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Abstract. When outsourcing data to an untrusted database server, the
data should be encrypted. When using thin clients or low-bandwidth
networks it is best to perform most of the work at the server. In this
paper we present a method, inspired by secure multi-party computation,
to search efficiently in encrypted data. XML elements are translated to
polynomials. A polynomial is split into two parts: a random polynomial
for the client and the difference between the original polynomial and
the client polynomial for the server. Since the client polynomials are
generated by a random sequence generator only the seed has to be stored
on the client. In a combined effort of both the server and the client a
query can be evaluated without traversing the whole tree and without
the server learning anything about the data or the query.

1 Introduction

Nowadays the need grows to securely outsource data to an untrusted system.
Think, for instance, of a remote database server administered by somebody else.
If you want your data to be secret, you have to encrypt it. The problem then
arises how to query the database. The most obvious solution is to download the
whole database locally and then perform the query. This of course is terribly
inefficient.

We propose a method that looks like secure multi-party computation where
two parties, a client and the database server, together evaluate a query. Before
we will present our solution (section 4) we will say a few thinks about secure
multi-party computation in general (section 3).

2 Related Work

Most modern database management systems (DBMS) include functionality to
encrypt records. However, they lack native support to query these records. Berti-
noro [1] have studied how to protect XML data by using a diversified key ap-
proach.

In [2] techniques are presented to support keyword-based search on an en-
crypted textual string. We adapted this work to exploit the tree structure in
XML documents in [3].



Other techniques to support keyword-based search on encrypted textual
strings are presented in [4]. All these keyword based search techniques can only
be used to find exact matches. [5] provides an order-preserving scheme for nu-
meric data that allows any comparison operation directly applied on the en-
crypted data. In [6,7] techniques are explored which execute SQL-based queries
over encrypted relational tables in a database-service provider model, where an
algebraic framework is described for query rewriting over encrypted attribute
representation.

In [8] a single-server solution for remote querying of encrypted relational
databases on untrusted servers is presented. The approach is based on the use of
B+ tree indexing information attached to the relations. The designed indexing
mechanism can balance the trade-off between efficiency requirements in query
execution and protection requirements due to possible inference attacks exploit-
ing indexing information.

Traditionally, databases are protected against a malicious intruder by means
of an access control mechanism. However, the database management system
itself is trusted. When the data is outsourced the database system cannot be
trusted any more to keep the query and the answer secret. Private Information
Retrieval [9] aims at letting a user query the database without leaking to the
database which data was queried. The idea behind PIR is to replicate the data
among several non-communicating servers. A client can hide his query by asking
all servers for a part of the data in such a way that no server will learn the whole
query by itself. [9] proves that PIR with a single server can only be done by
sending all data to the client for each query. In practice database replication is
not preferable. Computational PIR [9,10,11] aims at achieving the same goal as
information theoretic PIR but uses cryptographic techniques. [12] uses a single
server scheme which is a compromise between total privacy and efficiency. A
query is hidden by asking for more nodes than required. The server cannot tell
which nodes are really needed and which ones are just dummy nodes. To avoid
replay attacks and server learning, all nodes in the retrieved set are shuffled and
stored at different locations after each query.

3 Secure multi-party computation

We speak of secure multi-party computation when several parties calculate a
function result without giving the other parties access to their input. More pre-
cisely, the parties want to evaluate the function result (y1, . . . , yn) = f(x1, . . . , xn)
where each parameter xi is the private input of party Pi and yi its private
output. It is also possible that all y’s are equal. In that case it is written as
y = f(x1, . . . , xn). In principle there exist schemes that can evaluate any func-
tion securely using secure multi-party computation [13]. However, no efficient
multi-purpose schemes are known to us at the moment.

For example, let f be an anonymous voting function. Each voter Pi can
vote for a decision (xi = 1) or against it (xi = 0). The function f can be



defined as the function f(x1, . . . , xn) =
∑n

i=1 xi (in case of a majority vote) or
as f(x1, . . . , xn) =

∏n
i=1 xi (in case of a veto system).

One characteristic of secure multi-party computation is the lack of a trusted
third party. In our example there is no need for a trusted party to count the
votes.

Many secure multi-party computation protocols are based on Shamir’s secret
sharing scheme [14]. These protocols have at least two phases. In the first phase
each party Pi splits up its input xi in such a way that at least t ≤ n shares
are needed to reconstruct xi. In the second phase each party Pi calculates its
share of the function result given only his own input and the shares of the other
parties. Now, the complete function result is shared over all parties.

We will now give the implementation of one specific secure multi-party com-
putation protocol. In this protocol Pi shares its input variable xi by choosing a
random polynomial gi of degree t such that gi(0) = xi. Pi sends to each other
party Pj the value of gi(j). When t parties collaborate they can reconstruct the
original polynomial gi by interpolating the t points (j, gi(j)). With the polyno-
mial it is easy to recalculate xi = gi(0).

The second phase consists of the local computations with the distributed
shares gi(j) and depends on the function f . For simplicity reasons we consider
only our voting case where f(x1, . . . , xn) =

∑n
i=1 xi. Each party Pj locally cal-

culates the sum h(j) =
∑n

i=1 gi(j). Having at least t collaborating parties and
thus t points 〈j, h(j)〉 it is possible to construct the polynomial h =

∑n
i=1 gi and

also f(x1, . . . , xn) = h(0).

4 Searching in encrypted data

One way to look at the problem of searching in encrypted data [3,15,16] is to
consider the search algorithm as a search function that is to be evaluated in
the sense of secure multi-party computation. The function takes two arguments,
data and query, as input. data is the private input of the client but stored on the
server and query the private input of the client. We achieved this by splitting the
original data into a random part dataclient and a server part dataserver such that
data = dataclient + dataserver. Since dataclient is generated by a pseudo random
generator it can be forgotten provided that you keep the random seed. Damiani
et al [17] use the same strategy in the relational setting. Thus the search function
becomes search(dataserver, query). Both the client and the server contribute to
the evaluation of this function. The representation and the splitting of the data is
not a trivial problem. One way to represent the data is explained in the following
section. In section 4.2 we will solve the problem of sharing and in section 4.3 the
querying of the data.

4.1 Data representation

Secure multi-party computation works best with simple algebraic expressions
like polynomials. It is possible to map the tree of elements from an XML file to
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Fig. 1. XML example and its non-reduced representation as a tree of polyno-
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a tree of polynomials. We will demonstrate this mapping by way of the example
shown in figure 1(a).

First we introduce a mapping function from tag names to integers (map :
tagnames → Z). The mapping function may be chosen arbitrarily. For our ex-
ample we choose the mapping function displayed in figure 1(b). The mapping
function should be private to avoid the server to see the query (see section 4.3).

The tree of XML elements is represented as a tree of polynomials. The tree is
built from the leaves up to the root node. The leaf node name is translated into
the polynomial (x − map(name)) = (x − 4). Every non-leaf node is calculated
as the product of the polynomials of all its children times itself. For instance,
in figure 1 customers is represented as (x−map(customers))((x− 2)(x− 4))2,
where (x−2)(x−4) represents each client node. Figure 1(c) shows all represented
elements.

To avoid large degree polynomials we will work in a finite ring. We have
investigated two different rings: Fq[x]/(xq−1−1) (where q is a prime power q = pe.
For the reader’s convenience, all proofs will be given for q prime) and Z[x]/(r(x))
(where r(x) is an irreducible polynomial). In the first case the coefficients of the
polynomials are reduced modulo q. If p is prime then ∀a ∈ Fp : ap−1 ≡ 1
(mod p). Since these polynomials will only be used for evaluation in points of
Fp[x], it makes sense to store the polynomials modulo xp−1 − 1. In effect, this
means we are working in Fp[x]/(xp−1 − 1). In order to avoid zero divisors, we
will avoid mapping a tagname to p − 1. Thus we reduce every polynomial to a
polynomial of degree less than p− 1 with coefficients in Fp.

When working in Z[x]/(r(x)), the polynomial is reduced modulo an irre-
ducible polynomial r(x). The resulting degree is less than the degree of r(x).
However, the coefficients are elements of Z and can get quite large for large
trees.

Although we calculate in a finite ring, no information about the original tag
names is lost. We will prove this in theorems 1 and 2 for the respective cases
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Fig. 2. The same XML example as in figure 1 but now reduced from Z[x] to
the finite rings Fp[x]/(xp−1 − 1) and Z[x]/(r(x)).

Fp[x]/(xp−1 − 1) and Z[x]/(r(x)). But before we can prove theorem 1 we need
some lemmas.

Lemma 1. If p is prime then
∏p−1

i=1 (x− i) ≡ xp−1 − 1 (mod p).

Proof. Let f(x) =
∏p−1

i=1 (x − i) and g(x) = xp−1 − 1. Two polynomials are the
same if they have exactly the same roots. All elements of F∗p = {1, . . . , p − 1}
are roots of f(x). By Fermat’s little theorem, for p prime all these p− 1 roots of
f(x) are also roots for g(x). Thus the two polynomials are equal.

Lemma 2. Let p be prime and f(x) ∈ Fp[x]. If f(x) is non-zero mod x− (p−1)
then f(x) is also non-zero modulo xp−1 − 1.

Proof. Since f(x) ≡ 0 (mod xp−1−1) ⇐⇒ (xp−1−1)|f(x) and from lemma 1 it
follows that x− (p− 1)|xp−1 − 1 in Fp[x], we can conclude that x− (p− 1)|f(x)
and thus also that f(x) ≡ 0 (mod x − (p − 1)). This proves that f(x) ≡ 0
(mod xp−1 − 1) =⇒ f(x) ≡ 0 (mod x − (p − 1)), which is equivalent to the
statement of the lemma.

Lemma 3. Let p be prime, and let f(x) ∈ Fp[x] be defined as f(x) =
∏p−2

i=1 (x−
i)ei . Then f(x) 6≡ 0 (mod xp−1 − 1).

Proof. Consider the evaluation of f(x) at p− 1:

f(p− 1) =
p−2∏
i=1

((p− 1)− i)ei

Because ∀i ∈ {1, . . . , p− 2} : i 6= p − 1, f(p − 1) 6= 0. Thus x − (p − 1) cannot
be a factor of f(x), and we have that f(x) 6≡ 0 (mod x− (p− 1)). By lemma 2
this implies that f(x) 6≡ 0 (mod xp−1 − 1).

Now we are ready to prove that the mapped values can be retrieved uniquely:



Theorem 1. Given a polynomial f(x) in Fp[x]/(xp−1 − 1) (p prime) of an el-
ement node and all polynomials (q1, . . . , qn) of its children, the mapped value
map(node) can be retrieved uniquely.

Proof. Because of the way the polynomial f(x) of the element node was con-
structed, we know at least one solution exists for the equation

f(x) ≡ q1(x) · · · qn(x)(x− t),

where t is the mapped value to be retrieved. To prove that the solution is
unique, suppose there are two solutions t1 and t2 to this equation: f(x) ≡
q1(x) · · · qn(x)(x−t1) and f(x) ≡ q1(x) · · · qn(x)(x−t2). Then q1(x) · · · qn(x)(x−
t1) ≡ q1(x) · · · qn(x)(x− t2). This can be rewritten to

q1(x) · · · qn(x)(t1 − t2) ≡ 0 (mod p).

Thus either q1(x) · · · qn(x) ≡ 0 (mod p) or (t1− t2) ≡ 0 (mod p). Since we know
that q1(x) · · · qn(x) 6≡ 0 (mod p) by lemma 3 (the qi’s match the required form
by construction), we can conclude that t1 ≡ t2 (mod p).

Theorem 2. Given a polynomial f(x) in Z[x]/(r(x)) of an element node and
all polynomials (q1, . . . , qn) of its children, the mapped value map(node) can
uniquely be retrieved.

Proof. As in theorem 1 due to construction there exists at least one t that
satisfies f(x) ≡ q1(x) · · · qn(x)(x − t) (mod p). To prove that the solution is
unique suppose there are two solutions t1 and t2. Then q1(x) · · · qn(x)(t1−t2) ≡ 0
(mod r(x)). Since r(x) is irreducible, and none of the qi(x) are zero modulo r(x)
(by construction), we have that t1 − t2 ≡ 0 (mod r(x)). Therefore t1 = t2.

Note that in both cases the actual solution for t can easily be found.

4.2 Data sharing

Before the data can be stored on the server, it should be split into two parts: one
for the server and one for the client. The client builds a tree structure similar to
the tree structure of the original data. But instead of just copying the elements
it chooses random polynomials. Also it builds the tree to be stored on the server.
The sum of the corresponding polynomials should be equal to the polynomial
of the original tree. Look for example to the top nodes of figure 4. The sum
(9x− 12) + (256x + 57) equals the root node of figure 2(b) (265x + 45).

If the client does not have the storage capacity to store the whole tree, it could
store only the random seed with which the random polynomials were generated
and recompute the needed entries of the tree for each query.

Note that this is a direct application of a basic secret sharing scheme (as is
often used in secure multi-party computations). This can easily be extended to a
model with multiple servers, in which the client together with k out of n servers
(or any other access structure) can reconstruct the shared secret polynomial.
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Fig. 4. Another sharing with the same principles as in figure 3 but now with
polynomials in Z[x]/(x2 + 1).

4.3 Querying

Now that the data has been shared on both the client and the server, we will
describe how to query the data. First we will discuss simple element lookups:
find an element given its tag name. In section 4.3 we will look at more difficult
XPath queries.

Element lookup We assume that the document of figure 1 has been shared
as described in section 4.2. Let’s further assume that we would like to evaluate
the query //client. This XPath expression means that we want to find ‘client’
elements somewhere in the tree. Normally (even in the non-encrypted case) this
boils down to traversing the whole tree and comparing the tag names with the
name ‘client’. We will do it smarter than that.

First we use the mapping function to translate the tag name ‘client’ to x = 2
(see figure 1(b)). The client sends this value of x to the server. If we want to
keep the query secret for the server the mapping function should be private to
the client.
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Fig. 6. Query result for the query ‘x = 2’ for the case Z[x]/(x2 +1). everything
is calculated modulo r(2) = 22 + 1 = 5.

The server evaluates the polynomials in the given point (x = 2). Each time
a polynomial has been evaluated the calculated value is sent back to the client.

The client does the same thing on its own side. Furthermore it calculates the
sum of the client element and the server element. If this sum equals zero than
the element contains a factor (x − 2), meaning either that the element has tag
name ‘client’ or that it contains a descendant named ‘client’. A sum different
from zero means that the branch is dead. If this is the case the client informs
the server so that the server can stop evaluating polynomials for elements in the
tree starting with that branch.

Each zero element in the sum tree that does not have a zero sub element
represents an answer to the query. All other zero’s in the sum tree may or may
not represent correct answers. To find out whether the element itself or one of its
descendants is named ‘client’, the non-shared polynomials of both the element
and all its direct children have to be reconstructed.



To reconstruct the element value, let f be the sum of the polynomials on the
server and the client of an element and q1, . . . , qn the combined polynomials of
all its direct children.

By construction we know that f can be written as

f = (x− t)
n∏

i=1

qi (mod r) (1)

To check the correctness of an answer we have to solve t in f(x) = 0. In our
example t should be 2.

Theorem 2 proves that there is just a single solution for t. It is solved by:

d = d(r)
f − q1 · · · qn(x− t) = 0 (mod r)

}
=⇒

ad−1x
d−1 + ad−2x

d−2 + · · ·+ a1x + a0 = 0
(2)

Where each ai is a function in t. Note that the same scheme can be used for
the field Fp/(xp−1 − 1). ad−1(t) = 0

. . .
a0(t) = 0

(3)

A single (non-trivial) equation in 3 is enough to solve t. The other equations
may be used to verify the result. Remember that we did not trust the server.
We now have at least a way to check the answer. If, however, we trust the
server to give correct answers, only the last equation is enough. In that case
only the constant factor (without x) of each polynomial stored on the server has
to be transmitted. This reduces bandwidth and increases efficiency but decreases
security.

Advanced querying So far we evaluated only queries like //tagname. But
also more elaborate XPath queries can be performed. It is of course possible to
evaluate a query like //a/b//c/d/e from left to right. That is, search the tree
for occurences of ‘a’, then search within the found branches for ‘b’, etc. But it
is more efficient to evaluate the whole query at once. Since every polynomial in
the tree consists of the roots of all its descendants, a single query can find all
elements that contains the elements a, b, c, d and e (in any order). In this case
a search consists of the following steps:

1. from the root node find all ‘a’ elements that have b, c, d and e elements
somewhere deeper in the tree

2. from the found nodes find all direct children ‘b’ that have elements c, d and
e as descendants

3. . . .

Using this strategy elements are filtered out in a very early stage and therefore
increases efficiency.



5 Conclusion and future work

We have seen a method to store a tree of XML elements as a tree of polynomials
and two reduction schemes, one in Z[x]/(r(x)) and one in Fp[x]/(xp−1 − 1).
These trees are split in a server and a client part. Both parts are needed to
retrieve the original data. The created trees can be used to query the data in
a secure way. Our scheme has only a small penalty in storage space compared
to the unencrypted case. To store an XML tree with n elements and p different
tagnames in an unencrypted way we need a storage space in the order of n log p.
In the encrypted case the orders for the cases Z[x]/(r(x)) and Fp[x]/(xp−1 − 1)
are n(d + 1) log pn = n2(d + 1) log p respectively n(p − 1) log p, where d is the
degree of r(x).

The extra amount of storage space is used as a smart index which enables an
efficient search strategy. Each element has some knowledge of its descendants.
When searching the tree for an element, a branch can be marked as a dead-end
in a very early stage. Thus, only a small portion of the tree has to be examined.

In this paper we only looked at storing and retrieving trees of tag names.
We did not take into account the actual data between the tags. We cannot
straightforwardly use the same method for the actual data because, in order
to keep the mapping function invertible, p and therefore the storage capacity
becomes unreasonably large. We can use a hash function to map the data to an
element of Zp but in that case the mapping function is no longer invertible. In
this case the data polynomials can be used as an index to the encrypted data.
Another approach would be to choose a totally different approach like Song et
al [2], Feng and Jonker [16] or using bloomfilters [18]. The storage and retrieval
of the actual data is still subject to ongoing research.
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