
Parsing of Context�Free Languages �

Klaas Sikkel

GMD� German National Research Center for Information Technology�
FIT�CSCW� ����� Schlo� Birlinghoven�

����� Sankt Augustin� Germany
sikkel�gmd�de

Anton Nijholt

University of Twente� Computer Science Department� P�O� Box 	
��
���� AE Enschede� The Netherlands�

anijholt�cs�utwente�nl

Abstract

Parsing is the process of assigning structure to sentences� The structure
is obtained from the grammatical description of the language� Both in Com�
puter Science and in Computational Linguistics� context�free grammars and
associated parsing algorithms are among the most useful tools� Numerous
parsing algorithms have been developed� Special subclasses of the context�
free grammars have been introduced in order to allow and induce e�cient
parsing algorithms� Special superclasses of the context�free grammars have
been introduced in order to allow use of variants of e�cient parsing meth�
ods that had been developed for context�free grammars� At rst sight many
parsing algorithms seem to be di�erent� but nevertheless related� Some uni�
fying approaches have been attempted in the past� but none survived the
changing eld� This report introduces a unifying approach at a level be�
tween grammars and algorithms� introducing so�called parsing schemata� In
the parsing schemata framework the essentials of di�erent parsing algorithms
can be compared and it can be shown how to derive an algorithm from an�
other one� The insight that is obtained this way also allows the derivation of
new algorithms and it allows less tedious observations about correctness than
usual� The framework can also be applied to grammar formalisms beyond the
context�free grammars�

� To appear in G� Rozenberg� A� salomaa �Eds��� �The Handbook of Formal Lan�
guages� Vol� II�� Springer Verlag� Berlin� 	

��

Table of Contents

� Introduction �

�
 Parsing Algorithms �

�	 Parsing Technology �

�� About this report �

	� An Informal Introduction �
�� Parsing Schemata �

��
 Parsing Systems �

��	 Parsing Schemata �
	
��� Correctness of Parsing Schemata �
�

�� Generalization �
�
��
 Some Examples �
�
��	 Formalization �
�
��� Properties of Generalization �
�

�� Filtering �
�
��
 Static Filtering � 	�
��	 Dynamic Filtering � 	

��� Step Contraction � 		
��� Properties of Filtering Relations � 	�

�� Some Larger Examples � 	�
��
 Left�Corner Parsing � 	�
��	 De Vreught and Honig�s Algorithm � 	�
��� Rytter�s Algorithm � 	�
��� Some general remarks �	

�� From Schemata to Algorithms ��
�� Beyond context�free grammars ��
�� Conclusions ��
References ��

�

�� Introduction

In computer science� grammars are human�constructed formalisms that are
meant to dene languages� These can be programming languages or� in the�
oretical computer science formal languages� This description is often partial�
It is not unusual to see a formal description of the syntactic structure of a
language� while the semantic part remains ill�dened� Finding the syntactic
structure of a program �which is a sentence in the language� is part of the
compilation process of a program� The construction of this structure is called
parsing� The result of the parsing process is a hierarchical account of the
elements that make up the program� This account makes it possible to assign
semantics to a program�
Formal syntactic descriptions of languages were rst given by the lin�

guist Noam Chomsky� Because the descriptions were formal� the languages
were also formal� sequences of symbols that satised descriptions based on �
nite state automata or regular grammars� context�free grammars� or context�
sensitive grammars� In Chomsky�s view� these descriptions were the starting
point for descriptions of the syntax of natural� human spoken� languages�
Moreover� these descriptions would allow to assign meaning to sentences�
Interestingly� at about the same time Chomsky introduced di�erent classes
of grammars and languages� a committee dening a programming language
�ALGOL� introduced a programming language description formalism called
Backus�Naur�Form �BNF� which turned out to be equivalent to one of Chom�
sky�s grammar classes� the so�called context�free grammars�
In Chomsky�s view� human language grammars were not human�con�

structed formalisms� The rules of the formalism� or� more generally� the prin�
ciples that determine the rules� are supposed to be innate� This view led to
a distinction between competence and performance in human language use�
Each language user has a language competence that allows him to construct
all kinds of sentences using the rules of a grammar� Constructing sentences
can be compared with using rules to compute a multiplication or a division
in arithmetic� Language users can construct sentences using rules of syntax�
Due to environmental circumstances in normal man�to�man communication�
these rules are not always obeyed� Performance di�ers from competence�
It is much easier� however� to do research on self�chosen rules of sentence

construction and analysis than to do research on actual language behaviour�
For this obvious reason� grammar formalisms and their parsing methods have
drawn so much attention by computer scientists and computational linguists�
It should be admitted� on the other hand� that nowadays natural and pro�
gramming language processing systems can be built on the basis of these
formalisms� Whether or not formalisms that are used for natural language
processing meet certain linguistic principles in some way or other� or even
some principles of human language innateness� is not the main concern of
those doing research and development in this area�

��� Parsing Algorithms

Parsing algorithms have been dened for all kinds of language descriptions�
After the introduction of the well�known Chomsky hierarchy in the late fties
and early sixties� we see a common interest of computer scientists and com�
putational linguists in parsing methods for context�free languages� The quest
for e�cient parsing methods led to polynomial�time algorithms for general
context�free grammars in the middle and late sixties� Among them� the so�
called Cocke�Younger�Kasami and the Earley parsing algorithms� In com�
puter science� however� these formalisms were thought to be unnecessarily
general for describing the syntactic properties of programming languages�
and therefore to be unnecessarily ine�cient� Linear�time algorithms like LL
and LR were introduced� These are su�ciently general for dealing with the
syntactic backbone of programming languages� Interest in general context�
free methods diminished� or was left to theoretical computer scientists� In
computational linguistics there were other reasons to become critical of the
context�free grammar formalism� Its descriptional adequacy� that is� its abil�
ity to cover linguistic generalities in a natural way� was considered to be too
weak� It was also doubted whether it provides su�cient generative capac�
ity� The LL and LR approaches favoured in computer science were clearly
much less suitable� because these do not allow representation of syntactic
ambiguities�
It is remarkable that in the late seventies and early eighties we see a grow�

ing interest in LR�like methods and context�free grammars in computational
linguistics and a growing interest in general context�free grammar descrip�
tions in computer science� How can this be explained� In computational lin�
guistics� rst of all� the so�called �determinism hypothesis� attracted a lot
of attention� The idea is that� in general� people do not �backtrack� while
analysing a sentence� Backtracking becomes necessary only when a started
analysis cannot be continued at some point in the sentence� Mitch Marcus
introduced an LR�like �wait and see� stack formalism in order to parse sen�
tences �deterministically�� Reviewing the literature from that period� one sees
lots of misconceptions and confusion among researchers� Apparently these are
partly due to lack of knowledge about formal parsing methods such as� for ex�
ample� Earley�s method and how issues like �backtracking�� �determinism��
and �e�ciency� relate to these algorithms� Since then� however� knowledge
of formal methods has become more wide�spread� This can also be illustrated
with the introduction of formalisms like Lexical Functional Grammar �LFG��
Generalized Phrase Structure Grammar �GPSG�� Head�Driven Phrase Struc�
ture Grammar �HPSG�� Unication Formalisms� Denite Clause Grammars
and Tree Adjoining Grammars �TAGs� in the early
���s� It led to a new
discussion on the question whether the generative capacity of context�free
formalisms would su�ce to describe the syntax of natural languages� it led to
a systematic comparison of grammar formalisms� yielding the weakly context�
sensitive languages as a newly discovered class for which adequate generative
capacity was claimed �JVW�
�� and it led to many less e�cient� but never�
theless polynomial variants of general context�free parsing algorithms�

�

The formalisms mentioned above are certainly much more general than a
pure context�free formalism� However� their backbone is context�free or the
way the formalisms are dened and used bear very much resemblance to the
context�free paradigm�

��� Parsing Technology

We have not yet mentioned one of the main in�uences that caused researchers
in computational linguistics and natural language processing to shift their at�
tention to existing formal parsing methods and possible extensions of these
methods� That in�uence was the increasing demand of society� military� and
funding organisations to produce research results that could be used to build
tools and systems for practical natural language processing applications� Ap�
plications like speech understanding systems� natural language interfaces to
information systems� machine translation of texts� information retrieval� help
systems for complex software and machinery� knowledge extraction from doc�
uments� text image processing� and so on� The availability of a comprehensive
cognitive and linguistic theory does not seem to be a precondition for appli�
cations in the area of natural language understanding� Many applications do
not require this comprehensive theory� Moreover� many applications can be
built using research results that are not in�uenced in any way by cognitive�
psycho�linguistic or linguistic principles� Generalized LR parsing� introduced
in the mid�eighties by Masaru Tomita� is such a method that was introduced
as a simple� straightforward and e�cient parser for general context�free lan�
guages and grammars� Due to its straightforwardness� like the deterministic
LR method� it has attracted a lot of attention and it has been used in many
natural language processing research projects and in some applications�
In computer science� it was stated above� more and more attention has

been devoted to general context�free parsing methods� The just mentioned
generalized LR method� for example� has been used in grammar� parser and
compiler development environments� In general� software engineering envi�
ronments may o�er their users syntax�dependent tools� The compiler con�
struction level is only one level� and a rather low one� where descriptions
based on formal grammar play a role� Furthermore� computer science is a
growing science in the sense that borders between so�called �pure� computer
science and several application areas are disappearing� Grammars and parsing
methods play a role in pattern recognition� they have been used to describe
and analyse command and action languages �human interaction with a com�
puter system through key presses� cursor movements� etc��� to describe screen
lay�outs� etc� Human factors have become important in computer science� In�
creasing the accessibility of computer systems through the use of speech and
natural language in the man�machine interface is an aim worth pursuing� It is
obvious that computer scientists and computational linguists will meet each
other here and that they can learn from each other�s methods to deal with
languages�
Finally� we would like to mention another in�uence that caused computer

scientists to go back to general context�free parsing methods� Parallelism is

�

the keyword here� The introduction of new types of machine architectures
and the possibility to implement algorithms on single chips have led to new
research on existing parsing algorithms� Some research has been purely the�
oretical� in the sense that all kinds of e�ciency limits were explored� Some
research has been practical� in the sense that all kinds of extensions and
variations of existing parsing algorithms have been investigated in order to
make them suitable for parallel implementations and in the sense that these
implementations have been realized� analysed and evaluated�

��� About this report

Parsing schemata are introduced in this report and used to bring some or�
der in the eld of context�free language parsing� In order to compare the
essentials of parsing algorithms we want to abstract as much as possible from
implementation issues� including the data� control and communication struc�
tures� The general idea is that all kinds of di�erent parsers are �item� based�
in the sense that they start with an initial set of items �constructed from the
sentence�� compute intermediate sets of items and deliver a nal set of items�
Items can have di�erent interpretations� In this context it su�ces to consider
an item as a set of constraints on a �partial or complete� parse tree� This is�
for example� a possible interpretation of an item in an LR or Earley parsing
algorithm� Recognition or production of items can be interpreted as logical
deduction from a set of hypotheses �initial items� to a set of nal items �rep�
resenting completed parse trees� by applying deduction steps� Underlying the
parsers we are familiar with are di�erent �deduction� systems using di�erent
items and di�erent deduction steps� Relations between parsing algorithms
can be found by dening operations on items and deduction steps� A parsing
schema is the formal model� on a level of abstraction between grammar and
algorithm� in which these ideas are expressed� Having these parsing schemata
and being able� as we claim� to use them to understand the relations between
parsing algorithms� it becomes also possible to port improvements and opti�
mizations for one algorithm to related algorithms�
In the next section� parsing schemata are introduced by means of some

informal examples� These examples are the standard CYK algorithm and the
Earley algorithm� A formal introduction to parsing schemata follows in Sec�
tion �� Here we also introduce the notion of correctness of a parsing schema�
That is� we need a way to say that a parse tree satises the constraints ex�
pressed in the items� Proving correctness on the level of parsing schemata
is a less tedious task than on the level of algorithms since all details about
data� control and communication structures are not present�
Section � and Section � are concerned with generalization and ltering� re�

spectively� Generalizations and lters are relations between parsing schemata�
Relations between di�erent parsers can be uncovered when relations between
their underlying parsing schemata have been established�
Generalization takes a more ne�grained look on the parsing process� It

leads to more items and more steps� Generalization can be decomposed into
several �primitive� relationsships� These primitive generalizations and their

�

combinations allow� for example� the derivation of a simple version of the
Earley parser from the CYK parser�
The aim of ltering is to reduce the number of steps and items� The

di�erent basic kinds of ltering that are introduced allow� for example� the
derivation of the canonical Earley parser from the simple �bottom�up� Earley
parser that was obtained as a generalization of the CYK parser� In a similar
way� the well known and e�cient Graham�Harrison�Ruzzo parser can be l�
tered from the Earley parser using basic ltering techniques on the underlying
parsing schemata� Some observations can be made about the consequences
of using these techniques for run�time and compile�time optimization and
consequences for parallel implementations�
After having formalized and illustrated the theoretical concepts we can� in

Section �� show more elaborate examples of how ltering and generalization
can be used to relate parsing schemata underlying di�erent parsers� Rytter�s
parallel parsing algorithm and Left�Corner parsing are among the algorithms
that will be related to previously mentioned algorithms through comparisons
of the underlying parsing schemata�
Section � surveys some other well�known approaches to the parsing prob�

lem and shows how they relate to the parsing schemata framework that is
introduced here� In particular� the relation with LR�like methods is exam�
ined� In Section � we brie�y review some other grammar formalisms in com�
putational linguistics and discuss how they relate to the parsing schemata
framework� Conclusions are summarized in the nal section�

�� An Informal Introduction

We introduce the general idea of a parsing schema by means of a few informal
examples� A more rigorous treatment follows in Section �� A comprehensive
discussion of parsing schemata will appear in �Sik����

The following conventions apply throughout this report�
A context�free grammar is a ��tuple G � �N��� P� S�� with N a set of

nonterminal symbols� � a set of terminal symbols� P a nite set of produc�
tions� and S � N the start symbol� Furthermore� N �� � �� We write V for
N ���
We write A�B� � � � � N for nonterminals� a� b� � � � � � for terminals�

X�Y� � � � � V for arbitrary variables� �� �� � � � � V � for strings of arbitrary
variables� � for the empty string� The letters i� j� � � � denote nonnegative in�
tegers�
We write A�� for a production �A��� in P � The relation� on V ��V � is

dened by � � � if there are ��� ��� A� � such that � � ��A��� � � �����
and A�� � P �
The class of context�free grammars is denoted by CFG� A subclass of CFG

is CNF � the class of grammars in Chomsky Normal Form� If G � CNF then
P contains productions of the form A�BC and A�� only�

�

A very simple parsing algorithm is the so�called CYK algorithm �Kas���
You���� called after Cocke� Younger and Kasami� It is restricted to grammars
in Chomsky Normal Form�
Assume that we have some grammar G � CNF and a string a� � � � an to

be parsed� The CYK algorithm recognizes items �A� i� j� that satisfy A ��

ai�� � � � aj �
The canonical way to implement this is to use a triangular matrix T with

cells Ti�j for all applicable value pairs of i and j� Recognition of an item
�A� i� j� is denoted by adding A to Ti�j � If we have a � aj and A�a � P
then A can be added to entry Tj���j � If we have B � Ti�k� C � Tk�j and
A�BC � P then A can be added to Ti�j � The CYK algorithm gives an
obvious control structure to make sure that all items are recognized that can
be recognized�
It is worth noting that the output of the algorithm is not a parse tree�

or a collection of parse trees� The output of the CYK algorithm �abstracting
from its canonical data structure� is a set of items

f�A� i� j� j A�� ai�� � � � ajg�

The string is correct if and only if �S� �� n� is in this set� Moreover� if the
string is correct� a parse forest or a particular �e�g� leftmost� parse can be
constructed fairly easy from the items in this set� If we have �S� �� n� then
there must be B� C� and k such that S�BC � P and �B� �� k� and �C� k� n�
have been recognized as well� So� in a strict sense� CYK is not a parser but a
recognizer enhanced with information that facilitates parse tree construction�
It is common practice to call this a parser as well� and most parsers discussed
in the remainder of this report will be of the same nature�
The way in which the CYK algorithm recognizes items for a given gram�

mar G � CNF and string a� � � � an can be denoted by a logical deduction
system� called a parsing system�

Example ���� �CYK �
Firstly� we dene a domain of items

ICYK � f�A� i� j� j A � N � � 	 i � jg�

One could restrict I to items with j 	 n� of course� but there are some
advantages in choosing the domain of items independent of the given sentence�
Secondly� we need a set of so�called hypotheses�

H � f�a� i

� i� j a � ai �
 	 i 	 ng

that represent the string�
Thirdly� we need inference rules� We specify an inference rule by a set of de�
duction steps that covers all instances of inferences�� A set of inference rules�

� Whether the hypotheses are included in the domain of items or not does not
really matter� It will turn out te be more convenient to de�ne a separate set of
hypotheses�

� This way of specifying rules has been chosen because it allows a certain �exibil�
ity� For example� it allows speci�cation of conditional rules� to be applied only
in certain circumstances� simply by restricting the set of deduction steps�

therefore� can be denoted by the union of corresponding sets of deduction
steps� For CYK we dene�

D��� � f�a� i

� i� � �A� i

� i� j A�a � Pg�

D��� � f�B� i� j�� �C� j� k� � �A� i� k� j A�BC � Pg�

DCYK � D��� �D����

As with the domain I � we have not bothered to restrict the deduction steps
to items with j 	 n� The parsing system PCYK for G and a� � � � an is dened
by the triple hI � H�Di�

A parsing schema CYK is a generalization of PCYK to arbitrary strings
and arbitrary grammars in CNF � One can see a parsing schema as a function
that yields a parsing system for a given grammar and a given string over the
alphabet of that grammar�

The CYK algorithm has the disadvantage that it is restricted to grammars
in Chomsky Normal Form� A similar algorithm for arbitrary context�free
grammars has been discovered by Earley �Ear��� Ear���� Di�erent variants
of Earley�s algorithm exist� First we investigate the one that is closest to
CYK� the bottom�up Earley parser�

Example ���� �bottom�up Earley�
An Earley item has the form �A����� i� j�� with A��� � P � The bottom�up
Earley parser recognizes the item set

f�A����� i� j� j ��� ai�� � � � ajg for G and a� � � � an�

A recognized item denotes partial recognition of a production� If � � �� we
have recognized a full production � and hence the left�hand side A� corre�
sponding to �A� i� j� in the CYK case� Partially recognized productions can
be expanded by �moving the dot rightwards�� i�e� recognizing the symbol be�
hind the dot� How to organize this and store the results does not concern us
here� We only specify the domain of items� the hypotheses and the deduction
steps� For some grammar G and string a� � � � an we specify a parsing system
PbuE by

�

IbuE � f�A����� i� j� j A��� � P � � 	 i 	 jg�

HbuE � f�a� i

� i� j a � ai �
 	 i 	 ng�

DInit � f� �A���� i� i�g�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� i� j
�g�

DCompl � f�A���B�� i� j�� �B���� j� k� � �A��B��� i� k�g�

� From the usual set notation f� � � j � � �g we omit the second part if there are no
further constraints on the elements that comprise the set� It should be evident
�and it will be formally stated in Section ��	� that only items are used that
relate to productions of the grammar G�

	�

DbuE � DInit �DScan �DCompl�

Deduction stepsDInit are needed to start the deduction of further valid items�
hence these have no antecedents� In the denition of DInit there is no need
to state explicitly that A�� � P is required� as the deduction steps are only
meaningful for items drawn from from I and H �
DScan and DCompl conform to the scan and complete steps of Earley�s algo�
rithm� In Figure 	�
 it is sketched how the complete step produces an item
representing a larger partial parse from two known partial parses�

�
�

�
��

�
�
�
��

AA
Q
QQ

i j

B �
� � �

A

� �
�
�

A
A
A

j k

B

�

�
�

�
��

AA
Q
QQ

i k

�
� � �

A

Fig� ���� The complete
step

Earley�s original algorithm is more restrictive in the items it recognizes�
It makes use of top�down ltering� That is� the recognition of a production is
started only if there is a need to do so� Only if we have an item �A���B�� i� j�
there is a need to start recognizing a nonterminal B that produces aj�� � � � ak
for some k� Top�down ltering reduces the number of recognized items� but
also reduces the possibilities for parallel processing� Earley�s algorithm is
essentially left�to�right� Initial items start at position � and a parser has
to work its way rightwards� unlike the bottom�up case where one can start
recognizing items at all positions in the sentence in parallel�

Example ���� �canonical Earley�
The parsing system PEarley for a given context�free grammar G and string
a� � � � an is dened by I and H as in PbuE �cf� Example 	�	� and by DEarley

as follows�

DInit � f� �S���� �� ��g�

DPred � f�A���B�� i� j� � �B���� j� j�g�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� i� j
�g�

DCompl � f�A���B�� i� j�� �B���� j� k� � �A��B��� i� k�g�

DEarley � DInit �DScan �DCompl �DPred�

The Earley parsing system for G and a� � � � an yields the following set of
recognized items�

f�A����� i� j� j ��� ai�� � � � aj � S �� a� � � � aiA� for some �g�

		

�� Parsing Schemata

Parsing systems and parsing schemata are formally introduced in Section ��

and ��	� respectively� Section ��� discusses the nature of items and introduces
a concept of parsing schema correctness�

��� Parsing Systems

De�nition ���� �parsing system�
A parsing system P for some grammar G and string a� � � � an is a triple
P � hI � H�Di� in which

� I is a set of items�� called the domain or the item set of P�
� H is a nite set of items called the hypotheses of P�
� D � 	�n�H � I�� I is a set of deduction steps�

Note that H need not be a subset of I � 	�n in the above denition de�
notes the powerset restricted to nite sets� As a more convenient notation
for deduction steps� we write
�� � � � �
k � � rather than �f
�� � � � �
kg� ���
Furthermore if we have Y � f
�� � � � �
kg� we may also write Y � � as an
abbreviation for
�� � � � �
k � ��
To be formally correct� however� we make a distinction between the set of

deduction steps D and the inference relation � on 	�n�H � I��I � We want
the inference relation to have the following conventional property�

if
�� � � � �
k � x holds� then also
�� � � � �
k� � � x for any ��

Therefore we dene � as the closure of D under addition of antecedents to
an inference�

De�nition ���� �inference relation ��
Let P � hI� H�Di be a parsing system� The relation � � 	�n�H � I� � I is
dened by

Y � � if �Y �� �� � D for some Y � � Y �

Before we dene the transitive closure of � we introduce the notion of a
deduction sequence �which will be needed for some denitions and proofs in
Section ��	��

De�nition ���� �deduction sequence�
Let P � hI � H�Di be a parsing system� We write I� for the set of non�empty�
nite sequences ��� � � � � �j � with j
 and �i � I �
 	 i 	 j��
A deduction sequence in P is a pair �Y � ��� � � � � �j� � 	�n�H � I� � I�� such
that Y � f��� � � � � �i��g � �i for
 	 i 	 j�

As a practical informal notation we write Y � �� � � � � � �j for a deduction
sequence �Y � ��� � � � � �j��

� Here we treat �item� as an unde�ned basic concept� A discussion about the
nature of items follows in Section ����

	�

De�nition ���� ��
The set of deduction sequences � 	�n�H � I� � I� for a parsing system
P � hI � H�Di is dened by

 � f�Y � ��� � � � � �j� � 	�n�H � I�� I� j Y � �� � � � � � �jg�

De�nition ���� ����
For a parsing system P � hI� H�Di we dene the relation �� on 	�n�H�I��I
by

Y �� � if � � Y or Y � � � � � ��

De�nition ��	� �valid items�
For a parsing system P � hI � H�Di the set of valid items is dened by

V�P� � f� � I j H �� �g�

We do not make a distinction between semantic validity �usually denoted
j� �� and syntactic provability �i�e� H �� ���

��� Parsing Schemata

A parsing system has been dened for a xed grammar and string� In two
steps we will extend this to a parsing schema for arbitrary grammmars and
strings�

De�nition ��
� �uninstantiated parsing system�
An uninstantiated parsing system for a grammar G is a triple hI�H� Di with
H a function that assigns a set of hypotheses to each string a� � � � an � ���
such that hI �H�a� � � � an�� Di is a parsing system�

A function H that will be used throughout the remainder of this report
�unless specically stated otherwise� is

H�a� � � � an� � f�a� i

� i� j a � ai �
 	 i 	 ng�

In the sequel we will omit the hypothesesH from the specication of a parsing
system when the default H�a� � � � an� applies�

De�nition ���� �parsing schema�
A parsing schema for some �sub�class of context�free grammars CG � CFG is
a function that assigns an uninstantiated parsing system to every grammar
G � CG�

Schema ���� �CYK�
The parsing schemaCYK is dened for any G � CNF and for any a� � � � an �
�� by CYK�G��a� � � � an� � PCYK as in Example 	�
�

Schema ���� �buE�
The parsing schema buE is dened for any G � CFG and for any a� � � � an �
�� by buE�G��a� � � � an� � PbuE as in Example 	�	�

Schema ����� �Earley�
The parsing schema Earley is dened for any G � CFG and for any
a� � � � an � �� by Earley�G��a� � � � an� � PEarley as in Example 	���

	�

��� Correctness of Parsing Schemata

In order to dene a notion of correctness� some understanding of the nature
of items is needed� We have seen two kinds of items so far� there are other
parsing algorithms that involve di�erent kinds of items� What� exactly is an
item�
An item lists a set of constraints on a �partial or complete� parse tree�

Recognition of an Earley item �A����� i� j� means� There is some tree that
has a root labelled A with children labelled �� �concatenated from left to
right�� Moreover� the nodes labelled � are the roots of sub�trees that yield
ai�� � � � aj whereas the nodes labelled � are leaves� cf� Figure ��
�

�
�
�
�
��

ai�� � � � aj

A

�
�
HHHH�

�
� � �

Fig� ���� A partially speci�ed tree

One way to interpret an item is to identify it with a set of trees� viz��
all trees that satisfy the constraints stated in the item� This approach is
taken in �Sik��a�� Pursuing this line of thought� an item set is dened by a
congruence relation on a set of trees with respect to the deduction relation�
A rather more simple approach is to regard an item as a partial speci�

cation of a tree� We assume that there is some general item specication
language and that all items used in practical algorithms are �e�cient nota�
tions for� specic instances of this specication language� We will not further
formalize this� because in all practical cases it is abundantly clear what is
meant by the various types of items�

Before we dene correctness� there are two regularity properties on item
sets that have to be stated explicitly�
Firstly� we have tacitly assumed that there is a clear separation between

�nal items� denoting completed parse trees� and intermediate items� denoting
partial� not yet completed trees�
It is possible � but admittedly rather artical � to contruct mixed items

that denote a combination of both types� Consider� for example� a grammar
in Chomsky Normal Form that has productions A�SC and A�BC� with
S and B not occuring anywhere else in the right�hand side of a production�
For the recognition of A� therefore� it is irrelevant whether �S� i� j� or �B� i� j�
has been recognized� So we could replace these two items by a single item
��S�B�� i� j�� But then we have a problem with the item ��S�B�� �� n�� If this
item is recognized� it is unclear whether it denotes the existence of a parse
tree�
Secondly� we assume that for each parse tree of a sentence� this parse tree

conforms to the partial specication of some item in I�

	

De�nition ����� �semiregularity��

A parsing system P � hI� H�Di for a grammar G and string a� � � � an is called
semiregular if I does not contain mixed items and each parse tree of a� � � � an
conforms to the specication of some item in I�
A parsing schema P for a class of grammars CG is semiregular if
P�G��a� � � � an� is semiregular for all G � CG and all a� � � � an � ���

De�nition ����� �correct �nal items�
We write F�P� � I for the set of the nal items of a parsing system P for a
grammar G and a string a� � � � an�
A nal item is correct if there is a parse tree for a� � � � an that conforms to
the specication expressed by this item� We write C�P� � F�P� for the set of
correct nal items of P�

Example ����� ��nal and correct �nal items�

� F�PCYK� � f�S� �� n�g�
� C�PCYK� � f�S� �� n�g if a� � � � an � L�G��
C�PCYK� � � if a� � � � an �� L�G��

� F�PbuE� � F�PEarley� � f�S���� �� n� j S�� � Pg�
� C�PbuE� � C�PEarley� � f�S���� �� n� j ��� a� � � � ang�

De�nition ����� �correctness of a parsing schema�
A semiregular parsing system P is sound if F�P��V�P� � C�P�� i�e�� all valid
nal items are correct�
A semiregular parsing system P is complete if F�P� � V�P� � C�P�� i�e�� all
correct nal items are valid�
A semiregular parsing system is correct if F�P��V�P� � C�P�� i�e�� it is sound
and complete�
A semiregular parsing schema P is sound!complete!correct for a class of
grammars CG if P�G��a� � � � an� is sound!complete!correct for all G � CG
and a� � � � an � ���

CYK� buE� and Earley are correct semiregular parsing schemata �and
so are the other schemata that will be proposed in the remainder of this
report�� This is well�known from the literature and we will not further explore
the issue of how to prove the correctness of a parsing schema�

�� Generalization

Various kinds of relations between parsing algorithms can be formally estab�
lished by dening relations between their underlying parsing schemata� In
this section we will look at generalization of a schema� that can be obtained
by re�nement into a more detailed parsing schema and!or extension to a
larger class of grammars�

� The notion regularity was introduced in �Sik
�a� for parsing systems and
schemata that do not contain inconsistent speci�cations� viz� the empty set
of items� We do not need the regularity property in this context�

	�

Adding detail to a schema means more �rened� items� more deduction
steps� hence more work to parse a sentence� This is useful if it leads to qual�
itative improvements in the parsing algorithm� The canonical example �that
we spell out rst as an illustration� is that the bottom�up Earley parser is a
generalization of the CYK parser�

��� Some Examples

More precisely� but still informally� we distinguish the following basic kinds
of generalizations�

� A parsing schema P� is an item re�nement of a schema P� if a single item
in P� is broken down into multiple items in P� �and the set of deduction
steps adapted accordingly��

� A parsing schema P� is a step re�nement of a schema P� if a single deduc�
tion step in P� is decomposed into a sequence of deduction steps in P� �and
new items are introduced� when needed� to store the rened intermediate
results��

� A schema P� is called an extension of a schema P� if it is dened for a
larger class of grammars�

A relation is called a re�nement if it is a step renement� an item rene�
ment or a combination of these� A relation is called a generalization if it

is a renement� an extension or a combination of these� We write
ir
�� for

item renement�
sr
�� for step renement�

ref
�� for renement�

ext
�� for

extension� and
gen
�� for generalization�

Example ���� �CYK
gen
�� buE�

In order to generalize CYK into buE we introduce two intermediate parsing
systems CYK� and ECYK� such that

CYK
ir
�� CYK� sr

�� ECYK
ext
�� buE�

The only thing we change in CYK� is that CYK items �A� i� j� are replaced
by completed Earley items �A���� i� j�� We dene CYK� by specifying a
parsing system PCYK	 for an arbitrary grammar in CNF as follows�

ICYK	 � f�A���� i� j� j A�� � P � � 	 i 	 jg�

D��� � f�a� j

� j� � �A�a�� j

� j�g�

D��� � f�B���� i� j�� �C���� j� k� � �A�BC�� i� k�g�

DCYK	 � D��� �D����

Note that a single CYK item �A� i� j� may correspond to multiple Earley
items �A���� i� j�� �A���� i� j�� etc�� if there are di�erent productions with
left�hand side A� That is why this is an item renement� not merely a change
of notation�
In the next step� we rene a single CYK deduction step

	�

�B���� i� j�� �C���� j� k� � �A�BC�� i� k�

into a sequence of deduction steps

� �A��BC� i� i��

�A��BC� i� i�� �B���� i� j� � �A�B�C� i� j��

�A�B�C� i� j�� �C���� j� k� � �A�BC�� i� k��

This is encorporated in the parsing schema ECYK� dened by a parsing
system PECYK for an arbitrary grammar in CNF �

IECYK � f�A����� i� j� j A��� � P � � 	 i 	 jg�

DInit � f� �A���� j� j�g�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� i� j
�g�

DCompl � f�A���B�� i� j�� �B���� j� k� � �A��B��� i� k�g�

DECYK � DInit �DScan �DCompl�

ECYK is identical to buE� cf� Example 	�	� except for the fact that ECYK
is dened only for grammars in CNF � Hence� obviously� buE is an extension
of ECYK�

��� Formalization

We will now formalize the concepts that have been informally introduced
and illustrated above� In the sequel we write Pi for a parsing system Pi �
hI i� H�Dii� we write �i and ��i for an inference relation and its closure� based
on Di� cf� Section ��
�
For the denition of item renement we make use of an item mapping

f � I��I� that maps items of P� to items of P�� The function f can be
extended to cover sets of items in the usual way� For Y � I� we dene

f�Y � � f� � I� j �
 � Y � f�
� � �g

Moreover� we extend
 f to a function f � I��H�I��H by letting f�h� � h
for h � H � Then we can apply f to deduction steps by letting

f�
�� � � � �
k � �� � f�
��� � � � � f�
k� � f����

In the same fashion we can extend f to deduction sequences�� to sets of
deduction steps and to sets of deduction sequences� The equation

� � f���

is a clear and concise notation for� Y� �� x� �� � � � �� xj if and only if there
are Y� � 	�n�H� � I�� and x��� � � � � x

�

j � I� with f�Y�� � Y� and f�xi� � x�i
for
 	 i 	 j� such that Y� �� x�� �� � � � �� x

�

j �

� Assuming that H � I � �� otherwise we demand that f restricted to H � I is
the identity function�

� Note� however� that the image of a deduction sequence is not necessarily a de�
duction sequence �cf� De�nition ����� hence f � ����� and f � �����������
are partial functions�

	�

De�nition ���� �item re�nement�

The relation P�
ir

� P� holds between parsing systems P� and P� if there is

an item mapping f � I��I� such that

�i� I� � f�I���
�ii� � � f����

Let P� and P� be parsing schemata for some class of grammars CG� The

relation P�
ir
�� P� holds if P��G��a� � � � an�

ir

� P��G��a� � � � an� for all G �

CG and for all a� � � � an�

The rst condition in Denition ��	 states that no items are "lost� in the
renement� the second condition ensures that deduction sequences are carried
over into the rened system� Deduction sequences are needed in the deni�
tion of renement� in order to guarantee the transitivity of generalization� A
weaker condition

�ii�� ��� � ��� �

which might seem su�cient� will not do� An example of a relation that satises
�i� and �ii�

�

but is not a renement is given by

P� � hf��
� �g� fhg� fh � �� h �
� � � ��
 � �gi�

P� � hf��� ���
� �g� fhg� fh � ��� h �
� �� � ��
 � �gi�

with f��i� � �� f is the identity function otherwise�

De�nition ���� �step re�nement�

The relation P�
sr

� P� holds between parsing systems P� and P� if

�i� I� � I��
�ii� ��� � ��� �

Let P� and P� be parsing schemata for some class of grammars CG� The
relation P�

sr
�� P� holds if P��G��a� � � � an�

sr

� P��G��a� � � � an� for all G �

CG and for all a� � � � an�

A su�cient condition� for �ii� in Denition ��� is D� � ��� � that is� a
single deduction step in P� is emulated by a sequence of deduction steps in
P�� Furthermore� the domain of P� may contain items that did not exist in
P��

De�nition ���� �re�nement�
Let P� and P� be parsing schemata for a class of grammars CG� The relation

P�
ref
�� P� holds if there is a parsing schema P

� such that P�
ir
�� P� sr

�� P��

De�nition ���� �extension�
Let P� be a parsing schema for a class of grammars CG�� P� a parsing schema

for a class of grammars CG� and CG� � CG�� The relation P�
ext
�� P� holds

if P��G� � P��G� for all G � CG��

	 We write ��� just for symmetry� because all other relations de�ned in this section
and the next one display the same kind of symmetry�

	�

De�nition ��	� �generalization�
Let P� be a parsing schema for a class of grammars CG�� P� a parsing schema

for a class of grammars CG� and CG� � CG�� The relation P�
gen
�� P� holds

if there is parsing schema P� such that P�
ref
�� P� ext

�� P��

��� Properties of Generalization

Proposition ��
�

Each of the relations
ir
�� �

sr
�� �

ext
�� is transitive and re�exive� �

If xR�y implies xR�y for relations R�� R�� we write R� � R� �the set
inclusion is in the Cartesian product of the domain of the relations��

Corollary ����

�a�
ir
�� �

ref
�� �

�b�
sr
�� �

ref
�� �

�c�
ref
�� �

gen
�� �

�d�
ext
�� �

gen
�� �

Next� we will establish the transitivity of
ref
�� and

gen
�� � The former is

not entirely trivial�

Lemma ���� �re�nement lemma�

Let P�� P�� P� be parsing systems such that P�
sr

� P�

ir

� P�� Then there is

a parsing system P� such that P�
ir

� P�

sr

� P��

Let P�� P�� P� be parsing schemata for some class of grammars CG� such

that P�
sr
�� P�

ir
�� P�� Then there is a parsing schema P� for CG such that

P�
ir
�� P�

sr
�� P��

Proof� It su�ces to prove the lemma for parsing systems� the generalization
to parsing schemata is trivial� Let f � I��I� be the item mapping from P�

to P�� Then we dene P� by

I� � fx � I� j f�x� � I�g�

D� � f�Y� x� � 	�n�H � I��� I� j f��Y� x�� � D� � Y ��� xg�

We now have to show that P� is a parsing schema� that P�
ir

� P� holds�

and that P�
sr

� P� holds� We prove P�

ir

� P�� as an exemplary case �the

only one that needs some care in spelling out the details� and omit the other
parts�
From the denition of P� it is clear that I� � f�I��� hence it remains to be
shown that � � f����

�i� f��� � ��
This follows from the denition of P� with induction on the length of
deduction sequences�

	

�ii� � � f����
We use an ad�hoc notation Y �� x� �� � � � �� xj � � meaning that
there are �possibly empty� sequences zi��� � � � � zi�mi

for
 	 i 	 j such
that Y � z��� � � � � � z��m�

� x� � � � � � zj�� � � � � � zj�mj
� xj � �

Assume now that Y �� x� �� � � � �� xj � �� Because P�
sr

� P� it

must hold that Y ��� x� ��� � � � ��� xj � �� Moreover� from P�
ir

� P�

we obtain Y � � 	�n�H � I�� � I� with f�Y �� � Y and x��� � � � � x
�

j with
f�x��� � x�� � � � � f�x

�

j� � xj � such that Y
� ��� x�� �

�
� � � � ��� x�j � ��

From the denition of P� it follows that Y
� �� x�� �� � � � �� x

�

j � ��
Thus we have shown Y �� x� �� � � � �� xj � f��� which proves �ii�� �

Lemma ����
Let P� be a parsing schema for a class of grammar CG� and P�� P� be

parsing schemata for a class of grammar CG�� such that P�
ext
�� P�

ref
�� P��

Then there is a parsing schema P� such that P�
ref
�� P�

ext
�� P��

Proof� Dene P��G� � P��G� for G � CG�� �

Theorem ����� The relation
gen
�� is transitive and re�exive�

Proof� Straightforward from Lemmata ��� and ��
�� �

Correctness of parsing schemata is� in general� not preserved by gener�
alization� A useful partial result is that completeness is preserved by

sr
�� �

that is� if P� is a complete semiregular parsing schema and P�
sr
�� P�� then

P� is a complete semiregular parsing schema�

�� Filtering

Generalization increases the number of steps that have to be performed�
but the more ne�grained look on the parsing process may allow qualitative
improvements� Filtering is� in a way� the reverse� The purpose is to obtain
quantitative improvements in parsing algorithms� by decreasing the number
of items and deduction steps� It is often possible to argue that some kinds
of items need not be recognized� because they cannot contribute to a valid
parse� Discarding those items from the parsing schema means less work for the
algorithm that implements the schema� but sometimes a more complicated
description of the schema�
We distinguish three kinds of ltering�

� static �ltering � redundant parts of a parsing schema are simply discarded�
� dynamic �ltering � the validity of some items can be made dependent on
the validity of other items� hence context information can be taken into
account�

� step contraction� sequences of deduction steps are replaced by single de�
duction steps�

��

The theoretical framework is simple and elegant� As in the previous section
we assume that a parsing system Pi is dened as hIi� H�Dii� with inference
relations �i and ��i on Pi according to Section ��
�

��� Static Filtering

Static ltering can be demonstrated by means of a very simple example �a
more exciting example will follow in Section ��	��
A nonterminal A � N is called reduced if

�i� there are v� w � �� such that S �� vAw�
�ii� there is some w � �� such that A�� w�

A grammar is called reduced if all its nonterminals are reduced� Let G � CFG
be an arbitrary context�free grammar� We can dene a reduced grammar G�

by

N � � fA � N j A is reducedg

P � � fA�� � P j A � N � � � � �N � ����g

G� � �N �� �� P �� S��

If G is reduced� then G � G�� Furthermore� it is clear that G and G� yield
the same parse trees for any sentence�

Example ���� �reduced buE�
Let PbuE be a parsing system for some grammar G and string a� � � � an� We
dene a parsing system PbuE� by

IbuE� � f�A����� i� j� j A��� � P �g

and DbuE� as in Example 	�	� Because D � 	�n�H � I� � I by denition�
only deduction steps remain that contain non�reduced nonterminals wherever
applicable�
A parsing schema buE� is dened for all G � CFG and a� � � � an � �� by
buE��G��a� � � � an� � PbuE� � as usual�

De�nition ���� �static �ltering�

The relation P�
sf

� P� holds if

�i� I� � I�
�ii� D� � D��

Let P� and P� be parsing schemata for some class of grammars CG�

The relation P�
sf
�� P� holds if P��G��a� � � � an�

sf

� P��G��a� � � � an� for all

G � CG and for all a� � � � an�

�	

��� Dynamic Filtering

The purpose of dynamic ltering is to take context information into account�
If some type of constituent can only occur directly after another type of
constituent� we may defer recognizing the former until we have established
the latter� The technique to do this is to add antecedents to deduction steps�
If we decided that an item � is to be valid only if some other item � is also
valid� we simply replace deduction steps
�� � � � �
k � � by deduction steps

�� � � � �
k� � � ��

De�nition ���� �dynamic �ltering�

The relation P�
df

� P� holds if

�i� I� � I�
�ii� �� � ���

Let P� and P� be parsing schemata for some class of grammars CG�

The relation P�
df
�� P� holds if P��G��a� � � � an�

df

� P��G��a� � � � an� for all

G � CG and for all a� � � � an�

Proposition ���� buE
sf
�� Earley�

Proof� We consider the parsing systems PbuE and PEarley for some given G
and a� � � � an� By the denition of the two parsing systems �cf� Examples 	��
and 	�	�� IbuE � IEarley holds� In order to prove �buE � �Earley� it su�ces
to show that �buE � DEarley� For each deduction step PEarley we show that
it is an inference in PbuE�
Every init� scan� and complete step in PEarley also exists in PbuE� Only
the Earley predict steps have to be accounted for� Let �A����� i� j� �Earley
�B���� j� j� be such a predict step� Then PbuE contains an init step �buE
�B���� j� j�� hence� by denition of the inference relation �� it holds that
�A����� i� j� �buE �B���� j� j�� �

Another example of dynamic ltering is the application of look�ahead�
Recognition of an item does not need to take place if the next symbol�s� in
the string cannot logically follow� given the context of the item� For the sake
of convenience� we augment the grammar with an end�of�sentence marker #
and a new start symbol S�� Assuming fS�� #g � V � �� we dene

N � � N � fS�g�

�� � � � f#g�

P � � P � fS��S#g�

G� � �N �� ��� P �� S���

There is only a single nal item� �S��S�#� �� n�� Furthermore� we dene the
function Follow � N�	���� by

Follow�A� � fa j ��� � � S� �� �Aa�g�

��

Schema ���� �E����
The parsing schema E��� is dened by a parsing system PE��� for any G �
CFG and for any a� � � � an � �� by

ICompl � f�A����� i� j� j A��� � P � � � 	 i 	 jg�

H � f�a� i

� i� j a � ai �
 	 i 	 ng � f�#� n� n
�g�

DInit � f � �S���S#� �� ��g�

DPred � f�A���B�� i� j� � �B���� j� j�g�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� j� j
�g�

DCompl � f�A���B�� h� i�� �B���� i� j�� �a� j� j
�
� �A��B��� h� j� j a � Follow�B�g�

DE��� � DInit �DPred �DScan �DCompl�

The astute reader may wonder why the look�ahead is restricted to a �
Follow�B� and not extended to� for example� a � First�� Follow�A���
A similar lter� moreover� could be applied to the scan steps� This schema
incorporates the look�ahead that is used in the construction of an SLR�
�
parsing table� It can be shown that an SLR�
� parser is an implementation
of E���� More examples of dynamic ltering will follow in Sections ��	

A few important remarks must be made about static and dynamic lter�
ing�
Firstly� dynamic ltering reduces the number of valid items� but at the

same time reduces the possibilities for parallel processing� The bottom�up
Earley parser has been introduced as a non�ltered version of Earley�s algo�
rithm� specically because it can be carried out in parallel in a straightforward
manner�
Secondly� the two types of lters refer to di�erent optimization techniques

in parser implementation� Static �i�e� compile�time� optimization can take the
specic grammar structure into account� but is necessarily unrelated to the
sentence� Dynamic optimization is run�time� and hence can take into account
those parts of the sentence that have been analysed already� It is exactly this
di�erence that is expressed on a higher level of abstraction�
Note that every static lter is also a dynamic lter� This means that any

static optimization could also be done run�time� rather than compile�time
�but the former is generally less e�cient��

��� Step Contraction

The last and most powerful type of ltering is step contraction� This is the
inverse of step renement� cf� Denition ����

 Note� however� that a deterministic SLR�	� parser is de�ned only for a suitably
small subclass of context�free grammars� See also Section ��

��

De�nition ��	� �step contraction�

The relation P�
sc

� P� holds if

�i� I� � I�
�ii� ��� � ��� �

Let P� and P� be parsing schemata for some class of grammars CG�
The relation P�

sc
�� P� holds if P��G��a� � � � an�

sc

� P��G��a� � � � an� for all

G � CG and for all a� � � � an�

As a realistic example we give the parsing schema that underlies the
improved Earley algorithm of Graham� Harrison and Ruzzo �GHR���� This
is a combination of two di�erent step contractions�

� nullable symbols �i�e� symbols that can be rewritten to the empty string�
can be skipped when the dot is worked rightwards through a production�

� chain derivations �i�e� derivations of the form A �� B� are reduced to
single steps�

Schema ��
� �GHR�
The parsing schema GHR is dened by a parsing system PGHR for any
G � CFG and for any a� � � � an � �� by

IGHR � f�A����� i� j� j A��� � P � � 	 i 	 jg�

DInit � f� �S����� �� �� j � �� �g�

DScan � f�A���a��� i� j�� �a� j� j
� � �A��a���� i� j
�
j � �� �g�

DC� � f�A���B��� i� j�� �B���� j� k� � �A��B���� i� k�
j i � j � k � � �� �g�

DC� � f�A���B��� i� i�� �C���� i� j� � �A��B���� i� j�
j i � j � B �� C � � �� �g�

DPred � f�A���B�� i� j� � �C������� j� j� j B �� C� � �� �� �g�

DGHR � DInit �DScan �DC� �DC� �DPred�

Proposition ���� Earley
sc
�� GHR� �

Other examples of step renement follow in Section ��
�

��� Properties of Filtering Relations

Unlike similar properties of renement and generalization� the following are
trivial�

Proposition ����
sf
�� �

df
�� �

sc
�� � �

Proposition ����
sf
�� �

df
�� � and

sc
�� are transitive and re�exive� �

Proposition �����
sf
�� �

df
�� � and

sc
�� preserve soundness� �

�

�� Some Larger Examples

The emphasis in the previous sections was on formalizing the theoretical
concepts� In ��
���� we present some nontrivial examples of parsing schemata
and relations between them� In ��� we review the value of these exercises�

	�� Left�Corner Parsing

As a more elaborate example of how lters can be used to relate parsing
schemata to one another� we will precisely establish the relation between Ear�
ley parsing and Left�Corner parsing� We dene a parsing schema LC that
underlies the �generalized� Left�Corner algorithm that is known from the lit�
erature� cf� �M$a��� Ned��� �as opposed to deterministic LC parsing �RL�����

Along the way will show that Earley
sc
�� LC� As a conceptual aid� we will

rst consider a �bottom�up Left�Corner� parser that is a rather trivial step
contraction of bottom�up Earley�
Consider an item of the form �A�B��� i� j� in PbuE� The item is valid if

some �B���� i� j� is valid� because �A��B�� i� i� is valid by denition� So we
can contract the sequence of deduction steps

� �A��B�� i� i��
�A��B�� i� i�� �B���� i� j� � �A�B��� i� j��

to a single deduction step

�B���� i� j� � �A�B��� i� j��

A similar argument applies to items of the form �A�a��� i� j� and the appro�
priate scan step� The �bottom�up� left�corner step is illustrated in Figure ��
�
This is incorporated in the following bottom�up left�corner parsing schema�

�
�
��

A
A
AA

i j

B

�
�
�
��

A
A
AA

i j

B
�
�
A
A
Q
QQ
�
� � �

A

Fig� ���� The �bottom�up� left�corner step

Schema 	��� �buLC�
The parsing schema buLC is dened by a parsing system PbuLC for any
G � CFG and for any a� � � � an � �� by

I��� � f�A�X���� i� j� j A�X�� � P � � 	 i 	 jg�

I��� � f�A��� j� j� j A�� � P � j �g�

IbuLC � I��� � I����

D� � f� �A��� j� j�g�

��

DLC�a� � f�a� j

� j� � �B�a��� j

� j�g�

DLC�A� � f�A���� i� j� � �B�A��� i� j�g�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� i� j
�g�

DCompl � f�A���B�� i� j�� �B���� j� k� � �A��B��� i� k�g�

DbuLC � D� �DLC�a� �DLC�A� �DScan �DCompl�

Proposition 	��� buE
sc
�� buLC� �

Things get more interesting � and rather more complicated � if we apply
the same transformation to Earley� rather than buE� It is not the case that
�A��B�� i� i� is always valid� Therefore� the replacement of �A��B�� i� i��
�B���� i� j� � �A�B��� i� j� by a deduction �B���� i� j� � �A�B��� i� j�
should be allowed only in those cases where �A��B�� i� i� is actually valid�
Under which conditions is this the case�
The item �A��B�� i� i� is predicted by Earley only if there is some valid

item of the form �C���A�� h� i�� But if� by chance� � � �� then this is one of
the very items that we seek to eliminate� In that case we continue the search
for an item that licences the validity of �C��A�� i� i�� This search can end in
two ways� either we nd some item with the dot not in leftmost position� or
�only in case i � �� we may move all the way up to �S���� �� ���

De�nition 	��� �left�corner relation�
The left corner of a non�empty production is the leftmost right�hand side
symbol �i�e�� production A�X� has left corner X�� the left corner of an
empty production is ��
The relation �� on N � �N �� � f�g� is dened by

A �� U if there is p � A�� � P with U the left corner of p�

The transitive and re�exive closure of �� is denoted �
�
� �

We can now proceed to dene a schema LC for a left�corner parser�
Clearly� �A��B�� i� i� will be recognized by the Earley algorithm if there
is some valid item �C���E�� h� i� with E ��� A� Moreover� there is such an
item with � �� �� unless� perhaps� i � � and C � S� For this exceptional
case we retain items �S���� �� �� as usual� The discarded complete steps are
replaced by left�corner steps as follows�

�C���E�� h� i�� �B���� i� j� � �A�B��� i� j� only if E ��� A�

see Figure ��	� similarly for consequents of the form �A�a��� j

� j��
The general idea of a left�corner step involves slightly di�erent details for

nonterminal� terminal� and empty left corners� Thus we obtain the following
parsing schema�

Schema 	��� �LC�
The parsing schema LC is dened by a parsing system PLC for any G � CFG
and for any a� � � � an � �� by

��

�
�

�
�
�

�
�
�
�
�

A
A
Q
QQ

h i

E �

� � �

C

� �
�
��

A
A
AA

i j

B

�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

A
A
�
�
HHHH
E �

� � �

C

h i j

�
��

�
��

B

�
�
A
A
Q
QQ
�
� � �

A

���

Fig� ���� The �pre�
dictive� left�corner
step

I��� � f�A�X���� i� j� j A�X�� � P � � 	 i 	 jg�

I��� � f�A��� j� j� j A�� � P � j �g�

I��� � f�S���� �� �� j S�� � Pg�

ILC � I��� � I��� � I����

DInit � f� �S���� �� ��g�

DLC�A� � f�C���E�� h� i�� �A���� i� j� � �B�A��� i� j� j E ��

� Bg�

DLC�a� � f�C���E�� h� i�� �a� i� i
� � �B�a��� i� i
� j E ��

� Bg�

DLC��� � f�C���E�� h� i� � �B��� i� i� j E ��

� Bg�

DScan � f�A���a�� i� j�� �a� j� j
� � �A��a��� i� j
�g�

DCompl � f�A���B�� i� j�� �B���� j� k� � �A��B��� i� k�g�

DLC � DInit �DLC�a� �DLC�A� �DLC��� �DScan �DCompl�

Proposition 	��� buLC
df
�� LC� �

Proposition 	�	� Earley
sf
�� LC� �

When it comes to implementing the schema LC� a practical simplica�
tion can be made� In order to apply a left�corner step we have to look for
some item of the form �C���E�� h� i�� with arbitrary C� �� �� and h� We can
introduce a special predict item� denoted �i� E�� to indicate that E has been
predicted as a feasible constituent at position i� The details are straightfor�
ward and need not be spelled out here�

	�� De Vreught and Honig�s Algorithm

We dene several variants of a parsing schema for an algorithm dened by de
Vreught and Honig �VH��� VH�
�� primarily intended for parallel processing�
Rather than working through a production from left to right� as is done in
Earley�s algorithm� one could start at an arbitrary position in the right�hand
side and from there extend the recognized part in both directions� To this

��

end� we use double�dotted items of the form �A������� i� j�� Recognition of
such an item indicates that � �� ai�� � � � aj � while � and � still have to be
expanded� An item �A������ i� j� corresponds to the canonical Earley item�
The algorithm of de Vreught and Honig has two basic steps� called include

and concatenate� The idea of both steps is illustrated in Figure ���� The
following schema for our rst version of the algorithm should be clear�

�
�
�

A
A
A

i j

B

�
�
�
�

A
A
A

i j

B

�
��

Q
QQ�� AA

A

�
� � �

�
� � �

��� �� AA
HHH�

�
�
��
i j

�
� � �

�� ���
� � �

�

HHH����
��� A
A
A
AA

j k

���
� � �

�� �
� � �

�

���
HHH�� ���

�
�
��

A
A
A
AA

i k

�
� � �

���� �
� � �

Fig� ���� The include
and concatenate steps

Schema 	�
� �dVH��
The parsing schema dVH� is dened by a parsing system PdVH� for any
G � CFG and for any a� � � � an � �� by

IdVH� � f�A������� i� j� j A���� � P � � 	 i 	 j
� �� �� � or �� � ��g�

DInit � f�a� j

� j� � �A���a��� j

� j�g�

D� � f � �B���� j� j�g�

DIncl � f�B����� i� j� � �A���B��� i� j�g�

DConcat � f�A���������� i� j�� �A���������� j� k�
� �A���������� i� k�g�

DdVH� � DInit �D� �DIncl �DConcat�

Next� we observe that DdVH� is redundant� in the following way� An item
�A���XY Z��� i� j� can be concatenated in two di�erent ways�

�A���X�Y Z�� i� k�� �A��X�Y Z��� k� j� � �A���XY Z��� i� j��

�A���XY �Z�� i� l�� �A��XY �Z��� l� j� � �A���XY Z��� i� j��

Moreover� if �A���XY Z��� i� j� is valid� then each of the four antecedents is
also valid for some value of k and l� Hence� if we delete the former deduction
step from D� the set of valid items is not a�ected� For items with more than
� symbols between the dots� the redundancy in deduction steps increases
accordingly�

��

Schema 	��� �dVH��
In the specication of PdVH� in Schema ��� we replace D

Concat by

DConcat � f�A�����X�� i� j�� �A����X��� j� k� � �A����X��� i� k�g�

and leave I� DInit� D� and DIncl as in Schema ����

Further optimization of dVH� is possible� Observe that items of the form
�A������ i� j� with j�j
 and j�j 	 are useless in PdVH�� in the sense that
they do not occur as an antecedent in any derivation step� Hence� these items
can be discarded� Similarly� any item of the form �A������� i� j� with j�j
�
j�j 	 and j�j
 can concatenate to the right� but cannot contribute to
the recognition of an item of the form �A����� i� j�� Hence the whole set

f�A������� i� j� j j�j
 � j�j 	g

can be considered useless� these items can only be used to recognize further
items in this set� but none of these items can be used to recognize an item
outside this set� Hence we delete this set and discard all deduction steps that
have one of these items as antecedent or as consequent�

Schema 	��� �dVH��
The parsing schema dVH� is dened by a parsing system PdVH� for any
G � CFG and for any a� � � � an � �� by

I��� � f�A���X��� i� j� j A��X� � P � � 	 i 	 jg�

I��� � f�A��X���� i� j� j A�X�� � P � � 	 i 	 jg�

I��� � f�A���� j� j� j A�� � P � j �g�

IdVH� � I��� � I��� � I����

DInit � f�a� j

� j� � �A���a��� j

� j�g�

D� � f� �B���� j� j�g�

DIncl � f�B����� i� j� � �A���B��� i� j�g�

DConcat � f�A����X�� i� j�� �A���X��� j� k� � �A���X��� i� k�g�

DdVH� � DInit �D� �DIncl �DConcat�

Proposition 	��� dVH�
sf
�� dVH�

sf
�� dVH�� �

The various parsing schemata for the algorithm of de Vreught and Honig
can be dynamically ltered with look�ahead and look�back� The original algo�
rithm as proposed in �VH��� is an implementation of dVH� with one position
look�ahead and look�back�

Proposition 	���� dVH�
sc
�� buLC�

�

Proof� In order to show that dVH� can be ltered to buLC� we have to
realize that a single�dotted item �A����� i� j� and a double�dotted item
�A������ i� j� are merely di�erent notations for the same object� Hence�
clearly� IbuLC � IdVH��
It remains to be shown that ��buLC � ��dVH�� To this end it su�ces to
show that for every deduction step
� � � � �
k � � � DbuLC it holds that

� � � � �
k ��dVH� ��
An arbitrary deduction step in DCompl in PbuLC

�A����B�� i� j�� �B����� j� k� � �A���B��� i� k�

is emulated in PdVH� by

�B����� j� k� � �A���B��� j� k��

�A����B�� i� j�� �A���B��� j� k� � �A���B��� i� k��

similarly for DScan�
The other cases are trivial� hence dVH�

sc
�� buLC� �

By Propositions ��� ��
�� and ��

 we have shown that dVH�
sc
�� LC�

The conclusion should not be� however� that de Vreught and Honig�s algo�
rithm is a sub�optimal version of �bottom�up� left�corner parsing� A sub�
tle but decisive change took place in the seemingly harmless static lter

dVH�
sf
�� dVH�� where we laid down that the the concatenation of right�

hand side elements is from left to right�
A di�erent� more general way to eliminate the redundancy in dVH� is

to start expanding the right�hand side from the �most interesting� symbol�
called the head of a production� rather than the leftmost symbol� This leads
to so�called Head Corner �HC� parsers� A bottom�up head�corner parser that
is very similar to the one dened by Satta and Stock�� �SS��� can be obtained
as a step contraction of the Vreught and Honig�s algorithm along similar lines�
top�down prediction can be added as in �SA����
A context�free head grammar� in which every production has some right�

hand side symbol assigned as head� can be seen as a generalization of a
context�free grammar �take the left corner by default if no head has been
specied explicitly�� A head�corner parsing schema HC can be specied that
is a generalization of LC�

	�� Rytter�s Algorithm

Another example of step renement is provided by Rytter�s algorithm �Ryt���
GR���� This algorithm has theoretical� rather than practical value� It allows

�� If there are right�hand side symbols both to the left and the right of a head�
there is a choice in which direction the item should be expanded �rst� Satta
and Stock leave this choice to the parser but block the other step when a choice
has been made� This leads to a nondeterministic set of valid items� which is
rather undesirable in this framework� The nondeterminism can be removed by
prescribing a choice at the level of the parsing schema�

��

parallel recognition in logarithmic time� but requires O�n
� processors to
do so� The algorithm is based on CYK � hence only dened for grammars
in Chomsky Normal Form � but can generalized to arbitrary context�free
grammars just as CYK was generalized to buE�
In addition to the conventional CYK items we introduce Rytter items�

denoted �A� h� k�B� i� j�� A Rytter item is recognized if

A�� ah�� � � � aiBaj�� � � � ak�

that is� the part B �� ai�� � � � aj is still missing� cf� Figure ����

�
�
�
��

A
A
A
AA�� AA

h i j k

A

B

Fig� ���� A Rytter item �A	 h	 k�B	 i	 j�

�
�
�

A
A
A

i j

B

�

�
�
�
��

A
A
A
AA�

��

i j k

A

C �
�
�

A
A
A

j k

C

�

�
�
�
��

A
A
A
AAA

AA

i j k

A

B

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

h i l m

A

B

�

�
�
�
��

A
A
A
AA�� AA

i j k l

B

C �

�
�
�
�
�
�

A
A
A
A
A
A�� AA

h j k m

A

C

�
�
�
�
�
�

A
A
A
A
A
A

�
��
A
AA

h i j k

A

B
�

�
�
�

A
A
A

i j

B

�

�
�
�
�
�
�

A
A
A
A
A
A

h k

A

Fig� ���� Di�erent types
of deduction steps in Ryt�
ter�s algorithm

Another way to interpret a Rytter item is as a conditional item� if �B� i� j�
is valid� then �A� i� j� is also valid� The di�erent kinds of deduction steps
�excluding the initial CYK steps� are shown in Figure ����
A CYK deduction step �B� i� j�� �C� j� k� � �A� i� k� can be rened into

�B� i� j� � �A� i� k�C� j� k�

�A� i� k�C� j� k�� �C� j� k� � �A� i� k��

�	

Note that� given �B� i� j� and �C� j� k�� we also could have used �A� i� k�B� i� j�
as an intermediate conditional item� In fact� unless i
 � j � k

� there are
many more ways to recognize �A� i� k�� by combining conditional items that
have been created at various stages� There is a massive redundancy in the
di�erent ways in which a single item can be recognized� It is this redundancy�
that guarantees the existence of a balanced recognition tree for each item�
which � given enough computing resources � allows for parallel parsing in
logarithmic time� For a proof� see �GR��� or �Sik��a� Sik����
A parsing schema for Rytter�s algorithm is dened as follows� The oper�

ations associated with the sets of deduction steps D���� D���� and D���� are
originally called activate� square� and pebble� respectively� In this context the
original names do not make much sense and we rather use numbers�

Schema 	���� �Rytter�
The parsing schema Rytter is dened by a parsing system PRytter for any
G � CNF and for any a� � � � an � �� by

I��� � f�A� i� j� j A � N � � 	 i � jg�

I��� � f�A� h� k�B� i� j� j �A� h� k� � I � �B� i� j� � I
� h 	 i � j 	 k � �h �� i or j �� k�g

IRytter � I��� � I����

D��� � f�a� i

� i� � �A� i

� i� j A�a � Pg�

D��a� � f�B� i� j� � �A� i� k�C� j� k� j A�BC � Pg�

D��b� � f�C� j� k� � �A� i� k�B� i� j� j A�BC � Pg�

D��� � f�A� h�m�B� i� l�� �B� i� l�C� j� k� � �A� h�m�C� j� k�g�

D��� � f�A� h� k�B� i� j�� �B� i� j� � �A� h� k�g�

DRytter � D��� �D��a� �D��b� �D��� �D����

Between CYK and Rytter�s algorithm another algorithm is hiding that is
not uninteresting� It addresses the problem of parallel on�line parsing� The
symbols of a string arrive one by one� as the words of a sentence in spoken
natural language� If the processing of each word is nished when the next�
word arrives� parsing can be done in real time� For on�line parsing� �gaps�
in items are useful in rightmost position� so that the still missing words
can be anticipated with a partial syntactic analysis� But the large number
of position markers� which accounts for the excessive resources required by
Rytter�s algorithm� can be reduced�
These ideas underly the denition of the following parsing schemaOCYK

�for on�line CYK�� In addition to �A� i� j� we introduce items �A� i� j�B� to
denote A �� ai�� � � � ajB� There is no need to specify the size of the �gap�
�B� j� ���

Schema 	���� �OCYK�
The parsing schema OCYK is dened by a parsing system POCYK for any
G � CNF and for any a� � � � an � �� by

��

I��� � f�A� i� j� j A � N � � 	 i � jg�

I��� � f�A� i� j�B� j A�B � N � � 	 i � jg�

IOCYK � I��� � I����

D��� � f�a� j

� j� � �A� j

� j� j A�a � Pg�

D��� � f�B� i� j� � �A� i� j�C� j A�BC � Pg�

D��� � f�A� i� j�B�� �B� j� k�C� � �A� i� k�C�g�

D��� � f�A� i� j�B�� �B� j� k� � �A� i� k�g�

DOCYK � D��� �D��� �D��� �D����

The schema OCYK can be implemented on a parallel random access
machine with O�n�� processors such that only constant time per word is
needed� cf� �Sik��b��

Proposition 	���� CYK
sr
�� OCYK

sr
�� Rytter� �

The schemataOCYK and Rytter can be generalized from CNF to CFG

in a way that is similar to the generalization CYK
gen
�� buE as discussed in

Example ��
�
Another way to obtain a logarithmic�time parallel parsing algorithm with

O�n
� processors is a step renement of any of the dVH schemata� similar

to CYK
sr
�� Rytter� This has been worked out in �VH�
��

	�� Some general remarks

After these extensive examples� some general remarks are due�
We have shown that the parsing schemata framework is able to handle

nontrivial algorithms of di�erent �avours� Very general frameworks� o�ering
a good insight at a high level of abstraction� have a risk of becoming unwieldy
when confronted with problems that stretch far beyond their canonical ex�
ample� The fact that we were able to cover these algorithms with su�cient
clarity provides circumstantial evidence that the parsing schemata framework
makes abstractions that are right in some way�
The above examples are taken from the computer science and computa�

tional linguistics literature on parsing� but some variants �dVH� andOCYK
in the discussed examples� have been discovered as a result of analysing these
algorithms by means of parsing schemata� Also� the close relation between
Earley parsing and Left�Corner parsing was noticed in �Sik��a� for the rst
time�
An inevitable weakness of the formalism is a diminished understanding

of practical algorithm e�ciency� Because of the absence of any kind of data
structure it is not immediately clear what the algorithmic complexity of a
parsing schema is� Improving the e�ciency of parsers� therefore� cannot be
done only at the level of schemata� How such an improved schema is to be

��

realized in a more e�cient implementation is a matter that has not been �and
need not be� addressed in this context�
But in order to nd optimizations of algorithms� one must have a very

good insight in the characteristic behaviour of an algorithm� It is such an
insight that is o�ered by the parsing schemata framework�

	� From Schemata to Algorithms

We will not discuss parsing algorithms in detail� but brie�y review how some
well�known classes of parsing algorithms relate to the framework presented
in the preceding sections�

Parsing schemata are a generalization of chart parsers �Kay��� Kay�	�
Win���� From the view that has been unfolded in the previous sections� we
can see a chart parser as the canonical implementation of a parsing schema�
A chart parser employs two data structures� An agenda� containing items

that will be actively used to search for new items that can be recognized� and a
chart� storing the items that need no further attention� At each step� one item�
say �� is taken from the agenda and put on the chart� The chart is searched
for all �combinations of� items
� � � �
k such that ��
� � � �
k � � � D� All
� that are found in the way and were not recognized before are added to
the agenda� An Earley chart parser� for example� is initialized with items
�a� i

� i� on the chart and �S���� �� �� on the agenda�
The control structure of the chart parser guarantees that the nal chart�

which is reached when the agenda is empty� contains V�P�� An issue that
has to be addressed �but not in this context� is how to structure the chart
and agenda so as to make the parser e�cient� For an overview of chart based
approaches to CYK and Earley parsing� see �Nij����
The chart parsing framework o�ers a generic way to handle nondetermin�

ism� Hence it is not surprising that chart parsers has attracted widespread
attention in computational linguistics�
Logical deduction as a basis for the description of chart parsers is due to

Pereira and Warren �PW���� But our framework has a rather di�erent em�
phasis� While the �Parsing as Deduction� approach is primarily interested
in connecting the parsing logic with unication�based grammar formalisms�
parsing schemata use deduction merely as a convenient notation for describ�
ing the essential traits of arbitrary parsing algorithms� We come back to
unication grammars in Section ��

A di�erent parsing paradigm is provided by the pushdown automaton
�PDA�� A fundamental theorem in formal language theory states that the
class of languages accepted by �nondeterministic� PDA�s is equal to the
class of languages generated by context�free languages� Many parsing al�
gorithms from the eld of compiler construction are based on the PDA
paradigm� The canonical example is the family of LR�parsers� discovered by
Knuth �Knu��� and extended to the more practical SLR and LALR parsers by

�

DeRemer �DeR��� DeR�
�� See �ASU��� for a good introduction and �Nij���
for an extensive bibliography of LR parsing�
While deterministic LR parsers on restricted classes of context�free gram�

mars are particularly e�cient� nondeterministic LR parsers �known as gen�
eralized LR �GLR� parsers� have been introduced to cover wider classes
of grammars� in particular for use in computational linguistics� A general
method to handle nondeterministic PDA�s in an e�cient manner has been
given by Lang �Lan���� Generalized LR parsing has attracted more attention
in the form of Tomita�s algorithm �Tom���� based on a graph�structured stack
as the data structure to handle the ambiguities that occur during parsing�
Tomita�s algorithm cannot handle certain classes of grammars �cyclic

grammars and grammars with hidden left�recursion���� Rekers has improved
Tomita�s algorithm to handle these grammars as well �Rek�	�� See also �Nij�
�
for a historic overview and �Ned��� for some optimizations in generalized LR
parsing�

The question arises how PDA�based algorithms like LR relate to pars�
ing schemata� LR parsers use items compile�time in the construction of the
parsing table� The states of an LR parser are in fact sets dotted productions
A����� A state comprises those productions that could apply at the current
point in the parsing process� One can partially uncompile the various LR�
type algorithms and make these dotted rules visible during parsing� It is easy
to add position markers to a dotted rule �viz�� the position where a particu�
lar production was started and the current position�� This yields Earley�type
items� An item is recognized when a state that contains the dotted rule� in
combination with the appropriate position markers� is pushed onto the stack�
An LR parser� therefore� implements some underlying parsing schema�

Let LR�� denote the parsing schema that underlies a generalized LR���

parser� Then it holds that LR��
ext
�� Earley��� In Section ��	 we dened

E��� such that SLR���
ext
�� E����

Having uncovered the close relation between the Algorithms of Earley and
Tomita� it is possible to apply many optimizations� extensions and variants
of one algorithm to the other as well� An interesting example of such cross�
fertilization is a parallel bottom�up Tomita parser �SL�	� Sik��a� Sik��� which
applies the usual �vertical� parallelization of Earley to the graph�structured
stack of Tomita �in contrast to the �horizontal� parallelization as in �TN���
NT��� TDL�
� that seems more obvious from the LR point of view�� which
showed reasonable e�ciency in a test implementation�

An ambiguous grammar can be supplied with various kinds of disam�
biguation rules so as to guarantee that only a single valid parse tree remains�
Consider� for example� the grammar

E�E E j E �E j a

�� A grammar is called hidden left�recursive if A�� �A� and ���
� The term
has been coined in �NS
���

�� GLR parsers typically assume grammars to be reduced� Hence� to be formally
correct� GLR applies only to a subset of CFG

��

for arithmetic expressions� The string a a � a � a has ve parse trees� But
by introducing operator precedence and associativity one can specify that
�a ��a � a� � a�� is the only valid parse�
Rather than constructing all parse trees and discarding the invalid ones�

an e�cient parser must apply the disambiguation rules locally during the
parsing process� For the above mentioned grammar for arithmetic expres�
sions� it is in fact possible to construct a deterministic LR�type parser by
disambiguating the states and transitions in the LR parsing table�
A general formal framework for this type of optimization is given by

Visser �KV��� Vis��� who applies disambiguation rules�� at the level of pars�
ing schemata�

Head�Driven parsing �Kay��� does not proceed through the sentence from
left to right� but starts with the most informative parts� This introduces
some extra administrative burden on the parser �as it jumps up and down
the sentence� but may lead to substantial savings if the semantic information
captured in the head excludes possibilities that would have been explored
without this information available� Bouma and van Noord �BN��� have done
several experiments with head�driven parsing and conclude �unsurprisingly�
that the e�ciency of the algorithm is critically dependent on the discrimina�
tive nature of the information captured in the heads�
The parsing schema for Head�Corner parsing presented in �SA��� has been

extended with typed structures and implemented by Moll �Mol���� It is used
as a parser in an experimental natural language dialogue system �A$a����

� Beyond context�free grammars

The parsing schemata framework has been specied for context�free gram�
mars� but it can easily be extended to other grammar formalisms as well�

Uni�cation�based grammars are the predominant class of grammar for�
malisms in current computational linguistics� Between
��� and
��� a va�
riety of di�erent kinds of unication grammar has been introduced� Some of
these� like Denite Clause Grammars �PW���� Functional Unication Gram�
mar �Kay���� and PATR�II �Shi��� have been introduced primarily to o�er
powerful formalisms for grammar description� others like Lexical�Functional
Grammar �KB�	� and Head�Driven Phrase Structure Grammar �PS��� PS���
with the aim to provide a theory of linguistic phenomena in natural language�
Unication grammars are related to attribute grammars �Knu��� Knu�
��

which are typically used in the eld of compiler construction� There are some
fundamental di�erences in the underlying logic� but these cannot be explained
satisfactorily in a few lines� The interested reader is referred to �Shi�	� and
�Car�	� for a thorough treatment of unication logics�

�� called �lters in the cited publications� but not to be confused with the �lters in
Section ��

��

One of the properties of context�free grammars that was felt constraining
for the description of natural languages is the rigid order of right�hand side el�
ements in a production� In Generalized Phrase Structure Grammar �G$a����
the notion of ID�LPgrammars was introduced� There are separate speci�
cations for the set of right�hand side elements of a production �immediate

dominance� and constraints on the order in which these elements may appear
�linear precedence�� A parsing schema for unication�based ID!LP�grammars
is given by Morawietz �Mor����

Unication grammars treat syntactic and semantic information in a uni�
form manner� One can reduce the role of syntax and consider syntactic cat�
egory as a feature like any other� Indeed there seems to be a trend that less
and less information is stored in the context�free backbone of a grammar �
i�e�� the cat feature in a feature structure � because various syntactic prop�
erties can be expressed more elegantly by other kinds of feature constraints�
A typical example is subcategorization of verbs� all verbs have syntactic cat�
egory verb� constraints on the various kinds of objects that a verb can take
are denoted in the subcat feature of the particular verb�
Nagata �Nag�	� and Maxwell and Kaplan �MK��� have independently

pointed out that this is convenient for writing natural language grammars�
but that it has repercussions on parsing e�ciency� Context�free parsing is
much more e�cient than feature structure unication� Hence is it not sur�
prising that the experiments reported in �Nag�	� and �MK��� show that the
e�ciency of unication grammar parsing can be increased by retrieving an
�implicit� context�free backbone from a unication grammar that covers more
than just the cat feature and using this context�free part for syntactic anal�
ysis�

�� Conclusions

Parsing schemata provide a general framework for description� analysis and
comparison of parsing algorithms� both sequential and parallel� Data struc�
tures� control structures and �for parallel algorithms� communication struc�
tures are abstracted from� This framework constitutes an intermediate� well�
dened level of abstraction between grammars �dening what valid parses
are� and parsing algorithms �prescribing how to compute these��
At this high level of abstraction� the essential traits of a particular type of

parser stand out more clearly� Moreover� it is possible to clarify exactly the
relationships between di�erent parsers that have some fundamental principles
common � even though the realizations of these parsers may look radically
di�erent� The price to be paid for this improved clarity and insight is the loss
of some details that are of practical importance� The notion of algorithm com�
plexity is strongly related to the data structures used to store intermediate
results�
The prime strength of parsing schemata� therefore� is in the analysis of

algorithms known to exist� Clarifying the basic traits of an algorithm may

��

suggest improvements that have been overlooked so far� Also� showing that
di�erent algorithms have closely related parsing schemata improves cross�
fertilization of extensions and optimizations to these algorithms�
We have presented many examples of parsing schemata and their usage�

in order to show that this framework� rather then being a mere theoretical
nicety� constitutes are a valuable contribution to parsing theory�

References

�A�a
�� op den Akker R�� ter Doest H�� Moll M�� Nijholt A� �	

��� Parsing in Di�
alogue Systems Using Typed Feature Structures� �th International Work�
shop on Parsing Technologies� Prague� Czech Republic� 	��		�

�ASU��� Aho A�V�� Sethi R�� Ullman J�D� �	
���� Compilers� Principles� Tech�
niques and Tools� Addison�Wesley� Reading� Mass�

�BN
�� Bouma G�� van Noord G� �	

��� Head�driven Parsing for Lexicalist
Grammars� Experimental Results� �th Meeting of the European Chapter
of the Association of Computational Linguistics� Utrecht� �	����

�Car
�� Carpenter B� �	

��� The Logic of Typed Feature Structures� Cambridge
University Press� Cambridge� UK�

�DeR�
� DeRemer F�L� �	
�
�� Practical Translators for LR�k� Languages� Ph�D�
Thesis� MIT� Cambridge� Mass�

�DeR�	� DeRemer F�L� �	
�	�� Simple LR�k� grammars� Communications of the
ACM ���
�	���

�Ear��� Earley J� �	
���� An E�cient Context�Free Parsing Algorithm� Ph�D�
Thesis� Carnegie�Mellon University� Pittsburgh� Pa�

�Ear��� Earley J� �	
���� An E�cient Context�Free Parsing Algorithm� Commu�
nications of the ACM ���
�	���

�G�a��� Gazdar G�� Klein E�� Pullum G�K�� Sag I�A� �	
���� Generalized Phrase
Structure Grammar� Harvard University Press� Cambridge� Mass�

�GHR��� Graham S�L�� Harrison M�A�� Ruzzo W�L� �	
���� An Improved Context�
Free Recognizer� ACM Transactions on Programming Languages and Sys�
tems �� 	�����

�GR��� Gibbons A�� Rytter W� �	
���� E�cient Parallel Algorithms� Cambridge
University Press� Cambridge� UK�

�JVW
	� Joshi A�� Vijay�Shanker K�� Weir D�� �	

	�� The Convergence of Mildly
Context�Sensitive Grammar Formalisms� In� Sells P�� Shieber S�M�� Wa�
sow T� �Eds�� Foundational Issues in Natural Language Processing � MIT
Press� Cambridge� Mass�� �	��	�

�Kas��� Kasami T� �	
���� An E�cient Recognition and Syntax Analysis Algo�
rithm for Context�Free Languages� Scienti�c Report AFCLR�������� Air
Force Cambridge Research Laboratory� Bedford� Mass�

�Kay��� Kay M� �	
���� Algorithm Schemata and Data Structures in Syntactic
Processing� Report CSL����	�� Xerox PARC� Palo Alto� Ca�

�Kay��� Kay M� �	
���� Algorithm Schemata and Data Structures in Syntactic
Processing� In� Grosz B�J�� Sparck Jones� K�� Webber B�L� �Eds�� Read�
ings in Natural Language Processing� Morgan Kaufmann� Los Altos� Ca�

�Kay��� Kay M� �	
���� Parsing in Functional Uni�cation Grammar� In� D�R�
Dowty� L� Karttunen� and A� Zwicky �Eds��� Natural Language Parsing�
Cambridge University Press� Cambridge� UK� ��	�����

�Kay�
� Kay M� �	
�
�� Head Driven Parsing� 	st International Workshop on
Parsing Technologies� Pittsburgh� Pa�� ������

��

�KB��� Kaplan R�M�� Bresnan J� �	
���� Lexical�Functional Grammar� a formal
system for grammatical representation� In� J� Bresnan �Ed��� The Mental
Representation of Grammatical Relations� MIT Press� Cambridge� Mass��
	�����	�

�Knu��� Knuth D�E� �	
���� On the Translation of Languages from Left to Right�
Information and Control 	� ������
�

�Knu��� Knuth D�E� �	
���� Semantics of Context�Free Languages� Mathematical
Systems Theory �� 	���	��

�Knu�	� Knuth D�E� �	
�	�� Semantics of Context�Free Languages� Correction�
Mathematical Systems Theory ��
��
��

�KV
� Klint P�� Visser E� �	

�� Using Filters for the Disambiguation of
Context�free Grammars� Proc� ASMICS Workshop on Parsing Theory�
Milan� October 	

� Report 	���
� Dept� of Computer Science� Univer�
sity of Milan� Italy�

�Lan�� Lang B� �	
��� Deterministic Techniques for E�cient Non�Deterministic
Parsers�
nd Colloquium on Automata� Languages and Programming� Lec�
ture Notes in Computer Science 	� Springer�Verlag� Berlin� ������
�

�M�a��� Matsumoto Y�� Tanaka H�� Hirakawa H�� Miyoshi H�� Yasukawa H� �	
����
BUP� a bottom�up parser embedded in Prolog� New Generation Comput�
ing �� 	��	���

�MK
�� Maxwell J�T�� Kaplan R�M� �	

��� The Interface between Phrasal and
Functional Constraints� Computational Linguistics �
� ��	��
��

�Mol
�� Moll M� �	

��� Head�Corner Parsing using Typed Feature Structures�
M�Sc� Thesis� University of Twente� Dept� of Computer Science� En�
schede� the Netherlands�

�Mor
�� Morawietz F� �	

��� A Uni�cation�based ID LP Parsing Schema� �th In�
ternational Workshop on Parsing Technologies� Prague� Czech Republic�
	���	���

�Nag
�� Nagata M� �	

��� An Empirical Study on Rule Granularity and Uni�ca�
tion Interleaving Toward an E�cient Uni�cation�Based Parsing System�
	�th International Conference on Computational Linguistics� Nantes�
France� 	���	���

�Ned
�� Nederhof M�J� �	

��� Generalized Left�Corner Parsing� �th Meeting of
the European Association of Computational Linguistics� Utrecht� the
Netherlands� �����	�

�Ned
� Nederhof M�J� �	

�� Linguistic Parsing and Program Transformations�
Ph�D� Thesis� University of Nijmegen� the Netherlands�

�Nij��� Nijholt A� �	
���� Deterministic Top�Down and Bottom�Up Parsing� His�
torical Notes and Bibliographies� Mathematisch Centrum� Amsterdam�
the Netherlands�

�Nij
	� Nijholt A� �	

	�� �Generalized� LR parsing� From Knuth to Tomita� In�
Tomita�s Algorithm� Extensions and Applications� Proceedings Twente
Workshop on Language Technology 	 �TWLT	�� University of Twente�
Dept� of Computer Science� 	���

�Nij
� Nijholt A� �	

�� Parallel approaches to context�free language parsing�
In� Hahn U�� Adriaens G� �Eds��� Parallel Natural Language Processing�
Ablex Publishing Corporation� Norwood� New Jersey�

�NS
�� Nederhof M�J�� Sarbo J�J� �	

��� Increasing the Applicability of LR Pars�
ing� �rd International Workshop on Parsing Technologies Tilburg and
Durbuy� Netherlands Belgium� 	�����	�

�NT
�� Numazaki H�� Tananaka H� �	

��� A New Parallel Algorithm for Gen�
eralized LR Parsing� 	�th International Conference on Computational
Linguistics� Helsinki� Vol� �� ����	��

�PS��� Pollard C�� Sag I�A� �	
���� An Information�Based Syntax and Semantics�
Vol 	� Fundamentals� CSLI Lecture Notes 	�� Center for the Study of
Language and Information� Stanford University� Stanford� Ca�

�

�PS
� Pollard C�� Sag I�A� �	

�� Head�Driven Phrase Structure Grammar�
University of Chicago Press� Chicago� Ill�

�PW��� Pereira F�C�N�� Warren D�H�D� �	
���� De�nite Clause Grammars for
Language Analysis � A Survey of the Formalism and a Comparison with
Augmented transition Networks� Arti�cial Intelligence ��� ��	�����

�PW��� Pereira F�C�N�� Warren� D�H�D� �	
���� Parsing as Deduction�
	th An�
nual Conference of the Association of Computational Linguistics� Cam�
bridge� Mass�� 	���	�

�Rek
�� Rekers J� �	

��� Parser Generation for Interactive Environments� Ph�D�
Thesis� University of Amsterdam�

�RL��� Rosenkrantz D�J�� Lewis P�M� �	
���� Deterministic Left Corner Parsing�
		th Annual Symposium on Switching and Automata Theory� 	�
�	���

�Ryt��� Rytter W� �	
���� On the recognition of context�free languages� �th Sym�
posium on Fundamentals of Computation Theory� Lecture notes in Com�
puter Science ���� Springer�Verlag� �	������

�SA
�� Sikkel K�� op den Akker R� �	

��� Predictive Head�Corner Chart Parsing�
In� Bunt H�� Tomita M� �Eds�� Recent Advances in Parsing Technology�
Kluwer� Boston� Mass�� 	

�� 	�	�	��

�Shi��� Shieber S�M� �	
���� An Introduction to Uni�cation�Based Approaches to
Grammar� CSLI Lecture Notes � Center for the Study of Language and
Information� Stanford University� Stanford� Ca�

�Shi
�� Shieber S�M� �	

��� Constraint�Based Grammar Formalisms� Parsing
and Type Inference for Natural and Computer Languages� The MIT Press�
Cambridge� Mass�

�Sik
�a� Sikkel K� �	

��� Parsing schemata� Ph�D� Thesis� University of Twente�
Enschede� the Netherlands�

�Sik
�b� Sikkel K� �	

��� On�line Parsing in Constant Time per Word� Theoretical
Computer Science ���� �����	��

�Sik
�� Sikkel K�� Parsing schemata � a framework for speci�cation and analy�
sis of parsing algorithms� Texts in Theoretical Computer Science � An
EATCS Series� Springer�Verlag� Berlin �in preparation��

�SL
�� Sikkel K�� Lankhorst M� �	

��� A Parallel Bottom�Up Tomita Parser� 	
Konferenz Verarbeitung nat�urlicher Sprache� N!urnberg� Germany� ����
���

�SS�
� Satta G�� Stock O� �	
�
�� Head�Driven Bidirectional Parsing� A Tabu�
lar Method� 	st International Workshop on Parsing Technologies� Pitts�
burgh� Pa�� ���	�

�TDL
	� Thompson H�S�� Dixon M�� Lamping J� �	

	�� Compose�Reduce Parsing�

�th Annual Meeting of the Association of Computational Linguistics�
Berkeley� Ca�� ���
��

�TN�
� Tanaka H�� Numazaki H� �	
�
�� Parallel Generalized LR Parsing based
on Logic Programming� 	st International Workshop on Parsing Technolo�
gies� Pittsburgh� Pa�� ��
�����

�Tom��� Tomita M� �	
���� E�cient Parsing for Natural Language� Kluwer Aca�
demic Publishers� Boston� Mass�� 	
���

�VH�
� de Vreught J�P�M�� Honig H�J� �	
�
�� A Tabular Bottom�Up Recognizer�
Report
���	� Dept� of Applied Mathematics and Informatics� Delft Uni�
versity of Technology� Delft� the Netherlands�

�VH
	� de Vreught J�P�M�� Honig H�J� �	

	�� Slow and fast parallel recognition�

nd International Workshop on Parsing Technologies� Cancun� Mexico�
	���	���

�Vis
�� Visser E� �	

��� A Case Study in Optimizing Parsing Schemata by Dis�
ambiguation Filters� Report P
���� Dept� of Computer Science� Univer�
sity of Amsterdam� the Netherlands�

�Win��� Winograd T� �	
���� Language as a Cognitive Process Vol I� Syntax�
Addison�Wesley� Reading� Mass�

�

�You��� Younger D�H� �	
���� Recognition of context�free languages in time n��
Information and Control ��� 	�
�����

