
Action Refinement in Conformance Testing

Machiel van der Bijl∗ and Arend Rensink
Software Engineering, Department of Computer Science,

University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

email: {vdbijl, rensink}@cs.utwente.nl

Jan Tretmans
Nijmegen Institute for Computing and Information Sciences

Radboud University Nijmegen
P.O. Box 9010 6500 GL Nijmegen The Netherlands

email: tretmans@cs.kun.nl

Abstract

In model based testing test cases are derived from a model (the spec-
ification) of the system we want to test. In general the model is more
abstract than the implementation. This may result in test cases that are
not executable, because their actions are too abstract; the implementa-
tion does not understand them. The standard approach is to rewrite the
model by hand to the required level of detail and regenerate the test cases.
This is error-prone and time consuming.

In this paper we present an approach to automatically obtain test
cases at the required level of detail by means of action refinement. Action
refinement is a way to add information to the abstract model. It relates
actions from the abstract model to concrete actions of the system under
test. We apply this approach to a simple case of action refinement, so-
called atomic linear input-inputs refinement. In order to reason about
correctness between an abstract model and a concrete implementation we
introduce a new implementation relation. We show that this relation is
equivalent with the uioco implementation relation on the refined model.
Furthermore we show under which conditions the refinement of a complete
abstract test suite is again complete.

1 Introduction

A problem in model based testing is that the generated test cases do not have
the required level of abstraction, and hence are not executable against the imple-
mentation under test. This problem arises because the test cases are generated

∗This research was supported by the dutch research program PROGRESS under project:
TES5417: Atomyste – ATOm splitting in eMbedded sYStems TEsting.

1

abstract
system

specification

refined
system

specification

system
implementation

(iut)
executable
test suite

verdict

test suite
refined

test suite
abstract

conformance

concrete world

test case
refinement

test
implementation

test

test
derivation

test
derivation

system
implementation

system
refinement

application

formal world
relation

Figure 1: Action refinement approach

from the model and in general, the model is more abstract than the implemen-
tation. The usual solution is to add the required level of detail to the model by
hand. This has some obvious drawbacks; it is time consuming and error-prone.

In this paper we use action refinement to automatically obtain test cases
at the required level of detail. Action refinement has been studied extensively;
see Gorrieri and Rensink for an overview [2]. Action refinement adds extra
information to the model by relating an action of the model to more detailed
behavior. Wherever we read the action in the model we replace it with the more
detailed behavior. For example, if the model tells us to input two euros and
the implementation also allows the insertion of two one euro pieces, with action
refinement we can define that wherever we read two euros we can also read the
more detailed behavior one euro followed by one euro.

Action refinement in model based testing has not been studied at all. This
is surprising, because it is a well known problem in practice and occurs often.

Figure 1 shows our general approach for action refinement in testing. We see
six objects in the figure. The objects on the left hand side denote models and
the objects on the right hand side denote test suites. System implementation
is the system that we want to test, also known as iut (Implementation Under
Test); a real system in the physical world. Abstract system specification
is a (formal) model of the system implementation. It is called abstract because
it does not have the required level of detail with respect to the system imple-
mentation. Refined system specification is the refined model of the system
implementation with the required level of abstraction with respect to the system
implementation. Abstract test suite is the test suite that is derived from the
abstract system specification. As with the abstract system specification, it is
too abstract with respect to the system implementation. Refined test suite
is a test suite with the required level of abstraction with respect to the system
implementation. There are two ways to derive such a test suite. One way is to
refine the abstract test suite, another way is to derive test cases from the refined
system specification. We do both and proof both approaches to be equivalent
under certain restrictions. Executable test suite is a test suite in the physical

2

world that we can execute against the system implementation. This results in a
verdict whether or not the implementation is correct with respect to the refined
(or abstract) system specification. This notion of correctness is defined in a
so-called implementation relation between the system specification (abstract or
refined) and the system implementation. The conformance relation is depicted
on the left side of the Figure.

This paper is a first step in our effort towards action refinement in model
based testing and we use a simple, though non-trivial case of action refinement:
atomic linear input-inputs refinement.

In this paper we show how to refine traces, transition systems and test cases.
In order to reason about correctness between an abstract specification and a
concrete implementation we introduce the implementation relation uiocor and
we show that it is equivalent with uioco between the refined specification and
the same implementation (uioco is a further evolution of ioco; see [5] and [8]).
We show under which conditions the refinement of a complete abstract test suite
results in a complete refined test suite.

The main contribution of this paper is that refinement of a complete test
suite results in a complete refined test suite (under certain restrictions). Fur-
thermore we argue that the approach that we use for atomic linear input-inputs
refinement can be extended to more general types of action refinement. This
extension is the next step in our research. One of the surprising (theoretic) con-
sequences of this paper is the fact that specification equivalence is not preserved
by action refinement.

We start with summarizing some results and notations that we will use
throughout the paper in Section 2. In Section 3 we introduce atomic linear
input-inputs refinement. We present trace refinement in Section 4 and the
refinement of labeled transition systems in Section 5. In Section 6 we present
the implementation relation uiocor , followed by the refinement of test cases in
Section 7. Conclusions can be found in Section 8.

2 Formal preliminaries

This section recalls some aspects of the theory behind uioco that are used in
this paper; see [8] and [5] for a more detailed exposition.

Labeled Transition Systems. A labeled transition system (LTS) description
is defined in terms of states and labeled transitions between states, where the
labels indicate what happens during the transition. Labels are taken from a
global set L. We use a special label τ /∈ L to denote an internal action. For
arbitrary L ⊆ L, we use Lτ as a shorthand for L∪{τ}. We partition the label set
of an LTS in an input and output set; a deviation from the standard definition
of labeled transition systems.

Definition 2.1 A labeled transition system is a 5-tuple 〈Q, I, U, T, q0〉 where Q
is a non-empty countable set of states; I ⊆ L is the countable set of input labels;
U ⊆ L is the countable set of output labels, I ∩ U = ∅; T ⊆ Q×(I∪U ∪{τ})×Q
is a set of triples, the transition relation; q0 ∈ Q is the initial state.

We use L as shorthand for the entire label set (L = I ∪ U); furthermore,
we use Qp, Ip, etc. to denote the components of an LTS p. We commonly write

3

q µ−→ q′ for (q, µ, q′) ∈ T . We use a question mark before a label to denote that
it is an input action (i.e., an element of I) and an exclamation mark to denote
that it is an output action (i.e., an element of U). We denote the class of all
labeled transition systems over I and U by LTS(I, U). We represent a labeled
transition system in the standard way, by a directed, edge-labeled graph where
nodes represent states and edges represent transitions.

A state that cannot do an internal action is called stable. A stable state
from which no output action is possible is called quiescent. We use the symbol
δ (6∈ Lτ) to represent quiescence: p δ−→ p stands for the absence of any transition
p µ−→ p′ with µ ∈ Uτ . For an arbitrary L ⊆ L, we use Lδ as a shorthand for
L ∪ {δ}. We use the label µ, respectively λ, to range over Lτ , respectively Lτδ.

An LTS is strongly responsive if it always eventually enters a quiescent state;
in other words, if it does not have infinite Uτ -labeled paths. The ioco theory is
restricted to strongly responsive systems. We also use this restriction because
we reuse results of the ioco theory.

A trace is a sequence of observable actions. The set of all traces over L
(⊆ L) is denoted by L∗, ranged over by σ, with ε denoting the empty sequence.
If σ1, σ2 ∈ L∗, then σ1·σ2 is the concatenation of σ1 and σ2. Concatenation
is extended in the standard way to sets of traces and also to Σ·a where Σ is a
set of traces and a an action. We use the standard notation with single and
double arrows for traces: q λ1···λn−−−−−→ q denotes q λ1−−→ · · · λn−−→ q′, q

ε=⇒ q′ denotes
q τ ···τ−−−→ q′ and q

λ1···λn=====⇒ q denotes q
ε=⇒ λ1−−→ ε=⇒ · · · λn−−→ ε=⇒ q′. We will use Σ

to denote a set of traces. If σ = λ1 · · ·λn then σ|i = λi for 1 ≤ i ≤ |σ| = n,
and L(σ) = {λ1, · · · , λn}. We use the symbol v to denote trace prefix and the
symbol ↓ to denote prefix closure, as follows: σ1 v σ ⇔ ∃σ2 : σ1·σ2 = σ, ↓σ =
{σ′ | σ′ v σ}, ↓Σ =

⋃
{↓σ | σ ∈ Σ}

We will not always distinguish between a labeled transition system and its
initial state. We will identify the process p = 〈Q, I, U, T, q0〉 with its initial state
q0, and we write, for example, p

σ=⇒ q1 instead of q0
σ=⇒ q1.

Input-output transition systems. We call a labeled transition system that is
completely specified for input actions an input-output transition system (IOTS).
This means that all states can do all input actions from the label set, if necessary
by first doing one or more internal actions.

Definition 2.2 An input-output transition system p = 〈Q, I, U, T, q0〉 is a la-
beled transition system for which all inputs are enabled in all states: ∀q ∈ Q, a ∈
I : q

a=⇒ (weak input enabledness).

The class of input-output transition systems with input actions in I and
output actions in U is denoted by IOTS(I, U) (⊆ LTS(I, U)).

Conformance. The testing scenario on which uioco is based wants to estab-
lish a notion of conformance between a specification and an implementation [5].
The specification is an LTS, specifying the required behavior. Since the testing
approach is black box testing, we do not know anything about the implemen-
tation; however, we assume that it is possible to model it as an IOTS. This
assumption is referred to as the test hypothesis [1].

Given a specification s and an (assumed) model of the implementation i, the
relation i iocoF s expresses that i conforms to s based on a set of traces F(s).

4

This is formalized as follows (where s ∈ LTS(I, U), i ∈ IOTS(I, U), S ⊆ Qs be
a set of states in s, σ ∈ L∗

δ and F : LTS(I, U) → 2L∗
δ).

s after σ =def {s′ | s σ=⇒ s′} (1)

out(s) =def {x ∈ U | s x−→} ∪ {δ | s δ−→} (2)

out(S) =def

⋃
{out(s) | s ∈ S} (3)

Straces(s) =def {σ ∈ L∗
δ | s

σ=⇒} (4)
Utraces(s) =def {σ ∈ Straces(s) | ∀q, (σ1·a) v σ :

(a ∈ I ∧ s
σ1==⇒ q) ⇒ q

a=⇒} (5)
i iocoF s =def ∀σ ∈ F(s) : out(i after σ) ⊆ out(s after σ) (6)

For F(s) = Straces(s) we abbreviate iocoF to ioco; for F(s) = Utraces(s)
we abbreviate it to uioco. In other words ioco is based on suspension traces
(Straces: traces in L∗

δ) whereas uioco is based on a subset of suspension traces:
universal traces. All states that a universal trace leads to can do the same set
of input actions. This is a necessary prerequisite to use uioco for compositional
testing (see [8]).

Test cases. A test case is the specification of a tester in an experiment with
the system under test. It is modeled as a special labeled transition system with
pass and fail predicates on states to decide about the success of a test. It is a
special LTS because it has the following restrictions:

Definition 2.3 A test case t = 〈Q,S, R, T, t0,pass, fail〉 over a set of stimuli
S and a set of responses R is an acyclic labeled transition system such that:
◦ t is deterministic and has finite behavior.
◦ pass ⊆ Q, fail ⊆ Q. pass and fail states do not have outgoing transitions.
◦ A state in Q that is no pass or fail state has either one outgoing transition
with a stimulus label, or has outgoing transitions for all labels in R.

The class of test cases over S and R is denoted as TEST (S, R). A test suite
T is a set of test cases: T ⊆ TEST (S, R). An implementation i ∈ IOTS(I, U)
passes a test case t ∈ TEST (I, Uδ) if there is no suspension trace of i that leads
to a fail state in t. Note that a stimulus of the test case is an input of the
implementation and vice versa for the responses. We will use the question and
exclamation marks accordingly. See Figure 3 for an example.

Definition 2.4 Let s ∈ LTS(I, U) be a specification and T ⊆ TEST (I, Uδ) a
test suite:
T is complete w.r.t. iocoF , s =def ∀i ∈ IOTS(I, U) : i iocoF s ⇔ i passes T
T is sound w.r.t. iocoF , s =def ∀i ∈ IOTS(I, U) : i iocoF s ⇒ i passes T
T is exhaustive w.r.t. iocoF , s =def ∀i ∈ IOTS(I, U) : i iocoF s ⇐ i passes T

3 Atomic input-inputs action refinement

As stated in the introduction, in this paper we treat the problem that test cases
that are derived from a specification may not be executable on the system under
test. To illustrate this we start with an example of this problem (we will use
this as our running example).

5

q0

q1

q2

q2

q1

t,1

q0

refined specificationspecification

!nok
t,2 !ok

!nok

!ok

?address

?store

?street

?city

?postalcode

?store

Figure 2: Abstract and refined specification of data entry system

Example 3.1 Figure 2 shows a specification (left) and a refined specification
(right) of a very simple data entry application (ignore the state labels for now).
The specification tells us that we can enter address data, push the store button
and then the system either stores the address data or gives an error. At a certain
moment we find out that our specification is too abstract, because an address is
entered in three steps instead of one: street, city and postal code. So it behaves
more like the refined specification on the right.

The left hand side of Figure 3 shows a test case generated from the abstract
specification. On the right we see two test cases with the level of detail that we
want to have to test the actual system. We can read the abstract test case as
follows: we enter the address data, press the store button and then observe the
response of the iut. The iut passes the test if we observe ok or nok, but fails if
we observe quiescence. 2

abstract test case refined test case 1 refined test case 2

failpass fail pass

pass fail pass

pass fail pass

?nok

?nok

?ok, nok

?nok

!address

!store

δ ?ok

δ ?ok

!store

!postalcode

!city

!street !street

!city

δ

!postalcode

!store

δ ?ok

Figure 3: Abstract and refined test cases for data entry example

Of course the data entry example is very simple, because of its educational
purposes. This may give the illusion that refinement of transition systems and
test cases is straightforward. Our next example illustrates that simple refine-
ments may quickly result in a complex system.

6

?play

?play

!¤1

!¤3

?refund

?¤3
!game

!game

?¤2

?refund
?¤1

!¤1
?¤2

?refund
!¤2

!¤2

refined specificationspecification

?¤1!¤1

!¤2
?refund

Figure 4: More complicated action refinement example

Example 3.2 In Figure 4, we see the abstract specification (left) and the re-
fined specification (right) of a video game machine. The abstract specification
tells us to insert ¤3 and either press the “play” button to play a video game or
press the “refund” button to get the money back. The refined specification is
obtained after the two refinements shown in Figure 5 (‘E’ labels the end state).
One refinement is that the ¤3 input action is refined to ¤2 followed by ¤1
or vice versa. In between the coins we can press the “refund” button to get
the money back. Likewise the ¤3 output after pushing the “refund” button
is in terms of ¤1 and ¤2 coins. To keep the figure readable we left out the
refinements for other coins. 2

E E

refinement lts for !¤3

!¤1

!¤2!¤1

!¤2
!¤1

?¤1
?refund

?¤2?¤1

?refund
?¤2

!¤2
refinement lts for ?¤3

Figure 5: Refinements for the video game example

There are several types of action refinement [7]. In this paper we treat atomic
linear input-inputs refinement. Atomic means that no actions are allowed to
interfere with the refinement; we treat the behavior of the refinement as atomic.
Linear means that we allow no branching behavior in the refinement and input-
inputs means that we only refine an input action with one or more other input
actions. The refinement in Figure 2 is an example of such a refinement, but the
refinement in Figure 4 is not. It is our goal to extend this action refinement
approach in the future to more general cases of action refinement. We believe
that this can be done in a way very similar to the atomic linear input-inputs
refinement case that we treat in this paper, as we will discuss in the concluding
section.

In this paper we show what correctness means in terms of a conformance
relation between the abstract system specification and the system implementa-
tion. Furthermore we show two ways to obtain a refined test suite as shown in
Figure 1. One is to refine the abstract system specification and derive a refined
test suite and the other is to refine the abstract test suite directly. We show
that both approaches are equivalent under some restrictions.

7

Sometimes we use the terms abstract and concrete as synonyms for unrefined
and refined, respectively .

4 Trace refinement

We define refinement as a pair r = (ar , σr) with respect to an input label set
I and an output label set U . ar is the refinement label, i.e., the abstract label
that we want to refine and σr is the refinement trace, i.e., the trace that we
want to replace the refinement label with. There are the following restrictions:
ar ∈ I, L(σr) ∩ Lδ = ∅ (the labels in σr are fresh) and σr 6= ε.

In cases where there may be confusion about label sets we use the subscript
r to tag the label set after refinement, for example: Ir = (I\{ar}) ∪ L(σr).

The goal of trace refinement is to refine a trace from an abstract specifica-
tion such that it becomes a trace of the refined system. In a refined trace all
occurrences of the refinement label have been replaced with its refinement.

Input-inputs refinement allows quiescence within a refinement. To get all
possible suspension traces within the refinement trace, we saturate the refine-
ment trace with δ’s (this technicality is explained in Example 4.4).

Definition 4.1 [δ-saturation] Let σ = a1 · · · an then dσe = a1·δ∗·a2 · · · δ∗·an

The refinement of a trace results in a set of traces. All labels except the
refinement label ar are unchanged. The refinement label is substituted with
every trace in dσre. Formally this is expressed as follows.

Definition 4.2 [Trace refinement] Let σ ∈ L∗
δ then σ[r] denotes the refinement

of a trace in the following way.

σ[r] =

 1) {ε} if σ = ε
2) {σ2·λ | σ2 ∈ σ1[r]} if σ = σ1·λ∧λ ∈ Lδ\{ar}
3) {σ2·σ′ | σ2 ∈ σ1[r]∧σ′ ∈ dσre} if σ = σ1·ar

Likewise we define refinement on sets of traces by refining all traces in the set.
An important concept in this paper is the concept of an r-complete trace.

This is a trace that does not end in the middle of a refinement; or in other
words, a trace σ is r-complete when σ ∈ L∗

δ [r].
Trace contraction is the opposite of trace refinement. The goal of trace

contraction is to transform a concrete trace to a trace of the abstract system.

Definition 4.3 [Trace contraction] Let r = (ar , σr), σ ∈ ↓(L∗
δ [r]).

σ〈r〉 =

1) ε if σ = ε
2) σ1〈r〉·ar if σ = σ1·σ2 ∧σ2 ∈ dσre
3) σ1〈r〉 if σ = σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε})
4) σ1〈r〉·λ if σ = σ1·λ and none of the above holds

Likewise we define contraction on sets of traces by contracting traces in the set.

Example 4.4 Let us illustrate trace refinement and trace contraction with our
running example in Figure 2. We refine the action address into street followed
by city followed by postalcode: r = (address, street·city·postalcode). Suppose we

8

want to refine the trace address·store·ok. This results in the following set of
traces of the refined specification.

(address·store·ok)[r] = (address·store)[r]·ok (rule 2)
= address[r]·store·ok (rule 2)
= street·δ∗·city·δ∗·postalcode·store·ok (rule 3)

To contract street·δ·city·postalcode·store·ok·street·δ, we obtain the following:
(street·δ·city·postalcode·store·ok·street·δ)〈r〉

= (street·δ·city·postalcode·store·ok)〈r〉 (rule 3)
= (street·δ·city·postalcode·store)〈r〉·ok (rule 4)
= (street·δ·city·postalcode)〈r〉·store·ok (rule 4)
= address·store·ok (rule 2)

2

5 Atomic refinement of transition systems

In this section we present a way to refine transition systems. The crux of this
refinement is that we make a transition system from our refinement trace and
insert this into the abstract transition system at the place where there is a
transition with the abstract refinement label. A formal definition is given in
Definition 5.1, it is illustrated in Example 5.2.

Definition 5.1 [Atomic transition system refinement] Let r = (ar , σr) be the
refinement pair and let p = 〈Q, I, U, T, q0〉 be an LTS. We define the refinement
of p as p[r] = 〈Qr , Ir , Ur , Tr , q0〉. For a transition t = (q, ar , q

′), we use (t, 0) = q
and (t, n) = q′ for n = |σr | (this is a technicality to enable refinements of one
action).
Qr = Q ∪ {(t, i) | ∃q, q′ ∈ Q : t = (q, ar , q

′) ∈ T, 1 ≤ i < n = |σr |}
Ir = I\{ar} ∪ I(σr)
T ′ = {((t, i), σr |i+1, (t, i + 1)) | ∃q, q′ ∈ Q : t = (q, ar , q

′) ∈ T, 0 ≤ i < n = |σr |}
Tr = {(q, a, q′) ∈ T | a 6= ar} ∪ T ′

To prevent confusion between transitions in the abstract and refined transi-
tion system we add the subscript ‘r ’ to the transition arrow for refined systems:
q

σ=⇒
r
q′. Likewise we use the subscript for the set of states, transitions, etc., as

shown in the definition.

Example 5.2 We use our running example in Figure 2 to explain Definition 5.1
(the states are numbered according to this definition). For the abstract tran-
sition t = (q0, address, q1) we add the states (t, 1) and (t, 2) to Qr ((t, 0) and
(t, 3) correspond to states q0 and q1 respectively). T ′ consists of the transi-
tions: ((t, 0), street, (t, 1)), ((t, 1), city, (t, 2)) and ((t, 2), postalcode, (t, 3)). In Tr

we delete the address transition from the set of abstract transitions and we add
T ′. We add all labels from the refinement trace: {street, city, postalcode} to Ir
and we delete the refinement label “address” (the output label set stays the
same). 2

Lemma 5.3 states that the prefix closure of the refined Utraces of the abstract
specification equals the set of Utraces of the refined specification. This result
holds because we defined trace refinement in such a way that the refinement of
a trace results in a trace from the refined system. To include traces that end in
the middle of the refinement, we apply the prefix closure.

9

Lemma 5.3 ↓(Utraces(s)[r]) = Utraces(s[r])

Lemma 5.4 states that for completely refined Utraces the set of outputs
after the trace in the refined system equals the set of outputs in the abstract
system after the contracted trace. This holds because r -complete traces end in
states that come from the abstract system (old states). Because atomic linear
input-inputs refinement does not add outputs to the refined system, the output
behavior of the old states is not altered by the refinement.

Lemma 5.4 ∀σ ∈ Utraces(s)[r] : out(s[r] after σ) = out(s after σ〈r〉)

For not completely refined Utraces (traces in ↓(Utraces(s)[r])\Utraces(s)[r]))
Lemma 5.5 states that the only output of the refined specification after such a
trace is quiescence. This holds because not r -complete utraces end inside the
refinement (in new states). Because our refinement does not add outputs, the
only allowed output inside the refinement is quiescence.

Lemma 5.5 ∀σ ∈ ↓(Utraces(s)[r])\Utraces(s)[r] : out(s[r] after σ) = {δ}

6 uiocor for testing refined systems

In this section we introduce the implementation relation uiocor that express
correctness of the concrete implementation in terms of the abstract specification
and the refinement pair. We show that uiocor is equivalent to the uioco
relation over refined specifications.

Definition 6.1 [uiocor] Let s ∈ LTS(I1, U), i ∈ IOTS(I2, U), r = (ar , σr),
I2 = I1\{ar} ∪ I(σr).
i uiocor s =def ∀σ ∈ ↓(Utraces(s)[r]) :

if σ ∈ Utraces(s)[r] then out(i after σ) ⊆ out(s after σ〈r〉)
else out(i after σ) ⊆ {δ}

For completely refined Utraces the allowed output behavior of the imple-
mentation is restricted to the output behavior of the abstract specification after
the contracted trace (see Lemma 5.4). For incompletely refined Utraces the
allowed output behavior of the implementation is restricted to quiescence (see
Lemma 5.5). Because of Lemma 5.3 we know that we have covered all possible
traces of the refined specification.

The following theorem states the equality between uiocor and uioco. This
equality follows directly from the lemma’s discussed above.

Theorem 6.2 Let s ∈ LTS(I1, U), i ∈ IOTS(I2, U), with r = (ar , σr), and
I2 = I1\{ar} ∪ I(σr)

i uiocor s ⇔ i uioco s[r]

Example 6.3 Let us look again at abstract and refined specification in Fig-
ure 2. To illustrate Definition 6.1 and Theorem 6.2 we use the following two
traces: street·city·postalcode·store is a complete refinement of address·store and
street·city an incomplete refinement. As we can see, both traces are in the
set of Utraces of the refined specification, as stated in Lemma 5.3. The trace
address·store leads us to state q2 in the abstract specification and the trace

10

street·city·postalcode·store leads us to state q2 in the refined specification. As we
can see, the set of outputs is in both states the same, conform to Lemma 5.4.
The r -incomplete trace street·city leads us to state (t, 2) in the refined specifi-
cation. This state is quiescent, as stated in Lemma 5.5. When we put these
results together, we see that the uiocor definition for the abstract specification
is equal to the uioco definition for the refined specification. 2

7 Test case refinement

In the previous sections we have shown how to obtain a refined test suite by
refining the specification; from this refined specification we can generate a com-
plete test suite. In this section we show how to refine existing abstract test
cases, like the test cases shown in Figure 3. Furthermore, we show under what
conditions the refinement of a complete abstract test suite results in a complete
refined test suite with respect to uiocor .

To test inside the refinement we need several test cases (we can make several
observations). Therefore we generate a set of mini test cases that test the entire
behavior of the refined action. We replace transitions with the refinement label
in the abstract test case with these mini test cases.

7.1 Generation of mini test cases

We present an algorithm to generate mini test cases that test the entire behavior
inside the refinement. The algorithm is closely related to the test generation
algorithm of Tretmans [5]. There are some minor differences:

1. The only pass state is at the end of a mini test case. A possible error can
be anywhere within the refinement, so it is no use to stop testing before
the end of the refinement.

2. There are no observations at the start and the end state of the mini test.
Because atomic linear input-inputs refinement does not add or change
output actions we use the observations of the abstract system in these
states.

Definition 7.1 [Generation of mini tests] MT ⊆ TEST (L(σr), Uδ), a set of mini
tests, is obtained from σr (with respect to an input label set I and and output
label set U) in the following way. The stimulus and response step are executed
in a non-deterministic manner. Let n = |σr | and 1 ≤ i < n.

Stimulus step ti := σr |i; ti+1

Response step ti := σr |i; (Σ{x; fail | x ∈ U}2δ; ti+1)
Pass step tn := σr |n;pass

MT is the set of mini tests that can be obtained from t1: MT = {t1}

The set of mini test is built with the process algebraic operators action prefix
(;) and choice (2 and Σ) in the same style as Tretman’s algorithm. For readers
that are unfamiliar with this notation,formally we write this as follows:

Let ti be test cases for i = 1, 2 and µ ∈ Lδ

; (µ; t1)
µ−→ t1

2 if t1
µ−→ t′1 then t12t2

µ−→ t′1 and t22t1
µ−→ t′1

Σ if ti
µ−→ t′i for i ∈ I then Σ{ti | i ∈ I} µ−→ t′i

11

mini test 1 mini test 2 mini test 3

passpass

failpass

fail

!street

!city

?ok

!street

!city

δ

!postalcode

!street

δ

!city

!postalcode

?nok!postalcode

?ok, nok

Figure 6: Generation of mini tests

Example 7.2 In Figure 6 we show three mini tests generated with the algo-
rithm in Definition 7.1 for σr = street·city·postalcode. Mini test 1 starts with a
stimulus step: t1 := street; t2, followed by again a stimulus step: t2 := city; t3.
After this only the pass step is possible: t3 := postalcode;pass. This results
in t1 := street; city; postalcode;pass which corresponds with the labeled tran-
sition system of mini test 1. Mini test 2 starts the same with the stimulus
street: that is t1 := street; t2. This step is followed by an observation step:
t2 := city; (Σ{x; fail | x ∈ U}2δ; t3). This step leads to the stimulus city
followed by the observations ok, nok both leading to a fail state. After the ob-
servation of quiescence the test continues with t3. This is again the stimulus
postalcode followed by pass. Mini test 3 is almost identical to mini test 2, except
that it starts with an observation. 2

7.2 Test case refinement

Test case refinement is similar to LTS refinement. The main difference is that
test case refinement results in a set of refined test cases, where LTS refinement
results in one transition system. The definition is explained in Example 7.4.

Definition 7.3 Given a test case t = 〈Qt, It, Ut, Tt, t0,passt, failt〉 and a re-
finement pair (ar , σr) we define test case refinement as follows. Let MT be the
set of mini tests generated with the algorithm from Definition 7.1. Let f be a
function from Qt to MT . For better readability we denote a mini test obtained
from f for a state q as f(q) = 〈Qq, Iq, Uq, Tq, startq,passq, failq〉. We assume
all states in the images of f to be unique. In order to deal with mini tests of
one transition (refinements of one transition) we use the following notational
convention: (q, q′) = q if q′ ∈ passq′ and (q, q′) = q′ if q ∈ startq

t[r] = {t[f] | f : Qt → MT} where t[f] = 〈Qf , If , Ut, Tf , t0,passt, failf 〉 is
defined as follows.

12

!address

fail

!street

!postalcode

q4

q0

q1

!store
q2

δ

q3 q4

?ok, nok
r1

r2

r3

r0

(q1, r1)
?ok, nok

(q1, fail)

(q1, r3)

q1

q2
δ

q3

q0
!street

?δ
(q1, r2)
!city

!postalcode

!store

?ok, nok

!postalcode

!city

?δ

!street

?ok, nok

abstract test case mini test refined test case

passfail pass

dashed parts (red) are added
dotted parts (blue) are deleted

fail pass

Figure 7: Example of test case refinement

Qf = Qt ∪ {(q2, q) | ∃q1 ∈ Qt : (q1, ar , q2) ∈ Tt ∧ q ∈ Qq2\(passq2
∪ {startq2)})}

Tf = {(q1, λ, (q2, q)) | (q1, ar , q2) ∈ Tt ∧ (startq2 , λ, q) ∈ Tq2}
∪ {((q2, q), λ, q2) | ∃q1 ∈ Qt : (q1, ar , q2) ∈ Tt ∧∃q3 ∈ passq2

: (q, λ, q3) ∈ Tq2}
∪{((q2, q), λ, (q2, q

′)) | ∃q1 ∈ Qt : (q1, ar , q2) ∈ Tt ∧ (q, λ, q′) ∈ Tq2 ∧ q /∈ startq2

∧ q′ /∈ passq2
}

∪ Tt\{(q1, ar , q2) ∈ Tt | q1, q2 ∈ Qt}
If = It\{ar} ∪ I(σr)
passf = passt

failf = failt ∪ {(q1, q2) ∈ Qf | q1 ∈ Qt ∧ q2 ∈ failq1}

We apply a little mathematical trick with our function f . The function maps
the states of the abstract test case to the set of mini tests. For every refinement
label transition (q1, ar , q2) we get a mini test f(q2). We replace the refinement
label transition with this mini test. t[f] results in one refined test case and when
we combine all possible refinements with f we get a set of refined test cases in
which ar transitions are replaced with all possible mini tests. Our notational
convention (q, q′) = q if q′ ∈ passq′ and (q, q′) = q′ if q ∈ startq enables us to
deal with refinements of length one. We believe that this notation improves the
readability of the definition as we do not have to introduce extra exceptions.

Example 7.4 [Test case refinement] In Figure 7 we show an abstract test case
on the left, a mini test in the middle and the resulting refined test case on the
right. We use different types of lines: dashed parts are added, dotted parts are
deleted and solid parts remain unchanged.

We delete the refinement label transition, (q0, address, q1) from the abstract
test case (dotted transition) and all other transitions are added to Tf . All states
are copied to Qf .

From the mini test we delete the start and pass states. All other states are
added to Qf as a pair with q1. We delete the transitions from the start state
and transitions leading to pass states and add all other transitions to Tf .

To finalize the test case refinement we let the first transition in the mini test
start in q0, the start state of the refinement transition: the dashed transition

13

labeled with street between q0 and r1. In a similar way we redirect the postalcode
transition to the pass state to q1. When we reorganize the dashed parts and the
black solid parts we obtain the refined test case on the right. 2

7.3 Completeness of test case refinement

When we generate a test suite from the refined specification with Tretmans
test generation algorithm, we know that the test suite is complete with respect
to uioco and s[r] (result from Tretmans, see [4]). If we can show that the
refinement of a complete test suite results in a complete refined test suite with
respect to uioco and s[r], we know that both test suites are equivalent with
respect to completeness.

As usual we divide completeness in soundness and exhaustiveness. It turns
out that to obtain soundness of a refined sound test suite we need an extra
requirement. We call this requirement “conformance trace safety”. It expresses
that a test trace that does not end in a fail state is a utrace of the specification.

Definition 7.5 Let s ∈ LTS(I, U), t ∈ TEST (I, U). A test case t is confor-
mance trace safe with respect to uioco and s when

t σ−→ q /∈ fail ⇒ σ ∈ Utraces(s)

Test case refinement is defined in such a way that the refinement of a con-
formance trace safe and sound test case with respect to uioco and s leads to a
sound refined test case with respect to uioco and s[r].

Theorem 7.6 [Soundness of the refined test suite] Let t ∈ TEST (I, U), s ∈
LTS(I, U), r = (ar , σr) and let t be conformance trace safe w.r.t. uioco and s.

(t is sound w.r.t. uioco and s) ⇒ (t[r] is sound w.r.t. uioco and s[r])

Intuitively this theorem can be explained as follows. Like with LTS refine-
ment we have the property that completely refined Utraces of s end in states of
the abstract test case, where the output behavior is completely determined by
the abstract system (see Lemma 5.4). Soundness is guaranteed by the soundness
of the abstract test case. Conformance trace safety ensures that a trace in the
refined test case that does not lead to a fail state is indeed a utrace of s[r]. Not
completely refined Utraces test the behavior of the refinement, where the out-
put behavior is limited to quiescence (see Lemma 5.5). Not completely refined
traces lead to states from the mini tests. It can be easily seen that mini tests
generated with the algorithm in Definition 7.1 only lead to fail if the observed
output is not quiescent.

It turns out that exhaustiveness of the refined test suite does not necessar-
ily follow from exhaustiveness of the abstract test suite. When the abstract
test suite fulfills the following property, exhaustiveness of the refined test suite
holds.

Definition 7.7 Let s ∈ LTS(I, U) and r = (ar , σr). A test suite T r -covers a
specification s (denoted r -cov(T, s)) if the following holds:

r -cov(T, s) =def ∀(σ·ar) ∈ Utraces(s) : (∃t ∈ T : t σ·ar−−−→)

The property states that a test suite T covers a specification s with respect
to r if for every utrace of s ending in ar , there is a test case in T that can
perform this trace.

14

refined test case impl 1 impl 2

?street, city, postalcode

passfail

passfail

abstract test case

?δ
(q2, fail)(q2, r2)

?ok, nok
(q2, r1)

q1

q0

?δ
q2

q3 q4

i3

i2

i1

i0 j0

j1

j2

j3

?street

?city

?postalcode?postalcode

?city

?street!street

!city

?δ

!postalcode

?ok, nok

?ok, nok

!store

!address
q0

q1

q2

q4q3

!ok

Figure 8: Figure to illustrate soundness and completeness properties

Theorem 7.8 [Exhaustiveness of the refined test suite] Let s ∈ LTS(I, U), T ⊆
TEST (I, U), r = (ar , σr) and r -cov(T, s) then
(T is exhaustive w.r.t. uioco and s) ⇒ (T [r] is exhaustive w.r.t. uiocor

and s)

For exhaustiveness we follow the same line of thought as in the explanation
of soundness. If the implementation is not uiocor correct there can be an error
in the abstract behavior (from the abstract specification) or in the behavior
of the refinement. In case of an error in the abstract behavior, we know that
there is a test case that reveals the failure because the abstract test suite is
exhaustive. In case of incorrectness in the refined part of the specification, we
run into a problem. It may be that there is an error inside the refinement, but
no abstract test case that leads to the refinement. The reason for this is that
a complete test suite remains complete when deleting test cases that always
lead to pass. The deleted test case may just be the test case that we need to
obtain exhaustiveness. We can illustrate this as follows. Suppose that we have
a specification that allows all behavior. A test suite with one test case that only
consists of a pass state is complete. Refinement of this test suite results in the
same test suite. Suppose that we have an implementation that can only perform
the first refinement action and after that is not quiescent. This implementation
is not uiocor correct, but the refined test suite does not have a test case to
detect this.

For r -cov test suites exhaustiveness holds, because there always is an abstract
test case that leads us to the refinement. Within the refinement only quiescence
is allowed as output and because the implementation is not uiocor correct, we
know that it is not quiescent. In the mini test generation algorithm we can
easily see that such behavior leads to a fail verdict. We illustrate the soundness
and exhaustiveness results with an example.

Example 7.9 Figure 8 shows an abstract test case (left), a refined test case and
two implementations (right) for our data entry system. Both implementations
have an error. Implementation 1 is quiescent in state i3 and implementation 2
allows the output ok in state j2.

For soundness we want to know if an error detected by a refined test case
is indeed an error in the implementation. For implementation 1 we observe

15

quiescence after street, city and postalcode. Our test case leads to fail because
it expects ok or nok as observation. Because the fail state is a state from the
abstract test case and because we know that the abstract test case is sound, we
also know that our refined test case is sound.

For implementation 2, the execution of the refined test case leads to a fail
verdict after observing ok after street followed by city. This is a failure within
the refinement ((q2, fail) is a new state). Our observation within the refinement
is ok and we know that the only allowed output within a refinement is δ. This
means that the fail verdict is correct and that the test case is sound.

For exhaustiveness we can follow the same line of thought. Suppose the
implementation is not uioco correct, like implementations 1 and 2, do we have
a test case that detects the error? For implementation 1 this is clear: the error is
in the abstract part of the system and because the abstract test suite is complete,
there is a test case that tests the specific abstract state of the specification.
Because this abstract test case is present, we know that the refined test case will
detect the error. For an error inside a refinement, like in implementation 2 we
have a problem, because it requires that there is an abstract test case that ends
with address. As explained earlier, the existence of such a test case is guaranteed
by completeness and r-completeness together, but not by completeness alone.
2

At first sight it may be unclear if conformance trace safety can be met. The
test case generation algorithm of Tretmans [5] fulfills this requirement (as it
immediately gives the fail verdict when an observation is not allowed and it
only tests with traces in F(s)).

Corollary 7.10 A test suite generated with Tretmans algorithm for test case
generation is conformance trace safe with respect to uioco and the abstract
specification.

Likewise it may be unclear if the r -cov requirement for exhaustiveness can be
met. The test case generation algorithm of Tretmans [5] fulfills this requirement
(as it does not optimize test suites by deleting test cases); this is implied by
Theorem 6.3 in [4].

Corollary 7.11 The refinement of a complete test suite generated with Tret-
mans algorithm for test case generation, is complete with respect to uiocor and
the abstract specification.

8 Conclusion

In this paper we have filled in the parts of our action refinement approach in
Figure 1. We applied this approach to atomic linear input-inputs refinement.
For this special case of action refinement we showed how to refine traces, tran-
sition systems and test cases. This enables us to obtain test cases with the
required level of detail in an automated way. Furthermore we introduced the
implementation relation uiocor that relates the abstract specification to the
concrete implementation by using the refinement information in the form of the
refinement pair. We showed that a complete test suite can be derived from the

16

refined specification and under which conditions this test suite is equivalent to
the refinement of a complete abstract test suite.

Related work In the light of conformance testing, the problem addressed by
this paper is well known in practice and occurs often. However, no research has
been carried out in the field of conformance testing nor in the field of action
refinement.

In the context of action refinement, the results of Section 7 have an un-
expected consequence. The vast majority of research in action refinement has
concentrated on the so-called coarsest congruence question (given two equiva-
lent specifications, are they still equivalent after refinement?). In this paper we
are not primarily interested in equivalences at all: the core issue is conformance
relation, embodied in uioco. Still, an obvious derived equivalence is that of
specification strength — two specifications are equivalent if they are satisfied by
the same set of systems. Surprisingly, this equivalence is not preserved even
under atomic action refinement, as a side-effect of the fact that test case refine-
ment does not always preserve completeness. This is in contrast to previously
studied equivalences; see [2].

Future work This paper is only a first step; it treats a non-trivial though rather
simple form of atomic action refinement. Future research focuses on arbitrary
atomic refinement. This means that no actions are allowed to interfere with the
refinement, but we drop the linearity and input-inputs constraints. As a result
we allow branching (including looping) behavior with a mix of input and output
actions. Arbitrary atomic refinement is the next research step. With arbitrary
atomic refinement we will be able to refine the video game example from our
introduction (Figure 4).

Some research has been done in comparing Finite State Machine (FSM)
testing with LTS based testing [3]. With atomic action refinement we can refine
the atomic input output pair from an FSM into two sequential actions. This
might give an interesting basis for comparison.

A Proofs Section 7

To prevent confusion between the components of an abstract test case and a
refined test case we use a subscript r to keep the two apart. For an abstract
test case t we will use t = 〈Q, I, U, T, start,pass, fail〉 and for a refined test case
tr ∈ t[r] we use tr = 〈Qr , Ir , Ur , Tr , startr ,passr , failr 〉. Whenever necessary
we will use the subscript r to prevent confusion.

We sometimes write t σ−→ fail to indicate that a test trace leads to an arbi-
trary fail state. We use the notation δ? to denote zero or one times δ.

The following definition defines delta desaturation. This means that a series
of consecutive delta’s in a trace are replaced with one delta action.

Definition A.1 Delta desaturation replaces a consecutive sequence of δ’s with
one δ action. Let σ ∈ L∗

δ .

bσc =

 1) ε if σ = ε
2) bσ′c·µ if σ = σ′·µ∧µ 6= δ
3) bσ′c·δ if σ ∈ σ′·δ+ ∧@σ′′ : σ′ = σ′′·δ

17

Lemma A.2 Let t = 〈Q, I, U, T, q0,pass, fail〉, q, q′ ∈ Q and σ ∈ L∗
δ .

q σ−→ q′ ⇔ q
bσc−−→ q′

Proof

Only if: Proof by induction on the length of σ

Basic step: σ = ε. The lemma holds as bεc = ε.
Induction step: Let σ = σ′·λ and assume that the lemma holds for σ′.

We identify the following cases:

• λ ∈ L
q σ′·λ−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q σ′

−−→ q1
λ−→ q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q

bσ′c−−−→ q1
λ−→ q′

⇒ (∗ Definition −→ ∗)
q

bσ′c·λ−−−−→ q′

⇒ (∗ Definition A.1 case 2 ∗)
q

bσ′·λc−−−−→ q′

• λ = δ. We identify two cases:
1. σ ends on more than one consecutive δ actions. In this case

bσ′·λc = bσ′c, because the sequence of δ actions is reduced
to one δ action.

q σ′·λ−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q σ′

−−→ q1
λ−→ q′

⇒ (∗ Definition δ : q δ−→ q ∗)
q σ′
−−→ q′ λ−→ q′

⇒ (∗ Induction ∗)
q

bσ′c−−−→ q′ λ−→ q′

⇒ (∗ Premise: bσ′·λc = bσ′c ∗)
q

bσ′·λc−−−−→ q′

2. σ ends on one delta action: λ. In this case bσ′c·λ = bσ′·λc,
because σ′ does not end on a δ action. Therefore the final
step changes to the following:

q
bσ′c−−−→ q′ λ−→ q′

⇒ (∗ Definition −→ ∗)
q

bσ′c·λ−−−−→ q′

⇒ (∗ Premise: bσ′·λc = bσ′c·λ ∗)
q

bσ′·λc−−−−→ q′

If: Proof by induction on the length of σ

Basic step: σ = ε. The lemma holds as bεc = ε.
Induction step: Let σ = σ′·λ and assume that the lemma holds for σ′.

We identify the following cases:

18

• λ ∈ L

q
bσ′·λc−−−−→ q′

⇒ (∗ Definition A.1, λ 6= δ ∗)
q

bσ′c·λ−−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q

bσ′c−−−→ q1
λ−→ q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q σ′

−−→ q1
λ−→ q′

⇒ (∗ Definition −→ ∗)
q σ′·λ−−−→ q′

• λ = δ. We identify the following cases:
1. σ ends on more than one δ action; so λ is part of a sequence

of δ actions. In this case bσ′·λc = bσ′c.
q

bσ′·λc−−−−→ q′

⇒ (∗ Premise: bσ′·λc = bσ′c ∗)
q

bσ′c−−−→ q′

⇒ (∗ Induction ∗)
q σ′
−−→ q′

2. σ ends on one δ action, namely λ. In this case bσ′·λc =
bσ′c·λ.

q
bσ′·λc−−−−→ q′

⇒ (∗ Premise: bσ′·λc = bσ′c·λ ∗)
q

bσ′c·λ−−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q

bσ′c−−−→ q1
λ−→ q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q σ′

−−→ q1
λ−→ q′

⇒ (∗ Definition −→ ∗)
q σ′·λ−−−→ q′

2

The following lemma shows that the trace via which a sound and confor-
mance trace safe test case leads to a fail state ends with an output action.
Furthermore, except for the last output action, the trace is a utrace.

Lemma A.3 Let t ∈ TEST (I, U) be sound and conformance trace safe with
respect to a specification s ∈ LTS(I, U) and uioco.

t σ−→ fail ⇒ ∃σ′ ∈ Utraces(s), x ∈ Uδ : σ′·x = σ ∧x /∈ out(s after σ)

Proof We first show that the trace σ ends with an output action. Next we
proof the rest of the lemma. Suppose that σ does not end with an output action
then it either

1. is the empty trace. This conflicts with the fact that ε ∈ Utraces(s).

2. ends with an input action. Suppose that σ = σ′·a with a an input action.
Note that t σ′

−−→ q /∈ fail and σ′ ∈ Utraces(s) as t is conformance trace

19

safe. We now construct an implementation i such that ∀σ ∈ Utraces(s) :
out(i after σ) ⊆ out(s after σ). But we also implement the input action
a after σ′, so σ′·a ∈ Straces(i). According to uioco this is perfectly fine,
as uioco allows arbitrary behavior for underspecified input actions. As a
result we have created a uioco correct implementation. However we have
a sound test case that gives a fail verdict. This conflicts with the fact that
the test case is sound.

This means that the trace σ ends with an output action (including δ):
∃σ′ ∈ L∗

δ , x ∈ Uδ : t σ′·x−−−→ fail
⇒ (∗ Definition −→ ∗)

∃σ′ ∈ L∗
δ , x ∈ Uδ, q1 ∈ Q : t σ′

−−→ q1
x−→ fail

⇒ (∗ t is conformance trace safe. Fail states are final ∗)
∃σ′ ∈ Utraces(s), x ∈ Uδ, q1 ∈ Q : t σ′

−−→ q1
x−→ fail

⇒ (∗ t is sound ∗)
∃σ′ ∈ Utraces(s), x ∈ Uδ, q1 ∈ Q : t σ′

−−→ q1
x−→ fail∧σ′·x /∈ Utraces(s)

⇒ (∗ Definition out(), after ∗)
∃σ′ ∈ Utraces(s), x ∈ Uδ : x /∈ out(s after σ′)

⇒ (∗ Premise: σ = σ′·x ∗)
∃σ′ ∈ Utraces(s), x ∈ Uδ : σ = σ′·x∧x /∈ out(s after σ′)

2

We repeat the following lemmas that we reuse from other papers.

Lemma 5.3 Let s ∈ LTS(I, U), r = (ar , σr).

↓(Utraces(s)[r]) = Utraces(s[r])

Proof For the proof we refer to [6] (Proposition C.7). 2

Lemma 5.4 Let s ∈ LTS(I, U), r = (ar , σr).

∀σ ∈ Utraces(s)[r] : out(s[r] after σ) = out(s after σ〈r〉)

Proof For the proof we refer to [6] (Proposition C.8). 2

Lemma 5.5 s ∈ LTS(I, U), σ ∈ ↓(Utraces(s)[r])\Utraces(s)[r], r = (ar , σr).

out(s[r] after σ) ⊆ {δ}

Proof For the proof we refer to [6] (Proposition C.9). 2

Proposition A.4 Let σ ∈ L∗
δ [r], r = (ar , σr)

σ ∈ σ〈r〉[r]

Proof For the proof we refer to [6] (Proposition 4.9). 2

Lemma A.5 s ∈ LTS(I, U), σ ∈ ↓(Utraces(s)[r])\Utraces(s)[r], r = (ar , σr)

∃σ1, σ2, σ3∈ L∗
rδ : σ = σ1·σ2 ∧σ2·σ3 ∈ dσre∧ rcr (σ1)∧σ1·σ2·σ3 ∈ Utraces(s)[r]

Proof For the proof we refer to [6] (follows from the proof of Lemma C.6). 2

20

Lemma A.6 Let σ ∈ L∗
rδ, λ ∈ Lrδ, r = (ar , σr) and rcr (σ·λ). There are two

possibilities for the form of σ·λ

1. λ ∈ Lrδ\L(σr)∧@σ1, σ2 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2·λ ∈ ↓dσre ∧ rcr (σ)

2. λ = σr |n ∧∃σ1, σ2 ∈ Lrδ : σ = σ1·σ2 ∧σ2·λ ∈ dσre ∧ rcr (σ1)

Proof For the proof we refer to [6] (Lemma A.1). 2

Lemma A.7 Let s ∈ LTS(I, U), L = I ∪ U, σ ∈ L∗
δ

out(s after σ) = out(s after bσc)

Proof This proof follows straightforward from the definition of δ. q δ−→ q stands
for the absence of any transition q µ−→ q′ with µ ∈ Uτ . As a result a sequence
of delta actions in a trace stay in the same state without enabling any new
transitions. 2

The following three lemmas clarify the form of traces that a mini-test can
perform.

Lemma A.8 Let r = (ar , σr),mt = 〈Q,L(σr), U, T,pass, fail〉 ∈ MT , n =
|σr |, 1 ≤ i < n, q ∈ Q\(pass ∪ fail)

mt σ−→ q ⇔ σ ∈ ↓σr |1·δ? · · ·σr |n−1·δ? (7)
mt σ−→ fail ⇔ σ ∈ σr |1·δ? · · · δ?·σr |i·U (8)

mt σ−→pass ⇔ σ ∈ σr |1·δ? · · · δ?·σr |n (9)

Proof

Only if: We start with the proof of Equation (7) and Equation (8). We use the
following equation in our proof. Let 1 ≤ i < n and let ti refer to the set of
mini-tests generated in step i in the mini test case generation algorithm
(Definition 7.1).

∀t ∈ t1,∃t′ ∈ ti+1, σ ∈ σr |1·δ? · · · δ?·σr |i : (10)

(∃σ′ ∈ δ? : t σ·σ′
−−−→ t′ ∨∀y ∈ U : t σ·y−−→ fail)

Basic step: i = 1. From Definition 7.1 (mini test generation) two rules
apply:

1. Stimulus step: t1 = σr |1; t2.
2. Response step: t1 = σr |1; (Σ{x; fail | x 6= δ}2δ; t2).

Taking step 1 and 2 together we see that for ∀t ∈ t1,∃σ′ ∈ δ? :
t

σr |1·σ′
−−−−−→ t2 ∨∀y ∈ U : t

σr |1·y−−−−→ fail. Note that the fail state is a final
state; there are no transitions that leave this state.

Induction step: Assume that the lemma holds for 1 ≤ j < i. Let 1 ≤
i < n. From the definition of a mini test, we see that two rules may
apply for test step i:

1. Stimulus step (1 ≤ i < n): ti = σr |i; ti+1.

21

2. Response step (1 ≤ i < n): ti = σr |i; (Σ{x; fail | x 6= δ}2δ; ti+1).

For step j + 1 we get the following result (note that 1 < j + 1 < n):

∃σ′ ∈ δ? : tj+1
σr |j+1·σ′
−−−−−−→ tj+2 or ∀y ∈ U : tj+1

y−→ fail. When we com-
bine this with the induction hypothesis we get: ∀t ∈ t1,∃t′ ∈ tj+2, σ ∈
σr |1·δ? · · · δ?·σr |j+1 : (∃σ′ ∈ δ? : t σ·σ′

−−−→ t′ ∨∀y ∈ U : t σ·y−−→ fail). The
first part of the disjunction proves Equation (7) and the second part
proves Equation (8).
When we add the last step of the mini test generation algorithm we
see:

1. Concluding step (i = n). tn = σr |n·pass.

This means that ∀t ∈ t1,∃σ ∈ σr |1·δ? · · · δ?·σr |n : t σ−→pass and this
proves Equation (9).

If: The other way around we need to universally quantify over the possible
traces instead of over the mini tests. Therefore we use the following equa-
tions. Let 1 ≤ i < n:

∀σ ∈ σr |1·δ? · · ·σr |i·δ?,∃t ∈ t1, t
′ ∈ ti+1 /∈ pass ∪ fail : t σ−→ t′ (11)

∀σ ∈ σr |1·δ? · · ·σr |i·U,∃t ∈ t1 : t σ−→ fail (12)
∀σ ∈ σr |1·δ? · · · δ?·σr |n,∃t ∈ t1 : t σ−→pass (13)

The proof of these equations is similar to the proofs in the only if case.

2

You may wonder whether it is enough to generate only one δ in the mini-test
generation algorithm. Because of the definition of quiescence it does not matter
if we have one or several observations of quiescence (if you observe quiescence
once, you can observe it till infinity; q δ−→ q means ∀x ∈ Uτ : q x−−→/). Further-
more, Lemma A.7 shows that the output behavior of states is not changed.

The following two lemmas relate the abstract test case and the refined test
case for single transitions (in the abstract test case).

Lemma A.9 Let t = 〈Q, I, U, T, q0,pass, fail〉 ∈ TEST (I, U), q, q′ ∈ Q,λ ∈
Lδ\{ar}, tr ∈ t[r], r = (ar , σr)

q λ−→ q′ ⇔ q λ−→
r
q′

Proof

Only if:

q λ−→ q′

⇒ (∗ Definition test case refinement: λ 6= ar ∗)
∀tr ∈ t[r] : q λ−→

r
q′

If:
q λ−→

r
q′

⇒ (∗ Definition test case refinement (λ /∈ L(σr), q, q′ ∈ Q) ∗)
q λ−→ q

22

Note that it is by the definition of test case refinement impossible to have
a transition originating from a mini-test with the starting and ending state
an abstract state (in Q). That is except for refinements consisting of a
single action, but these are ruled out by λ ∈ Lδ\{ar}. This also rules out
δ transitions in the mini test.

2

Lemma A.10 Let r = (ar , r), t = 〈Q, I, U, T, start,pass, fail〉, q, q′ ∈ Q, tr ∈
t[r], (q, ar , q

′) ∈ T .

q ar−−→ q′ ⇔ ∃σ ∈ σr |1·δ? · · · δ?·σr |n : q σ−→
r
q′

Proof

Only if: From Definition 7.3 it is clear that the transition (q, ar , q
′) is replaced

with a mini-test case of which the transition from the start state is con-
nected to q and the transition that leads to the pass state is connected to
q′. This means that in the refined test case the traces between q and q’
are restricted by the set of traces that a mini-test can do between its start
and pass state. Equation (9) in Lemma A.8 shows that this set of traces
is σr |1·δ? · · · δ?·σr |n.

If: This follows immediately from equation Equation (9) in Lemma A.8 and
Definition 7.3.

2

Lemma A.11 Let t = 〈Q, I, U, T, start,pass, fail〉 ∈ TEST (I, U), tr ∈ t[r], r =
(ar , r), λ ∈ L\{ar}

q λ−→r q
′ ⇒ q, q′ ∈ Q

Proof This follows immediately from the Definition 7.3; only transitions with
the ar label are altered.

2

Lemma A.12 Let t = 〈Q, I, U, T, start,pass, fail〉 ∈ TEST (I, U), tr ∈ t[r], q ∈
Qr , r = (ar , σr)

q
σr |n−−−→

r
q′ ⇒ q′ ∈ Q

Proof This follows immediately from the Definition 7.3 and Equation (9) in
Lemma A.8. The transition with q ar−−→ q′ is replaced with a mini test, where
the pass state is replaced with q′. 2

Lemma A.13 Let r = (ar , σr), t = 〈Q, I, U, T, start,pass, fail〉, q ∈ Q,n =
|σr |, 1 ≤ i < n, σ ∈ σr |1·δ? · · · δ?·σr |i, x ∈ U .

q ar−−→ ⇔ ∃tr ∈ t[r] : q σ·x−−→
r
fail

Proof

Only if: From Definition 7.3 (test case refinement) we know that an ar tran-
sition is replaced with a mini test. From Equation (8) in Lemma A.8 we
know that for traces in σr |1·δ? · · · δ?·σr |i·U with 1 ≤ i < n = |σr | there is
a mini test that will lead to a fail state.

23

If: Because of Definition 7.3 and Definition 7.1 we know that only a refinement,
or more precisely, a mini test starts with σr |1. From Equation (8) in
Lemma A.8 we know that all mini tests lead that can perform the trace
σ·x lead to fail. Combining these we know that q ar−−→

2

The following is a technical lemma that is used in Lemma A.15. It specifies
the form of a trace (from a refined test case) between two ‘old’ states (from the
set of states of the abstract test case) where the trace does not encounter any
other ‘old’ states.

Lemma A.14 Let t = 〈Q, I, U, T, q0,pass, fail〉 ∈ TEST (I, U), tr ∈ t[r] with
q, q′ ∈ Q, r = (ar , σr)
q σ−→

r
q′ ∧ (@q1 ∈ Q, σ1, σ2 ∈ L+

rδ : σ = σ1·σ2 ∧ q σ1−−→
r
q1

σ2−−→
r
q′)

⇒ (σ ∈ Lrδ\L(σr)∨σ ∈ σr |1·δ? · · · δ?·σr |n)

Proof Let MT denote the set of mini-tests generated with the algorithm in
Definition 7.1.

q σ−→r q
′ ∧ (@q1 ∈ Q, σ1, σ2 ∈ L+

rδ : σ = σ1·σ2 ∧ q σ1−−→r q1
σ2−−→r q

′)
⇒ (∗ Definition 7.3, note that Lδ\{ar} = Lrδ\L(σr) ∗)

σ ∈ Lrδ\L(σr)∨∃mt ∈ MT : mt σ−→pass
⇒ (∗ Lemma A.8 Equation (9) ∗)

σ ∈ Lrδ\L(σr)∨σ ∈ σr |1·δ? · · · δ?·σr |n
2

Lemma A.15 Let r = (ar , σr), tr ∈ t[r], q ∈ Q

q σ−→r q
′ ⇒ (rcr (σ) ⇔ q′ ∈ Q)

Proof

Only if: To be proven: q σ−→
r
q′ ∧ rcr (σ) ⇒ q′ ∈ Q. Proof by induction on the

structure of σ.

Because of Lemma A.6 and the definition of r-completeness, an r-complete
trace σ is either the empty trace, or it exists of at least one label with the
following form. Let σ = σ′·λ with σ ∈ L∗

rδ, λ ∈ Lrδ.

1. λ ∈ Lrδ\L(σr)∧ rcr (σ′)∧@σ1, σ2 ∈ L∗
σrδ : σ = σ1·σ2 ∧σ2·λ ∈ ↓dσre

2. λ = σr |n ∧∃σ1, σ2 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2 ∈ dσre

Basic Step: σ = ε. There are no τ steps in a test case. Therefore q ε−→
r
q′

implies q = q′ and therefore q′ ∈ Q.

Induction Step: Assume that σ = σ1·σ2 and that the lemma holds for
σ1 (note that rcr (σ1)). We identify the following cases for σ2:

1. σ2 = λ ∈ Lr\L(σr)
q σ1·σ2−−−−→

r
q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qtr : q σ1−−→

r
q1

σ2−−→
r
q′

⇒ (∗ Induction hypothesis ∗)
∃q1 ∈ Q : q σ1−−→r q1

σ2−−→r q
′

⇒ (∗ Lemma A.11 ∗)
q′ ∈ Q

24

2. σ2 = δ
q σ1·σ2−−−−→r q

′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qtr : q σ1−−→

r
q1

σ2−−→
r
q′

⇒ (∗ Induction hypothesis ∗)
∃q1 ∈ Qt : q σ1−−→

r
q1

σ2−−→
r
q′

⇒ (∗ Definition δ ∗)
q′ ∈ Q

3. σ2 ∈ dσre
q σ1·σ2−−−−→

r
q′

⇒ (∗ Definition dσre ∗)
q

σ1·σr |1·δ∗···δ∗·σr |n−−−−−−−−−−−−−→
r
q′

⇒ (∗ Lemma A.12 ∗)
q′ ∈ Q

If: q σ−→
r
q′ ∧ q′ ∈ Qt ⇒ rcr (σ)

Proof by induction on the number of abstract states that σ encounters
between q and q′.

Basic step: There are no intermediate abstract states between q and q′.
q σ−→

r
q′ ∧ (@q1 ∈ Q, σ1, σ2 ∈ L+

rδ : σ = σ1·σ2 ∧ q σ1−−→
r
q1

σ2−−→
r
q′)

⇒ (∗ Lemma A.14 ∗)
σ ∈ Lrδ\L(σr)∨σ ∈ dσre

⇒ (∗ Definition r-complete ∗)
rcr (σ)

The case where σ = δ might not immediately clear, as δ might be
in ↓dσre. However because of the construction of a refined test case,
this is not possible as q, q′ ∈ Q.

Induction step: Suppose that the lemma holds for n intermediate ab-
stract states. Let q1 ∈ Q, σ = σ1·σ2 such that q σ1−−→r q1 encounters
n abstract states and there are no intermediate abstract states in
q1

σ2−−→
r
q′.

q σ1−−→
r
q1

σ2−−→
r
q′

⇒ (∗ Induction hypothesis ∗)
rcr (σ1)∧ q1

σ2−−→
r
q′

⇒ (∗ Basic step ∗)
rcr (σ1)∧ (σ2 ∈ Lrδ\L(σr)∨σ2 ∈ dσre

⇒ (∗ Definition r-completeness ∗)
rcr (σ1·σ2)

⇒ (∗ σ = σ1·σ2 ∗)
rcr (σ)

2

Lemma A.16 Let r = (ar , σr), t ∈ TEST (I, U), q, q′ ∈ Q, σ ∈ L∗
δ , σ

′ ∈ σ[r].

q σ−→ q′ ⇔ ∃tr ∈ t[r] : q
bσ′c−−−→

r
q′

25

Proof

Only if: Proof by induction on the length of σ

Basic step: σ = ε. There are no τ -steps in test cases. Therefore q = q′

and the lemma trivially holds.

Induction step: Let σ = σ1·λ and assume that the lemma holds for σ1.
Following the definition of trace refinement we identify three cases:

1. λ ∈ L\{ar}
q σ1·λ−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q σ1−−→ q1

λ−→ q′

⇒ (∗ Induction ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r], q1 ∈ Q : q
bσ′

1c−−−→
r
q1 ∧ q1

λ−→ q′

⇒ (∗ Lemma A.9 ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r], q1 ∈ Q : q
bσ′

1c−−−→
r
q1 ∧ q1

λ−→
r
q′

⇒ (∗ Definition −→ , λ 6= δ ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r] : q
bσ′

1·λc−−−−→
r
q′

⇒ (∗ Definition trace refinement ∗)
∀σ′ ∈ (σ1·λ)[r],∃tr ∈ t[r] : q

bσ′c−−−→r q
′

⇒ (∗ σ = σ1·λ ∗)
∀σ′ ∈ σ[r],∃tr ∈ t[r] : q

bσ′c−−−→r q
′

2. λ = δ.
q σ1·λ−−−→ q′

⇒ (∗ Definition −→ ∗)
q σ1−−→ q′ λ−→ q′

⇒ (∗ Induction ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r] : q
bσ′

1c−−−→
r
q′ ∧ q′ λ−→ q′

⇒ (∗ Lemma A.9 ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r] : q
bσ′

1c−−−→
r
q′ ∧ q′ λ−→

r
q′

We identify the following cases.

• σ′
1 ends with one or more δ actions. In this case bσ′

1·λc =
bσ1c.
⇒ (∗ Premise: bσ′

1·λc = bσ′
1c ∗)

∀σ′
1 ∈ σ1[r],∃tr ∈ t[r] : q

bσ′
1·λc−−−−→

r
q′

⇒ (∗ Definition trace refinement ∗)
∀σ′ ∈ (σ1·λ)[r],∃tr ∈ t[r] : q

bσ′c−−−→
r
q′

⇒ (∗ σ = σ1·λ ∗)
∀σ′ ∈ σ[r],∃tr ∈ t[r] : q

bσ′c−−−→
r
q′

• σ′
1 does not end with a δ action. In this case bσ′

1c·λ = bσ′
1·λc

26

⇒ (∗ Definition −→ ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r] : q
bσ′

1c·λ−−−−→
r
q′

⇒ (∗ Premise: bσ′
1c·λ = bσ′

1·λc ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r] : q
bσ′

1·λc−−−−→
r
q′

⇒ (∗ Definition trace refinement ∗)
∀σ′ ∈ (σ1·λ)[r],∃tr ∈ t[r] : q

bσ′c−−−→
r
q′

⇒ (∗ σ = σ1·λ ∗)
∀σ′ ∈ σ[r],∃tr ∈ t[r] : q

bσ′c−−−→
r
q′

3. λ = ar

q σ1·λ−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qt : q σ1−−→ q1

λ−→ q′

⇒ (∗ Induction ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r], q1 ∈ Qt : q
bσ′

1c−−−→r q1 ∧ q1
λ−→ q′

⇒ (∗ Lemma A.10 ∗)
∀σ′

1 ∈ σ1[r],∃tr ∈ t[r], q1 ∈ Qt : q
bσ′

1c−−−→
r
q1

∧∀σ2 ∈ λ[r] : q1
bσ2c−−−→

r
q′

⇒ (∗ Definition −→ , note that σ2 does not start with δ ∗)
∀σ′

1 ∈ σ1[r],∀σ2 ∈ λ[r],∃tr ∈ t[r] : q
bσ′

1·σ2c−−−−−→r q
′

⇒ (∗ Definition trace refinement ∗)
∀σ′′

1 ∈ (σ1·λ)[r],∃tr ∈ t[r] : q
bσ′′

1 c−−−→r q
′

⇒ (∗ σ = σ1·λ ∗)
∀σ′′

1 ∈ σ[r],∃tr ∈ t[r] : q
bσ′′

1 c−−−→
r
q′

If: Proof by induction on the structure of σ′. From Lemma A.6 we know that
there are two possibilities for the structure of non-empty rcomplete traces.
From the definition of trace refinement we know that an rcomplete trace
can also be empty. Therefore we distinguish the following cases.

1. σ′ = ε. There are no τ -steps in test cases, therefore q = q′ which
trivially holds.

2. σ′ = σ1·σ2, such that rcr (σ1)∧σ2 ∈ dσre. Assume that the lemma
holds for σ1. Let σ1 ∈ σ′

1[r]. From the definition of trace refinement
it follows that σ2 ∈ ar [r] and thus that σ′ ∈ (σ′

1·ar)[r], therefore
σ = σ′

1·ar .

27

q
bσ1·σ2c−−−−−→

r
q′

⇒ (∗ Definition −→ , σ2 ∈ dσre does not start with δ ∗)
∃q1 ∈ Qr : q

bσ1c−−−→r q1
bσ2c−−−→

r
q′

⇒ (∗ Lemma A.15, note that rcr (σ1) ∗)
∃q1 ∈ Q : q

bσ1c−−−→
r
q1

bσ2c−−−→
r
q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

bσ2c−−−→r q
′

⇒ (∗ Lemma A.10 ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

ar−−→ q′

⇒ (∗ Definition −→ ∗)
q

σ′
1·ar−−−−→ q′

⇒ (∗ Definition trace refinement (σ′ = σ′
1·ar) ∗)

q σ′
−−→ q′

3. σ′ = σ1·λ, such that λ ∈ Lr\L(σr)∧ rcr (σ1)∧@σ2, σ3 ∈ L∗
rδ : σ =

σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε} and assume that the lemma holds
for σ1. Let σ1 ∈ σ′

1[r] this means that σ′ ∈ (σ′
1·λ)[r] and thus that

σ = σ′
1·λ.

q
bσ1·λc−−−−→

r
q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qr : q

bσ1c−−−→r q1
λ−→r q

′

⇒ (∗ Lemma A.15 ∗)
∃q1 ∈ Q : q

bσ1c−−−→
r
q1

λ−→
r
q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

λ−→
r
q′

⇒ (∗ Lemma A.9 ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

λ−→ q′

⇒ (∗ Definition −→ ∗)
q

σ′
1·λ−−−→ q′

⇒ (∗ σ = σ′
1·λ ∗)

q σ−→ q′

4. σ′ = σ1·λ, such that λ = δ ∧ rcr (σ1)∧@σ2, σ3 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2 ∈

↓dσre\(dσre ∪ {ε} and assume that the lemma holds for σ1. Let
σ1 ∈ σ′

1[r] this means that σ′ ∈ (σ′
1·λ)[r] and thus that σ = σ′

1·λ.

28

q
bσ1·λc−−−−→

r
q′

⇒ (∗ Lemma A.2 ∗)
q σ1·λ−−−→

r
q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Q : q σ1−−→

r
q1

λ−→ q′

⇒ (∗ Lemma A.2 ∗)
∃q1 ∈ Q : q

bσ1c−−−→
r
q1

λ−→
r
q′

⇒ (∗ Induction ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

λ−→
r
q′

⇒ (∗ Lemma A.9 ∗)
∃q1 ∈ Q : q

σ′
1−−→ q1 ∧ q1

λ−→ q′

⇒ (∗ Definition −→ ∗)
q

σ′
1·λ−−−→ q′

⇒ (∗ σ = σ′
1·λ ∗)

q σ−→ q′

2

Lemma A.17 Let tr ∈ t[r], t ∈ TEST (I, U) a sound test case for a specification
s ∈ LTS(I, U) and uioco.

tr
σ−→r failtr ⇒ ∃σ′ ∈ Utraces(s[r]), x ∈ Urδ : σ′·x = σ ∧x /∈ out(s[r] after σ′)

Proof We distinguish two cases:

1. failtr ∈ Q

t σ−→
r
failtr

⇒ (∗ Lemma A.15 ∗)
t σ−→

r
failtr ∧ rcr (σ)

⇒ (∗ Definition r-complete ∗)
t σ−→r failtr ∧∃σ′ ∈ L∗

δ : σ ∈ σ′[r]
⇒ (∗ Lemma A.16 ∗)

∃σ′ ∈ L∗
δ : t σ′

−−→ failtr ∧σ ∈ σ′[r]
⇒ (∗ Lemma A.3 ∗)

∃σ1 ∈ Utraces(s), x ∈ Uδ : σ ∈ (σ1·x)[r]∧x /∈ out(s after σ1)
⇒ (∗ Lemma 5.4 ∗)

∃σ1 ∈ Utraces(s), x ∈ Uδ : σ ∈ (σ1·x)[r]
∧∀σ′

1 ∈ σ1[r] : x /∈ out(s[r] after σ′
1)

⇒ (∗ Logical reasoning ∗)
∃σ′

1 ∈ Utraces(s[r]), x ∈ Uδ : σ = σ′
1·x∧x /∈ out(s[r] after σ′

1)

2. failtr ∈ Qtr \Q
By definition of test case refinement new (fail) states can only be reached
via a mini-test. New fail states are pairs, where the second state is a fail
state of a mini-test; let failtr = (q, q′)

tr
σ−→r (q, q

′)
⇒ (∗ Definition test case refinement ∗)

∃q1 ∈ Q, σ1, σ2 ∈ L∗
rδ : σ = σ1·σ2 ∧∃mt ∈ MT : mt σ2−−→ q′

∧ tr
σ1−−→

r
q1 ∧ q1

ar−−→ q

29

We split this proof in two parts for better readability. First we show that
σ2 ∈ σr |1·δ? · · · δ?·σr |i·U for some 1 ≤ i < n = |σr |. Then we show that
σ1·dσre ⊆ Utraces(s)[r]. We end the proof by combining these two results.

(a) To be proven: ∃σ′
2 ∈ σr |1·δ∗ · · · δ∗·σr |i, x ∈ U : σ2 = σ′

2·x
∃mt ∈ MT : mt σ2−−→ q′ ∈ failmt

⇒ (∗ Equation (8) in Lemma A.8 ∗)
∃1 ≤ i < n = |σr | : σ2 ∈ σr |1·δ? · · · δ?·σr |i·U

⇒ (∗ Logical reasoning ∗)
∃σ′

2 ∈ σr |1·δ? · · · δ?·σr |i, x ∈ U : σ2 = σ′
2·x

(b) To be proven: σ1·dσre ⊆ Utraces(s)[r]
tr

σ1−−→
r
q1 ∧ q1

ar−−→ q
⇒ (∗ Lemma A.15 ∗)

tr
σ1−−→r q1 ∧ q1

ar−−→ q ∧ rcr (σ1)
⇒ (∗ Definition r-completeness ∗)

tr
σ1−−→

r
q1 ∧ q1

ar−−→ q ∧∃σ′
1 ∈ L∗

δ : σ1 ∈ σ′
1[r]

⇒ (∗ Lemma A.16 ∗)
∃σ′

1 ∈ L∗
δ : σ1 ∈ σ′

1[r]∧ t
σ′
1−−→ q1 ∧ q1

ar−−→ q
⇒ (∗ Definition −→ ∗)

∃σ′
1 ∈ L∗

δ : σ1 ∈ σ′
1[r]∧ t

σ′
1·ar−−−−→ q

⇒ (∗ t is conformance-trace safe wrt uioco and s ∗)
∃σ′

1 ∈ L∗
δ : σ1 ∈ σ′

1[r]∧σ′
1·ar ∈ Utraces(s)

⇒ (∗ Definition test case refinement and ar [r] = dσre ∗)
σ1·dσre ⊆ Utraces(s)[r]

When we combine 1) and 2) we obtain the following result:

∃σ1 ∈ L∗
rδ, σ

′
2 ∈ σr |1·δ? · · · δ?·σr |i, x ∈ U : σ = σ1·σ′

2·x
∧σ1·dσre ⊆ Utraces(s)[r]

⇒ (∗ Definition trace refinement ∗)
∃σ1 ∈ L∗

rδ, σ
′
2 ∈ σr |1·δ? · · · δ?·σr |i, x ∈ U : σ = σ1·σ′

2·x
∧σ1·σ′

2 ∈ ↓(Utraces(s)[r])\Utraces(s)[r]
⇒ (∗ Logical reasoning ∗)

∃σ′ ∈ ↓(Utraces(s)[r])\Utraces(s)[r], x ∈ U : σ = σ′·x
⇒ (∗ Lemma 5.5 ∗)

∃σ′ ∈ ↓(Utraces(s)[r])\Utraces(s)[r], x ∈ U : σ = σ′·x
∧x /∈ out(s[r] after σ′)

⇒ (∗ Lemma 5.3 ∗)
∃σ′ ∈ Utraces(s[r]), x ∈ U : σ = σ′·x∧x /∈ out(s[r] after σ′)

2

Theorem 7.6 [Soundness] Let s ∈ LTS(I, U), t ∈ TEST (I, U) and let t be
conformance trace safe with respect to uioco and s

t is sound w.r.t. uioco and s ⇒ t[r] is sound w.r.t. uioco and s[r]
Proof We immediately expand the definitions of soundness and uioco. Let
σ ∈ Utraces(s[r]). As you can see we rewrote the proof obligation into an
equivalent logical formula ((A ⇒ B) ⇔ (¬B ⇒ ¬A)).

30

i σ−→ ∧ tr
σ−→

r
failtr

⇒ (∗ Lemma A.17, note premise t is sound ∗)
∃σ′ ∈ Utraces(s[r]), x ∈ Urδ : i σ′·x−−−→ ∧x /∈ out(s[r] after σ′)

⇒ (∗ Definition out and after ∗)
∃σ′ ∈ Utraces(s[r]), x ∈ Urδ : x ∈ out(i after σ)∧x /∈ out(s after σ)

⇒ (∗ Definition uioco ∗)
i 6uioco s[r]

2

Lemma A.18 Let s ∈ LTS(I, U), σ ∈ Utraces(s[r]), T ⊆ TEST (I, U) be an
exhaustive test suite with respect to uioco and s[r] and r -cov(T, s).

x /∈ out(s[r] after σ) ⇒ ∃tr ∈ T [r] : tr
bσc·x−−−−→r failtr

Proof

• σ ∈ Utraces(s)[r]

x /∈ out(s[r] after σ)
⇒ (∗ Lemma 5.4 ∗)

x /∈ out(s after σ〈r〉)
⇒ (∗ Exhaustiveness T ∗)

∃t ∈ T : t
σ〈r〉·x−−−−→ failt

⇒ (∗ Lemma A.16 ∗)
∀σ′ ∈ σ〈r〉[r],∃tr ∈ T [r] : tr

bσ′c·x−−−−→
r
fail

⇒ (∗ Proposition A.4 ∗)
∃tr ∈ T [r] : tr

bσc·x−−−−→r failtr

• σ ∈ ↓(Utraces(s)[r])\Utraces(s)[r]

31

x /∈ out(s[r] after σ)
⇒ (∗ Lemma 5.5 ∗)

x 6= δ
⇒ (∗ Lemma A.5 ∗)

x 6= δ ∧∃σ1, σ2, σ3 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2·σ3 ∈ dσre ∧ rcr (σ1)

∧σ1·σ2·σ3 ∈ Utraces(s)[r]
⇒ (∗ Logical reasoning σ3 6= ε ∗)

x 6= δ ∧∃σ1, σ2, σ3 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2·σ3 ∈ dσre

∧σ2 ∈ ↓dσre\(dσre ∪ {ε})∧ rcr (σ1)∧σ1·σ2·σ3 ∈ Utraces(s)[r]
⇒ (∗ Definition trace contraction ∗)

x 6= δ ∧∃σ1, σ2 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε})

∧ rcr (σ1)∧σ1〈r〉·ar ∈ Utraces(s)
⇒ (∗ r -cov(T, s) ∗)

x 6= δ ∧∃σ1, σ2 ∈ L∗
rδ : σ = σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε})

∧ rcr (σ1)∧∃t ∈ T : t
σ1〈r〉·ar−−−−−−→

⇒ (∗ Lemma A.13 ∗)
x 6= δ ∧∃σ1, σ2 ∈ L∗

rδ : σ = σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε})
∧ rcr (σ1)∧∀σ′

1 ∈ σ1〈r〉[r], σ′
2 ∈ ↓dσre\(dσre ∪ {ε}, y ∈ U,

∃tr ∈ T [r] : tr
bσ′

1·σ
′
2c·y−−−−−−→

r
failtr

⇒ (∗ Proposition A.4 ∗)
x 6= δ ∧∃σ1, σ2 ∈ L∗

rδ : σ = σ1·σ2 ∧σ2 ∈ ↓dσre\(dσre ∪ {ε})
∧ rcr (σ1)∧∀σ′

2 ∈ ↓dσre\(dσre ∪ {ε}, y ∈ U,

∃tr ∈ T [r] : tr
bσ1·σ′

2c·y−−−−−−→r failtr
⇒ (∗ Logical reasoning ∗)

∃tr ∈ T [r] : tr
bσc·x−−−−→

r
failtr

2

Theorem 7.8 [Exhaustiveness] Let s ∈ LTS(I, U), T ⊆ TEST (I, U), r -cov(T, s)
T is exhaustive w.r.t. uioco and s ⇒ T [r] is exhaustive w.r.t. uioco and s[r]
Proof We immediately expand the definitions of exhaustiveness and uioco.
Let σ ∈ Utraces(s[r]).

x ∈ out(i after σ)∧x /∈ out(s[r] after σ)
⇒ (∗ Lemma A.7 ∗)

x ∈ out(i after bσc)∧x /∈ out(s[r] after bσc)
⇒ (∗ Lemma A.18 ∗)

x ∈ out(i after bσc)∧∃tr ∈ T [r] : tr
bσc·x−−−−→

r
fail

⇒ (∗ Definition out and after ∗)
i

bσc·x====⇒ ∧∃tr ∈ T [r] : tr
bσc·x−−−−→

r
fail

2

References

[1] G. Bernot, M. G. Gaudel, and B. Marre. Software testing based on for-
mal specifications: a theory and a tool. Software Engineering Journal,
1991(November):387–405, 1991. Also: Rapport de Recherche 581, L.R.I.,
Université de Paris-Sud.

32

[2] R. Gorrieri and A. Rensink. Action refinement. In J. A. Bergstra, A. Ponse,
and S. A. Smolka, editors, Handbook of Process Algebra, chapter 16, pages
1047–1147. Elsevier, 2001.

[3] A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance relations and
test derivation. In O. Rafiq, editor, Sixth Int. Workshop on Protocol Test
Systems, number C-19 in IFIP Transactions, pages 157–178. North-Holland,
1994.

[4] J. Tretmans. Test generation with inputs, outputs, and quiescence. In
T. Margaria and B. Steffen, editors, Second Int. Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’96), pages
127–146. Lecture Notes in Computer Science 1055, Springer-Verlag, 1996.

[5] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

[6] M. van der Bijl, A. Rensink, and J. Tretmans. Action re-
finement in conformance testing. CTIT Technical Report
TR–CTIT–05–10, University of Twente, Feb. 2004. URL:
http://www.ub.utwente.nl/webdocs/ctit/1/00000123.pdf.

[7] M. van der Bijl, A. Rensink, and J. Tretmans. Action refinement roadmap,
2004. URL: http://wwwhome.cs.utwente.nl/˜vdbijl/papers.

[8] M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with
ioco. In A. Petrenko and A. Ulrich, editors, FATES 2003, volume 2931 of
Lecture Notes in Computer Science, pages 86–100. Springer, 2004.

33

	Introduction
	Formal preliminaries
	Atomic input-inputs action refinement
	Trace refinement
	Atomic refinement of transition systems
	uiocor for testing refined systems
	Test case refinement
	Generation of mini test cases
	Test case refinement
	Completeness of test case refinement

	Conclusion
	Proofs Section 7

