
On the Controlled Evolution of Process Choreographies

Stefanie Rinderle
University of Ulm

Datbases and Inf. Systems Group
rinderle@informatik.uni-ulm.de

Andreas Wombacher, Manfred Reichert
University of Twente

Information Systems Group
a.wombacher@utwente.nl,m.u.reichert@utwente.nl

Abstract

Process–aware information systems have to be fre-
quently adapted due to business process changes. One
important challenge not adequately addressed so far con-
cerns the evolution of process choreographies, i.e., the
change of interactions between partner processes in a
cross-organizational setting. If respective modifications are
applied in an uncontrolled manner, inconsistencies or er-
rors might occur in the sequel. In particular, modifications
of private processes performed by a single party may af-
fect the implementation of the private processes of partners
as well. In this paper we present a formal framework that
allows process engineers to detect how changes of private
processes may affect related public views and - if so - how
they can be propagated to the public and private processes
of partners. In particular, we exploit the semantics of the
applied changes in order to automatically determine the
adaptations necessary for the partner processes. Altogether
our framework provides an important contribution towards
the realisation of adaptive, cross-organizational processes.

1. Introduction

The economic success of an enterprise more and more
depends on its ability to flexibly and quickly react on
changes at the market, the development, or the manufactur-
ing side. For this reason companies are developing a grow-
ing interest in improving the efficiency and quality of their
internal business processes and in optimizing their interac-
tions with business partners and customers. Recently, we
have seen an increasing adoption of business process au-
tomation technologies by enterprises as well as emerging
standards for business process orchestration and choreog-
raphy in order to meet these goals. Respective technolo-
gies enable the definition, execution, and monitoring of the
operational processes of an enterprise. In connection with
Web service technology, in addition, the benefits of business

process automation and optimization from within a single
enterprise can be transferred to cross-organizational busi-
ness processes (process choreographies) as well. The next
step within this evolution will be the emergence of the agile
enterprise being able to rapidly set up new processes and to
quickly adapt existing ones to changes in its environment.

One important challenge not adequately dealt with so
far concerns the evolution of process choreographies, i.e.,
the controlled change of the interactions between partner
processes in a cross-organizational setting. If one party
changes its process in an uncontrolled manner, inconsis-
tencies or errors regarding these interactions might oc-
cur in the sequel. Generally, the partners involved in a
process choreography exchange messages via their public
processes, which can be considered as special views on
their private processes (i.e., the process orchestrations). If
one of these partners has to change the implemenation of
his private process (e.g., to adapt it to new laws or opti-
mized processes) the challenging question arises whether
this change affects the interactions with partner processes
and their implementation as well. Obviously, as long as a
modified business process is not part of a process choreog-
raphy, change effects can be kept local. The same applies
if changes of a private process have no impact on related
public views.

In general, however, we cannot always assume this. The
modification of a private process may not only influence
corresponding public processes, but also the public and pri-
vate processes of its partners. For this reason, it is indis-
pensable for any IT infrastructure to provide adequate meth-
ods for (automatically) propagating changes of a private
process to the partner processes (if required). This impor-
tant issue has not been considered by current approaches so
far. As a consequence adaptations of process choreogra-
phies have turned out to be both costly and error-prone.
Note that the handling of respective changes is not trivial
since we must be able to precisely state which effects on
partner processes result after adaptating a (private) process.
In any case we need precise and formal statements about
this in order to avoid implementation holes later on.

1

In this paper we present an approach that addresses these
challenges in detail and that allows for the controlled evolu-
tion of process choreographies. We show how changes of a
private process may affect related public views and - if so -
how they can be propagated to the public/private processes
of partners as well. In order to be able to precisely state
whether change propagations to partner processes become
necessary or not we introduce a formal model based on an-
notated Finite State Automata. We further exploit the se-
mantics of the applied change operations in order to derive
necessary adaptations automatically. Due to the autonomy
of partners, however, private partner processes cannot be
adapted automatically to changes of a process choreogra-
phy. However, our approach allows for the comprehensive
assistance of users in accomplishing this task in a correct
and effective manner. Finally, we restrict our considera-
tions to structural changes (e.g., the insertion or deletion
of process activities). Other adaptations of process models
(e.g., the change of transition conditions) require a simi-
lar approach, but are outside the scope of this paper. We do
also not address dynamic changes (i.e., the migration of run-
ning choreographies to respective changes at the type level)
in this work. Dynamic adapations of choreographies and
process instances, however, constitute an important part of
our overall change framework [11, 12].

Section 2 introduces a practical application scenario
which is used throughout the paper in order to illustrate
basic concepts of our formal framework. In Section 3 we
discuss basic issues related to process choreographies and
interactions between partner processes. In particular, we in-
troduce our formal model and show how it can be used to
automatically generate public processes out of private ones
– this provides the basis for dealing with process changes
later on. Section 4 presents a classification of changes and
Section 5 provides methods for propagating changes on be-
half of selected scenarios. Section 6 sketches implementa-
tion issues and Section 7 discusses related work. Finally,
we close with a summary and an outlook on future work in
Section 8.

2. Practical Scenario

The example scenario used for further discussion is a
simple procurement process within a virtual enterprise. It
comprises a buyer, an accounting department, and a logis-
tics department. The accounting department approves an
order (order message) sent by a buyer and forwards it to the
logistics department (deliver message) in order to deliver
the requested goods. The logistics department then con-
firms the receipt (deliver conf message) to the accounting
department, which forwards this message (extended by the
expected delivery date and the parcel tracking number) to
the buyer (delivery message). Furthermore, the buyer may

perform parcel tracking (get status and status messages) of
the shipped goods. Corresponding messages are forwarded
by the accounting department to the logistics department.
The overall scenario is depicted in Fig. 1.

logistic
department

accounting
department

deliver_conf

deliver

order

delivery

buyer

get_status

status

get_status

status

terminate terminate

Figure 1. Example Overview

The sketched scenario represents a process choreogra-
phy, i.e., a conversation between partner processes. More
precisely, the participating partners exchange messages via
their public processes, which constitute special views on
the respective private processes [2]. We describe the pri-
vate process of the accounting department in more detail
denoting it according to the BPEL (Business Process Ex-
ecution Language for Web Services) specification [3]. To
keep the example simple, we abstract from the structure of
the exchanged messages and use simplified message names.
Concrete message structures could be, for example, taken
from the RosettaNet Partner Interface Processes (PIPs) 3A4
(Request Purchase Order), 3A7 (Notify of Purchase Order
Update), and 3B2 (Notify of Advanced Shipment) [13].

Regarding Web services, for example, messages are ex-
changed by invoking operations at the respective partner
sites. A Web service may comprise one or more opera-
tions (grouped within porttypes) which can be specified us-
ing WSDL (Web Service Definition Language). Each oper-
ation then represents a potential message exchange between
partners. If an operation contains only one single input mes-
sage, it is considered to be asynchronous, otherwise the op-
eration is synchronous. Regarding our example all opera-
tions are asynchronous except the synchronous getStatusOP
operation provided by the logistics service.

The description of private processes can be based on
such porttype definitions (i.e., Web service specifications)
by directly referring to them. In the following, private
processes are denoted in BPEL [3] and are therefore speci-
fied in terms of tasks (named activities in the BPEL termi-
nology) representing basic pieces of work to be performed
by potentially nested services. The control flow of a BPEL
process constrains the possible execution orders of its activ-
ities and is based on constructs for selective (switch and pick
activities), sequential (sequence activity), and parallel (flow

2

activity) execution. In addition, a BPEL process defines the
data flow between process activities (variable handling and
assign activity for mapping data between messages) regard-
less of their concrete implementation. Based on this under-
standing, the process model of one partner includes activi-
ties realizing its interaction with the other partners. These
interactions are represented by exchanging messages (re-
ceive, reply, invoke, and pick activities in BPEL).

accounting

parcel tracking
condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer
orderOp

getStatusOp

terminateOp

accBuyer
logistics

deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics
deliver_confOp

accLogistis

buyer
deliveryOp

statusOp
buyer

getStatus terminate

receive invoke
synchronous

invoke

terminate pick while

variable

port

Figure 2. Accounting BPEL Private Process

The BPEL specification of the accounting department
private process is depicted in Fig. 2. The partnerLink de-
finition associates a partner name to a bilateral interaction
between two roles. The association of roles to concrete par-
ties and operations is done in the partnerLinkType definition
contained in the related WSDL file.

The process starts by receiving an order message sent
by the buyer, which is then forwarded to the logistics de-
partment via a deliver message. The logistics department
answers asynchronously with a deliver conf message. The
accounting department process receives this message and
forwards it to the buyer via a delivery message. Since the
buyer is allowed to do parcel tracking arbitrarily often, this
step is embedded in a non-terminating loop within the ac-
counting process. More precisely, the accounting depart-
ment may receive a get status message sent by the buyer,
which is then followed by a synchronous invocation of the
logistics get statusL operation (representing two messages)
and the reporting of the respective status back to the buyer
(via a status message). Alternatively, it must be possible
to terminate the accounting as well as the logistics process

at some point in time. For this, a termination message can
be initiated by the buyer; this message is then send to the
accounting department process, which forwards it to the lo-
gistics process. After this both processes are terminated.

As a second example consider the private process of the
buyer, which is depicted in Fig. 3. – We omit further details
and focus on the bilateral interaction between the account-
ing and buyer process in the following.

buyer

parcel tracking
condition = “1 = 1”

order

delivery

order

status

getStatus

status
terminate

accBuyer
orderOp
getStatusOp
terminateOp

accBuyer

buyer
deliveryOp
statusOp

buyer

getStatus terminate

continue otherwise

Blockstructure of buyer
private process:

BPELProcess,
Sequence: buyer process

While:tracking

Switch:termination?
cond
continue

cond
terminate

Figure 3. Buyer BPEL Private Process

3. Process Choreographies

In this section we discuss basic issues related to the evo-
lution of choreographies between partner processes. We
show how this can be supported in a (semi-)automated way.

3.1. Overview

For several reasons business processes steadily evolve.
Thus process-oriented information systems have to be con-
tinuously adapted as well. As long as the modified
processes are not part of a process choreography, change
effects can be kept local. The same applies if changes of a
private process have no impact on related public processes.
In general, however, we cannot always assume this.

Regarding process choreographies the modification of
a private process may not only influence related public
processes, but also the public and private processes of part-
ners. As an example take an activity inserted into a pri-
vate process and invoking an external operation of a partner
process (by sending a corresponding message to it). If the
partner process is not adapted accordingly (e.g., by inserting
a receive activity processing the message sent) the execu-
tion of the modified process choreography could fail. Thus
it is crucial to provide adequate methods to (automatically)
propagate changes of a private process to partner processes.

Fig. 4 depicts our overall approach for the controlled
evolution of process choreographies. Assume that private

3

Private
Process1

Private
Process2

Public Process1 Public Process2

B#A#msg0

B#A#msg2

B#A#msg1
AND
B#A#msg2

BPEL process Annotated Finite
State Automaton

Annotated Finite
State Automaton

Annotated Finite
State Automaton

Protocol

BPEL process

Changing
private BPEL

process

Producing
public aFSA

„from scratch“
consistency?

Propgate
Changes to
public aFSA

Propagate
Changes to

private BPEL
process

No
propagation
necessary

yes

no

Figure 4. General Approach

process 1 (left side of the figure) is modified. Then, at first,
the public view on this process is recreated in order to re-
flect changes that might affect the interactions with partner
processes. If this results in a modification of public process
1 (and only then) we further check whether adaptations of
public process 2 (right side of the figure) become necessary
as well. This is accomplished by calculating the consis-
tency of the two public processes, i.e., the guarantee of a
deadlock free execution of the interaction. In case of incon-
sistency the change of public process 1 has to be propagated
to public process 2 1; otherwise the execution of the process
choreography will fail. We exploit the semantics of the ap-
plied changes in order automatically adapt public process 2
in such a case. After having performed respective modifica-
tions the adaptation of private process 2 becomes necessary
as well. However, due to the autonomy of the partners and
due to the privacy of the mission critical business decisions
(represented in the private process), an automatic adaptation
of private processes is generally not desired. Nevertheless
the system should adequately assist process engineers in ac-
complishing this task by suggesting respective adaptations
of private process 2.

3.2. Formal Model

The approach sketched above (i.e., the correct propaga-
tion of private process changes) requires a formal model
for representing public processes. For this, different ap-
proaches have been proposed in literature, which can be
classified according to their underlying communication
model: The models suggested by van der Aalst [1] and
Martens et.al. [8], for example, support asynchronous com-
munication. By contrast synchronous communication is
supported by Wombacher et.al. [18]. Since Web services
often use synchronous communication based on the HTTP

1We formalize this fundamental statement by providing a general cor-
rectness criterion in Section 4.2.

protocol, in the following we apply the annotated Finite
State Automata model as introduced in [18].

We use annotated Finite State Automata (aFSA) to rep-
resent message sequences that can be handled by a public
process. Transitions of such an aFSA are labeled, whereas
a label A#B#msg indicates that party A sends message
msg to party B (see, for example, the left aFSA in Fig. 5).
Furthermore, we can differentiate between mandatory and
optional messages. This is achieved by annotating states
with logical expressions. In the right aFSA from Fig. 5 ,
for example, the depicted conjunctive annotation expresses
that both messages B#A#msg1 and B#A#msg2, which
may be sent by party B, have to be supported by a trading
partner. Thus the messages are mandatory.

Obviously, the aFSAs of two interacting public processes
must meet certain constraints in order to ensure correct ex-
ecution of the respective process choreography. We formal-
ize this and summarize basic aFSA characteristics neces-
sary for the further understanding. Hence, we introduce the
a definitions of formulas 2 used in the annotations, before
introducing the aFSA.

Definition 1 (Definition of Formulas)
The syntax of the supported logical formulas is given as fol-
lows: (i) the constants true and false are formulas, (ii) the
variables v ∈ Σ are formulas, where Sigma is a finite set
of messages, (iii) if φ is a formula, so is ¬φ, (iv) if φ and ψ
are formulas, so is φ∧ψ and φ∨ψ. – The set of all formulas
is defined as E.

Based on the set of formulas E the standard Finite State
Automaton (FSA) [7] is extended as follows:

Definition 2 (annotated Finite State Automaton (aFSA))
An annotated Finite State Automaton A is represented as
a tuple A = (Q, Σ,∆, q0, F,QA) where Q is a finite set
of states, Σ is a finite set of messages, ∆ : Q × Σ × Q
represents labeled transitions, q0 ∈ Q is a start state,
F ⊆ Q constitutes a set of final states, and QA : Q× E is
a finite relation of states and logical terms within the set E
of formulas.

The graphical representation of an annotated Finite State
Automaton (aFSA) is based on the usual representation of
FSA. States are represented as circles and transitions as arcs
(annotated with labels). Final sates are depicted as states
with thick line. In addition to FSA, an aFSA can have state
annotations (denoted as squares connected to the respective
states). Fig. 5 shows two aFSA examples: Transitions are
labeled whereas a label represents a message exchanged be-
tween party A and party B. More precisely, a label com-
prises the sender, the recipient, and the name of the respec-
tive message.

2The logical formulas are specified adapting the definition in [5].

4

B#A#msg0

B#A#msg2

(B#A#msg1 AND B#A#msg2)
 AND B#A#msg2

B#A#msg0

party A

B#A#msg2 B#A#msg2

party B

B#A#msg1

B#A#msg0

B#A#msg1
AND
B#A#msg2B#A#msg1

intersection of A and B

Figure 5. aFSA Representation

In our framework, a public process (in terms of aFSA
models) can be automatically derived from the specification
of a private one. In [19], for a subset of BPEL, we have
provided respective mapping rules.

Based on the given aFSA definition, intersection and
emptiness operations can be defined (cf. [18]), which are
quite similar to the ones of standard FSA.

Definition 3 (Intersection of two aFSAs)
Let A1 = (Q1, Σ1,∆1, q10, F1, QA1) and
A2 = (Q2, Σ2,∆2, q20, F2, QA2) be two aFSA. The
intersection A := A1 ∩ A2 of these automata is given
by A = (Q, Σ,∆, q0, F,QA), with: Q = Q1 × Q2,
Σ = Σ1 ∩ Σ2, q0 = (q10, q20), F = F1 × F2,
∆ = {((q11, q21), α, (q12, q22))|

β ∈ {α, ε}, (q11, β, q12) ∈ ∆1, (q21, β, q22) ∈ ∆2} ,

and QA =
⋃

(q1,e1)∈QA1,(q2,e2)∈QA2
{((q1, q2), e1 ∧ e2)}

In particular, the intersection of two aFSAs is based on
the usual cross product construction of automata intersec-
tion, where state annotations are combined by conjunction.
Fig. 5 illustrates the intersection applied on party A and
B. Note that the resulting aFSA only contains those tran-
sitions that can be processed by both automata. The an-
notation in the intersection automaton is the conjunction
of the annotation contained in party B and the default an-
notation of party A, that is, B#A#msg2, resulting in
(B#A#msg1 ∧B#A#msg2) ∧B#A#msg2.

Based on the intersection automaton, it can be checked
whether the accepted language is empty or not. Emptiness
means that one of the aFSAs has at least one mandatory
transition within an execution sequence not supported by a
trading partner’s aFSA. Again this emptiness test is based
on standard automaton emptiness test, where it is checked
whether the automaton contains a single path to a final state.
Regarding aFSAs this emptiness test has to be extended by
requiring that all transitions of a conjunction associated to a
single state are available in the automaton and a final state
can be reached following each of these transitions.

As a consequence, two automata are consistent, if their
intersection is non-empty; i.e., there is at least one path from
the start state to a final state, where each formula annotated
to a state on this path evaluates to true. In particular, a vari-
able becomes true, if there is a transition labeled equally

to the variable from the current state to another state where
the annotation evaluates to true. Finally the automaton is
non-empty, if the annotation of the start state is true.

For the above example the intersection automaton for
parties A and B is depicted in Fig. 5. This aFSA is empty
since it does not contain the mandatory transition labeled
B#A#msg1: The variable B#A#msg2 of the annota-
tion evaluates to true since there is a path to a final state.
By contrast the variable B#A#msg1 is evaluated to false
because there is no such transition available at that state pro-
viding a path to a final state.

The non-emptiness of the intersection of two automata
guarantees for the absence of deadlock with respect to the
execution of these two automata. This property can be de-
rived due to the differentiation between mandatory and op-
tional messages in an automaton. Deadlock freeness is also
called consistency. If consistency is defined between two
parties then we call it bilateral consistency.

3.3. Public Process Generation

We assume that the private process has been specified
with BPEL. We sketch how BPEL ”blocks” from a private
process have to be mapped to states of the related public
process (represented by an aFSA). As we will see later, this
mapping is useful when changing process choreographies.
In this context it is not worth applying the mapping on the
originator side of a change. However, when propagting
changes of a public process to its underlying private process
the mapping can be used to determine the blocks in the pri-
vate process to be modified.

The mapping is illustrated on behalf of the buyer process.
It is based on a depth first traversal of the BPEL structure
where each block represents a part of the automaton. As a
consequence of the strict nesting of a BPEL document, the
names of the blocks are associated with a particular state of
the resulting automaton model.

State Number BPEL Block Name
1 BPELProcess, Sequence:buyer process
2 Sequence:buyer process
3 Sequence:buyer process,

While:tracking, Switch:termination?,
Sequence:cond continue, Se-
quence:cond terminate

4 Sequence:cond continue
5 Sequence:cond terminate

Table 1. Buyer Mapping Table

Regarding the private and the public part of the the buyer
process (as depicted in Figures 3 and 6) we obtain the map-
ping shown in Table 1. It represents the relation between the
state numbers (aFSA of the public process) and the BPEL

5

block names (BPEL specification of private process) of the
private and the public process. Note that a single state in the
public process may be assigned to several BPEL elements
since, in general, not all elements have an effect on the pub-
lic process. As a consequence, the required modifications
can be limited to the first block mentioned due to the depth
first traversal of the private process.

1 2

4

5

terminateOp
AND

get_statusOp

3

A#B#deliveryOpB#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

Figure 6. Buyer Public Process

3.4. View Generation

As a basis for bilateral consistency checking, it has to be
ensured that the processes to be compared are representing
the bilateral message exchanges only. Deriving the bilat-
eral view of a public process is illustrated next on behalf of
the accounting process. The accounting private process (cf.
Fig. 2) can be transformed in a public process (cf. Fig. 7).

A#L#deliverOp
L#A#

deliver_confOp

L#A#

get_statusLOp

A#L#
get_statusLOp

A#L#terminateLOp

A#B#deliveryOpB#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

Figure 7. Accounting Public Process

The view τP (wf) of party P on the public process wf
is generated by relabeling all transitions not related to P .
For example, in the buyer view τBuyer(Acc) of the ac-
counting process, messages exchanged with Logistics are
relabeled with the empty word ε. Effected messages are
A#L#deliverOp, L#A#deliver confOp, A#L#terminateLOp,
A#L#get statusOp, and L#A#get statusOp. The minimized
Buyer view of the Accounting public process is shown in
Fig. 8a).

Applying the same method for the Logistics results in the
automaton depicted in Fig. 8b).

4. Process Choreography Evolution

Process changes are classified in two dimensions: The
first one (change framework) specifies whether the change

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

A#L#deliverOp

L#A#
deliver_confOpL#A#

get_statusLOp

A#L#
get_statusLOp

A#L#terminateLOp

(a) (b)

Figure 8. Accounting Public Process: (a)
Buyer View (b) Logistics View

adds message sequences to an automaton (additive change)
or removes messages from it (subtractive change). The sec-
ond dimension (change propagation) indicates whether a
process change has effects on trading partners or not, i.e.,
whether the protocol the trading partners agreed has to be
modified (variant change) or not (invariant change).

4.1. Change Framework

At first we give a definition for the difference between
two aFSAs. This definition is then used to characterize two
basic kinds of change operations on public processes.

Definition 4 (Difference of two aFSA)
Let A1 = (Q1,Σ1,∆1, q10, F1, QA1) and
A2 = (Q2,Σ2,∆2, q20, F2, QA2) be two aFSA. The
difference A := A1 \ A2 of these two aFSA is given
by A = (Q, Σ, ∆, q0, F, QA1) with: Q = Q1 × Q2,
Σ = Σ1 ∩ Σ2, q0 = (q10, q20), F = F1 × (Q2 \ F2) ,
∆ = {((q11, q21), α, (q12, q22))|

β ∈ {α, ε}, (q11, β, q12) ∈ ∆1, (q21, β, q22) ∈ ∆2}
This definition requires that the automata are complete; i.e,
for every state there exists an outgoing transition for each
element of the alphabet Σ.

In this paper we focus on additive and subtractive
changes and their application to aFSAs. Based on respec-
tive change operations more complex changes can be de-
fined. Our framework also considers other operations (e.g.,
to shift process activities) as well as complex changes (de-
fined by applying a set of basic changes operations). Their
treatment, however, is outside the scope of this paper. Based
on the difference operator we can give a formal definition
for additive/subtractive changes:

Definition 5 (Additive / Subtractive Change Operations)
Let A be the aFSA of a public process and let δ be a change
operation which transforms A into another aFSA A’. Then:

• δ is an additive change operation :⇐⇒ A’ \ A 6= ∅

6

• δ is a subtractive change operation :⇐⇒ A \ A’ 6= ∅
Based on this definition additive (subtractive) changes of

an aFSA correspond to the addition (deletion) of potential
message sequences to (from) this aFSA. Note that this does
not relate to the structural complexity of the respective pri-
vate or public processes.

4.2. Propagation Criterion and Invariant
Changes

Let A and B be the aFSAs of two public partner
processes and let A ∩ B 6= ∅ be the protocol (choregraphy)
between them. If A is changed to A’ (by applying change
operation δ) the challenging question is whether δ has to be
propagated to B or not. Intuitively, no propagation is needed
if the protocols before and after applying δ are equivalent.
Formally: A ∩B ≡ A′ ∩B ⇐⇒
(A \A′) ∩B = ∅ ∧ (A′ \A) ∩B = ∅

This constraint, however, is too restrictive since we can
also ignore options that are completely under the control
(i.e., are to be decided) by the party having performed
the change. More precisely, no propagation is needed if
A′ ∩ B 6= ∅ (assuming that A and B have been bilaterally
consistent before the change).

Definition 6 (Variant and Invariant Changes)
Let A and B be the aFSAs of two public processes which are
consistent, i.e., A ∩ B 6= ∅. Let δ be a change operation
which transforms A into another aFSA A’. Then:

• δ is an invariant change :⇐⇒ A’ ∩ B 6= ∅
• δ is a variant change :⇐⇒ A’ ∩ B = ∅
The aFSA B expresses all options it considers as being

mandatory for the respective public process. Thus if public
process A′ has been changed in a way such that these op-
tions are no longer met, change propagation becomes nec-
essary. Accordingly we can state that changes are invariant
(i.e., no change propagation is needed) if the intersection
between A’ and B does not become emtpy. Note that this
can apply for both additive and subtractive changes.

In summary, if the changed public process A’ is still con-
sistent with the public process B of a partner it is considered
as being invariant and no further actions are needed. By
contrast if A’ and B turn out to be inconsistent, additional
actions become necessary in order to guarantee the success-
ful execution of the processes. How corresponding actions
look like is discussed in the following section.

5. Selected Evolution Scenarios

We discuss selected change scenarios and provide meth-
ods for propagating (variant) changes to partner processes.

5.1. Invariant Additive Change

At first we consider invariant additive changes. For ex-
ample, assume that the accounting process wants to provide
an additional order message format to buyers. This change
can be realized by adding an alternative activity (order 2) to
the accounting process which then receives and processes
respective messages B#A#order 2Op (cf. Fig. 9).

accounting

parcel tracking
condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer

orderOp

order_2Op

getStatusOp

terminateOp

accBuyer
logistics

deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics

deliver_confOp

accLogistis

buyer

deliveryOp

statusOp
buyer

getStatus terminate

order_2

Figure 9. Invariant Change of Accounting Pri-
vate BPEL Process

Since the added message B#A#order 2Op is received by
the accounting workflow, the buyer view on the respective
public process changes (cf. Fig. 10a). However, from the
viewpoint of the buyer this change does not require an im-
mediate treatment and propagation to its public and private
process. The reason is that the intersection automaton (cf.
Fig. 10b) of the modified public view of the buyer on the
accounting process and the buyer’s current public process
(cf Fig. 6) is non-empty. Thus, no change propagation and
therefore no further actions are required.

Invariant subtractive changes can be handled accordingly
and are therefore not further treatet in this paper. Generally,
when adding received messages to a process or removing
sent messages from it we can obtain invariant changes.

5.2. Variant Additive Changes

The formal basis for variant additive changes is provided
by Def. 5 and Def. 6: Let A and B be the aFSAs of two pub-
lic processes and let A ∩ B 6= ∅ be the protocol between

7

B#A#order_2Op

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

terminateOp
AND

get_statusOp

(a) (b)

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

Figure 10. (a) Public Buyer View on Account-
ing Process After Invariant Change (b) Inter-
section of a) with Buyer Public Process

them. Let further δ be a change operation transforming A
into A’. Then: δ is called variant additive change if the fol-
lowing constraint holds: A′ \A 6= ∅ ∧ A′ ∩ B = ∅.

According to Def. 6 change propagation to B and the re-
lated private process become necessary now. We illustrate
this scenario by an example. Assume that the accounting
private process shall be extended with the option to can-
cel orders (e.g., due to a product being out of stock). This
change can be accomplished by adding a respective deci-
sion node and an activity to send the cancel message to the
buyer (A#B#cancelOp) – the result is depicted in Fig. 11.

accounting

parcel tracking

condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer

orderOp

getStatusOp

terminateOp

accBuyer

logistics
deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics
deliver_confOp

accLogistis

buyer
deliveryOp

statusOp

cancelOp

buyer

getStatus terminate

otherwise

cancel

creditStatus = “ok”

Figure 11. Additive Change of Accounting
Private BPEL Process

Next we derive the new version of the accounting pub-
lic process and apply the buyer view on it (cf. Fig. 12a).
Then we calculate the intersection of this automaton with
the one of the buyer public process (cf. Fig. 6) which re-
sults in the automaton shown in Fig. 12b). Note that this

automaton is empty since there exists no transition labeled
A#B#cancelOp on any path to a final state. This makes the
annotation containing this message invalid and therefore re-
sults in an empty automaton. As a consequence, the variant
change of the accounting process has to be propagated to
the buyer process.

A#B#cancelOp

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

terminateOp
AND

get_statusOp

(a) (b)

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

cancelOp
AND

deliveryOp

cancelOp
AND

deliveryOp

Figure 12. Accounting Process After Additive
Change: (a) Public (Buyer) View (b) Intersec-
tion of a) with Buyer Public View

We now sketch the steps necessary for propagating ad-
diditve changes to the opponent’s private/public process:

1. Recalculate the opponent’s public view on the new
public process of the change originator and determine
the newly inserted sequence (i.e., the messages poten-
tially exchanged with the opponent’s public process).

2. Calculate the union of the opponent’s current public
process and the newly introduced message sequence
(cf. Step 1.) The resulting aFSA provides the basis for
potential adaptations of the opponent’s public process.

3. Based on the outcome of Step 2 we can derive those
regions of the opponent’s private process where adap-
tations may have to be performed.

4. Perform the necessary changes of the opponent’s pri-
vate process.

5. Recalculate the opponent’s public process. If it is con-
sistent with the public process of the change originator
we are finished. Otherwise, go back to the previous
step and repeat it with a modified set of changes.

We explain the different steps along our example:
ad 1) We determine the changes of the buyer view on

the accounting public process A′. Based on this we cal-
culate potential adaptations of the buyer public process B.
More precisely we determine A′′ := τBuyer(A′) \ B (cf.
Fig. 13a). In general, we have to consider the difference
τBuyer(A′) \ (τBuyer(A) ∩ B). However, since only those
message sequences must be added to B which have not been
contained before, derivation of τBuyer(A′)\B is sufficient.

8

A#B#cancelOp

B#A#orderOp

(a) (b)

terminateOp
AND

get_statusOp

A#B#cancelOp

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

Figure 13. (a) Difference at Buyer View of Ac-
counting Public Process (minimized) (b) New
Buyer Public Workflow (minimized)

ad 2) We calculate the union of the described difference
(cf. Step 1) with the original buyer public process. Based
on this we can derive potential changes of the buyer public
process. – The union of two aFSAs can be created using the
complement and intersection operator in accordance to the
deMorgan law: A ∪ B ≡ A ∩B; thus, B′ := A′′ ∪ B (cf.
Fig. 13b).

ad 3) We apply the potential changes to the buyer pub-
lic process. The regions to be adapted in the correspond-
ing private process can then be derived from the states that
have been modified for the buyer public process. For this
we use the mapping that was created when generating the
buyer public process out of the corresponding private one.
Note that observable states can be mapped to a particular
process region and that non-present transitions provide a
hint on what is missing exactly.

In order to derive the states which have been changed
when transforming aFSA B to aFSA B′ the difference au-
tomaton is traversed parallel to the original public process
(comparable to bi-simulation). In particular, the first state
where the difference automaton contains a transition which
is not contained in the original public process, indicates the
state where a new transition has been added. The missing
transition indicates which message has to be additionally
considered by the private process. With regard to the Buyer
public process, this is the case for state number 2 in the
original public process as depicted in Fig. 6.

From the mapping table it can be derived that the change
in the Buyer private process is related to the block specified
by the sequence activity labeled ”buyer process”. In partic-
ular, the receive delivery activity contained in the sequence
has to be changed to a pick activity allowing to receive ei-
ther the delivery message or the cancel message. Informa-
tion which has to be added can be derived from the differ-
ence automaton depicted in Fig. 13a). Fig. 14 shows the
resulting Buyer private process.

ad 4 and 5) Finally, we perform the change of the private
process accordingly and recalculate the public process on it.
After this we check whether the intersection of the changed

buyer’

parcel tracking
condition = “1 = 1”

order

delivery

order

status

getStatus

status

terminate

getStatus terminate

continue otherwise

otherwise

cancel

creditStatus = “ok”

Figure 14. Buyer Process after Propagation
of Additive Changes

buyer public process and the buyer view of the accounting
public process is non-empty, i.e. whether the related aFSAs
are bilaterally consistent.

5.3. Variant Subtractive Changes

The formal basis for variant subtractive changes is also
provided by Def. 5 and Def. 6: Let A and B be the aFSAs
of two public processes and let A ∩ B 6= ∅ be the current
protocol between them. Let further δ be a change operation
transforming aFSA A into aFSA A’. Then: δ is called a
variant subtractive change if the following constraint holds:
A \A′ 6= ∅ ∧ A′ ∩ B = ∅. According to Def. 6 change
propagation to B and the related private process becomes
necessary again. As an example assume that the original
accounting private process (cf. Fig. 2) is changed to the
one from Fig. 15. Here, the previously unlimited number of
parcel tracking iterations is now constrained to at most one
parcel tracking request. This change can be realized, for
example, by removing the loop from the original process
and adding a decision on whether parcel tracking is omitted
or carried out once. Furthermore both pathes then finish
with an exchange of the terminate messages.

The buyer view on the accounting public process, which
is derived from the accounting private process, is depicted
in Fig. 16a). The intersection automaton of the buyer view
on the accounting public process with the buyer process (cf.
Fig. 6) is depicted in Fig. 16b). The intersection automa-
ton is empty, since there exists an annotation containing the
get statusOp message which is not available as a transition.
Thus, the annotation evaluates to false making the com-
plete automaton empty. Similar to additive changes prop-
agation of subtractive changes is required. The propagation
approach is similar to the additive change:

1. Calculate the removed sequence by comparing the cur-
rent public process with the former public process of

9

accounting
order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer

orderOp

getStatusOp

terminateOp

accBuyer

logistics
deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics

deliver_confOp

accLogistis

buyer

deliveryOp

statusOp

cancelOp

buyer

getStatus terminate

otherwise

cancel

creditStatus = “ok”

terminateL

terminate

Figure 15. Accounting Private Process after
Subtractive Change

the party where the change occured.

2. Calculate the difference of the opponents public
process with the removed execution sequence.

3. Derive the areas in the opponent’s private process
where changes have to be performed.

4. Perform the necessary changes of the opponent’s pri-
vate process.

5. Recalculate the opponent’s public process. If it is con-
sistent with the public process of the change originator
we are finished. Otherwise, go back to the previous
step and repeat it with a modified set of changes.

ad 1) The changes of the buyer view on the accounting
public process and its effect to the buyer public process are
calculated. Similar to additive changes, the difference is
calculated by A′′ := τBuyer(A′) \B (cf. Fig. 17a).

ad 2) The next step calculates for the buyer public
process the removed execution sequences (represented in
the difference automaton of Step 1). For this the difference
B′ := B \ A′′ is determined. The modified buyer public
process is depicted in Fig. 17b).

ad 3) Similar to additive changes, we use the mapping ta-
ble of the buyer original public and private process to deter-
mine the area, where changes have to be performed. How-
ever, in the subtractive case the relevant state is observed

(a) (b)

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

B#A#terminateOp

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

B#A#terminateOp

terminateOp
AND

get_statusOp

terminateOp
AND

get_statusOp

Figure 16. (a) Buyer view of the Accounting
Public Process after Subtractive Change (b)
Intersection of a) and Buyer Public Process

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#
get_statusOp

A#B#statusOp
B#A#terminateOp

A#B#statusOp

B#A#
get_statusOp

A#B#deliveryOp

B#A#orderOp

B#A#
get_statusOp

A#B#statusOp

B#A#terminateOp

B#A#terminateOp

terminateOp
AND

get_statusOp

(a) (b)

Figure 17. (a) Difference of Buyer View of
Accounting Public Process and Buyer Pub-
lic Process (minimized) (b) Buyer Public
Process after Subtractive Change

when the original buyer public process provides a transition,
which is not provided by the modified public process. With
regard to the original buyer public process depicted in Fig.
6, state 4 provides a transition to state 3 which is not sup-
ported in the modified public process. Thus, a performed
change gets visible at that state. The change required in
the private process has to be performed either on the block
labeled ”cond continue” or in a higher level block. In our
example, the block ”While:tracking” is the relevant one (i.e,
the one providing the loop). In particular, the loop has to be
removed and additional activities have to be added to enu-
merate the two options of parcel tracking.

ad 4) The resulting Buyer private process is depicted in
Fig. 18. Again, information on what has to be changed can
be derived from the difference automaton shown in Fig. 17.

ad 5) Finally, after this propagation of changes, the inter-
section of the changed Buyer public process and the buyer
view of the accounting public process is non-empty, that is
they are bilaterally consistent again. Thus, no further prop-

10

buyer
order

delivery

order

status

getStatus

status
terminate

accBuyer
orderOp
getStatusOp
terminateOp

accBuyer

buyer
deliveryOp
statusOp

buyer

getStatus terminate

continue otherwise

terminate

Figure 18. Buyer Private Process after Propa-
gating Subtractive Change

agation with the buyer is needed. However, the propagation
with the logistics has to be performed in a similar way.

6. Implementation Issues

We have implemented the core of the presented approach
in a proof-of-concept prototype [18]. Further, a partial
mapping from BPEL (private processes) to annotated Fi-
nite State Automata (public processes) has been realized
[19] and been used for implementing service discovery [20].
The extension of classical UDDI proposed in this context
uses BPEL specifications of public processes and bilateral
consistency to improve the precision of service discovery
results. Finally, we have proposed a protocol to derive a
potential cross-organizational process (i.e., a potential ser-
vice composition in Web Service notation) in a decentral-
ized way resulting in a set of services as a basis for consis-
tency checking [16].

These building blocks can be used for setting up the con-
crete change framework as described in this paper. As in-
dicated the only information which has to be exchanged
between partners is about the changes applied to public
processes. The difference calculation as well as the neces-
sary adaptations of the own public and private processes can
be accomplished locally. Finally, decentralized consistency
checking can be applied to guarantee the successful intro-
duction of the changes and the consistency of the changed
choreography. How these final steps can be carried out has
been already described in [17].

With ADEPT2 we have further provided a powerful
proof-of-concept prototype of an adaptive process manage-
ment system [10]. Among other features ADEPT2 en-
ables the propagation of process schema changes to run-
ning process instances. Based on this, changes of private
processes can be propagated to already running process in-

stances. However, so far we have not integrated ADEPT2
with the building blocks mentioned above. This integration
will enable dynamic changes of process choreographies at
the instance level as well and will be one of the next steps
in the implementation of our overall change framework.

7. Related Work

Checking consistency of a cross-organizational process
can be based on the set of potential execution sequences. A
straightforward approach is to check consistency on a cen-
tralized representation of the cross-organizational process,
which has to be split into several public processes after-
wards. This principle was applied to different process de-
scription formalism in the past, like Workflow Nets (WF
Nets) [2], guarded Finite State Automata [6], Colored
Place/Transition Nets [21], and Statecharts [15]. However,
these top-down approaches are based on centralized con-
sistency checking, which is different to what we have ad-
dressed in this paper.

By contrast, the bottom-up approach of constructing the
cross-organizational process out several public processes
has not been investigated in sufficient detail so far. Respec-
tive proposals have been made, for example, in [1, 6, 8].
However, they require centralized decision making and are
also not constructive; i.e., they only specify criteria for var-
ious notions of consistency but do not provide an approach
to adapt public processes in a way making the overall cross-
organizational process consistent. In addition, these ap-
proaches neither address synchronous communication nor
allow for decentralized consistency checking.

Issues related to the dynamic change of workflows have
been investigated in great detail in the literature (e.g., [14, 4,
9, 11]). Respective approaches address ad-hoc changes of
single process instances as well as process schema evolution
(i.e., the controlled change of process types and the propa-
gation of these modifications to already running process in-
stances [4, 11]). However, these approaches focus on the
adaptation of process orchestrations, i.e., process instances
controlled by a single endpoint. By contrast, issues re-
lated to changes of process choreographies have been ne-
glected so far. What can be learned from approaches deal-
ing with dynamic changes of process orchestrations is the
idea of controlled change propagation. These approaches
aim at propagating process type changes to running process
instances without loosing control, i.e., without causing in-
consistencies or errors in the sequel. Similarily, we have
provided an approach for the controlled propagation of the
changes of private processes within a choreography to the
choreography itself and the respective partner processes.

11

8. Conclusion and Future Work

The controlled evolution of private processes, the correct
adapation of related public views, and the effective prop-
agation of these changes to partner processes will be key
ingredients of future service-oriented infrastructures, ulti-
mately resulting in highly adaptive process choreographies.
Together with our previous work on process choreographies
[18, 19] and process evolution [12, 11] the presented frame-
work enables a powerful approach for realizing adaptive,
cross-organizational business processes.

In this paper we have focussed on structural process
changes. We have presented our framework for introducing
changes to private processes, for recalculating related public
views automatically, and for propagating resulting modifi-
cations to partner processes if required. The very important
aspects of our work are its practical relevance and its formal
foundation. We have provided a formal model and precise
criteria allowing us to automatically decide which adapta-
tions become necessary due to changes of private partner
processes. The treatment of different change scenarios adds
to the completeness of our approach. Finally, we have im-
plemented the basic mechanisms presented in this paper in
a proof-of-concept prototype.

We have put emphasis on the adapation of private/public
process models and of related interactions between process
partners. Another challenging issue is the treatment of
running process instances (participating in a choreography)
when changing private and public process models. The co-
existence of different versions of a process choreography is
a must in this context. For long-running choreographies, in
addition, change propagation to already running instances
is highly desirable. In the ADEPT project [10, 11, 12], we
developed and implemented advanced concepts for the con-
trolled evolution of process schemes and the dynamic mi-
gration of related process instances to new schema versions.
In principle, these concepts can be applied to process chore-
ographies as well. Due to the autonomy and distributed ex-
ecution of partner processes, however, more advanced pro-
cedures become necessary. The same applies if we have to
cope with ad-hoc changes at the level of individual chore-
ographies (e.g., to deal with exceptional situations). These
and other issues will be subject of future publications.

References

[1] W. Aalst. Interorganizational workflows: An approach
based on message sequence charts and petri nets. Systems
Analysis - Modelling - Simulation, 34(3):335–367, 1999.

[2] W. Aalst and M. Weske. The P2P approach to interorganiza-
tional workflows. In Proc. 13th Int. Conf. on Advanced Inf
Sys Engineering, Interlaken, Switzerland, 2001.

[3] T. Andrews et al. Business process execution language for
web services. v 1.1, May 2003.

[4] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evo-
lution. DKE, 24(3):211–238, 1998.

[5] J. Chomicki and G. Saake, editors. Logics for Database and
Information Systems. Kluwer, 1998.

[6] X. Fu, T. Bultan, and J. Su. Realizability of conversation
protocols with message contents. In Proc. IEEE Intl. Conf.
on Web Services (ICWS), pages 96–103, 2004.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison
Wesley, 2001.

[8] E. Kindler, A. Martens, and W. Reisig. Inter-operability of
workflow applications: Local criteria for global soundness.
In Business Process Management, Models, Techniques, and
Empirical Studies, pages 235–253. Springer-Verlag, 2000.

[9] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer,
B. Arpinar, and J. Cardoso. IntelliGEN: A distributed work-
flow system for discovering protein-protein interactions.
Distributed and Parallel Databases, 13(1):43–72, 2003.

[10] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive
process management with adept2. In Proc. ICDE’05, pages
1113–1114, Tokyo, 2005.

[11] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria
for dynamic changes in workflow systems – a survey. DKE,
50(1):9–34, 2004.

[12] S. Rinderle, M. Reichert, and P. Dadam. Flexible support of
team processes by adaptive workflow systems. Distributed
and Parallel Databases, 16(1):91–116, 2004.

[13] RosettaNet. RosettaNet home page.
http://www.rosettanet.org, 2004.

[14] W. v.d. Aalst and T. Basten. Inheritance of workflows: An
approach to tackling problems related to change. Theoret.
Comp. Science, 270(1-2):125–203, 2002.

[15] D. Wodtke and G. Weikum. A formal foundation for distrib-
uted workflow execution based on state charts. In Proc. 6th
Int Conf Database Theory, pages 230–246, jan 1997.

[16] A. Wombacher. Decentralized decision making protocol for
service composition. In Proc IEEE Int Conf on Web Services
(ICWS), 2005. (accepted for publication).

[17] A. Wombacher, P. Fankhauser, and K. Aberer. Overview
on decentralized establishment of consistent multi-lateral
collaborations. In Proc. of Intl. Conf. on e-Technology, e-
Commerce and e-Service (EEE), pages 164–170, 2005.

[18] A. Wombacher, P. Fankhauser, B. Mahleko, and
E. Neuhold:. Matchmaking for business processes
based on choreographies. Intl. Journal of Web Services,
1(4):14–32, 2004.

[19] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-
ing BPEL into annotated deterministic finite state automata
enabling process annotated service discovery. In Proc. of
Intl. Conf. on Web Services (ICWS), pages 316–323, 2004.

[20] A. Wombacher, B. Mahleko, and E. Neuhold. IPSI-PF: A
business process matchmaking engine. In Proc. of Conf. on
Electronic Commerce (CEC), pages 137–145, 2004.

[21] X. Yi and K. J. Kochut. Process composition of web ser-
vices with complex conversation protocols: a colored petri
nets based approach. In Proc. of the Design, Analysis, and
Simulation of Distributed Systems Symposium at Adavanced
Simulation Technology Conf., pages 141–148, 2004.

12

