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Abstract

We introduce the ray-projection dynamics in evolutionary game
theory by employing a ray projection of the relative �tness (vector)
function both locally and globally. By global (local) ray projection we
mean a projection of the vector (close to the unit simplex) unto the unit
simplex along a ray through the origin. For these dynamics, we prove
that every interior evolutionarily stable strategy is an asymptotically
stable �xed point, and that every strict equilibrium is an evolutionarily
stable state and an evolutionarily stable equilibrium.
Then, we employ these projections on a set of functions related to

the relative �tness function which yields a class containing e.g., best-
response, logit, replicator, and Brown-Von-Neumann dynamics.
Key words: evolutionary games, ray-projection dynamics, dynamic
and evolutionary stability.
JEL-Codes: A12; C62; C72; C73; D83

1 Introduction

We introduce a class of dynamics to model evolutionary changes in game
theory. We draw inspiration from rather early literature on price-adjustment
processes as introduced by Samuelson [1941, 1947] and subsequent results by
Arrow & Hurwicz [1958, 1960a,b] and Arrow, Block & Hurwicz [1959]. Our
second source of inspiration is recent work featuring projection dynamics,
e.g., Lahkar & Sandholm [2008], Hofbauer & Sandholm [2008].

In the latter papers it is shown that if a so-called stable game possesses
an interior evolutionarily stable state (ESS, Maynard Smith & Price [1973]),
the so-called projection dynamics converge to it from any starting point. In
fact, the proofs imply that for these dynamics every interior evolutionarily
stable state is an evolutionarily stable equilibrium (ESE, Joosten [1996]),

�We thank Ulrich Witt for advice and support. Address of both authors: School
of Management & Governance, University of Twente, POB 217, 7500 AE Enschede, The
Netherlands. Email of corresponding author: r.a.m.g.joosten@utwente.nl.
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i.e., trajectories converge to the equilibrium and along any such trajectory
the Euclidean distance to it decreases strictly in time.

In the literature on price-adjustment processes, a similar result1 was es-
tablished about half a century ago, see e.g., Uzawa [1961], Negishi [1962]. If
the Weak Axiom of Revealed Preferences (WARP, Samuelson [1938]) holds,
the price-adjustment process, or tâtonnement, of Samuelson [1947] given by

�
x =

dx

dt
= f(x) for all x 2 P = Rn+1+ nf0n+1g;

converges to an economic equilibrium. Here, x denotes a vector of prices for
n + 1 commodities in the price space P = Rn+1+ nf0n+1g, 0n+1 denotes the
n + 1-vector of zeros, and the (vector) function f : P ! Rn+1 is an excess
demand function. An excess demand function gives for each commodity the
di¤erence between its demand and supply given a price for each commodity.
An equilibrium is a price vector for which there exists no positive excess
demand for any commodity, i.e., y is an equilibrium i¤ f(y) � 0n+1:

Our basic idea is to project a(ny) trajectory of Samuelson�s tâtonnement
process in P on the n-dimensional unit simplex such that every point of the
original is projected on the unit simplex along the ray through this point and
the origin. By the convergence result of the unrestricted dynamics under
WARP mentioned, it follows that the projected dynamics also converge to
an equilibrium. Which means that for these dynamics applied to a game the-
oretical model, each interior ESS is an asymptotically stable �xed point. We
show that the ray-projection dynamics of Samuelson tâtonnement process
on the unit simplex are for every y = �x 2 int Rn+1+ nf0n+1g given by

�
x =

1

�

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
;

where � =
Pn+1
i=1 yi and x 2 Sn = fz 2 Rn+1jzj � 0 for all j 2 f1; 2; :::; n+1g

and
Pn+1
j=1 zj = 1g:

One might think that the dynamics obtained in that manner, are equiva-
lent to the projection dynamics of Lahkar & Sandholm [2008] on the interior
of the unit simplex, and if not globally then at least locally. By a global
projection, we mean a projection of an arbitrary trajectory unto the unit
simplex. By local projection, we mean that the trajectory is started on
the unit simplex and then continuously be forced back on the unit simplex
by projection, i.e., � = 1 always: This intuition is false, as the orthogonal-
projection dynamics of Lahkar & Sandholm [2008], as we will call them, are
for x 2 int Sn given in our notations, where i = (1; :::; 1) 2 Rn+1; by

1For correspondences between models, concepts, results and dynamics in economics
and biology, we refer to Joosten [1996, 2006]. For instance, an implication of WARP in
economics is similar to an implication of ESS in mathematical biology.
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�
x = f(x)� 1

n+ 1

 
n+1X
i=1

fi(x)

!
i.

Here, f : Sn ! Rn+1 is a relative �tness function (cf., Joosten [1996]).
We demonstrate that under the ray-projection dynamics every interior

ESS is an asymptotically stable �xed point. We also show that the concept
of a strict equilibrium uni�es two notions of evolutionary stability, namely
static evolutionary stability as embodied by the ESS and dynamic evolu-
tionary stability as embodied by ESE.

A geometric interpretation of the former result is the following. Samuel-
son�s process moves on a sphere with the origin as its center and with a �xed
radius. Points having equal Euclidean distance to the equilibrium form a
circle on this sphere.2 Connecting this circle to the origin yields a cone.
This cone is intersected by the unit simplex, a subset of a plane. Hence,
the projection of the circle unto the unit simplex is an ellipse. Since the
unrestricted process always moves inwards relative to the circle around the
equilibrium on which the process happens to be, the process projected unto
unit simplex moves inwards relative to the ellipse it happens to be on.

Then, we generalize the approach with projections by employing modi-
�cations of the relative �tness function. As it turns out, the best-response
dynamics of Matsui [1992], the dynamics of Brown & Von Neumann [1950],
the logit dynamics of Fudenberg & Levine [1998], but also the replicator dy-
namics of Taylor & Jonker [1978], can be represented as projection dynamics
by choosing appropriate variants of the relative �tness function.

Next, we present our ideas leading to the ray-projection dynamics. In
Section 3 we generalize both ray-projection and orthogonal-projection dy-
namics. Well-known dynamics appear as special cases of generalized pro-
jection dynamics. Section 4 deals with conditions guaranteeing that the
dynamics do not cross the boundary of the unit simplex. Section 5 con-
cludes, all proofs are to be found in the Appendix.

2 Comparing the old and the new

In Joosten [2006] connections were highlighted between models formalizing
evolutionary dynamics and price-adjustment processes. For instance, a con-
dition resulting from the Weak Axiom of Revealed Preferences (WARP) can
be translated almost one-to-one to a condition resulting from the evolution-
arily stable strategy (ESS ). This section continues in a similar vein, space
limitations require us to be extremely brief, the reader interested in corre-
spondences between evolutionary dynamics and price adjustment dynamics
beyond what is being presented, is referred to e.g., Joosten [1996, 2006].

2For all of these objects in R3 proper higher�and lower-dimensional parallels exist.
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We �rst give a very brief introduction of pure exchange economies and
price-adjustment dynamics, then we show that the well-known price-adjust-
ment dynamics of Samuelson [1947] can be projected on the unit simplex
and we provide explicit formulas for these projected dynamics. Next, we give
a very brief introduction on dynamics and equilibria in evolutionary game
theory to continue with projection dynamics in an evolutionary framework;
we discuss the dynamics of Lahkar & Sandholm [2008] and propose our
own variant of projection dynamics as evolutionary dynamics. The �nal
subsection is devoted to stability of interior equilibria.

2.1 On price-adjustment dynamics

The condition implied by WARP, cf., e.g., Uzawa [1961], is the following

(y � x) � f (x) > 0;

for all x; y 2 P = Rn+1+ nf0n+1g such that y 2 E =
�
z 2 Pgj f(z) � 0n+1

	
;

x =2 E: Here, f : P ! Rn+1 satis�es continuity, homogeneity (of degree
zero in prices), i.e., f (�x) = f (x) for all � > 0; and complementarity,
i.e., x �f (x) = 0 for all x 2 P: Often, since the function f satis�es homogene-
ity of degree zero, analysis is restricted to the n-dimensional unit simplex
Sn, i.e.,

Sn =

8<:x 2 P
������
X

j2In+1
xj = 1

9=; ;
where In+1 = f1; :::; n+ 1g:

In economics, x 2 Sn represents a vector of relative prices adding up to
unity; the function f represents a so called generalized excess demand
function. A price vector y 2 Sn satisfying f (y) � 0n+1 is called an equi-
librium or a Walrasian equilibrium. At an equilibrium no commodity
has positive excess demand. Existence of an equilibrium (ray) is readily
shown by using homogeneity in order to restrict analysis to the unit sim-
plex, constructing an adequate continuous function from this unit simplex
unto itself, and then using Brouwer�s �xed point theorem.

The work of Sonnenschein [1972, 1973], Mantel [1974] and Debreu [1974]
shows that any function satisfying continuity, complementarity and desir-
ability3, can be approximated by an excess demand function on an arbi-
trarily large subset of the interior of the unit simplex resulting from a pure
exchange economy with as many agents as commodities in which each of the
agents has well-behaved preferences and positive initial endowments of all
commodities. If the property of desirability is dropped one obtains a gener-
alized excess demand function, and if one furthermore restricts attention to

3Desirability of all goods means that if the price of a commodity equals zero, then the
supply of that good can not exceed its demand, i.e., xj = 0 implies fj (x) � 0:
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the unit simplex, homogeneity of degree zero in prices becomes void. So, a
generalized excess demand function on the unit simplex is characterized by
continuity and complementarity.

A well-known result by Arrow & Hurwicz [1958,1960a,b], Arrow et al.
[1959] is that the tâtonnement process of Samuelson [1947]:

�
x =

dx

dt
= f (x) ; (1)

converges to an equilibrium if (y � x) � f (x) > 0 for all y 2 E; and x =2 E
and if desirability holds. Here, E =

�
x 2 Rn+1j f(x) � 0n+1

	
denotes the

set of (economic) equilibria, and if the condition mentioned holds, it can be
shown that E is convex (cf., Arrow & Hurwicz [1960b]).

The sketch of the proof is straightforward. Complementarity of f implies

djjxjj2
dt

=
X
i2In+1

2xi
dxi
dt

= 2
X
i2In+1

xifi(x) = 2x � f(x) = 0:

Hence, continuity and desirability of all commodities imply that if the process
starts in the non-negative orthant it remains on the sphere in this orthant
having the origin as its center and containing the starting point. Further-
more, let y 2 E and let x =2 E satisfy jjxjj = jjyjj, x 6= y; then

jjy � xjj2 > 0; moreover djjy � xjj
2

dt
= �2(y � x) � f(x) < 0:

So, under the dynamics the Euclidean distance to y decreases monotonically
in time. The actual proof uses Lyapunov�s second method, and the Euclid-
ean distance can be interpreted as a so-called Lyapunov function. Recall
that by homogeneity of degree zero of f , a ray f�yg�>0 exists satisfying
f (x) = 0n+1 for all x 2 f�yg�>0 :

2.2 Ray-projection of Samuelson�s tâtonnement process

Now, we derive the dynamics being the projection of Samuelson�s tâton-
nement process on the unit simplex. Note that the trajectory fytgt�0 with
y0 2 P under (1) may be approximated at y 2 fytgt�0 by y +�tf(y): The
projection of y +�tf(y) unto the unit simplex is given by

y +�tf(y)Pn+1
i=1 yi +�t

Pn+1
i=1 fi(y)

:

Here, �t is the length of the time interval elapsed,
Pn+1
i=1 yi+�t

Pn+1
i=1 fi(y)

is a number, whereas y and f(y) are vectors. Then, this implies a move from
x = yPn+1

i=1 yi
2 Sn to y+�tf(y)Pn+1

i=1 yi+�t
Pn+1
i=1 fi(y)

2 Sn and therefore

�x =
y +�tf(y)Pn+1

i=1 yi +�t
Pn+1
i=1 fi(y)

� yPn+1
i=1 yi
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y=�x
=

�x+�tf(�x)Pn+1
i=1 �xi +�t

Pn+1
i=1 fi(�x)

� �xPn+1
i=1 �xiPn+1

i=1 �xi=�=
�x+�tf(�x)

�+�t
Pn+1
i=1 fi(�x)

� x

=
�x+�tf(�x)� x

�
�+�t

Pn+1
i=1 fi(�x)

�
�+�t

Pn+1
i=1 fi(�x)

f(�x)=f(x)
= �t

f(x)� x
�Pn+1

i=1 fi(x)
�

�+�t
Pn+1
i=1 fi(x)

:

So, this means that

�
x = lim

�t#0

�x

�t
= lim
�t#0

�t

�t

f(x)� x
�Pn+1

i=1 fi(x)
�

�+�t
Pn+1
i=1 fi(x)

=
1

�

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
:

The term 1
� has no in�uence on the direction of the dynamics. This moti-

vated the following de�nition, see Figure 1 for an illustration.

De�nition 1 Let f : P ! Rn+1 satisfy continuity, complementarity, and
(positive) homogeneity of degree zero. Let for all y 2 P, �y = dy

dt = f(y) and
�y =

Pn+1
i=1 yi: Then, the ray-projection dynamics on the unit simplex

are for every x = 1
�y
y 2 int Sn given by

�
x =

1

�y

"
f(x)� x

 
n+1X
i=1

fi(x)

!#
:

Remark 1 If �y = 1; i.e., x = y 2 Sn; we call the ray-projection dynamics
local, and global otherwise. Local and global ray-projection dynamics can be
transformed one into the other by a transformation of time.

Here, we are not concerned for the behavior of these dynamics on the bound-
ary of the unit simplex, as price-adjustment processes tend to stay away from
the boundary of P (boundary behavior is treated in Section 4).

2.3 On dynamics and equilibria in evolutionary game theory

In evolutionary game theory, for a population having n+ 1 distinguishable
subgroups, x 2 Sn is a vector of population shares for each subgroup. Let
F : Sn ! Rn+1 be a �tness function, i.e., a function attributing to each
subgroup in the population its �tness. The �tness of a subgroup may be
interpreted as its potential to reproduce depending on the composition of
the population, i.e., x 2 Sn:
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y

x

x'

y'

(0,r)

(r,0)(1,0)

(0,1)
f(y)

f(x)

Figure 1: Samuelson�s tâtonnement inducing a trajectory from y to y0, is
projected unto S1. The projection moves from x towards x0: We have de-
picted vectors f(x) = f(y):

The relative �tness function f : Sn ! Rn+1 is given by

fi(x) = Fi(x)� x � F (x) for all x 2 Sn and all i 2 In+1:

So, a relative �tness function (cf., Joosten [1996]) attributes to each sub-
group the di¤erence of its �tness and the population share weighted average
�tness of the population. If the �tness function F is continuous, the same
property follows immediately for the relative �tness function f . Observe
furthermore that for all x 2 Sn; it holds that x � f(x) = 0:

The evolution of the composition of the population is usually represented
by a system of n+ 1 autonomous di¤erential equations:

�
x =

dx

dt
= h (x) :

Here, the function h : Sn ! Rn+1 is connected to the relative �tness function
f in one of the ways proposed, cf., e.g., Nachbar [1990], Friedman [1991],
Swinkels [1993], Joosten [1996], Ritzberger & Weibull [1995]. (Lipschitz)
continuity of h implies existence (and uniqueness) of a solution to the di¤er-
ential equation for every starting point x0 2 Sn; di¤erentiability of h implies
both existence and uniqueness (cf., e.g., Perko [1991]). We are reluctant to
impose conditions on the function h at this point since many interesting
evolutionary dynamics are neither di¤erentiable, nor continuous.

For sign-compatible dynamics, we have

sign hi (x) = sign fi (x) whenever xi > 0:
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i.e., the change in population share of each subgroup with positive popu-
lation share corresponds in sign with its relative �tness; for weakly sign-
compatible dynamics, at least one subgroup with positive relative �tness
grows in population share. A more general alternative than sign compat-
ibility is provided by Friedman [1991], evolutionary dynamics are weakly
compatible if f (x) � h (x) � 0 for all x 2 Sn:

The state y 2 Sn is a saturated equilibrium if f(y) � 0n+1; a �xed
point if h(y) = 0n+1; a �xed point y is (asymptotically) stable if, for
any neighborhood U � Sn of y, there exists an open neighborhood V � U
of y such that any trajectory starting in V remains in U (and converges to
y): A limit point is a point y 2 Sn satisfying limt!1 xt = y for at least
one solution fxtgt�0 to x0 2 Sn and the di¤erential equation above.

At a saturated equilibrium all subgroups with below average �tness have
population share equal to zero. So, rather than �survival of the �ttest�, we
have �extinction of the less �t�. If the �tness function is given by F (x) = Ax
for some square matrix A, every saturated equilibrium coincides to a Nash
equilibrium of the evolutionary game at hand. The term is due to Hofbauer
& Sigmund [1988], in the sequel we may omit the term �saturated�.

The �xed point y 2 Sn is a generalized evolutionarily stable state
(GESS, Joosten [1996]) if and only if there exists an open neighborhood
U � Sn of y satisfying

(y � x) � f(x) > 0 for all x 2 Unfyg: (2)

A geometric interpretation of (2) is that the angle between the vector point-
ing from x towards the equilibrium, i.e., (y � x) ; and the vector f(x) is
always acute. The GESS generalizes the concept of an ESS of Maynard
Smith & Price [1973] in order to deal with arbitrary (relative) �tness func-
tions. For the more standard �tness functions, the two notions coincide.

Taylor & Jonker [1978] introduced the replicator dynamics into mathe-
matical biology and gave conditions guaranteeing that an ESS is an asymp-
totically stable �xed point of these dynamics. Zeeman [1981] extended this
result and pointed out that the conditions formulated by Taylor and Jonker
[1978] are almost always satis�ed. The most general result on asymptotic
stability regarding the replicator dynamics for the ESS is probably Hofbauer
et al. [1979] as it stipulates an equivalence of the ESS and existence of a
Lyapunov function of which the time derivative is similar to Eq. (2).

Friedman [1991] has an elegant way of coping with evolutionary stability
as he de�nes any asymptotically stable �xed point of given evolutionary dy-
namics as an evolutionary equilibrium. Most approaches however, deal with
conditions on the underlying system in order to come up with a viable evolu-
tionary equilibrium concept, or deal with re�nements of the asymptotically
stable �xed point concept (e.g., Weissing [1990]).

In Joosten [1996] we de�ned an evolutionary equilibrium concept on the
dynamic system, wishing to rule out some asymptotically stable �xed points.
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Namely, the ones which induce trajectories starting nearby, but going far
away from the equilibrium before converging to it in the end. The �xed
point y 2 Sn is an evolutionarily stable equilibrium if and only if there
exists an open neighborhood U � Sn of y satisfying

(y � x) � h(x) > 0 for all x 2 Unfyg: (3)

A geometric interpretation of (3) is that su¢ ciently close to the equilibrium
the angle between (y � x) and the vector representing the direction of the
dynamics is always acute. The concept was inspired by the Euclidean dis-
tance approach of early contributions in economics as mentioned, since (3)
implies that the Euclidean distance is a (strict) Lyapunov function for U .

2.4 Projection dynamics in evolutionary games

Lahkar & Sandholm [2008] introduce the following dynamics into evolution-
ary game theory quoting Nagurney & Zhang [1996] as a source of inspiration.

De�nition 2 Let f : Sn ! Rn+1 be a relative �tness function, Cf (x) =Pn+1
i=1 fi(x) and x =

1
n+1(1; :::; 1). Then, the orthogonal-projection dy-

namics are for every x 2 int Sn given by: �
x = f(x)� xCf (x):

Here, x is the barycenter of Sn: For the time being, we are only interested in
the behavior of the dynamics of Lahkar & Sandholm [2008] for the interior of
the unit simplex. The authors actually de�ne their dynamics on the �tness
function but for the interior of the unit simplex their de�nition and the
one given above concur. Below, we present the ray-projection dynamics,
corresponding to the local variant of the de�nition given in the economic
framework.

De�nition 3 Let f : Sn ! Rn+1 be a relative �tness function and Cf (x) =Pn+1
i=1 fi(x). Then, the ray-projection dynamics are for every x 2 int Sn

given by:
�
x = f(x)� xCf (x):

Informally stated, both processes move from x 2 Sn into the direction f(x);
hence outside the unit simplex in general. Lahkar and Sandholm�s dynam-
ics return to the unit simplex by continuously changing all components with
identical amounts, whereas our dynamics are brought back to the unit sim-
plex by continuously changing all components proportional to x. For the
framework presented, we have the following result.

Lemma 4 Every interior equilibrium is a �xed point of the both types of
projection dynamics and every interior �xed point of both types of projection
dynamics is an equilibrium.
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x

f(x)

(1,0,0)

x
x
o
r

(0,1,0)

(0,0,1)

Figure 2: The point xo is the orthogonal projection of x + f(x) on the S2;
xr is the ray-projection of x+ f(x) on Sn.

2.5 On stability of interior equilibria

Hofbauer & Sandholm [2008] introduce the class of stable games. A stable
game is a game in which the following property holds:

(y � x) � (F (y)� F (x)) � 0 for all x; y 2 Sn:

Here, F is a �tness function, but it follows easily that in our notations using
the relative �tness function f we obtain

(y � x) � (f (y)� f (x)) � 0 for all x; y 2 Sn:

The property which de�nes a stable game is called monotonicity (MON)
elsewhere and is connected to a multitude of important results guaranteeing
uniqueness and dynamic stability of equilibria and �xed points (see Joosten
[2006], Harker & Pang [1990]). MON is a weaker version of strict monotonic-
ity (SMON) which can be written as

(y � x) � (f (y)� f (x)) < 0 for all x; y 2 Sn; x 6= y:

A game in which SMON holds for all states x; y 2 Sn; x 6= y, is called
a strictly stable game by Hofbauer & Sandholm [2008]. It can be shown
that SMON implies that there is a unique saturated equilibrium, and that
MON implies that the set of equilibria is compact and convex.

Joosten [2006] showed that if the relative �tness function is given by
f(x) = Ax � (xAx) i for all x 2 Sn; then strict monotonicity is equivalent
to Haigh�s criterion (Haigh [1975]) which can be written as

�A� < 0 whenever i � � = 0:
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The version where �A� � 0 replaces �A� < 0; is equivalent to MON:
For an interior equilibrium y 2 Sn, (S)MON implies

(y � x) � f(x) � (>)0 for all x 2 Snnfyg:

So, every interior equilibrium of a strictly stable game is a GESS (cf.,
Joosten [1996]) for which the neighborhood U in Eq. (2) can be expanded
to include the entire unit simplex. For every stable game, every interior
equilibrium is a neutrally stable state following Joosten [2006] and Maynard
Smith [1982]. Under the replicator dynamics every (generalized) evolution-
arily stable state is an asymptotically stable �xed point and every neutrally
stable state is stable (cf., e.g., Hofbauer & Sigmund [1998]).

For the orthogonal-projection dynamics it can be seen that every interior
evolutionarily stable equilibrium is a generalized evolutionarily stable state
and every interior generalized evolutionarily stable state is an evolutionarily
stable equilibrium, as for y 2 int Sn we have

(y � x) � h(x) > 0()
(y � x) � f(x)� Cf (x)(y � x)x > 0()

(y � x) � f(x) > 0:

So, we have shown the validity of the following generalization, albeit for the
interior of the unit simplex, of a result in Hofbauer & Sandholm [2008].

Proposition 5 For the interior of the unit simplex, every generalized evolu-
tionarily stable state is an evolutionarily stable equilibrium under the orthog-
onal-projection dynamics and vice versa.

We now present a corresponding result for ray-projection dynamics. Our
strategy of proof is the following. From a given relative �tness function we
construct a function on the relevant positive orthant, connect dynamics to
that function and construct a trajectory under the dynamics converging to
an equilibrium corresponding to a full-dimensional expansion of the interior
evolutionarily stable state. Then we project this trajectory unto the unit
simplex using the ray-projection. This projected trajectory converges then
to the projected equilibrium point. The corresponding dynamics on the unit
simplex are the ray-projection dynamics.

Theorem 6 Under the ray-projection dynamics, every interior generalized
evolutionarily stable state is an asymptotically stable equilibrium.

3 Generalizations of projection dynamics

Here, we pursue the idea of generalizing both projection dynamics presented.
For this purpose we de�ne some g : Sn ! Rn+1: We intend to examine
dynamics induced by g in two variants:
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�
x
r

g = g(x)� xCg(x);
�
x
o

g = g(x)� xCg(x):

Superscript r (o) refers to the ray-projection (orthogonal-projection) dy-
namics and subscript g refers to the function g; x is the barycenter of Sn

and Cg(x) =
Pn+1
i=1 gi(x):

The following result is straightforward, its proof is left to the reader.

Lemma 7 Let g : Sn ! Rn+1:

� If g satis�es Cg(x) = 0 for al x 2 Sn; then the local and global ray-
projection dynamics, and the orthogonal-projection dynamics concur.

� If g is weakly compatible f , i.e., g (x)�f (x) � 0 for all x 2 int Sn; then
the associated ray-projection dynamics are weakly compatible, too.

� If g is non-negative, i.e., g : Sn ! Rn+1+ ; then the ray-projection
dynamics remain on the unit simplex.

Note that (trivially) all evolutionary dynamics on the unit simplex are pro-
jected �unto themselves�, hence in that case by the �rst statement of the
lemma, ray-projection and orthogonal projection dynamics concur. The
second statement of the lemma gives a criterion to determine the status
of the ensuing ray-projection dynamics. Recall that evolutionary dynamics
should be connected with the relative �tness function and weak compati-
bility of Friedman [1991] is one of the ways to accomplish this. The �nal
statement deals with a criterion to guarantee that ray-projection dynamics
do not cross the boundary of the unit simplex.

In order to be relevant in an evolutionary framework it is of utmost
importance to link the function g to the relative �tness function. It is not
the purpose of this section to give a classi�cation of functions suitable for
evolutionary modeling purposes. Instead we show that several well-known
dynamics can be represented as ray- or orthogonal-projection dynamics for
appropriately chosen functions.

Example 8 (Replicator dynamics) We can have the function driving
both projection dynamics depend on the �tness function F : Sn ! Rn+1: Leteg : Sn ! Rn+1 be given by egi (x) = xiFi(x) for all x 2 int Sn, i 2 In+1:
Then for all i 2 In+1 :� �

x
reg�
i
= xiFi(x)� xi

n+1X
j=1

xjFj(x) = xi [Fi(x)� x � F (x)] = xifi(x);

� �
x
oeg�
i
= xiFi(x)�

1

n+ 1

n+1X
j=1

xjFj(x):
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So, the generalized ray-projection dynamics connected to the function eg as
de�ned yield the replicator dynamics.
Another way of obtaining similar dynamics is particularly interesting in case
the �tness function is given by F (x) = Ax for a symmetric matrix A: Let
a � min (0;minij aij) : Then, let bg : Sn ! Rn+1 be given by bgi (x) = xifi(x)�
a for all x 2 int Sn, i 2 In+1: Then,

� �
x
obg�
i
= xifi(x)� a�

1

n+ 1

0@n+1X
j=1

[xjfj(x)� a]

1A
= xifi(x) for all i 2 In+1:

The ray-projection dynamics are given by� �
x
rbg�
i
= xifi(x)� a(1� xi(n+ 1)) for all i 2 In+1:

An advantage of this function is that bgi (x) = xifi(x)� a � 0 for all x 2 int
Sn, i 2 In+1: So, the dynamics can not cross on the boundary of Sn. Here,
orthogonal-projection dynamics yield the replicator dynamics.

Example 9 (Best-response dynamics) Let ek 2 Rn+1 denote the k-th
unit vector, and for given x 2 Sn; j� = minfh 2 In+1j fh (x) = maxk2In+1
fk (x) > 0g. Let g : Sn ! Rn+1 for all x 2 Sn and i 2 In+1, be given by

gi(x) =

�
1 if i = j�;
0 otherwise.

Then, we obtain� �
x
r

g

�
i
=

�
0 if x 2 E;
(ej�)i � xi otherwise.

and� �
x
o

g

�
i
=

�
0 if x 2 E;
(ej�)i �

1
n+1 otherwise.

The ray-projection dynamics form a special case of the best-response dynam-
ics of Matsui [1992]. We introduced two slight changes to the original, one
implying that f(y) � 0n+1 implies �

y = 0n+1, and a tie-breaker for the case
that multiple best-responses exist.

BR-dynamics have a predecessor in the continuous �ctitious-play dynamics
of Rosenmüller [1971], a continuous-time version of �ctitious play (Brown
[1951]). Brown formulated this process in order to compute a solution (i.e.,
a Nash equilibrium) of a zero-sum game. Brown has conceived several other
ideas on dynamics to compute equilibria. The following example deals with
one of them and variations thereof.

13



Example 10 (Generalized �Brownian motions�) The term including
the quotation marks is due to Hofbauer [2000] after G.W. Brown (not botanist
Robert Brown, the (re)discoverer of Brownian motion). As a tâtonnement
process Nikaidô [1959] used gi (x) = maxf0; fi(x)g for all x 2 P, i 2 In+1
which yields� �

x
r

g

�
i
= maxf0; fi(x)g � xi

X
j2In+1

maxf0; fj (x)g;

� �
x
o

g

�
i
= maxf0; fi(x)g �

1

n+ 1

X
j2In+1

maxf0; fj (x)g:

The ray-projection dynamics coincide with those of Brown & Von Neumann
[1950] on the interior of the unit simplex; the orthogonal-projection dynamics
have not been studied as far as we know. For both types of dynamics, each
equilibrium is a �xed point, and each limit point is an equilibrium.
More generally, let z : R+ ! R+ be given by z(0) = 0 and z (x) > 0 for all
x > 0: Then, de�ning gz : Sn ! Rn+1 by gzi (x) = z (maxf0; fi(x)g) for all
i 2 In+1; we obtain� �

x
r

gz

�
i
= z (maxf0; fi(x)g)� xiCgz(x);� �

x
o

gz

�
i
= z (maxf0; fi(x)g)�

1

n+ 1
Cgz(x):

Note that if z(x) = x� for � > 0; x � 0; then clearly � = 1 yields the BN-
dynamics. An interesting case is then to let � ! 1; where the dynamics
are very similar to the best-response dynamics.
Another �Brownian motion�is due to Nikaidô & Uzawa [1960] in the frame-
work of price-adjustment. These dynamics are driven by the following
function de�ned component-wise and for strictly positive � by

eg�i (x) = maxf0; �fi(x) + xig � xi:
Now, using our projections we obtain� �

x
reg��

i
= maxf0; �fi(x) + xig � xiCg�(x);� �

x
oeg��

i
= maxf0; �fi(x) + xig � xi +

1

n+ 1
Cg�(x):

It is easy to check that the ray-projection dynamics are weakly compatible.

BN-dynamics converge to a Nash equilibrium, if the relative �tness func-
tion f(x) = Ax � (x �Ax) i is such that for matrix A : aij = �aji for
all i; j 2 In+1. Moreover, BN-dynamics are globally stable under strict
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monotonicity (SMON ) of the generalized excess demand function (or rela-
tive �tness function) (cf., Nikaidô [1959]). Hofbauer [2000] treats families of
dynamics including (smoothed) BN-dynamics, BR-dynamics and replicator
dynamics. His convergence results on the ESS complement Nikaidô�s. The
majority of results in Hofbauer [2000] rely on the weak version of Haigh�s
criterion, for the stronger one Hofbauer [1995] already has parallels.

Nikaidô & Uzawa [1960] show that any interior Walrasian equilibrium
is an asymptotically stable �xed point of their dynamics under WARP. For
� ! +1 the ray-projection of the process of Nikaidô & Uzawa �approxi-
mates�the BN-dynamics �almost everywhere�; for � # 0 the ray-projection
dynamics are equivalent to the ray-projection of Samuelson�s process �almost
everywhere�. Clearly, for any interior equilibrium, there exists a neighbor-
hood such that the processes of Nikaidô & Uzawa and Samuelson concur. So,
any interior ESS is an asymptotically stable �xed point of the ray-projection
dynamics, and an ESE for the orthogonal-projection dynamics.

Example 11 (Logit type dynamics) Now, let � > 0; g� : Rn+1 ! Rn+1

be given by g�i (x) = e
�fi(x): Then, we obtain projection dynamics given by

� �
x
r

g�

�
i
= e�fi(x) � xi

n+1X
j=1

e�fj(x)

� �
x
o

g�

�
i
= e�fi(x) � 1

n+ 1

n+1X
j=1

e�fj(x):

Clearly, the ray-projection dynamics do not cross the boundary of Sn; as
xi = 0 implies

�
xi = e

�fi(x) � 0: Furthermore, for very large values of � only
best-responses increase in population share under both variants. The former
dynamics are known as the logit dynamics (Fudenberg & Levine [1998]),
where 1

� is interpreted as an error term. For error terms going to zero, i.e.,
��s going to in�nity, the dynamics become more and more similar to the best
response dynamics, but remain continuous. Note that Fudenberg & Levine
[1998] actually write

�
xi =

e�Fi(x)Pn+1
j=1 e

�Fj(x)
� xi for all x 2 Sn; i 2 In+1:

However, observe that

� �
x
r

g�

�
i
= e�fi(x) � xi

n+1X
j=1

e�fj(x) = � (x)

"
e�Fi(x)Pn+1
j=1 e

�Fj(x)
� xi

#
:

Since, � (x) =
Pn+1
j=1 e

�Fj(x)

e�x�F (x)
does not depend on the subgroup at hand, it fol-

lows that both dynamics have the same direction, but may di¤er in speed.
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A glaring shortcoming of the logit dynamics is that an interior equilibrium
need not be a �xed point of the dynamics. In this sense, the orthogonal-
projection dynamics are perhaps more interesting than the ray-projection
variant, as f (y) = 0n+1 implies

�
x
o

g� = 0
n+1:

Logit-type dynamics which possess the property that an interior equilibrium
is a �xed point of the dynamics are generated by

g�i (x) =
xie

�fi(x)Pn+1
j=1 xje

�fj(x)
for all i 2 In+1;

which yields � �
x
r

g�

�
i
= xi

 
e�fi(x)Pn+1

j=1 xje
�fj(x)

� 1
!
;

� �
x
o

g�

�
i
=

xie
�fi(x)Pn+1

j=1 xje
�fj(x)

� 1

n+ 1
:

The ray-projection dynamics feature in e.g., Björnerstedt & Weibull [1996],
and in Cabrales & Sobel [1992] in a discrete-time version .

We refer to Hopkins [1999] and Hofbauer [2000] for stability results of the
ESS for the ray-projection variant of the logit dynamics. Sandholm [2007]
provides a microfoundation for these dynamics (see also Fudenberg & Levine
[1998], Hopkins [2002]).

4 Boundary conditions

The standard way of dealing with Samuelson�s dynamics on the boundary
of P is to de�ne them as being zero for every zero component of the state
variable, see e.g., Arrow & Hurwicz [1958, 1960a,b], Arrow et al. 1959]. In
our notations the extension to include the boundary of P would be given by

�
xi =

�
0 if xi = 0;

fi(x) otherwise:

So, the dynamics extended to the boundary may be discontinuous. For
the ray-projection dynamics this extension to the boundary does not pose
great problems as we may (re)de�ne

�
xi =

(
0 if xi = 0;

fi(x)�
�P

j:xj>0
fj (x)

�
otherwise:

(a)

Under (a), a trajectory might in �nite time reach the boundary of the unit
simplex, and then remain on it while the relative �tness of a subgroup with
population share zero becomes positive again.
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An alternative is to de�ne the dynamics extended as

�
xi =

8><>:
0 if xi = 0 and fi (x) < 0;

fi(x)� xi

 P
j:xj>0 or
fj(x)�0

fj (x)

!
otherwise:

(b)

This way, the dynamics escape the boundary of Sn as soon as fi (x) > 0:
So, at a limit point y 2 bd Sn; we can never have yi = 0 and fi (y) > 0:

The following small result has interesting implications. Let, ZP = fx 2
Snj f(x) = 0n+1g and FP = fx 2 Snj �x = 0n+1g:

Lemma 12 Let fxtgt�0 be a trajectory under the ray-projection dynamics
and let y = limt!1 xt: If t� exists such that fxtgt�t� � int Sn; then y 2 ZP ;
otherwise, y 2 bd Sn and under (a) y 2 FP; under (b) y 2 E:

So, if a trajectory converges from the interior of the unit simplex to a bound-
ary state, then under (a) the latter is a �xed point, whereas under (b) it is an
equilibrium. Boundary conditions are of high relevance for boundary equilib-
ria, �xed points and limit points. A re�nement of the saturated equilibrium
concept is the strict saturated equilibrium (cf., Joosten [1996]) which is
a saturated equilibrium satisfying fj(y) = 0 for precisely one j 2 In+1: For
this type of equilibrium we have the following result.

Theorem 13 Every strict saturated equilibrium is an evolutionarily stable
equilibrium of the ray-projection dynamics.

Let SSAT; ASFP; and LP denote the sets of strict saturated equilibria,
asymptotically stable �xed points, and limit points respectively; let LPint�
denote the set of limit points satisfying there is at least one fxtgt�0 with
y = limt!1 xt satisfying that some t� exists such that fxtgt�t� � int Sn.
Note that in Joosten [1996] it was shown that SSAT � GESS � E; then
the following summarizes results.

Corollary 14 For arbitrary dynamics, SSAT � GESS � E: For the ray-
projection dynamics: LPint� � ZP � E � FP ; (a) implies SSAT �
ESE � ASFP � LP � FP ; (b) implies SSAT � ESE � ASFP �
LP � E � FP:

5 Conclusions

We introduced new evolutionary dynamics in game theory, the ray-projection
dynamics. We have shown that every interior (generalized) evolutionarily
stable strategy is an asymptotically stable �xed point of the ray-projection
dynamics. We showed that each strict saturated (Hofbauer & Sigmund
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[1988]) equilibrium is both a (generalized) evolutionarily stable strategy
(ESS, Maynard Smith & Price [1973], GESS, Joosten [1996]) and an evo-
lutionarily stable equilibrium (ESE, Joosten [1996]) for ray-projection dy-
namics.

We applied both projections to dynamics driven by functions connected
to the relative �tness function. It turns out that well-known dynamics in
evolutionary game theory can be represented as projection dynamics for
appropriately chosen functions. Even if well-known dynamics can not be
recovered in full, attractive elements may be used for new ray- or orthogonal-
projection dynamics. For instance, the generalized replicator dynamics of
Sethi [1998] introduced in a learning framework in which strategies are not
equally easily adopted, can not be recovered by either type of projection.
Yet, the �in�ows�incorporating the possible di¤erences in which strategies
can be adopted, can be taken to motivate new evolutionary dynamics.

The strategy of proof for our �rst major result contains some promise for
future research. We transformed a dynamic process on the unit simplex into
a dynamic process in the positive orthant, then projected the latter unto the
unit simplex. We took a know result on price-adjustment dynamics in the
positive orthant to show stability of the unrestriced dynamics, i.e., conver-
gence to an equilibrium ray, implying the same properties for the connected
ray-projection dynamics on the unit simplex. It should be noted that there
is an abundance of stability results on both restricted and unrestricted tâ-
tonnements (cf., e.g., Uzawa [1961], Negishi [1962], Harker & Pang [1990])
which may be used to derive stability results for evolutionary dynamics using
a similar strategy of proof. In this context, an important topic for further
research is to �nd a classi�cation for the functions admissible for projection
unto the unit simplex.

Microfoundations were not a theme of this paper, but connections be-
tween the ones given by e.g., Lahkar & Sandholm [2008] seem immediate.
Tsakas & Voorneveld [2008] show that target-projection dynamics (Sand-
holm [2005]) can be associated to rational choice behavior if control costs
(as in e.g., Van Damme [1991]) can be assumed (see also Mattson & Weibull
[2002], Voorneveld [2006]). Further research must reveal which dynamics
can be motivated with such microeconomic foundations.

6 Appendix

Proof of Lemma 4. The part �interior equilibrium implies �xed point�is
evident. Conversely, let y 2 int Sn be a �xed point of the ray-projection dy-
namics. Then, fi(y)�yi

�Pn+1
j=1 fj(y)

�
= 0 for all i 2 In+1: This in turn im-

plies yifi(y) = y2i
�Pn+1

j=1 fj(y)
�
for all i 2 In+1: Then, summing over all i 2

In+1 and complementarity of f lead to 0 = y�f(y) =
Pn+1
i=1 y

2
i

�Pn+1
j=1 fj(y)

�
:

18



This can only hold if
Pn+1
j=1 fj(y) = 0; hence f(y) = 0

n+1. For orthogonal-
projection dynamics, the reasoning is similar.

Proof of Theorem 6. Let f : Sn ! Rn+1 be a continuous relative �tness
function. De�ne ef : P ! Rn+1 by ef (�x) = f (x) for all � > 0: Then, ef
is continuous, homogeneous of degree zero, and satis�es complementarity.
De�ne for all x 2 P :

�
x = ef (x) : (4)

Clearly, this implies that djjxjj2
dt = 2

Pn+1
j=1 xj

�
xj = 2

Pn+1
j=1 xj

efj (x) = 0: Let
fxtgt�0 denote a solution to x0 2 P and Eq. (4). Then, fxtgt�0 remains on
the sphere with the origin as center and with radius r = jjx0jj:

Let y 2 Sn be an interior generalized evolutionarily stable state, i.e., an
open neighborhood U � int Sn containing y exists such that

(y � x) � f (x) > 0 for all x 2 Unfyg:

Let E = fx 2 Pj x = �y; � > 0g : De�ne for z 2 P; �z =
Pn+1
k=1 zk: Then, let

x� 2 P satisfy 1
�x�
x� 2 Unfyg and let y� 2 E such that jjx�jj = jjy�jj. Then,

obviously d (x�; y�)2 > 0; d (y�; y�)2 = 0 and under the dynamics we have

�
1

2
d (x; y�)2 = �

n+1X
j=1

(y�j � x�j ) efj (x�) = � n+1X
j=1

(�y�yj � �x�xj) efj (�x�x)
= �

n+1X
j=1

(�y�yj � �y�xj + (�y� � �x�)xj) fj (x) = ��y� (y � x) � f (x) < 0:

This means that the squared (Euclidean) distance is a strict Lyapunov func-

tion for U 0 =
n
x 2 Pj 1

�x
x 2 U

o
: Hence, an open neighborhood U 00 of y�

exists such that every trajectory fxtgt�0 with x0 2 U 00nfy�g such that
jjx0jj = jjy�jj, converges to y�; i.e., limt!1 xt = y�:

The ray-projection fx0tgt�0 of such a trajectory fxtgt�0 with x0 2 U 00nfy�g
such that jjx0jj = jjy�jj, and limt!1 xt = y� is given by x0 = x0Pn+1

j=1 (x0)j
and

�
x0 =

1

�x

"
f(x)� x

n+1X
i=1

fi(x)

#
for every x 2 fxtgt�0 :

Clearly, limt!1 x0t = y: As the factor 1
�x
only in�uences the speed of the

dynamics but not the direction, it follows that any trajectory fxtgt�0with
x0 2 U

000
converges to y under the local ray-projection dynamics given by

�
x = f(x)� x

n+1X
i=1

fi(x): (5)
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So, y is an asymptotically stable �xed point for (5).

Proof of Lemma 12. Let h : Sn ! Rn+1 be given by h (x) = f (x) �
x
Pn+1
j=1 fj (x) for all x 2 Sn: Clearly, h is continuous because f is continu-

ous on the unit simplex. Let fxtgt�0 satisfy that some t� exists such that
fxtgt�t� � int Sn and limt!1 xt = y: If y 2 int Sn, then by continuity of h
it follows that h(y) = 0n+1: So, y is an interior �xed point of the dynamics
and our earlier result applies, i.e., y 2 E:
If y 2 bd Sn, then assume yj = 0 and fj(y) > 0: By continuity of h we have
hj(y) > 0, and an open neighborhood U 3 y exists such that hj (x) > 0
for all x 2 U: However, since yj = 0 and xj > 0 for all x 2 fxtgt�t� a

subsequence fxtkgk2N � fxtgt�t� must exist such that
�

(xtk)j = hj (xtk) < 0
for all k 2 N: Since limk!1 xtk = y; fxtkgk2N \ U 6= ?: This yields a
contradiction. Hence, yj = 0 implies fj(y) � 0: Furthermore, for yj > 0

we have hj(y) = 0 = fj (y) � yj
�Pn+1

k=1 fk (y)
�
by continuity which im-

plies fj (y) = yj

�Pn+1
k=1 fk (x)

�
: However, then 0 =

P
j:yj>0

yjfj (y) =P
j:yj>0

y2j

�Pn+1
k=1 fk (x)

�
and therefore

Pn+1
k=1 fk (x) = 0 which in turn im-

plies fj(y) = 0 whenever yj > 0; hence f(y) = 0n+1:

Suppose fxtgt�0
t!1! y and it does not hold that t� exists such that fxtgt�t� �

int Sn: Let T = fk 2 In+1j yk > 0 or [yk = 0 and (xt)k > 0 for all t >
t0 for some t0 � 0]g: If follows from the above that for k 2 T it must hold
that fk(y) = 0: Now, let h 2 In+1nT then yh = (xt)h = 0: If (a) holds, then
�
xh = 0 regardless whether fh (x) > 0 or fh (x) � 0, hence y 2 FP: Under
(b),

�
xh > 0 whenever fh (x) > 0 and therefore fh(y) � 0 and y 2 E:

Proof of Theorem 13. Let y be a strict saturated equilibrium, then
m = maxh 6=j fh (y) < 0 and continuity implies that a neighborhood U 3 y
exists such that maxh 6=j fh (x) � m

2 for all x 2 U: Complementarity im-
plies y = ej : Let CS(x) =

P
h2S[fjg fh(x) for ? 6= S � In+1nfjg: Then,

clearly CS(y) � m < 0 for all nonempty S � In+1nfjg and a neighbor-
hood U 0 3 y exists such that maxS�In+1nfjgCS (x) � m

2 for all x 2 U 0:

Next, let x 2 U \U 0; then (y� x) � �x = (ej � x) � f(x)�CS0(x)(ej � x) � x �
�(

P
h6=j xhfh(x))

xj
�(xj � x � x) m2 � �

1�xj
xj

m
2 �(1� xj)

m
2 (xj �maxh 6=j xh) =

� (1� xj) m2
�
1
xj
+ (xj �maxh 6=j xh)

�
� � (1� xj) m2 � 0: Here, we have a

strict inequality whenever xj 6= 1: So, y 2 ESE:

20



7 References

Arrow KJ, HD Block & L Hurwicz, 1959, On the stability of the com-
petitive equilibrium II, Econometrica 27, 82-109.
Arrow KJ & L Hurwicz, 1958, On the stability of the competitive equi-
librium I, Econometrica 26, 522-552.
Arrow KJ & L Hurwicz, 1960a, Competitive stability under weak gross
substitutability: the �Euclidean distance�approach, International Economic
Review 1, 38-49.
Arrow KJ & L Hurwicz, 1960b, Some remarks on the equilibria of eco-
nomic systems, Econometrica 28, 640-646.
Björnerstedt J & J Weibull, 1996, Nash equilibrium and evolution by
imitation, in: KJ Arrow et al. (eds.) �The Rational Foundations of Eco-
nomic Behavior�, MacMillan, London, UK, pp. 155-171.
Brown GW, 1951, Iterative solutions of games by �ctitious play, in: T
Koopmans (ed.) �Activity Analysis of Production and Allocation�, Wiley,
NY, pp. 374-376.
Brown GW & J von Neumann, 1950, Solutions of games by di¤erential
equations, Annals of Mathematics Studies 24, Princeton University Press,
Princeton, pp. 73-79.
Cabrales A & J Sobel, 1992, On the limit points of descrete selection
dynamics, J Economic Theory 57, 407-419.
Debreu G, 1974, Excess demand functions, J Mathematical Economics 1,
15-23.
Friedman D, 1991, Evolutionary games in economics, Econometrica 59,
637-666.
Fudenberg D & DK Levine, 1998, �The Theory of Learning in Games�,
MIT Press, Cambridge.
Haigh J, 1975, Game theory and evolution, Adv Appl Probab 7, 8-11.
Harker PT & JS Pang, 1990, Finite dimensional variational inequality
and nonlinear complementarity problems: a survey of theory, algorithms
and applications, Mathematical Programming 48, 161-200.
Hofbauer J, 1995, Stability for the best response dynamics, mimeo.
Hofbauer J, 2000, From Nash and Brown to Maynard Smith: Equilibria,
dynamics, and ESS, Selection 1, 81-88.
Hofbauer J & WH Sandholm, 2002, On the global convergence of sto-
chastic �ctitious play, Econometrica 70, 2265-2294.
Hofbauer J & WH Sandholm, 2008, Stable games and their dynamics,
mimeo.
Hofbauer J, P Schuster & K Sigmund, 1979, A note on evolutionary
stable strategies and game dynamics, J Theoretical Biology 81, 609-612.
Hofbauer J & K Sigmund, 1988, �The Theory of Evolution and Dynam-
ical Systems�, Cambridge University Press, Cambridge.
Hofbauer J & K Sigmund, 1998, �Evolutionary Games and Population

21



Dynamics�, Cambridge University Press, Cambridge.
Hopkins E, 1999, A note on best response dynamics, Games & Economic
Behavior 29, 138-150.
Hopkins E, 2002, Two competing models of how people learn in games,
Econometrica 70, 2141-2166.
Joosten R, 1996, Deterministic evolutionary dynamics: a unifying ap-
proach, J Evolutionary Economics 6, 313-324.
Joosten R, 2006, Walras and Darwin: an odd couple? J Evolutionary Eco-
nomics 16, 561-573.
Lahkar R & WH Sandholm, 2008, The projection dynamic and the
geometry of population games, Games & Economic Behavior 64, 565-590.
Mantel R, 1974, On the characterization of aggregate excess demand, J
Economic Theory 7, 348-353.
Matsui A, 1992, Best-response dynamics and socially stable strategies, J
Economic Theory 57, 343-362.
Mattson LG & JW Weibull, 2002, Probabilistic choice and procedural
bounded rationality, Games & Economic Behavior 41, 61-78.
Maynard Smith J, 1982, �Evolution and the Theory of Games�, Cam-
bridge University Press, Cambridge.
Maynard Smith J & GA Price, 1973, The logic of animal con�ict, Na-
ture 246, 15-18.
Nachbar JH, 1990, �Evolutionary�selection dynamics in games: Conver-
gence and limit properties, International J Game Theory 19, 59-89.
Nagurney A & D Zhang, 1996, �Projected Dynamical Systems and Vari-
ational Inequalities with Applications�, Kluwer, Dordrecht.
Negishi T, 1962, The stability of a competitive economy: a survey article,
Econometrica 30, 635-669
Nikaidô H, 1959, Stability of equilibrium by the Brown-von Neumann dif-
ferential equation, Econometrica 27, 654-671.
Nikaidô H & H Uzawa, 1960, Stability and non-negativity in a Walrasian
tâtonnement process, International Economic Review 1, 50-59.
Perko L, 1991, �Di¤erential Equations and Dynamical Systems�, Springer,
Berlin.
Ritzberger K & J Weibull, 1995, Evolutionary selection in normal form
games, Econometrica 63, 1371-1399.
Rosenmüller J, 1971, Über die Periodizitätseigenschaften spieltheoretis-
cher Lernprozesse, Zeitschrift für Warscheinlichkeitstheorie und verwandte
Gebiete 17, 259-308.
Samuelson P, 1938, A note on the pure theory of consumer behavior, Eco-
nomica 5, 61-71.
Samuelson P, 1941, The stability of equilibrium: comparative statics and
dynamics, Econometrica 9, 97-120.
Samuelson P, 1947, �Foundations of Economic Analysis�, Harvard Uni-
versity Press, Cambridge.

22



Sandholm WH, 2005, Excess payo¤ dynamics and other well-behaved evo-
lutionary dynamics, J Economic Theory 124, 149-170.
Sandholm WH, 2007, Pairwise comparison dynamics and evolutionary
foundations for Nash equilibrium, mimeo.
Sethi R, 1998, Strategy-speci�c barriers to learning and nonmonotonic se-
lection dynamics, Games & Economic Behavior 23, 284-304.
Sonnenschein H, 1972, Market excess demand functions, Econometrica
40, 549-563.
Sonnenschein H, 1973, Do Walras� identity and continuity characterize
community excess demand functions? J Economic Theory 6, 345-354.
Swinkels J, 1993, Adjustment dynamics and rational play in games, Games
& Economic Behavior 5, 455-484.
Taylor PD & LB Jonker, 1978, Evolutionarily stable strategies and game
dynamics, Mathematical Biosciences 40, 245-156.
Tsakas E & M Voorneveld, 2008, The target projection dynamic, to ap-
pear in Games & Economic Behavior.
Uzawa H, 1961, The stability of dynamic processes, Econometrica 29, 617-
631.
Van Damme EEC, 1991, �Stability and Perfection of Nash Equilibria�,
Springer, Berlin.
Voorneveld M, 2006, Probabilistic choice in games: properties of Rosen-
thal�s t-solutions, International J Game Theory 34, 105-121.
Weissing F, 1990, Evolutionary stability and dynamic stability in a class
of evolutionary normal form games, in: Selten R (ed), �Game equilibrium
models I, evolution and game dynamics�, Springer, Berlin, pp. 29-97.
Zeeman EC, 1981, Dynamics of the evolution of animal con�icts, J Theo-
retical Biology 89, 249-270.

23


