ui can perform at least one
aggregation X, i.e. that there exists at least one uj

among the N neighbours such that lj 6= li and ρj < ρi.
Further denote A as the event that all N neighbours
have the same re-key level as ui’s; and B as the event
that all N neighbours have a time-out greater or equal
to ui’s. Then,

Pr[X] = 1− Pr[A]− Pr[B] + Pr[AB]
= 1− Pr[A]− Pr[B] + Pr[A]Pr[B]

(13)

since events A and B are mutually independent. Recall
that ρi is as defined in Section 3.3.1, the time-out ratio
of ui. We first derive Pr[B], assuming ρi is uniformly
distributed between 0 and 1:

Pr[B] =
∫ 1

ρi=0

(1− ρi)N

=
1

N + 1

(14)

reducing (13) to the simpler form of (15).

Pr[X] =
N

N + 1
(1− Pr[A]) (15)

As for Pr[A], we observe that the number of nodes, n′,
having the same re-key level l to be:

n′(l) = (a− 1)ah−l−1

expressed as a function of l. For example, in Figure 2,
the nodes sharing the re-key level of l = 1 during the
eviction of u12 are u8, . . . , u11, or equivalently n′ = 4.
Observe that n′ decreases as l increases, so there exists
a maximum value of l, Lmax such that n′(Lmax) = N+1,
or

Lmax = h− lga

[
a(N + 1)

a− 1

]

Constraining Lmax to integer values, we have

Lmax =
⌊
h− lga

[
a(N + 1)

a− 1

]⌋
(16)
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When l > Lmax, at least one of the N neighbours of ui

will have a different re-key level, a condition precluding
event A. Therefore,

Pr[A] =

∑Lmax

l=0

(
n′

N+1

)
(

n−1
N+1

) (17)

where n is the total number of nodes in the group before
eviction. Substituting Pr[A] with (17), in (15), we get
Proposition 1.

�

16


	Introduction
	Overview of Directed Diffusion
	The LKHW Model
	Key Tree
	Group Initialization
	Group Dynamics
	Leave
	Join


	Performance Evaluation
	Leave
	Join

	Security Analysis
	Security Protocol Attacks
	Routing Protocol Attacks

	Related Work
	Distributed Approaches
	Hierarchical Approaches

	Conclusion and Future Work
	Proof of Proposition 1

