
Symbolic Reachability Analysis of B through
ProB and LTSmin

Jens Bendisposto1, Philipp Körner1, Michael Leuschel1, Jeroen Meijer2∗, Jaco
van de Pol2†, Helen Treharne3, and Jorden Whitefield3‡

1 Institut für Informatik, Heinrich Heine University Düsseldorf, Germany
{bendisposto@cs., p.koerner@, leuschel@cs.}uni-duesseldorf.de
2 Formal Methods and Tools, University of Twente, The Netherlands

{j.j.g.meijer, j.c.vandepol}@utwente.nl
3 Department of Computer Science, University of Surrey, United Kingdom

{h.treharne, j.whitefield}@surrey.ac.uk

Abstract. We present a symbolic reachability analysis approach for
B that can provide a significant speedup over traditional explicit state
model checking. The symbolic analysis is implemented by linking ProB
to LTSmin, a high-performance language independent model checker. The
link is achieved via LTSmin’s Pins interface, allowing ProB to benefit
from LTSmin’s analysis algorithms, while only writing a few hundred
lines of glue-code, along with a bridge between ProB and C using ØMQ.
ProB supports model checking of several formal specification languages
such as B, Event-B, Z and Tla+. Our experiments are based on a wide
variety of B-Method and Event-B models to demonstrate the efficiency of
the new link. Among the tested categories are state space generation and
deadlock detection; but action detection and invariant checking are also
feasible in principle. In many cases we observe speedups of several orders
of magnitude. We also compare the results with other approaches for
improving model checking, such as partial order reduction or symmetry
reduction. We thus provide a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other
model checking improvements via LTSmin in the future.

Keywords: B-Method, Event-B, ProB, LTSmin, symbolic reachability

1 Introduction

In this paper we describe the process, technique and design decisions we made for
integrating the two tooling sets: LTSmin and ProB. Bicarregui et al. suggested,
in a review of projects which applied formal methods [6], that providing useable
tools remained a challenge. Recent use of the ProB tool in a rail system case
study [16], where model checking large industrial sized complex specifications

∗Supported by STW SUMBAT grant: 13859
†Supported by the 3TU.BSR project
‡Partly supported by EPSRC grant: EP/M506655/1

2 Bendisposto et al.

was performed, illustrated that there continues to be limitations with the tooling.
Model checking CSP‖B [28] specifications in ProB was the original motivator
for this research, and based on a promising initial exploration [30], this paper
defines a systematic integration of the two tooling sets.

Specification
Languages

Pins2Pins
Wrappers

Reachability
Tools

mcrl2 Promela . . . ProB

front-end

back-end

Transition
Caching

Variable Reordering,
Transition Grouping

Partial Order
Reduction

Distributed Multi-core Symbolic

Fig. 1: Modular Pins architecture of LTSmin [17]

LTSmin is a high-performance language-independent model checker that
allows numerous modelling language front-ends to be connected to various anal-
ysis algorithms, through a common interface, as shown in Figure 1. It offers a
wide spectrum of parallel and symbolic algorithms to deal with the state space
explosion of different verification problems. This connecting interface is called
the Partitioned Interface to the Next-State function (Pins), the basis of
which consists of a state-vector definition, an initial state, a partitioned successor
function (NextState), and labelling functions [17]. It is through Pins that we
have been able to leverage the ProB tool, therefore allowing us to take advantage
of LTSmin’s algorithmic back-ends. In this paper we focus on the new ProB
language front-end, the grouping of transitions, and the symbolic back-end. In
Section 5 we also briefly discuss state variable orders.

ProB [19] is an animator and model checker for many different formal
languages [26], including the classical B-Method [2], Event-B [1], CSP, CSP‖B,
Z and Tla+. ProB can perform automatic or step by step animation of B
machines, and can be used to systematically verify the behaviour of machines.
The verification can identify states which do not meet the invariants, do not
satisfy assertions or that deadlock. At the heart of ProB is a constraint solver,
which enables the tool to animate and model check high-level specifications. The
built-in model checker is a straightforward, explicit state model checker (albeit
augmented with various features such as symmetry reduction [20] or partial order
reduction [11]). The explicit state model checker Tlc can also be used as a
backend [12].

The purpose of this paper is to make use of the advanced features of the
LTSmin model checker, such as symbolic reachability analysis, by linking the
ProB state exploration engine with LTSmin. This is achieved through a C
programming interface [4] within the ProB tool, allowing the representation of a
state to be compatible for LTSmin’s consumption. In this paper the integration
focuses on what is required in order to perform symbolic reachability analysis of
B-Method and Event-B specifications. The contribution of this research is a new
tool integration, which can be used as a platform for further extensions.

Symbolic Reachability Analysis of the B-Method 3

The paper is structured as follows: Section 2 presents an overview of the
B-Method, a running example and an illustration of definitions of transition
systems used by LTSmin. Section 3 details the symbolic reachability analysis
and Section 4 outlines the implementation details. Section 5 provides empirical
results from performing reachability analysis benchmarking examples in ProB
alone and using the new integration of the two tools. The paper concludes in
Section 6 with reflections and future work.

2 Preliminaries: B-Method and Transition Systems

In this section we provide an overview of the B-Method and the foundations used
within LTSmin.

A B machine consists of a collection of clauses and a collection of operations.
The MACHINE clause declares the abstract machine and gives it its name.
The VARIABLES clause declares the variables that are used to carry the state
information within the machine. The INVARIANT clause gives the type of
the variables, and more generally it also contains any other constraints on the
allowable machine states. The INITIALISATION clause determines the initial
state(s) of the machine. Operations in a machine are events that change the
state of a machine and can have input parameters. Operations can be of the
form SELECT P THEN S END where P is a guard and S is the action part
of the operation. The predicate P must include the type of any input variables
and also give conditions on when the operation can be performed. When the
guard of an operation is true then the operation is enabled and can be performed.
If the guard is the simple predicate true then the operation form is simplified
to BEGIN S END. An operation can also be of the form PRE P THEN S
END so that the predicate is a precondition and if the operation is invoked
outside its precondition then this results in a divergence (we do not illustrate this
in our running example). Finally, the action part of an operation is a generalised
substitution, which can consist of one or more assignment statements (in parallel)
to update the state or assign to the output variables of an operation. Conditional
statements and nondeterministic choice statements are also permitted in the
body of the operation. The example in Figure 2 illustrates the MutexSimple
machine with three variables and five operations. Its initial state is deterministic
and wait is set to MAXINT. For MAXINT=1 we get 4 states; the state space
constructed by ProB can be found in Figure 3. From the initial state only the
guards for Enter and Leave are true. Following an Enter operation the value of
the cs variable is true which means that the guard of the CS Active operation
is true and the system can indicate that it is in the critical section by performing
the CS Active operation.

The example presented could also be considered as an Event-B example
since it is a simple guarded system. We do not elaborate further on the notation
of Event-B in this paper but note that the results in the subsequent sections are
also applicable to Event-B.

4 Bendisposto et al.

1 MACHINE MutexSimple
2 VARIABLES cs , wait , f i n i s h e d
3 INVARIANT
4 cs : BOOL & wait : NATURAL & f i n i s h e d : NATURAL
5 INITIALISATION cs := FALSE | | wait := MAXINT | | f i n i s h e d := 0
6 OPERATIONS
7 Enter = SELECT cs = FALSE & wait > 0 THEN

cs := TRUE | | wait := wait − 1 END;
8 Exit = SELECT cs = TRUE THEN

cs := FALSE | | f i n i s h e d := f i n i s h e d + 1 END;
9 Leave = BEGIN cs := FALSE END;

10 CS_Active = SELECT cs = TRUE THEN skip END;
11 Restart = SELECT f i n i s h e d > 0 THEN

wait := wait + 1 | | f i n i s h e d := f i n i s h e d − 1 END
12 END

Fig. 2: MutexSimple B-Method machine example

cs=FALSE,wait=1,finished=0

cs=TRUE,wait=0,finished=0 cs=FALSE,wait=0,finished=0

cs=FALSE,wait=0,finished=1

rootINITIALISATION

Enter

Leave

Exit

Restart

Leave

CS Active Leave

Leave

Fig. 3: MutexSimple statespace for MAXINT=1

As far as symbolic reachability analysis is concerned, a formal model is seen
to denote a transition system. LTSmin adopts the following definition:

Definition 1 (Transition System). A Transition System (TS) is a structure
(S ,→, I), where S is a set of states, → ⊆ S × S is a transition relation and
I ⊆ S is a set of initial states. Furthermore, let →∗ be the reflexive and transitive
closure of →, then the set of reachable states is R = {s ∈ S | ∃ s ′ ∈ I . s ′→∗ s}.

A B-Method and Event-B model induces such a transition system: initial
states are defined by the initialisation clause and the individual operations
together define the transition relation →. Figure 3 shows the transition system4

for the machine in Figure 2. As can be seen in Figure 3, the transition relation is
annotated with operation names. For symbolic reachability analysis it is actually
very important that we divide the transition relation into groups, leading to the
concept of a partitioned transition system:

4One subtle issue is that LTSmin actually only supports a single initial state; this
is solved by introducing the artificial root state linked to the initial states proper. We
ignore this technical issue in the paper.

Symbolic Reachability Analysis of the B-Method 5

Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (Sn,G ,→m, I n), where
– Sn = S1 × . . .× Sn is the set of states, which are vectors of n values,
– G = (→1, . . . ,→m) is a vector of M transition groups →i ⊆ Sn×Sn (∀ 1 ≤
i ≤ m)

– →m =
⋃m

i=1→i is the overall transition relation induced by G, i.e., the union
of the m transition groups , and

– I n ⊆ Sn is the set of initial states.
We write s →i t when (s, t) ∈ →i for 1 ≤ i ≤ m, and s→m t when (s, t) ∈ →m.

For example I n = {(FALSE ,MAXINT , 0)} in the running example. Note
that G in Definition 2 does not necessarily form a partition of →m, overlap is
allowed between the individual groups.

3 Symbolic Reachability Analysis for B

Computing the set of reachable states (R) of a transition system can be done
efficiently with symbolic algorithms if many transition groups →i touch only
a few variables. This concept is known as event locality [9]. Many models of
transition systems in the B-Method employ event locality. In the B-Method
event locality occurs in operations, where only a few variables are read from, or
written to. For example in Figure 2 operation CS Active only reads from cs and
Leave only writes to cs. This event locality benefits the symbolic reachability
analysis, so that the algorithm is capable of coping with the well known state
space explosion problem. Since the B-Method employs event locality we build on
the foundations of earlier work on LTSmin [7, 23] and extend it to ProB. To
perform symbolic reachability analysis of the B-Method, ProB should provide
LTSmin with read matrices and write matrices. These matrices inform LTSmin
about the locality of events in the B-Method.

Read independence is an important concept, it allows one to reuse the suc-
cessor states computed in one state s for all states s ′ which differ just by
read-independent variables from s, and vice versa.

Definition 3 (Read independence). Two state vectors s, s ′ are equivalent
except on index j , denoted by s ≈j s ′, iff ∀ k 6= j : sk = s ′k .

Transition group i is read-overwrite independent from state variable j , iff
∀ s, s ′, t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i t.

Transition group i is read-copy independent from state variable j , iff ∀ s, s ′,
t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i (t1, . . . , tj−1, s ′j , tj+1,
. . . , tn).

A transition group is read independent iff it is either read-overwrite or
read-copy independent.

If an event never reads but may write to a variable j it generally does not
satisfy the above definition. For example, the operation MayReset = IF cs =
true THEN wait := 0 END would neither be read-copy nor read-overwrite

6 Bendisposto et al.

independent (for state vectors with cs = false it satisfies the definition of
the former and for cs = true the latter, but neither for all state vectors).
LTSmin can also deal with more liberal independence notions, but we have not
yet implemented this in the present paper.

Definition 4 (Write independence). Transition group i is write-independent
from state variable j , if ∀ s, t ∈ Sn : (s1, . . . , sj , . . . , sn)→i (t1, . . . , tj , . . . , tn)=⇒
(sj = tj), i.e. state variable j is never modified by transition group i.

We illustrate the above definitions below.

Definition 5 (Dependency Matrices). For a PTS P = (Sn,G ,→m, I n), the
write matrix is an m × n matrix WM (P) = WMPm×n ∈ {0, 1}m×n, such that
(WMi,j = 0)=⇒ transition group i is write independent from state variable j.
Furthermore, the read matrix is an m× n matrix RM (P) = RMPm×n ∈ {0, 1}m×n,
such that (RMi,j = 0)=⇒ transition group i is read independent from state
variable j.

In this paper we will use sufficient syntactic conditions to ensure Definitions 3
and 4 and obtain the read and write matrix from Definition 5. Indeed, we compute
for every operation syntactically which variables are read from and which variables
are written to.
– If an operation does not write to a variable, its transition group is write

independent according to Definition 4 and the corresponding entry in WM is
0.

– If an operation does not read a variable, its transition group is read inde-
pendent according to Definition 3, unless it maybe written to (e.g., because
the assignment is in the branch of an if-then-else). In this case, we will mark
the variable as both write and read independent. Also, note that when the
assignment within an operation is of the form f(X) := E then the operation
should have a read dependency on the function f (in addition to the write
dependency).

For our example in Figure 2 the syntactic read-write information is as follows:



cs wait finished

Enter 1 1 0
Exit 1 0 1
Leave 0 0 0
CS Active 1 0 0
Restart 0 1 1


(a) Read matrix (RM)



cs wait finished

Enter 1 1 0
Exit 1 0 1
Leave 1 0 0
CS Active 0 0 0
Restart 0 1 1


(b) Write matrix (WM)

Fig. 4: Dependency matrices

From the matrices we can infer if a variable is read-copy or read-overwrite
independent: a variable that is read independent and not written to (i.e., write
independent) is read-copy independent, otherwise it is read-overwrite independent.

We can thus infer that:
– the transition group of Enter is read-copy and write independent on finished.

Symbolic Reachability Analysis of the B-Method 7

– Exit is read-copy and write independent on wait.
– Leave is read-copy and write independent on wait and finished and read-
overwrite independent on cs.

– CS Active is read-copy and write independent on wait and finished and
write independent on cs (but not read-independent on cs).

– Leave is read-copy and write independent on cs.

3.1 Exploration Algorithm

We now present the core of the symbolic reachbility analysis algorithm of LTSmin.
Algorithm 1 computes the set of reachable states R (represented as a decision
diagram) and it uses the independence information to minimise the number of
next state computations that have to be carried out, i.e., re-using the next states
{t | s→i t} computed for a single state s for many other states s ′ according to
Definitions 3 and 4. Algorithm 1 will, while it keeps finding new states, expand
the partial transition relation with potential successor states, and apply the
expanded relation to the set of new states.

Four key functions that make Algorithm 1 highly performant are the follow-
ing.5 The (1) read projection πr

i = πRM
i and (2) write projection πw

i = πWM
i

take as argument a state vector and produce a state vector restricted to the
read and write dependent variables of group i , respectively. Furthermore these
function are extended to apply to sets directly, e.g., given the examples in Fig-
ures 2 and 4, a read projection for Leave is πr

3({(FALSE , 0, 0) , (FALSE , 0, 1) ,
(FALSE , 1, 0)}) = {(FALSE)}. This is illustrated in Figure 6 and used at Line 2
in Algorithm 2. The read projection prevents LTSmin from doing two unnecessary
next state calls to ProB, since Leave is read-copy independent on wait and
finished.

The function (3) NextStatei takes a read projected state and projects (with
πw
i) all successor states of transition group i . The partial transition relation ↪→p

i
is learned on the fly, and NextStatei is used to expand ↪→p

i . An example next
state call for Enter is NextState1((FALSE , 1)) = {(TRUE , 0)}.

Lastly, (4) next takes a set of states, a partial transition relation, a row of the
read and write matrix and outputs a set of successor states. For example, applying
the partial relation of Enter to the initial state yields next({(FALSE , 1, 0)},
{((FALSE , 1) , (TRUE , 0))}, (1, 1, 0) , (1, 1, 0)) = {(TRUE , 0, 0)}. Note that in
this example Enter is read-copy independent on finished and thus next will
copy its value from the initial state.

cs = FALSE,wait = 1,finished = 0

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

Li
π and →i

p

cs = TRUE,wait = 0,finished = 0

R

projection

next

Fig. 5: One iteration with Enter

The usage of these four key func-
tions is also illustrated in Figure 5. The
figure shows that first the projection is
done for Enter, then ↪→p

i is expanded
with a NextStatei call, lastly relation
↪→p

i is applied to the initial state, pro-
ducing the first successor state.

5We refrain from giving their formal definitions; they can be found in [23].

8 Bendisposto et al.

Figure 6 shows for each operation the transition relation ↪→p
i and the projected

states on which they are computed. Definition 3 ensures that the projected state
space shown in Figure 6 can be used to compute the effect of each of these
operations for the entire state space (using next).

Algorithm 1: ReachBreadthFirst
Input : I n ⊆ Sn,M ∈ N,RM ,WM
Output : The set of reachable states R

1 R ← I n; L ← R;
2 for 1 ≤ i ≤ M do Rp

i ← ∅; ↪→p
i ← ∅;

3 while L 6= ∅ do
4 LearnTrans(); N ← ∅;
5 for 1 ≤ i ≤ M do
6 N ← N ∪ next(L, ↪→p

i ,RMi ,WMi);
7 L ← N −R; R ← R∪N ;
8 return R

Algorithm 2: LearnTrans
Description : Extends ↪→p

i
1 for 1 ≤ i ≤ M do
2 Lp ← πr

i (L);
3 for sp ∈ Lp −Rp

i do
4 ↪→p

i ← ↪→p
i ∪ {(s

p, dp) |
5 dp ∈ NextStatei(sp)};
6 Rp

i ←R
p
i ∪ L

p;

cs = FALSE

cs = TRUE CS_Active

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

cs = FALSE,wait = 0

cs = FALSE,finished = 0

cs = TRUE, finished = 0

Exit

cs = FALSE,finished = 1

wait=1,finished = 0

wait=0, finished = 0
Restart

wait=0,finished = 1

read-copy independent on cs

read-copy independent on waitread-copy independent on finished

read-copy independent on wait, finished

cs = FALSE

Leave

read-copy independent on
wait, finished

and read-overwrite
independent on cs

Fig. 6: MutexSimple, operations computed on their projected state space

3.2 List Decision Diagrams

The symbolic reachability algorithm in Section 3.1 uses List Decision Diagrams
(LDDs) to store the reachable states and transition relations. Similar to a Binary
Decision Diagram, an LDD [7] represents a set of vectors. Due to the sharing
of state vectors within an LDD, the memory usage can be very low, even for
very large state spaces. Three example LDDs for the running example are given
in Figure 7. The LDDs represent the set of reachable states R in Algorithm 1
at each iteration of Line 3. In an LDD every path from the top left node to
{ε} is a state, e.g., the initial state (FALSE , 1, 0) in Figure 7b. A node in an
LDD represents a unique set of (sub) vectors, e.g., {ε} represents the set of zero-
length vectors and the right-most 0 of variable wait in Figure 7d encodes the set
{(0, 0) , (0, 1) , (1, 0)}. Figure 7c shows that firing Enter will add (TRUE , 0, 0)
to R. In Figure 7d (FALSE , 0, 0) and (FALSE , 0, 1) are added to R, by firing
Leave and Exit respectively. The benefit of using LDDs for state storage is

Symbolic Reachability Analysis of the B-Method 9

due to the sharing of state vectors. For example, the subvector (FALSE) of the
states {(FALSE , 0, 0) , (FALSE , 0, 1) , (FALSE , 1, 0) , (FALSE , 1, 1)} in iteration
3 is encoded in the LDD with a single node. For bigger state spaces the sharing
can be huge; resulting in a low memory footprint for the reachability algorithm.

cs:BOOL

wait:NATURAL

finished:NATURAL

(a) Variables

FALSE

1

0

{ε}

(b) Iteration 1

TRUE FALSE

0 1

0

{ε}

(c) Iteration 2

TRUE FALSE

0 0 1

0 0 1

{ε}

(d) Iteration 3

Fig. 7: LDDs of the reachable states

3.3 Performance: NextState function

There are two big differences of Algorithm 1 with classical explicit state model
checking as used by ProB [19]. First, the state space is represented using an
LDD datastructure, which enables sharing amongst states. Second, independence
is used to apply the NextState function not state by state, but for entire
sets of states in one go. For each of the 4 states in Figure 3, the explicit model
checking algorithm of ProB would check whether each of the 5 operations is
enabled; resulting in 20 next-state calls. With LTSmin’s symbolic reachability
Algorithm 1, only 12 NextState calls are made. This is shown in the following
table, where + means enabled, - means disabled, and C means that LTSmin has
reused the results of a previous call to ProB.

State# cs wait finished Enter Exit Leave CS Active Restart
1 FALSE 1 0 + C C C -
2 TRUE 0 0 - + + + -
3 FALSE 0 0 - - C - C
4 FALSE 0 1 C - C C +

If we initialise wait with MAXINT = 500, the state space has 251,002 states.
The runtime with ProB is 70 seconds, with LTSmin+ProB 48 seconds and
LTSmin performs only 6012 NextState calls. The example does not have a lot
of concurrency and uses only simple data structures (and thus the overhead of
the LTSmin’s ProB front-end is more of a factor compared to the runtime of
ProB for computing successor states); other examples will show greater speedups
(see Section 5). But the purpose of this example is to illustrate the principles.

4 Technical Aspects and Implementation

We used a distributed approach to integrate ProB and LTSmin. Both tools are
stand-alone applications, so a direct integration, i.e., turning one of the tools into

10 Bendisposto et al.

a shared library would require considerable effort. We therefore added extensions
to both tools that convert the data formats and use sockets to communicate
with each other. A high level view of the integration is shown in Figure 8. We
use the ØMQ [14] library for communication. ØMQ is oriented around message
queues and can be used as both, a networking library with very high throughput
and as a concurrency framework. We have chosen ØMQ because it worked
very well in previous work [4]. Although we do not (yet) have to care about
concurrency in this work, the reactor abstraction provided by ØMQ was very
handy in the ProB extension. It allows to implement a server that receives and
processes messages without much effort. The communication is always initiated
by LTSmin; it sends a message and blocks until it receives the answer from ProB.

LTSMIN
Symbolic
Backend

ProB Link
Library

Zero MQ
IPC SocketPINS LTSMIN

Extension
ProB

fastread/
fastwrite

LTSMIN Process ProB Process

Fig. 8: High level design showing the integration

We usually run both
tools on a single com-
puter using interpro-
cess (IPC) sockets,
but it is only a mat-
ter of configuration to
run the tools on dif-
ferent machines using
TCP sockets. We currently only support Linux and Mac OS. The communication
protocol is straightforward. Reachability analysis is initiated from LTSmin by
sending an initialisation packet. ProB answers with a message containing the
relevant static information about a model, such as the dependency matrices that
LTSmin requires (see Section 3). Each matrix is encoded as a 2-dimensional
array, which is not optimal for a sparse matrix but is not an issue because we
only send the matrices once. The packet also contains the list of variables, their
types, the list of transition groups, and the initial state.

States are represented as a list of so called chunks. A chunk is one of the
elements in the state vector according to Definition 2. In the case of B, each
chunk is a value of one of the state variables. Because LTSmin will not look inside
the chunks, we simply use the binary representation of ProB’s Prolog term that
represents the value of a variable. This has the advantage, that ProB does not
have to keep information about the state space. It can always recover a state
from the chunks that are sent by LTSmin. The transition groups correspond to
B operations as explained in Section 2. Like chunks the transition groups are
only used as names in LTSmin.

Once the initial setup is done, LTSmin will start to ask ProB for successor
states for specific transition groups. It will send a next-state message containing
a state and a transition group. The state, that LTSmin sends is a list of chunks
and ProB’s LTSmin extension can directly consume them and construct a
Prolog term that internally represents a state. Using this constructed state and
the transition group, the extension will then ask ProB for all successor states.
The result is a list of Prolog terms, each representing a successor state. The
extension transforms the list of states into a list of lists of chunks and sends them

Symbolic Reachability Analysis of the B-Method 11

back to LTSmin. This is repeated until LTSmin has explored all necessary states
and sends a termination signal.

The next-state messaging is similar to Figure 5, the projection is achieved by
replacing all read independent variables by a dummy value.

5 Experiments

To demonstrate that the combination of ProB and LTSmin improves the
performance of the reachability analysis and deadlock detection compared with the
standalone version of ProB, we use a wide range of B and Event-B models. Our
benchmark suite contains puzzles (e.g., towers of Hanoi) as well as specifications
of protocols (e.g., Needham-Schroeder), algorithms (e.g., Simpson’s four slot
algorithm) and industrial specifications (e.g., a choreography model by SAP, a
cruise control system by Volvo and a fault tolerant automatic train protection
system by Siemens).6

The experiments were run on Ubuntu 15.10 64-bit, with 8 GB RAM, 120 GB
SSD and an Intel Sandybridge Mobile i5 2520M 2.50 GHz Dual core. The version of
ProB used in this paper is 1.5.1-beta3, and LTSmin tag LTSminProBiFM20167

Figure 9 summarises a selection of the experiments that we ran. The last two
models are Event-B models. In these experiments we used Breadth-First Search
(BFS) and looked for deadlocks. A deadlock was found only for the Philosophers
model (this is also why there are no next state call statistics for this model).
The table also contains the number of next state calls for ProB reachability
analysis on its own and when called from LTSmin’s symbolic reachability analysis
algorithm (i.e., our new integration see Section 3.3) without deadlock checking.
One can clearly see that we obtain a considerable reduction in wallclock time.
The ProB time is the walltime of the ProB reachability analysis and initial
state computation and does not include parsing and loading. The LTSmin CPU
time column shows how much time is spent in the LTSmin side of the symbolic
reachability analysis algorithm. The LTSmin wall time shows the total walltime,
and this also contains the time spent in the communication layer and waiting for
the ProB process to compute the next states. To compare the benefit of our new
algorithm we compute the speedup of the walltime in the last column by dividing
the ProB walltime from column 5 with the LTSmin walltime in column 7.

We can see that for some of the smaller models the overhead of setting
up LTSmin does not pay off. However, for all larger models, except for the
Train1 Lukas POR model considerable speedups were obtained.

A major result we achieved with non default settings for LTSmin, is for
elevator12.eventb. This model is not listed in Figure 9, because ProB runs out
of memory on the hardware configuration used for this experiment. LTSmin
computed in 34 seconds, with 96,523 NextState calls, that the model has
1,852,655,841 states. As reachability algorithm we chose chaining [27], and to

6More detailed descriptions can be found in [5].
7Reproduction notes at https://github.com/utwente-fmt/ProB-LTSmin-iFM16.

https://github.com/utwente-fmt/ProB-LTSmin-iFM16

12 Bendisposto et al.

Benchmark Events States ProB LTSmin ProB LTSmin LTSmin Speedup
Nxt St NxtSt Wall CPU Wall
Calls Calls (ms) (ms) (ms)

CAN BUS 21 132600 2784560 3534 122850 660 1590 77.264
ConcurrentCounters 4 110813 443249 113032 21820 2760 13820 1.579
Cruise finite1 26 1361 35361 1667 2900 100 1020 2.843
file system 8 698 5577 1198 1900 180 4660 0.41
MutexSimple 5 10 46 26 10 10 190 0.053
Philosophers 5 480 40 590 0.814
SiemensMiniPilot Abrial0 9 181 1621 182 100 20 260 0.385
Simpson Four Slot 9 46658 419906 2089 17310 200 860 20.128
Train1 Lukas POR 8 24637 197082 101441 33660 6480 50260 0.670
nota 11 80719 887899 588 287970 130 660 436.318
pkeyprot2 10 4412 44111 2004 22190 210 1710 12.977
Ref5 Switch mch 38 29861 1134681 1281 160600 490 1260 127.460
obsw M001 21 589279 12374779 23406 2051320 1620 12420 165.163

Fig. 9: B and Event-B Machines, with BFS and deadlock detection

compute a better variable order, we ran Sloan’s bandwidth reduction algorithm
[29] on the dependency matrix.

As far as memory consumption is concerned; when performing reachability
analysis on CAN BUS, the ProB process consumes 370 MB real memory, while
the LTSmin process consumes 633 MB, with the default settings. With the
default settings LTSmin will allocate 222 elements (≈ 100 MB) for the node
table and 224 elements (≈ 500 MB) for the operations cache. If we choose a
smaller node table and operations cache for the LDD package (both 218 elements),
LTSmin consumes only 22 MB. The default settings for LTSmin are geared
towards larger symbolic state spaces than that of CAN BUS. The default node
table and cache are too big for CAN BUS, and thus not completely filled during
reachability.

We have also run our new symbolic reachability analysis on Z and Tla+

models. For example, we successfully validated the video rental Z model from [10].
For 2 persons and 2 titles and maximum stock level of 4, LTSmin generates
the 23009 states in 1.75 seconds compared to 52.4 seconds with ProB alone.
The model contained useless constants; after removing them ProB runs in 1.6
seconds; the runtime of LTSmin stays unchanged. We were unable to use the
output of z2sal [10] using SAL [25] and its symbolic model checker for comparison.

In summary, Figure 9 shows that for several non-trivial B and Event-B models,
considerable improvements can be obtained using the symbolic reachability
analysis technique described in this paper.

Alternate Approaches Other techniques for improving model checking for
B-Method and Event-B models have been developed and evaluated in the recent
years. We have run a further set of experiments using a selection of those methods;
the complete results can be found in [5]. For technical reasons, the experiments
were run on different hardware than above, a MacBook Air with 2.2 GHz i7
processor and 8GB of RAM. We summarise the findings here and compare the
results with our new symbolic model checking algorithm.

Symbolic Reachability Analysis of the B-Method 13

Benchmark ProB POR ProB Hash Tlc ProB no opt.
ms Speedup ms Speedup sec Speedup ms

CAN BUS 138720 0.80 98390 1.12 3 37 110400
ConcurrentCounters 50 345.8 18400 1.06 1 17 17290
file system 2380 0.37 210 4.24 29 0.03 890
Simpson Four Slot 20860 0.70 9550 1.52 1 15 14530
Train1 Lukas POR 34030 0.75 28930 0.88 4 6 25740
nota 490 509.22 14780 16.88 10 25 249520
Ref5 Switch mch 215160 0.59 124500 1.01 6 21 126170
obsw M001 2150520 0.80 76190 22.53 55 31 1716770

The authors in [12] presented a translation from the B-Method to Tla+,
with the goal of using the Tlc model checker [32] as backend. Tlc has no
constraints solving capabilities, and as such that it can only deal with lower level
models. On the other hand, its execution can be considerably faster than ProB,
and its explicit state model checking engine (which stores fingerprints) is very
efficient. On the downside, there is a small probability that fingerprint collisions
can occur. The experiments show that Tlc does not deal well with benchmark
programs which require constraint solving (graph isomorphism, JobsPuzzle, . . .),
running up to three orders of magnitude slower than ProB or LTSmin with
ProB. However, it does deal very well with lower level models, e.g., it is faster
than LTSmin for ConcurrentCounters. For many benchmark models, even those
not requiring constraint solving, our symbolic reachability analysis is faster.

For example, for the nota example, Tlc runs in about 10 seconds—faster
than ProB without any optimisation—but slower than LTSmin by less than a
second.

Symmetry reduction [20] can be very useful; but exponential improvements
usually occur only on academic examples. Here we have experimented with the
hash marker symmetry reduction, which is ProB’s fastest symmetry method, but
is generally not guaranteed to explore all states. The method gives the best results
for certain models (e.g., file system). But for several of the larger, industrial
examples shown above, its benefit is not of the same scale as LTSmin. In future,
we will investigate combining ProB’s symmetry reduction with the new LTSmin
algorithm.

We have also experimented with partial order reduction. [11] uses a se-
mantic preprocessing phase to determine independence (different from our purely
syntactic determination; see Section 3). As such, it can induce a slow down for
some examples where this does not pay off (e.g., file system). ProB’s partial
order reduction obtains the best times for certain models with a large degree of
concurrency (ConcurrentCounters, SiemensMiniPilot Abrial, and nota). However,
once we start doing invariant checking, [11] does not scale nearly as well (e.g., it
takes 134 seconds instead of 0.5 seconds for LTSmin checking the nota model).
But even without invariant checking, there are plenty examples where the sym-
bolic reachability analysis approach is better (e.g., Cruise finite1, Philosophers,
Simpson Four Slot and almost two orders of magnitude for CAN BUS). In
summary:

14 Bendisposto et al.

– Tlc is good for models not requiring constraint solving. It is a very efficient,
explicit state model checker. However, models often have to be rewritten (such
as CAN BUS), and there is a small chance of having fingerprint collisions.

– Symmetry reduction excels when models make use of deferred sets. However,
the hash marker method is not guaranteed to explore all states.

– Partial order reduction is very good for models with a large degree of con-
currency. However, it can cause slow downs and is less suited for invariant
checking.

– The new symbolic reachability analysis algorithm deals well with concurrency
and is by far the fastest method for certain larger, industrial models, such as
CAN BUS, obsw M001, elevator12, the ABZ landing gear model or Abrial’s
mechanical press. LTSmin is currently the only tool set that uses a symbolic
representation of the state space that is connected to ProB.

6 More Related Work, Future Work and Conclusion

We have already evaluated the use of Tlc [32] for model checking B. Another
explicit state model checker for B has been presented in [21], which uses lazy
enumeration. Symbolic model checking [8] has been used for railway applications
in [31]. The best known symbolic model checker is probably SMV [22], which uses
a low-level input language. Some comparisons between using SMV and ProB
have been conducted in [15], where models were translated by hand. For abstract
state machines there is the AsmetaSMV [3] tool, which automatically translates
ASM specifications to SMV. It is our impression that the translation often leads
to a considerable blowup of the model, encoded in SMV’s low-level language, also
affecting performance. We did one experiment on a Tic-Tac-Toe model provided
for AsmetaSMV: NuSMV 2.6 took over 13 seconds to find a configuration where
the cross player wins; ProB (without LTSmin) took 0.2 seconds model checking
time for the same property on a similar B model. Another experiment involved
puzzle 3 of the RushHour game: ProB solves this in 5 seconds, while NuSMV
still had not found a solution after 120 minutes.

Other symbolic model checkers that perform comparable well to LTSmin
include Marcie [13] and PetriDotNet [24].

The paper provides a stable architectural link between ProB and LTSmin
that can be extended. First, we plan to provide LTSmin with more fine-grained
information about the models, both statically and dynamically. Dynamically,
ProB will transmit to LTSmin which variables have actually been written by an
operation, enabling a more extensive independence notion to be used. Statically,
ProB will transmit the individual guards of operations and provide variable read
matrices for the guards. We will also transmit the individual invariants in the
same manner, to enable analysis of the invariants. (It is actually already possible
to check invariants using the present integration, simply by encoding invariants
as operations. We have done so with success for some of the examples, e.g., the
nota from Section 5.) When ProB transmits individual guards, we also hope to

Symbolic Reachability Analysis of the B-Method 15

use the guard-based partial order optimisations of LTSmin [18] and enable LTL
model checking with LTSmin.

These future directions will strengthen the capability of the verification tools
and hence further encourage the application of formal methods within industry
as identified in [6], for example to support complex railway systems verification in
CSP‖B. This will require both more fine-grained static and dynamic information.

In summary, we have presented a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other model
checking improvements via LTSmin in the future.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.: The B-book - assigning programs to meanings. Cambridge University
Press (2005)

3. Arcaini, P., Gargantini, A., Riccobene, E.: Asmetasmv: A way to link high-level
ASM models to low-level nusmv specifications. In: ABZ’10. pp. 61–74 (2010)

4. Bendisposto, J.: Directed and Distributed Model Checking of B Specifications.
Ph.D. thesis, University of Düsseldorf (2015), http://docserv.uni-duesseldorf.
de/servlets/DocumentServlet?id=34472

5. Bendisposto, J., Körner, P., Leuschel, M., Meijer, J., van de Pol, J., Treharne, H.,
Whitefield, J.: Symbolic Reachability Analysis of B through ProB and LTSmin.
CoRR abs/1603.04401 (2016)

6. Bicarregui, J., Fitzgerald, J.S., Larsen, P.G., Woodcock, J.C.P.: Industrial practice
in formal methods: A review. In: FM 2009, Proceedings. LNCS, vol. 5850, pp.
810–813. Springer (2009)

7. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive
Data Types. In: ICTAC 2008, Proceedings. pp. 81–95. LNCS 5160, Springer (2008)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. IC 98(2), 142–170 (1992)

9. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. STTT 8(1), 4–25 (2006)

10. Derrick, J., North, S., Simons, A.J.H.: Z2SAL - building a model checker for Z. In:
Proceedings ABZ 2008. pp. 280–293. LNCS 5238 (2008)

11. Dobrikov, I., Leuschel, M.: Optimising the ProB model checker for B using partial
order reduction. In: SEFM 2014. pp. 220–234. LNCS 8702, Grenoble (2014)

12. Hansen, D., Leuschel, M.: Translating B to TLA + for validation with TLC. In:
Proceedings ABZ’14. pp. 40–55. LNCS 8477 (2014)

13. Heiner, M., Rohr, C., Schwarick, M.: MARCIE - Model Checking and Reachability
Analysis Done Efficiently. In: PETRI NETS 2013, Proceedings. LNCS, vol. 7927,
pp. 389–399. Springer (2013)

14. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc. (2013)
15. Hörne, T., van der Poll, J.A.: Planning as model checking: the performance of ProB

vs NuSMV. In: SAICSIT Conf. ACM ICPS, vol. 338, pp. 114–123. ACM (2008)
16. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.,

Trumble, M., Williams, D.M.: Verification of scheme plans using CSP | | B. In:
SEFM 2013 Collocated Workshops. pp. 189–204 (2013)

http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=34472
http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=34472

16 Bendisposto et al.

17. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
High-performance language-independent model checking. In: TACAS 2015, London,
UK, April 11-18, 2015. Proceedings. pp. 692–707 (2015)

18. Laarman, A., Pater, E., van de Pol, J.C., Hansen, H.: Guard-based partial-order
reduction. STTT (2014)

19. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

20. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. Annals of Mathematics and Artificial Intelligence 59(1), 81–106 (2010)

21. Matos, P.J., Fischer, B., Silva, J.P.M.: A lazy unbounded model checker for event-b.
In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. pp. 485–503. LNCS 5885 (2009)

22. McMillan, K.L.: Symbolic Model Checking. Ph.D. thesis, Boston (1993)
23. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, Write and Copy Dependencies

for Symbolic Model Checking. In: HVC 2014, Proceedings. pp. 204–219 (2014)
24. Molnár, V., Darvas, D., Vörös, A., Bartha, T.: Saturation-Based Incremental LTL

Model Checking with Inductive Proofs. In: TACAS Proceedings. pp. 643–657 (2015)
25. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Tech. rep., SRI

International (2003), technical Report SRI-CSL-01-02 (Rev.2)
26. Plagge, D., Leuschel, M.: Seven at a stroke: LTL model checking for high-level

specifications in B, Z, CSP, and more. STTT 11, 9–21 (2010)
27. Roig, O., Cortadella, J., Pastor, E.: Verification of Asynchronous Circuits by BDD-

based Model Checking of Petri Nets. In: Proceedings ATPN. pp. 374–391 (1995)
28. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal

Asp. Comput. 17(4), 390–422 (2005)
29. Sloan, S.W.: A FORTRAN program for profile and wavefront reduction. Interna-

tional Journal for Numerical Methods in Engineering 28(11), 2651–2679 (1989)
30. Whitefield, J.: Linking ProB and LTSmin (2015), Final Year Dissertation, Univer-

sity of Surrey
31. Winter, K.: Optimising ordering strategies for symbolic model checking of railway

interlockings. In: ISoLA (2). LNCS, vol. 7610, pp. 246–260. Springer (2012)
32. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,

L., Kropf, T. (eds.) Proceedings CHARME’99. pp. 54–66. LNCS 1703 (1999)

