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Abstract—In forensic comparison of facial video data, often
only the best quality frontal face frames are selected, and hence
potentially useful video data is ignored. To improve 2D facial
comparison for law enforcement and forensic investigation, we
introduce a model-free 3D shape reconstruction algorithm based
on 2D landmarks. The algorithm uses around 20 landmarks
on the face and combines the structure information of multi-
ple frames. Model based 3D reconstruction methods, such as
Morphable Models, reconstruct a 3D face shape model that is
strongly biased towards the average face. Therefore, we don’t use
statistical face shape models in our model-free approach. The 3D
landmark reconstruction algorithm simultaneously estimates the
shape, pose and position of the face, based only on the fact that
all images in the sequence are recorded using a single calibrated
camera. The algorithm iteratively updates the reconstruction by
including new frames, while maintaining the consistency of the
reconstruction. We demonstrate the convergence properties of
the method reflected in the 2D reprojection error and the 3D
error with respect to a ground truth model. We show that the
quality of the reconstruction depends on the level of noise in the
landmarks. In follow-up experiments we show that our method is
able to reconstruct the 3D structure of a face, using a styrofoam
head and real video data. The results of the real face data show
the same behavior as the results of the simulated data, which
indicates that our method is capable of reconstructing real facial
structures, depending on the noise of the landmarks.

I. INTRODUCTION

One of the unsolved issues in forensic comparison of facial
data is the comparison with ‘wild’ photo or video data. Law
enforcement services are constrained to work with the case
material provided, and unlike researchers, they are not able to
use recordings from a controlled environment. Among the most
difficult problems of ‘wild’ photo materials are the non-frontal
poses of faces and low resolution facial images, because often
material of overview cameras is used for facial comparison.
Automatic face recognition software can only handle 2D facial
data under a small pose angle. At the moment the accuracy
of automatic face comparison algorithms degrades quickly
for faces under large pose. As a consequence often only
the best quality frontal face frames are selected, and hence
much video data is ignored. Law enforcement services are
still in search of the ‘tools’ to compare non frontal faces.
However, these ‘tools’ should treat the video data in such a
way that no supplementary information is added to the video
data. Reconstruction methods, such as Morphable Models [1],
reconstruct a 3D face shape model that is strongly biased
towards the average face. Such reconstructions could lead to

unacceptable forensic conclusions. In the proposed method we
try to avoid this situation caused by facial models.

In this paper we introduce a model-free 3D shape recon-
struction algorithm based on 2D landmarks, so no additional
statistical face models or average face models will be used.
We assume that the calibration parameters of the camera, such
as focal length, principal point and skew, are available. Any
recording is assumed to contain a subset of frames with differ-
ent views of a face without variation in facial expression. Our
final goal is to reconstruct the face in 3D. We use around 20
landmarks on the face to estimate the shape of the face together
with the pose and the position of the face for each view. We
present three different experiments. In our first experiment we
use simulated data to demonstrate the convergence properties
of the method reflected in the 2D reprojection error and the
3D error with respect to a ground truth model. In the second
experiment we continue our work in [2] and we explore the
strength of our method more extensively on realistic face shape
data with a styrofoam head model. In our last experiment we
use real video sequences for our reconstruction. Note that our
reconstructed 3D models only contain shape information and
no texture information. This paper continues with section II
where we give a background on the methods and notations
used in this paper. In section III we introduce and explain our
proposed algorithm. In section IV we show the performance
of our algorithm in several experiments. Then we end up with
the conclusion in section V.

II. BACKGROUND

Our problem, in which the face of the suspect is moving in
front of a static camera, is equivalent to a problem where the
camera is moving and the suspect is static. So for each view
i = 1..N we have to find the external camera parameters of
that specific view. The static shape of the face can be described
by j = 1..M 3D landmarks. We will use M 2D landmarks
with known correspondences to the 3D landmarks in all N
views to obtain a 3D reconstruction of the landmarks on the
face. Our camera is described by the pinhole camera model
[3], where a 3D point Q is projected on the image plane in
2D point q. The point projection equation is usually written as
q = P · Q, where P contains both the calibration parameters
of the camera and the rotation and translation of a view.

We prefer a method in which we can add additional
views to the current solution to improve the reconstruction.



To be able to find such a method, we should search for a
method that starts with one pair of views and then provides
an iterative solution or a solution that merges groups of
views. The method described in [4] is able to estimate the
rotation and translation parameters for one pair of views. This
method expresses the relation between calibrated views in the
essential matrix. The essential matrix can be estimated from
corresponding landmarks in two views using a robust MSAC
method (M-estimator SAmple Consensus) method [5]. Once
we determined the relation between two views, the relative
rotations and translation parameters can be estimated for both
views. This method provides four solutions for the rotation and
translation parameters, see Equation 1, but only one of these
solutions is posing the points in front of the camera:

P̂1 =
[
UWV > | +u3

]
P̂2 =

[
UW>V > | +u3

]
P̂3 =

[
UWV > | −u3

]
P̂4 =

[
UW>V > | −u3

] (1)

where the rotation matrix defined by U , W and V is
based on the result of a singular value decomposition of the
essential matrix. The matrix W is a matrix that mirrors one
of the axes. The translation u3 is the last column of U , see
[3] [4]. This solution has 5 degrees of freedom, 3 for the
rotation and only 2 for the translation, because the equation
is determined up to an unknown scale. The rotation and
translation parameters are extracted directly from the essential
matrix of one pair of views. Then, we can estimate the structure
by linear triangulation of one pair of views [3]:

A =


xp3> − p1>

yp3> − p2>

x′p′3> − p′1>

y′p′3> − p′2>

 (2)

where pi> are the rows of P in the first view and x, y are
the x- and y-values of the projection of point Q in the first
view. The other parameters are the corresponding values of the
second view. The point Q can be found by solving AQ = 0.
This method reconstructs only the visible points in one pair of
views. The method can be extended to more than 2 views by
including more equations from additional views in A. In our
case we have a low number of landmarks, so the reconstruction
based on two views gives a poor estimation of the shape.
Therefore, we extend the algorithm using multiple views to
overcome the problems of noise and the low number of
landmarks. We introduce an algorithm that iteratively updates
the reconstruction by including new views, while maintaining
the consistency of the reconstruction for a low number of
landmarks. The quality of the reconstruction can be determined
by the 2D RMS reprojection error E2D:

E2D =

√√√√ 1

MN

M∑
i=1

N∑
j=1

‖qij − P̂i · Q̂j‖2 (3)

where index i represents a view 1..N and j represents
a point 1..M , P̂ contains the external camera parameters of
each view and Q̂ contains a collection of homogeneous 3D

points. The homogeneous 2D vector qij represents the known
projections including the noise on the landmarks.

III. RECONSTRUCTION ALGORITHM

In this section we describe the proposed algorithm for
the reconstruction of the structure of the face based on 2D
projections. In short the algorithm finds an initial pair of
views with a low reprojection error. Based on this pair of
views we obtain a linear estimation of the structure. Then we
start an iterative procedure in which we add one new view in
every step of the procedure. After adding the new view, the
current selection of views and the current structure estimation
are optimized. The result of the reconstruction algorithm is
an estimation of the 3D positions of the landmarks and an
estimation of the rotation and translation parameters of each
view.

The best initial estimate for the structure is found by
calculating the reprojection error for every possible pair of
views in the dataset and to select the pair with the minimum
reprojection error. To calculate the reprojection error we need
to know the rotation and translation parameters of each view.
These values (except for the scale) can be extracted from the
Essential Matrix, see Equation 1. The essential matrix can be
estimated, in turn, from the projections using a robust MSAC
method (M-estimator SAmple Consensus) [5]. Knowing the
rotation and translation parameters of a pair of views, allows
us to estimate the structure for this pair of views. Based on this
structure we can calculate the reprojection error for this pair
of views. However, also the reprojection errors of the other
views are important for consistency during the optimization.
So, to find the best pair of views we choose a reference
view and calculate all rotations and translation relative to the
reference view. Then we calculate the reprojection error of
the total set of views for every view as reference. A second
criterion for the selection of the best pair of views is the
number of landmarks that could be reconstructed, because not
only the reprojection error is important, but also the number
of visible corresponding landmarks in the initial pair of views.
Our selection criterion is now to find the pair of views with the
maximum number of corresponding landmarks in two views
and a minimal reprojection error for the total set of views. We
choose to obtain the subset of 25% of the solutions containing
the most reconstructed points over all views. From this subset
we select the pair with the lowest reprojection error over all
views. This solution provides us a solution that is sufficient
for initialization of our iterative optimization. We calculate an
initial linear estimation of the structure based on the selected
pair of views.

In the optimization step one new view is added in each
iteration to keep all views in our current estimation consis-
tent with the estimated structure. The selection of the new
candidate view is based on the convergence behavior of the
candidate view. The view with the lowest reprojection error
after 10 optimization iterations, is chosen as the next view. This
candidate selection is necessary to prevent the algorithm from
failing in the first few iterations. Based on the new selection
of views, a linear estimation of the structure is obtained, see
Equation 2. Then the reprojection error of both the rotation and
translation parameters and the structure are minimized using
the Levenberg-Marquardt algorithm. To prevent overfitting, we



used only 30 Levenberg-Marquardt iterations for each opti-
mization step, which performs properly for the minimization.
Finally, the rotation and translation parameters of the views
that were not in the selection set are optimized to maintain the
consistency of the total set of views. The iterative optimization
procedure continues until all views are added and optimized.

IV. EXPERIMENTS

The goal of the first experiment on simulated data is
to determine the influence of the number of views on the
reconstruction, and to investigate the convergence properties
of our algorithm. We create a random point cloud of 25 3D
points and obtain a set of 100 projections of this point cloud
with variation in rotation and translation. The calibration infor-
mation and a random selection of the projections are used in
the reconstruction algorithm. We performed two experiments
in which we added a different level of Gaussian zero-mean
noise to the projections, with a standard deviation of 1.0 and
2.0 pixels respectively. The size of the face in each frame is
around 250-350 pixels. The noise is added independently to
the x- and y-coordinates of the projections. Finally we used a
random mask to hide 30% of the data to imitate the hidden
landmarks on a face. We use our reconstruction algorithm to
estimate the 3D structure. The quality of the reconstruction
will be determined by the 2D RMS reprojection error E2D,
see Equation 3. All landmarks that were not visible, were left
out of the equation, so MN is defined as the total number of
visible landmarks summed over all views. After reconstruction
the 3D RMS error E3D between the reconstruction and the
ground truth point cloud can be calculated with:

E3D = argmin
H

√√√√ 1

M

M∑
j=1

‖Qj −HQ̂j‖2 (4)

where H is a rigid 3D transformation which aligns the
ground truth point cloud Q with the reconstruction Q̂ and j
is the index of a point. The experiment is repeated 100 times
with different instances of noise to investigate the robustness
of the algorithm.

The graphs in Figure 1 show the expected behavior for
Gaussian noise with a standard deviation of 1.0 pixels. The
more views are added, the more robust the reconstruction is. If
the shape is estimated perfectly, then we would expect the 2D
reprojection error to converge to the level of noise added. The
2D reprojection error converges to an asymptote of

√
2 h 1.41,

which is the expected level of noise, see the left graph of Figure
1. Another observation we make is that the number of views
above 30 has little influence on both the 2D and the 3D average
error. The robustness of the algorithm is only slowly increasing
for more than 30 views, see the right graph of Figure 1. So
adding more than 30 views seems to have only a small impact
on both the quality and robustness of the algorithm.

If the level of Gaussian noise is doubled to a standard
deviation of 2.0 pixels, the behavior is similar to the previous
experiment. The asymptote here is

√
8 h 2.83, see the left

graph in Figure 2. Adding more views has less effect on the
robustness of the reconstruction algorithm, but it still has a
decreasing effect on the average reprojection error. When more
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Fig. 1. 2D and 3D error of the reconstructions using noise with a standard
deviation of 1.0 pixels.

views are added, the average 3D error also decreases slowly,
though the robustness of the algorithm seems not to increase.
For more than 35 views, the system shows even more variation
in the 3D errors than for 35 views, see Figure 2. This can be
explained by the fact that the more views are added, the higher
the change for heavy outliers in the projections. Since none of
the selected views are skipped, outliers might severely decrease
the result of the reconstruction. The reconstruction is assumed
to be failed, if the reprojection error is above 5.0 pixels. For the
experiment with Gaussian noise with a standard deviation of
1.0 pixels and more than 30 views, the algorithm converges to
a solution in about 99% of the cases. In the case of a standard
deviation of 2.0 pixels, the algorithm only converges in 75%
of the cases. So the algorithm seems stable for Gaussian noise
with a standard deviation of 1.0 pixels, but becomes less stable
for Gaussian noise with a standard deviation of 2.0 pixels or
above.

The goal of the second experiment with the styrofoam head
is to determine whether the algorithm is capable of working
with manually labeled face data. We acquired a 3D model of
a styrofoam head with 22 colored pins located on the face. An
orthogonal view of the styrofoam model can be seen in the left
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Fig. 2. 2D and 3D error of the reconstructions using noise with a standard
deviation of 2.0 pixels.

image in Figure 3. We choose a virtual camera and we extract
the calibration data from this camera. We created 51 renderings
of the model with different rotation and translation parameters,
see Figure 3. All visible landmarks are labeled manually in all
renderings. In contrast to the previous experiment, no noise
was added to the projections, leaving us with only the noise
of the manual landmarking. The reconstruction is based on the
calibration data and subsets of the renderings. The 3D points
of the ground truth model are also manually labeled on the 3D
model of the styrofoam head, which, in contrast to the previous
experiment, could influence the 3D error. The experiment is
repeated 100 times for each number of views to determine the
robustness of the algorithm.

The second experiment shows the same behavior as the
experiment with Gaussian noise with a standard deviation of
1.0 pixels. Adding more views increases the quality of the 3D
reconstruction, but for more than 40 views, in this case, the
gain is very low for both the 2D and 3D error. The asymptote
for the 2D error is around 2.0 pixels, which is somewhere
between the results of the first two experiments. This noise
level is similar to a

√
2 h 1.41 pixels error in both x- and

y-coordinates, which is probably the accuracy of the manual

Fig. 3. Left: Orthogonal view of the 3D styrofoam head model. Middle:
One of the rendered 2D views of the model. Right: The reconstructed 3D
landmarks with added edges for visibility.
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Fig. 4. 2D and 3D error of the styrofoam face reconstructions.

landmarking of the 2D dataset. A rough estimation gives us a
head size of 300 mm and the size of the head in the frames
is around 500 pixels. So each pixel represents 0.6 mm. Our
method is able to estimate the landmarks with (2.16 · 0.6 =)
1.3 mm precision on average. The average 3D error is 1.22,
which is around 0.7% of the size of the head. The results are
in line with the results of the first experiment on simulated
data. This second experiment shows that our algorithm has
similar convergence properties and errors to the experiment on
the simulated data, and can therefore be applied on manually



labeled realistic face data.

In this last experiment we show that our algorithm can
handle real video data using a calibrated camera. We acquired
100 frames of several volunteers in which they slowly moved
and rotated their heads in front of a camera. We annotated
20 landmarks in each frame in a semi-automatic manner.
Finally we calibrated our camera with 20 frames of a planar
calibration board, which provided us the camera calibration
data. In the next experiment we use a selection of 50 frames
to reconstruct the structure of the face. Since we don’t have 3D
ground truth data of our landmarks, we will only use the 2D
reprojection error and visual inspection to express the quality
of the reconstruction. We ran the experiment two times, with
different subsets of views: one using the 50 even frames and
another using the 50 odd frames of the first volunteer.

Fig. 5. Left: Two 3D reconstructions of the first volunteer based on different
subsets of views. Right: Aligned 3D models of the two reconstruction.

The 2D reprojection error for the even set was 2.13 and
the reprojection error of the odd set was 2.54, where the size
of the frames is similar to the styrofoam experiment. These
results are completely in line with the results of the styrofoam
experiment, see the left graph in Figure 4. There is a small
variation in the 2D error, but nevertheless the variation seems
acceptable compared to the previous results. Visual inspection
of the 3D structure shows that both 3D structures are close
to each other, see Figure 5. So even with real video data,
including calibration, and landmarking, our algorithm is able
to reconstruct the position of the 3D landmarks of the face.

V. CONCLUSION AND FUTURE WORK

The experiment on the simulated point cloud shows that
the quality of our reconstruction depends on the level of
noise in the projections. For a small level of noise, around
1.0 pixels, the convergence and robustness of the algorithm
seem sufficient. For a larger level of noise the system might
become unstable, and even not converge to a useful solution.
For Gaussian noise with a standard deviation of 2.0 pixels the
algorithm only converges in 75% of the cases. The minimum
number of views needed to get sufficient quality for the
reconstruction is around 30 views. More views can improve the
reconstruction, but this will only give a small improvement. In
the second experiment, we showed that manual landmarking
leads to an error comparable to a Gaussian noise with a
standard deviation of 1.4 pixels. The results of the styrofoam
experiment were in line with the simulated reconstructions
with Gaussian noise. The third experiment with real video data
shows results similar to the styrofoam experiment. The visual
inspection of the 3D structure and the 2D reprojection errors
indicate that the algorithm is capable of reconstructing real

facial structures. In future work we will include the texture
information in the reconstruction to get a full 3D model of
the face. The full reconstruction allows us to perform facial
recognition experiments on 2D faces under pose.
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