
Time synchronization for an Ethernet-based real-time token network

Ferdy Hanssen, Joost van den Boom, Pierre G. Jansen, Hans Scholten
Distributed and Embedded Systems group

Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente
PO-Box 217, 7500 AE, Enschede, the Netherlands, FAX: +31 53 489 4590

hanssen@cs.utwente.nl

Abstract

We present a distributed clock synchronization algorithm.
It performs clock synchronization on an Ethernet-based
real-time token local area network, without the use of
an external clock source. It is used to enable the token
schedulers in each node to agree upon a common time.
Its intended use is in resource-lean systems, where heavy-
weight protocols like NTP cannot be used.

We present a short overview of the working of the pro-
tocol, as well as experimental results.

1. Introduction

Running tests with a prototype of our Ethernet-based
real-time token network [1] revealed that the protocol
goes awry when the clocks are not synchronized. The
distributed token scheduling algorithm needs a notion of
global time. So we had to come up with a clock synchro-
nization protocol which adheres to the requirements of our
network.

The network, called RTnet, has the following require-
ments:
• based on existing hardware and protocols wherever

possible; this will help to keep the costs down, a
project prerequisite. E.g. Ethernet is proven technol-
ogy in both protocols and hardware, and it is cheap
and dependable;

• QoS guarantees for real-time traffic; we want to sup-
port both high-bandwidth multimedia traffic and low-
bandwidth control traffic;

• open for non-real-time traffic;
• fault recovery; the network should be robust against

failing nodes;
• plug-and-play; nodes need to be able to join and leave

the network at will.
Since the network is based in-home, and the goal is to
also have devices with low resource capacities, such as
processing power or memory, we want to use a clock syn-
chronization protocol which does not need much process-
ing or memory. Yet it should be accurate enough for our
network protocol to function. Currently, our prototype op-
erates with units of10 ms, the best our hardware can pro-
vide reliably.

This work is sponsored by the Netherlands Organisation for Scientific
Research (NWO) under grant number 612.060.111, and this work is sup-
ported by the IBM Equinox programme.

2. Related work

Clock synchronization has been researched [2] since
Lamport [3] wrote about it. It consists of two parts: syn-
chronization of time and of frequency. Both need to be
used together if fully synchronized clocks are to be ob-
tained.

The best-known and most-used clock synchronization
algorithm in use today is the Network Time Protocol
(NTP) [4]. This protocol relies on time servers, which
are categorized in so-called strata. The time servers in
stratum 1 have the most exact notion of time, with time
servers in stratum 2 having a less exact notion, and so
on. Servers synchronize with servers in their own stra-
tum or the stratum directly preceding theirs, that are given
a higher priority. Network distances between the servers
are continuously measured and taken into account when
synchronization messages are exchanged.

Another algorithm being used today is the Distributed
Time Service (DTS) [5], incorporated in the Distributed
Computing Environment (DCE) of the Open Group [6].
Here, every LAN has some local time servers, which are
used by so-called time clerks in the nodes on the LAN
to synchronize their clocks. When not enough local time
servers are available, a time clerk can also communicate
with a global time server, using so-called courier time
servers. These are used to synchronize clocks between
LANs.

The main disadvantage of these algorithms is the fact
that they do not really take resource usage into account.
They are designed to operate on large networks that con-
sist of several smaller networks, and thus have fairly com-
plex communication protocols to account for that. Our
network is much smaller, and therefore does not need the
overhead induced by these protocols to support internet-
working systems.

3. The network architecture

Our network protocol operates using a timed token on
a broadcast capable network. The broadcast capability is
needed for our current way of handling new nodes joining
the network. An important aspect of the token is that it
does not follow a predefined ring of all nodes.

We distinguish two kinds of network traffic: real-time
and non-real-time. Real-time traffic has precedence over
non-real-time traffic, which means that non-real-time traf-
fic is sent only when no real-time traffic is being offered by

mailto:hanssen@cs.utwente.nl

any node. As soon as a node has real-time traffic to send,
it will obtain the token. Non-real-time traffic is organ-
ised by having the token travel from node to node using a
Round Robin paradigm, with each node having the same
Token-Holding Time (THT) for non-real-time traffic.

Real-time traffic is allowed in the form of real-time
streams. Each stream is characterised by the bandwidth
it needs and a period. A node is then granted access to the
network once every period for every stream that originates
from that node. When a node has access to the network
(i.e. it has the token) for a particular stream, it may trans-
mit messages for a duration of time: the real-time THT.
This THT can be calculated easily using the period and
the bandwidth of the stream, and the release times of all
the other streams. To enable these calculations, all rele-
vant network state, i.e. basically the list of nodes and their
streams, is present in the token itself. In this way every
node can make decisions concerning the entire network.

Our network supports pre-emptability of streams. This
means that a node, which is transmitting real-time mes-
sages for a given stream, has to give up the token to an-
other node with a higher-priority stream than its own. The
token will return to this node automatically to enable it to
finish the transmission of the messages for the current pe-
riod of that stream. RTnet uses a real-time scheduling al-
gorithm, currently Earliest Deadline First (EDF), to guide
the token through the network, and an admission test to
make sure the real-time streams on the network remain
feasible.

Robustness is handled by using a so-called monitor
node to keep track of progress of the token through the
network. This monitor task is also distributed, and the
monitor node is the node that held the token directly be-
fore the node currently holding the token. When it detects
that the token holder does not forward the token in time,
it will come into action and will regenerate a token when
the token holder does not respond to its poll.

4. The time synchronization protocol

For our purposes an internal clock synchronization pro-
tocol is sufficient, as we only want the nodes participating
in the protocol to agree upon a certain clock, they do not
have to agree with the time of some external time server.
The time synchronization protocol for this network should
be simple and light-weight, we do not want more synchro-
nization messages than absolutely necessary and we do
not want to keep a history of past clock values for sta-
tistically derived improvements, in order to keep the re-
source usage of the synchronization protocol to a mini-
mum. We assume that clocks do drift and that message
delays are unbounded. Furthermore, we assume reliable,
trusted processes, so no security mechanisms like autho-
rization are needed, and we assume reliable messages, i.e.
no messages will get lost.

Our clock synchronization protocol consists of four
stages:
1) initialization;

(a) Ring. (b) Star. (c) Flower.

Figure 1. Topologies.

2) message exchange and offset calculation;
3) time and frequency adjustment;
4) finalization.
In short, messages with clock values are exchanged, from
which the synchronization master computes a new, com-
mon clock and distributes this to the others using a broad-
cast. All nodes then adjust their clocks in a continuously
differentiable way to the new value.

4.1. Initialization

A node that wants to join an RTnet network, listens for
an announcement message. It will reply to this message,
stating it will join, and is then added to the network by
the node that sent the announcement. The new node sets
its clock to the announcement message’s time stamp. This
is the initialization phase, the new node’s clock is now
approximately one network delay behind, but it will be
synchronized during the next synchronization rounds.

4.2. Message exchange and offset calculation

Synchronization messages can be exchanged between
nodes in a simple ring or star shaped pattern, as in fig-
ures1(a) and 1(b). A synchronization algorithm which
exchanges messages in a ring, has the advantage of need-
ing only n+ 1 messages forn hosts:n messages to travel
the ring and1 message to broadcast the new time. How-
ever, asn increases, so does the calculation error, originat-
ing from the fact that the propagation delay in the network
is not a constant, but it is assumed to be bounded by the
interval [δ − ε, δ + ε], whereδ is the average measured
delay.

A synchronization algorithm, which exchanges mes-
sages in a star has the advantage of a small maximum error
of 2ε. However, it needs2n− 1 messages to synchronize
n hosts:2(n − 1) time stamp messages and1 message to
broadcast the new time.

We will use a combined topology, called a flower (see
figure 1(c)), which is a combination of rings of3 nodes,
always including the master node, and a possible ring of
2 nodes to include a single remaining node. This topology
has an error of(n− 1)ε, which is of the same order as the
star topology, but is much smaller than the error made in
the ring topology. The number of messages that needs to
be exchanged in this flower topology is3(n − 1)/2 + 1 <
1.5n whenn is odd and3(n − 2)/2 + 3 = 1.5n whenn is
even. This is significantly better than the star topology.

The center node in the flower is thesynchronization
master. This master is the node that happens to have the
token when thesynchronization timerexpires. This mas-
ter starts the synchronization round by going around the
leaves to obtain the current clock values, compute the de-
sired clock value, using a method described in the next
section, and broadcast this value.

It may also be desirable to designate one node to al-
ways be synchronization master. E.g. when the burden of
computing new clock values is too much for some of the
nodes due to resource contraints, or when one node has
access to an external clock source. This of course reduces
the robustness, as an algorithm has to be devised to have
another node pick up this task when the original synchro-
nization master leaves the network. But the possibility of
using an external source to also synchronize the network
clock with the real world clock may be a large advantage
for the applications running on the network.

4.3. Time and frequency adjustment

At the end of a round of message exchanges, a new
time has to be computed, using the gathered values of all
the clocks. There are several possibilities, such as aver-
aging or taking the median, all with their own properties
for error propagation or computation time. Averaging all
clock values is not a good idea, because it is very prone
to error when some clocks are very much off. Taking
the median needs more computation, because you need
to sort all clock values, but some clocks which are much
off track do not influence the outcome. The median, how-
ever, does also not take into account the distribution of the
clocks. Using the trimean (add the 25th percentile, twice
the 50th percentile, and the 75th percentile, divide by4)
is a bit more prone to errors than using the median, but it
represents the actual clock values better.

Tests with an implementation in a prototype of RTnet
have shown that using the trimean provides the best re-
sults. Figure2 shows the maximum clock difference be-
tween three nodes during experiments using the three dif-
ferent methods. The network consisted of three low-end
PCs running standard Linux, as the protocol should work
on resource-lean systems. Each experiment was carried
out twice, resulting in two lines per graph, and each ex-
periment lasted fifteen minutes. The figure clearly shows
that the difference in clocks between the nodes is smallest
when using the trimean.

The large values in the first thirty to sixty seconds mean
that the nodes are not synchronized yet, and the other
spikes may be explained because a non-real-time oper-
ating system was used in the test. Therefore operations
being carried out in other parts of the operating system
may have influenced our measurements. But a maximum
difference of150 to 200microseconds is not fatal, as the
timing used in the real-time network protocol has to be
accurate in the10 msrange. Our prototype currently op-
erates with units of10 ms, as this is the best the current
Linux kernel can do reliably on our hardware.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

O
ffs

et
 (

10
-6

 s
)

Mean (experiment 1)
Mean (experiment 2)

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

O
ffs

et
 (

10
-6

 s
)

Median (experiment 1)
Median (experiment 2)

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

O
ffs

et
 (

10
-6

 s
)

Time (s)

Trimean (experiment 1)
Trimean (experiment 2)

Figure 2. Comparison of time computation algo-
rithms: mean, median, and trimean.

f

f

f ′

t

t + ∆

real time

cl
oc

k
tim

e

Figure 3. Continuously differentiable clock ad-
justment.

Each node is responsible for adapting the time and
frequency of its own clock when it receives the broad-
cast with the new time. The node knows it should ad-
just its clock with∆ time units, and it knows the syn-
chronization periodT. Thus, the node can calculate the
frequencyf ′ it should have from the current frequencyf
using f ′ = f /(1 − ∆/T). For time adjustment the node
knows it should advance its clock witht + ∆ time units
during the nextt time units. The node knows everything
needed to adjust the clock in a continuously differentiable
way as in figure3.

We experimented with two approaches: analytical
clock adjustment and a closed-loop control system. The
analytical clock adjustment is based on the fact that the
third degree polynomial to express the adjustment can be
derived using the two endpoints(x, y) and(x+ t, y+ t+∆),
and the derivatives in those two points,f and f ′ respec-
tively. Using this polynomial the values of the clock and
frequency for the adjustment can then be computed.

The closed-loop control system uses a set point to
guide the system to the desired state. The current state
of the system consists of the current offset∆, by which
the time of the clock should be adjusted, and the current
frequency f of the clock. The control function for the
offset used is∆̇ = 1 − f / fset, where fset is the desired
frequency. The control function for the frequency used is
ḟ = k1∆ + k2(fset− f). The constantsk1 andk2 should
both be positive, and their exact values can be determined
experimentally, as they control the speed with which the
clock will settle.

The analytical and closed-loop methods have been sim-
ulated, and the results are shown in figures4 and5. Both
algorithms have been simulated with a slow-running clock
at a frequency of0.5 and an offset of10 time units by
which the clock should be adjusted. The clock should be
adjusted after50 time units. The constantsk1 andk2 for
the closed-loop system were chosen as0.025 and0.3 re-
spectively.

The closed-loop method tries to bring the offset to zero
quickly (it had done 90% of the necessary adjustment in
half the time needed for the entire adjustment), whereas
the analytical method had done 90% of the necessary ad-
justment after 80% of the time needed to adjust entirely.
This means that the closed-loop system can let the fre-
quency settle gently, where the analytical method does this
much more abruptly.

The analytical method completes with an offset just
below zero, which can be explained by the fact that, al-
though the method is continuous, an implementation, and
thus our simulation, cannot be, as computers are not con-
tinuous but digital machines. The simulation uses a step
size of 0.5 time units for the computation, introducing
small errors, which can be seen in the final offset. The
closed-loop system does not suffer from this problem, as
it always uses the previous frequency and offset to deter-
mine the new frequency, where the analytical method does
calculates the polynomial, and thus all frequencies at the
beginning. Because of these results, we chose to use the
closed-loop system in the prototype.

4.4. Finalization

The finalization phase consists of scheduling the next
synchronization round. As synchronization needs to be
done periodically, it is scheduled just like any other real-
time stream, but the period of these rounds can change. If
the clocks behave nicely, we do not have to synchronize as
often as if the clocks behave more erratically. We calcu-
late the maximum drift rate using the old synchronization

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

O
ffs

et

Time units

Analytic
Closed-loop

Figure 4. Offsets during adjustment.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Time units

Analytic
Closed-loop

Figure 5. Frequencies during adjustment.

period and the maximum offset of the node’s clocks, and
we then calculate a new synchronization period using this
maximum drift and the maximum offset that we allow the
nodes to have.

5. Future work

The clock synchronization algorithm is used in a pro-
totype of RTnet and we believe it to be correct. We are
currently working on a formal proof. We are also looking
at the possibility of using an external source to match our
network clock with the real time. Furthermore, we will in-
vestigate the influence of the operating system, especially
the network drivers, on the performance of the time syn-
chronization protocol.

References

[1] F. Hanssen, P. Hartel, T. Hattink, P. Jansen, J. Scholten,
and J. Wijnberg, “A real-time Ethernet network at home,”
in Proceedings Work-in-Progress session 14th Euromicro in-
ternational conference on real-time systems (Research re-
port 36/2002, Real-Time Systems Group, Vienna University
of Technology), M. G. Harbour, Ed., Vienna, Austria, June
2002, pp. 5–8.

[2] B. Simons, J. L. Welch, and N. A. Lynch, “An overview of
clock synchronization,” IBM Research, Tech. Rep. RJ 6505,
Aug. 1988.

[3] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,”Communications of the ACM, vol. 21,
no. 7, pp. 558–565, July 1978.

[4] D. L. Mills, “Internet time synchronization: the network
time protocol,” IEEE Transactions on Communications,
vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[5] Technical Standard — DCE 1.1: Time Services, X/Open
Company Limited, 1994, X/Open Document Number:
C310, ISBN 1-85912-067-9.

[6] “Distributed Computing Environment web site,”http://
www.opengroup.org/dce/.

http://www.opengroup.org/dce/
http://www.opengroup.org/dce/

	Introduction
	Related work
	The network architecture
	The time synchronization protocol
	Initialization
	Message exchange and offset calculation
	Time and frequency adjustment
	Finalization

	Future work
	References

