
06472 Abstracts Collection

XQuery Implementation Paradigms

� Dagstuhl Seminar �

Peter A. Boncz1, Torsten Grust2, Jérome Siméon3 and Maurice van Keulen4

1 CWI - Amsterdam, NL
boncz@cwi.nl

2 TU München, DE
grust@in.tum.de

3 IBM TJ Watson Research Center - Hawthorne, US
4 Univ. of Twente, NL

m.vankeulen@utwente.nl

Abstract. From 19.11.2006 to 22.11.2006, the Dagstuhl Seminar 06472
�XQuery Implementation Paradigms� was held in the International Con-
ference and Research Center (IBFI), Schloss Dagstuhl. During the sem-
inar, several participants presented their current research, and ongoing
work and open problems were discussed. Abstracts of the presentations
given during the seminar as well as abstracts of seminar results and ideas
are put together in this paper. The �rst section describes the seminar
topics and goals in general. Links to extended abstracts or full papers
are provided, if available.

Keywords. XQuery, XPath, XML, XQuery Benchmarking, XQuery Op-
timization, XQuery Interoperability, XQuery Hard Nut, Compilation,
Benchmarking, XMark, Recursion, Database System, Functional Pro-
gramming Language, Transaction Management, Distributed Query Process-
ing

06472 Executive Summary � XQuery Implementation
Paradigms

Only a couple of weeks after the participants of seminar No. 06472 met in
Dagstuhl, the W3C published the Final Recommendation documents that �x the
XQuery 1.0 syntax, data model, formal semantics, built-in function library and
the interaction with the XML Schema Recommendations (see W3C's XQuery
web site at http://www.w3.org/XML/Query/). With the language's standard-
ization nearing its end and now �nally in place, the many e�orts to construct
correct, complete, and e�cient implementations of XQuery �nally got rid of the
hindering "moving target� syndrome. This Dagstuhl seminar on the di�erent
XQuery implementation paradigms that have emerged in the recent past, thus
was as timely as it could have possibly been.

Dagstuhl Seminar Proceedings 06472
XQuery Implementation Paradigms
http://drops.dagstuhl.de/opus/volltexte/2007/893

2 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

Keywords: XQuery, XML, Database, Compiler, Functional Programming,
Transactions

Joint work of: Boncz, Peter A.; Grust, Torsten; Siméon, Jérome; van Keulen,
Maurice

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/1022

An analysis of the current XQuery benchmarks

Loredana Afanasiev (University of Amsterdam, NL)

I will present an extensive survey of the currently publicly available XQuery
benchmarks � XMach-1, XMark, X007, the Michigan benchmark, and XBench
� from di�erent perspectives.

We address three simple questions about these benchmarks: How are they
used? What do they measure? What can one learn from using them? Our con-
clusions are based on an usage analysis, on an in-depth analysis of the bench-
mark queries, and on experiments run on four XQuery engines: Galax, SaxonB,
Qizx/Open, and MonetDB/ XQuery.

We hope the lessons we have learned in this survey will serve as useful tips
for future XQuery benchmarks.

Keywords: XQuery XPath benchmarking

See also: L. Afanasiev, and M. Marx. An analysis of the current XQuery bench-
marks. In proceedings of ExpDB 2006. Chicago, Illinois, USA, June, 2006.

XPathMark: functional and performance tests for XPath

Massimo Franceschet (Università di Udine, I)

XPathMark consists of a Functional Test (XPath-FT) and a Performance Test
(XPath-PT) for XPath 1.0 language. More speci�cally:

� XPath-FT contains several groups of queries each covering a di�erent func-
tional aspect of the language like navigational axes, �lters, node tests, op-
erators and functions. The queries are interpreted over a small educational
document and each query is accompanied with the correct answer. The main
goals of XPath-FT are testing completeness (which features of the language
are supported?) and correctness (which features of the language are correctly
implemented?) of an XML query processing system with respect to XPath
1.0.

http://drops.dagstuhl.de/opus/volltexte/2007/1022

XQuery Implementation Paradigms 3

� XPath-PT aims at investigating the performance of an XML query processor
with respect to XPath 1.0 in terms of time spent to execute a query assum-
ing that the processor correctly implements the XPath language. Queries
of the test are divided into groups according to the intrinsic computational
complexity of the corresponding evaluation problem. They are de�ned to
challenge both data and query scalability and include some instances of
transitive closure of path expressions.

More information about XPathMark is available at http://www.dimi.uniud.
it/~francesc/xpathmark. In the talk I will discuss XPathMark and argue the
central role that XPath should have in a mature XQuery benchmark.

Keywords: XML, XPath, benchmark

XPathMark: Functional and Performance Tests for XPath

Massimo Franceschet (Università di Udine, I)

We present a major revision of the XPath benchmark known as XPathMark.
The new version splits into a functional test over a small educational document
and a more elaborated performance test over XMark documents. We conclude by
sharing with the reader our experience on running XPathMark on some popular
XSLT/XQuery processors.

Keywords: XML, XPath, Benchmarking

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/892

Push or Pull (does it make a di�erence)

Michael Kay (Saxonica - Reading, GB)

We all know that XQuery implementations should use streaming or pipelining
internally as much as possible. But I'd like to discuss the question of when
it's better to use a push pipeline, and when it's better to use pull. Relational
databases traditionally use a pull approach, whereas push pipelines are often
seen in XML applications. XSLT 1.0 processors (as far as one can tell) generally
use pull to access the input document, and push to write the output document -
partly because that's the way the spec was written. In XQuery (and to a lesser
extent in XSLT 2.0) input and output aren't so clearly separated, as the language
is more composable and expressions can be arbitrarily nested. Nevertheless, I
think there is still some value in making this separation internally: but I'm keen
to hear the views of others.

Keywords: XQuery implementation pipeline streaming

http://www.dimi.uniud.it/~francesc/xpathmark
http://www.dimi.uniud.it/~francesc/xpathmark
http://drops.dagstuhl.de/opus/volltexte/2007/892

4 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

Snapshot-based Concurrency Control for XML

Bettina Kemme (McGill University - Montreal, CA)

Currently, only few XML data management systems support concurrent access
to an XML document, and if they do, they typically apply variations of hierarchi-
cal locking to handle XML's nested structure. However, advanced query process-
ing techniques use a wide range of indexes and allow for arbitrary navigation
through the XML documents, making lock acquisition complex and potentially
leading to high blocking rates. In this paper, we suggest two concurrency con-
trol protocols that avoid any read locks by providing transactions a committed
snapshot of the data. OptiX enhances traditional optimistic concurrency control
to work on XML while SnaX o�ers snapshot isolation as provided by Oracle and
PostgreSQL. We evaluate the performance of these two protocols on XML docu-
ments of di�erent structure and on the XMark benchmark (which was extended
by several update operations). We also compared our solution to locking-based
protocols. The results show that snapshot based concurrency control is a viable
alternative. In particular Snax shows very good performance due to the fact
that it does not need to keep track of read operations at all but only considers
write/write con�icts. which currently supports only queries.

Keywords: XML, snapshot-based concurrency control, snapshot isolation

Joint work of: Kemme, Bettina; Sardar, Zeeshan

See also: Int. Conference on Data Engineering, 2006

XML Cardinality Estimation - A Request for Research

Norman May (Universität Mannheim, D)

To evaluate di�erent plan alternatives for a query execution plan one has to
compare these plans based on costs. Cardinality Estimates are the most impor-
tant parameter for cost functions. To date, these estimates can be computed
precisely only for a small fragment of XPath. This leaves many open issues for
future research.

Keywords: Query optimization, XPath, XQuery, cost functions, cardinality
estimation

Joint work of: May, Norman; Moerkotte, Guido

Put a tree pattern in your algebra

Philippe Michiels (University of Antwerp, B)

To address the needs of data intensive XML applications, a number of e�cient
tree pattern algorithms have been proposed.

XQuery Implementation Paradigms 5

Still, most XQuery compilers do not support those algorithms. This is due in
part to the lack of support for tree patterns in XML algebras, but also because
deciding which part of a query plan should be evaluated as a tree pattern is a hard
problem. In this paper, we extend a tuple algebra for XQuery with a tree pattern
operator, and present rewritings suitable to introduce that operator in query
plans. We demonstrate the robustness of the proposed rewritings under syntactic
variations commonly found in queries. The proposed tree pattern operator can
be implemented using popular algorithms such as Twig joins and Staircase joins.
Our experiments yield useful information to decide which algorithm should be
used in a given plan.

Keywords: Tree patterns xquery compilation xpath

Joint work of: Michiels, Philippe; Mih il , George; Siméon, Jérôme; Hidders,
Jan; Vercammen, Roel

Full Paper:
http://www.adrem.ua.ac.be/~michiels

See also: To appear at ICDE 2007

An Application-oriented XML Transaction Processing
Benchmark

Matthias Nicola (IBM Silicon Valley Lab., USA)

XML database functionality has been emerging in �XML-only� databases as
well as in the major relational database products. Yet, there is no industry
standard XML database benchmark to evaluate alternative implementations.
The research community has proposed several benchmarks which are all useful
in their respective scope, such as evaluating XQuery processors. However, they
do not aim to evaluate a database system in its entirety and do not represent
all relevant characteristics of a real-world XML application. Often they only
de�ne read-only single-user tests on a single XML document. We propose an
application-oriented and domain-speci�c benchmark that exercises all aspects of
XML databases, including storage, indexing, logging, transaction processing, and
concurrency control. Based on our analysis of real-world XML applications, the
benchmark simulates a �nancial multi-user workload with XML data conforming
to the FIXML industry standard. I'll describe the benchmark and present early
measurement results.

Key features of our benchmark:

� multi-user read/write workload
� scalable to billions of (small) XML documents
� supports XQuery and SQL/XML
� includes XML updates based on the XQuery Update Facility
� high concurrency transaction processing

http://www.adrem.ua.ac.be/~michiels
http://www.adrem.ua.ac.be/~michiels
http://www.adrem.ua.ac.be/~michiels

6 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

� scalable and parallelized data generation
� implementation of a very �exible workload driver
� use of multiple namespaces, schema validation, joins across document types,
etc.

In addition to feature-speci�c micro-benchmarks that focus on core XML
processing operations, application-level workloads are important to assess the
performance of an entire system as a whole. The research community has pro-
posed various XQuery and XML database benchmarks, e.g. XMach-1, XMark,
XPathMark, XOO7, XBench, MBench, and MemBeR. Some are predominantly
application oriented, such as XMach-1 and XBench, while others are designed
as abstract micro-benchmarks, e.g. MBench and MemBeR. XMark, XPathMark
and X007 can be viewed as a blend because their data and queries represent a
�ctitious application scenario but they also try to exercise most relevant aspects
of the XQuery and XPath languages.

Except for XMach-1, all of these benchmarks focus predominantly on XQuery
processing rather than on evaluating a complete database system. Indeed, most
of the benchmarks de�ne queries only despite real-world requirements for insert,
update and delete operations. Many of them are also designed as single-user
tests on a single large XML document. Such tests can be very valuable to in-
vestigate design alternatives and optimizations in an XQuery processing engine.
However, these benchmarks are not su�cient to stress all performance-relevant
components of a full-�edged XML database system.

We �nd that none of the existing benchmarks entirely matches our goal to
comprehensively represent a realistic application scenario. We carefully looked at
real-world XML applications, and devised a list of requirements for an application-
oriented XML database benchmark.

Supporting �nancial companies in their adoption of XML helped us under-
stand their data and processing characteristics. For example, we have worked
with multiple brokerage and securities processing companies on storing and
querying FpML, FIXML and other �nancial data. We decided to design a bench-
mark that is relevant to this application domain. It simulates an online trading
scenario and uses FIXML to model some of its data. We will make our benchmark
implementation available as open source (very soon). This does not remove the
need for XML micro-benchmarking which has a di�erent and equally important
purpose.

Keywords: XQuery, SQL/XML, XML, XML database benchmark, micro-
benchmark, application-oriented benchmark

Searching for XQuery

Paul Pedersen (FLWOR Foundation - Palo Alto, USA)

Search engine indexs can be e�ective for optimizing XQuery applications that
need large repositories of relatively static documents.

Keywords: XQuery, search, repositories, optimization

XQuery Implementation Paradigms 7

Functional Optimizations of XQuery using Higher Order
Rewriting

Kristo�er Rose (IBM TJ Watson Research Center, USA)

We show how higher-order rewriting can be used in practice to describe and
implement XQuery optimizations as commonly used for functional programming.

Keywords: XQuery, optimizations, higher-order rewriting, combinatory reduc-
tion systems (CRS)

Demonstration of Virtual XML for File Systems

Kristo�er Rose (IBM TJ Watson Research Center, USA)

The �Virtual XML Garden� combines an XQuery engine with �functions� that
create XML views on foreign data structures. In this demonstration, I will show
how this can be used to navigate a local �le system with XQuery.

Keywords: XQuery, Virtual XML, �le system navigation

Further Material:
http://www.research.ibm.com/virtualxml

File Systems are Obsolete (!?)

Marc H. Scholl (Universität Konstanz, D)

Traditionally, database systems (DBMSs) sit on top of operating systems (OSs),
largely bypassing the data management functionality of the OS �le system,
though. The reasons for this are performance-oriented: since the DBMS �knows�
more about a transaction's semantics (e.g., which SQL statement is currently
being executed?), better policy decisions can be made inside the DBMS than by
the OS.

On the other hand, quite a few problems (and solutions!) for e�cient process
management, synchronization, data allocation and access, recovery, and so on,
are shared between DBMSs and OS �le systems. In fact, Microsoft's WinFS,
which had been planned for the Vista version of Windows originally, was and
attempt at turning this traditional software stack upside down: use a DBMS for
OS �le management. Also, Jim Gray claimed exactly this to be the right to do.

We present a few motivations, give examples where typical OS tools already
use database systems instead of �les, and highlight the potential that the ubiqi-
tuous XML �le format o�ers for database support for OS �le systems. Since
XML database systems are hierarchy-aware, they lend themselves towards OS

http://www.research.ibm.com/virtualxml
http://www.research.ibm.com/virtualxml
http://www.research.ibm.com/virtualxml

8 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

�le system support much easier then relational systems with their strict tabular
data format. XQuery's search functionality (including fulltext retrieval) would
automatically be o�ered at the �le system interface, making desktop search very
powerful, especially since search criteria could cross the border between �le sys-
tem attribute considitions (such as, �le names, directory paths, modi�cations
dates) and �le content (such as, meta data, mpeg7 descriptions, or actual �le
content) in a single query.

A prototypical XML DBMS, BaseX, developed at U Konstanz has been used
as a testbed to assess the viability of such an approach, namely to check whether
the DBMS performance is su�cient as a �le system replacement. We can re-
port on our results and experiences for interactive use of the BaseX-DBMS ��le
sytem�, which is more than su�cient. In fact, we will show a graphical �le browser
demo, that uses an advanced visual representation of disk space usage. Further
work will implement BaseX as a VFS (virtual �le system) layer, such that also
low-level �le access primitives can be evaluated, since these pose stronger per-
formance requirements than the interactive interface.

The addition of imperative lanaguage features to XQuery has bene�ts but
also introduces new riscs, especially when it is compared to the usual approach
where XQuery is embedded in an imperative programming language. The bene-
�ts seem clear: a single powerful integrated programming environment with no
impedance mismatch in which all data manipulation can be done. The riscs are
that the declarative nature of XQuery is compromised and that users will of-
ten use the easier-to-progam imperative features instead of the easier-to-optimize
declarative features of the language. In the embedded case there is a clear distinc-
tion between these features and it might be easier for programmers to maintain
a coding discipline where as much as possible is done in the declarative data ma-
nipulation sublanguage. On the other it could be argued that in the integrated
approach it will be easier to transform nondeclarative code to more declarative
code, either by hand, supported by the system or entirely automatically. The
group did not come to a de�nitive conclusion on whether the bene�ts outweigh
the riscs or not.

Keywords: Database systems, operating systems, �le systems, desktop search

An Algebraic Compiler for An Expressive XQuery
Extension

Jérome Siméon (IBM TJ Watson Research Center - Hawthorne, USA)

As XQuery nears standardization, professional developers are eager to apply
XQuery to complex XML applications. We present an algebra and optimization
techniques that are suitable for building an XQuery processor that is both com-
plete and e�cient. We present the compilation rules for the complete XQuery
language into that algebra and present new logical optimizations that are more
e�ective on complex queries than existing techniques. We also propose novel

XQuery Implementation Paradigms 9

join and group-by algorithms that account for all of XQuery's complex seman-
tics, including type assertions, existential quanti�cation, and type promotion. In
addition, we show how that algebra can be used for both index XML documents
and streaming documents. The algebra and optimizations are implemented in
our Galax XQuery engine.

Keywords: XQuery, XML, Optimization, Compilation, Algebra

Distributed XQuery

Jérome Siméon (IBM TJ Watson Research Center - Hawthorne, USA)

The goal of the DXQ project is to support development of reliable, extensible,
and e�cient distributed resource-management protocols. Our strategy to meet
these requirements is to provide a high-level, distributed, and optimizable query
language for implementing distributed resource-management protocols. By using
a high-level language, a protocol's semantics is transparent, not hidden, in the
implementation, which supports the reliability requirement. In addition, the im-
plementation is optimizable by general query optimization techniques. Automat-
ing optimization supports the e�ciency requirement and permits implementors
to focus more on functionality and less on performance.

Keywords: XQuery, Distribution, Network application, Web Services

Further Material:
http://db.ucsd.edu/dxq/

A Purely Relational Approach to XQuery

Jens Teubner (TU München, D)

Out of the di�erent implementation paradigms, the Path�nder XQuery compiler
is a representative of the relational �camp�.

The key insight to this compilation procedure is the functional style of itera-
tion in the XQuery language, which allows the evaluation of FLWOR expression
in a parallel, bulk-oriented fashion. To this end, Path�nder translates incoming
XQuery expressions into purely relational query plans.

This design has several intersting implications to current �elds of research
within the joint project. To name some of the most intersting ones,

� Path�nder's relational (�loop-lifted�) sequence encoding naturally embraces
features such as dynamic typing or full-text retrieval,

� in a distributed XQuery environment, we are able to send data for multiple
XQuery iterations within a single network transfer,

� to optimize relational query plans, we can rely on established techniques
from the relational domain; similar arguments hold for the estimation of
(intermediate) result sizes in relational plans,

http://db.ucsd.edu/dxq/
http://db.ucsd.edu/dxq/
http://db.ucsd.edu/dxq/

10 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

� though the compliant implementation of order constraints is a signi�cant
challenge in an inherently unordered relational environment, the system will
particularly bene�t whenever order is not signi�cant, and

� since relational algebra is quite restricted with respect to recursion, the han-
dling of recursive XQuery functions turns out to be quite hard (though
Path�nder is able to handle an important subset of recursive queries).

The Path�nder XQuery compiler is part of the MonetDB/XQuery distrib-
ution. Its upcoming release includes an implementation of the XQuery Update
Facility and support for mulit-hierarchical XML (StandO� annotations). Current
work includes the support for alternative back-ends (SQL:1999, X100, MonetDB
5, Ide�x).

Keywords: Relational XQuery, Path�nder, XQuery Compilation

Joint work of: Teubner, Jens; Afanasiev, Loredana; Boncz, Peter; Grust,
Torsten; van Keulen, Maurice; Manegold, Stefan; Rittinger, Jan; Zhang Ying

Further Material:
http://www.pathfinder-xquery.org/

Loop-lifted XQuery RPC with Deterministic Updates

Ying Zhang (CWI - Amsterdam, NL)

XRPC is a minimal XQuery extension that enables distributed query execution,
combining the Remote Procedure Call (RPC) paradigm with the existing con-
cept of XQuery functions. By calling out of a for-loop to multiple destinations,
and by calling functions that themselves perform XRPC calls, complex P2P
communication patterns can be achieved. We further propose the use of SOAP
as the protocol for XRPC, which allows seamless integration with web services
and Service Oriented Architectures (SOA).

XRPC is implemented in the open source MonetDB/XQuery system. We
show that the technique of loop-lifting, that executes all expressions inside a
for-loop in a single bulk operator � pervasively applied in MonetDB/XQuery to
obtain e�cient relational query plans � also bene�ts XRPC.

Loop-lifting enables us to send bulk RPC requests, dramatically reducing the
number of SOAP messages, and thus the performance impact of network latency.

The XRPC extension is orthogonal to all XQuery language features, including
the XQuery Update Facility (XUF). The XUF W3C Draft proposal does not
de�ne the order in which multiple update actions to the same node must be
applied. We instead choose to make this order deterministic, and show how
distributed updates can be made deterministic using a small protocol extension.

Keywords: Distributed query processing, XQuery, Loop-lifting, XML, RPC

Joint work of: Zhang, Ying; Boncz, Peter A.

http://www.pathfinder-xquery.org/
http://www.pathfinder-xquery.org/
http://www.pathfinder-xquery.org/

XQuery Implementation Paradigms 11

XQuery Hard Nut: Recursive Functions in XQuery

Massimo Franceschet (Università di Udine, I)

An implementation of transitive closure of a location path via recursion functions
in XQuery . To be interpreted on XMark.

(: Categories that are reachable from a given category

through an arbitrary path in the category graph :)

declare namespace fun = 'have.more.fun';

declare function fun:closure($input as node()*,

$result as node()*) as node()*

{

let $current := $input/idref(.)[name() = "from"]/../@to

let $new := $current except $result

let $all := ($result,$new)

return

if(exists($new))

then ($new, fun:closure($new,$all))

else ()

};

doc("auction.xml")//category[@id="category0"]

/@id/fun:closure(.,())/id(.)/name

Keywords: XQuery optimization, Hard Nut, Recursion

XQuery Hard Nut: Memoization (and Other FP
Techniques) in XQuery

Torsten Grust (TU München, D)

The XQuery semantics are�largely�functional. Does this open the door for
optimizations that have been developed in the domain of compilers for functional
programming languages?

One such �functional gem� could be the memoization of expression values
at runtime. The savings could be signi�cant. In the simple XQuery expression
below

for $x in (1,2,2)

for $y in (3,4,3)

return e($x,$y)

12 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

the nested FLWOR will lead to a nine-fold evaluation of expression e (in
which variables $x and $y occur free). Alas, only four distinct variable binding
pairs will be generated by the nested for-constructs. Can we evaluate (the po-
tentially costly) expression e only four times and then later �compensate� for
this optimization to ensure that the resulting sequence will be of length nine?

Of course, one challenge is the �largely� above... If e contains side-e�ecting
constructors, for example, memoization (re-using the results of e) might be un-
sound or at least complicated to achieve. Interestingly, memoization should go
well together with the current formulation of the XQuery Update Draft, if the
compensation action is performed in a sensible fashion.

Feedback at the Seminar

Guido (Moerkotte) suggested that Goetz Graefe's BTW 2003 paper Executing
Nested Queries contains a useful discussion of memoization techniques for cor-
related nested SQL queries. I had a look at this work and it is certainly highly
relevant here (see Section 4.1, Caching results of the inner query). This is espe-
cially true for its discussion of the trade-o�s of memoization: when does it pay o�
to instrument the compiled query with the necessary code and data structures
to realize memoization (this is related to the evaluation cost of e)? Goetz' work,
however, takes place in a query-only SQL context�which is purely functional
and thus avoids the hard core of this nut, I believe.

Keywords: XQuery, Hard Nut, Memoization, Functional Programming Lan-
guages

XQuery Hard Nut: Recursive query with Join

Jérome Siméon (IBM TJ Watson Research Center - Hawthorne, USA)

The proposed XQuery �hard nut� presents an important use case where a join is
performed over two documents. The �rst document is a hierarchical structure,
and the second document a �at structure. The query builds a new hierarchy
parallel to the hierarchy of the �rst document, but inludes information from the
other document. This is a hard query as existing join optimization techniques
do not operate accross function call boundaries.

The example query provided illustrates that case on data following the schemas
of the XQuery Test Suite.

declare namespace res

= "http://www.w3.org/2005/02/query-test-XQTSResult";

declare namespace cat

= "http://www.w3.org/2005/02/query-test-XQTSCatalog";

declare variable $cat := doc("/mnt/e/Nuts/XQTSCatalog.xml");

XQuery Implementation Paradigms 13

declare variable $res := doc("/mnt/e/Nuts/testresults.xml");

declare variable $tests := $res//res:testcase;

declare function local:format($group) {

<group name="{$group/@name}">

{ fn:count(

for $x in $group/cat:test-case

for $y in $tests

where $x/@name = $y/@name

return $x) }

{ local:format($group/cat:test-group) }

</group>

};

local:format($cat/cat:test-suite/cat:test-group[1]$)

Keywords: XQuery, Recursion, Join

XQuery Hard Nut: Streaming better than sliced bread?

Jérome Siméon (IBM TJ Watson Research Center - Hawthorne, USA)

The proposed XQuery �hard nut� is an example of a simple recursive trans-
formation over a data set corresponding to a genealogy tree. The query itself
has been proposed by Alain Frisch. When he compares the performances of a a
streaming implementation against standard XQuery implementations, he shows
that streaming outperforms (by far!) all other existing approaches. More infor-
mation about the use case can be found at: http://yquem.inria.fr/~frisch/
xstream/bench.html.

declare function local:split($x as node()) as node() {

let $name := $x/name/text() return

let $sons :=

for $p in $x/children/person[@gender="M"]

return local:split($p)

return

let $daughters :=

for $p in $x/children/person[@gender="F"]

return local:split($p)

return

if ($x/@gender = "M") then

<man name="{$name}">

<sons>{$sons}</sons>

<daughters>{$daughters}</daughters>

http://yquem.inria.fr/~frisch/xstream/bench.html
http://yquem.inria.fr/~frisch/xstream/bench.html

14 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

</man>

else

<woman name="{$name}">

<sons>{$sons}</sons>

<daughters>{$daughters}</daughters>

</woman>

}

;

<doc>{for $p in ./doc/person return local:split($p)}</doc>

Keywords: XQuery, recursion, streaming

XQuery Hard Nut: Compiler's robustness.

Jérome Siméon (IBM TJ Watson Research Center - Hawthorne, USA)

The proposed XQuery �hard nut� talks about the current di�culty of XQuery
compilers to be robust in the face of very basic syntactic changes. The obser-
vation is that very simple changes in the query seem to a�ect greatly the kind
of optimization that is applied to that query. The set of queries attached is the
form of a challenge. All the queries proposed in that �le are equivalent and are
obtained through very simple rewritings. How many of those queries your com-
pilers will successfully detect as simple nested queries which can be decorrelated
into a join-group-by plan?

(: Q1 :)

(: Standard nested query :)

for $x in $auction//open_auctions

let $a :=

count(

for $y in $auction/site/people/person

where $x/@id = $y/bid/@id

return $y/name

)

return

<auc id="{$x/@id}">

{ $a }

</auc>

(: Q2 :)

(: Query nested in the return clause :)

XQuery Implementation Paradigms 15

for $x in $auction//open_auctions

return

<auc id="{$x/@id}">

{ count(

for $y in $auction/site/people/person

where $x/@id = $y/bid/@id

return $y/name) }

</auc>

(: Q3 :)

(: Query nested in the return clause, with XPath expanded

in FLWORs :)

for $x in

for $x1 in $auction return descendant::open_auctions

return

<auc id="{$x/@id}">

{ count(

for $y in

for $x4 in

for $x3 in

for $x2 in $auction return $x2/child::site

return $x3/child::people

return $x4/child::person

where $x/@id = $y/bid/@id

return $y/name) }

</auc>

(: Q4 :)

(: Query nested in the return clause, with XPath expanded

in FLWORs, where clause expanded in conditional

expression :)

for $x in

for $x1 in $auction return descendant::open_auctions

return

<auc id="{$x/@id}">

{ count(

for $y in

for $x4 in

for $x3 in

for $x2 in $auction return $x2/child::site

return $x3/child::people

return $x4/child::person

if ($x/@id = $y/bid/@id) then $y/name else ()) }

16 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

</auc>

(: Q5 :)

(: Query nested in the return clause, with XPath expanded

in FLWORs, where clause expanded in conditional expression,

and a function used for the join condition. :)

declare function cond($x1,$x2) {

$x1/@id = $x2/bid/@id

};

for $x in

for $x1 in $auction return descendant::open_auctions

return

<auc id="{$x/@id}">

{ count(

for $y in

for $x4 in

for $x3 in

for $x2 in $auction return $x2/child::site

return $x3/child::people

return $x4/child::person

if (cond($x,$y)) then $y/name else ()) }

</auc>

(: Q6 :)

declare function cond($x1,$x2) {

$x1/@id = $x2/bid/@id

};

for $x in

for $x1 in $auction return descendant::open_auctions

return

<auc id="{$x/@id}">

{ count(

for $y in

for $x4 in

for $x3 in

for $x2 in $auction return $x2/child::site

return $x3/child::people

return $x4/child::person

if (cond($x,$y)) then $y/name else ()) }

</auc>

XQuery Implementation Paradigms 17

Keywords: XQuery, Compilation, Robustness, Join Detection

XQuery Hard Nut: Eliding intermediary structures

Maurice van Keulen (University of Twente, NL)

I observed in a project where I use XQuery quite extensively, that I ended
up programming functions that would construct intermediate XML structures
containing parts of a document, and that other functions would �break down"'
these intermediate structures again to construct the �nal result. For example,
one function would construct a list of all combinations of children of two el-
ements, a subsequent function would �lter the combinations, and from that a
�nal result is constructed. Observe that construction of all combinations means
heavy duplication (due to copy semantics of element construction). Also observe
that the intermediary structures are not really necessary: element construction
and subsequent XPath navigation could cancel eachother out. How to �nd the
possible cancellations is a hard nut to crack. Avoiding unnecessary duplication
is another.
Some meaningless example:

declare function allCombinations($wlists as element(wlist)*)

as element(wlist)*

{

let $cnt := count($wlists)

return

if ($cnt eq 0) then ()

else if ($cnt eq 1)

then for $x in $wlists/child::w

return <wlist>{$x}</wlist>

else let $y := exactly-one($wlists[1])

,$ys := $wlists[position() gt 1]

,$as := allCombinations($ys)

return

for $x in $y/child::w, $a in $as

return <wlist>{$x}{$a/child::w}</wlist>

};

declare function filter($wlists as element(wlist)*)

as element(wlist)*

{

for $wl in $wlists

where count($wl/*[1]/foo) eq 1

return $wl

};

18 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

declare function result($wlists as element(wlist)*)

{

for $wl in $wlists

let $f := exactly-one($wl/*[1]/foo)

return <foo>{$f/*}{$wl/*[position() gt 1]/*}</foo>

};

let $exA := (<wlist>

<w><foo><bar/></foo></w><w><baz/></w>

</wlist>,

<wlist>

<w><a></w>

<w><c/></w>

<w><p><q><r/></q></p></w>

</wlist>)

return

result(filter(allCombinations($exA)))

Conclusions

An important observation that the example in the hard nut actually contained
three hard nuts:

1. matching element construction to a subsequent navigation,
2. replication of structures because of the copying semantics of element con-

struction, and
3. optimization across the boundaries of functions.

There were also more situations where hard nut (1) occurs often: when query-
ing a view. A situation that currently occurs very often is that people have a
relational table, they de�ne an XML-view over it, and then query the XML-
view. This is currently very ine�cient. A possible source of techniques would be
"deforestation" from the functional programming �eld.

Regarding hard nut (2), you could reformulate the XQuery so that only id's
are stored in the intermediary functions. People feel that the programmer need
not be burdened with this. The source of the example was actually a desire to
construct a nested sequence. Many believe that we should not extend XQuery
with nested sequences, but rather allow programmers to annote expressions with
certain properties, e.g., node identity will not be observed for the elements con-
structed. In that case, the engine could choose an execution approach that shares
structures instead of copying them. I observed in a project where I use XQuery
quite extensively, that I ended up programming functions that would construct
intermediate XML structures containing parts of a document, and that other
functions would �break down� these intermediate structures again to construct
the �nal result. For example, one function would construct a list of all com-
binations of children of two elements, a subsequent function would �lter the
combinations, and from that a �nal result is constructed.

XQuery Implementation Paradigms 19

Observe that construction of all combinations means heavy duplication (due
to copy semantics of element construction). Also observe that the intermediary
structures are not really necessary: element construction and subsequent XPath
navigation could cancel eachother out. How to �nd the possible cancellations is
a hard nut to crack. Avoiding unnecessary duplication is another.

Keywords: XQuery optimization, Hard Nut, Intermediary structures

XQuery Hard Nut: Recursion

Maurice van Keulen (University of Twente, NL)

XQuery allows recursion. For some approach (e.g., algebraic ones), it is hard to
suport this fully. Some examples of functions I recently wrote:

declare function product($seq as xs:decimal*) as xs:decimal

{

if (count($seq) gt 0)

then exactly-one($seq[1]) * product($seq[position() gt 1])

else 1.0

};

declare function allCombinations($wlists as element(wlist)*)

as element(wlist)*

{

let $cnt := count($wlists)

return

if ($cnt eq 0) then ()

else if ($cnt eq 1)

then for $x in $wlists/child::w return <wlist>{$x}</wlist>

else let $y := exactly-one($wlists[1])

,$ys := $wlists[position() gt 1]

,$as := allCombinations($ys)

return

for $x in $y/child::w, $a in $as

return

<wlist>{$x}{$a/child::w}</wlist>

};

Recursion usually �follows� the XML hierarchy (by descending into an XML
tree), the order in sequences, some diminishing computation, or a combination
thereof. Mutual recursion, etc. all are possible in XQuery.

Conclusions

The general agreement is that recursion is hard. People have been researching
e�cient evaluation of recursive programs for decades. Hence, we should not have

20 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

the ambition to develop an engine that is able to recognize and optimize all forms
of recursion. Rather, we should be able to handle certain forms of recursion, i.e.,
have techniques to e�ciently evaluate certain forms of recursion and require
of the programmer to formulate his queries using these forms. Magic sets and
counting are promising techniques.

Keywords: XQuery optimization, Hard Nut, Recursion

Breakout Session: XQuery and Transaction Management

Bettina Kemme (McGill University - Montreal, CA)

In this session, we discussed the challenges XML poses to e�cient transaction
management.

We looked both at the programming interface and the internals of transaction
management.

Questions posed that we posed:

� What kind of transaction model is appropriate for XML applications?
� Where should transaction boundaries be set?
� What isolation levels are appropriate for XML applications?
� How can the ACID properties be implemented in an XML engine?
� Do the techniques used to guarantee transactional properties di�er from
those used in relational systems?

� How can distributed transactions be handled?

Keywords: Transaction management; atomicity, concurrency control, isolation
levels, consistency, distributed transactions, transaction boundaries

Joint work of: Kemme, Bettina; Boncz, Peter; Borkar, Vinayak; Helmer, Sven;
Zhang, Ying

Breakout Session: Benchmarking

Norman May (Universität Mannheim, D)

The XMark benchmark has been used by the XML community for benchmarking
their systems. The main reasons for this are its simplicity in generating data
and the queries included in the benchmark. However, the process of running the
benchmark is not well-de�ned. Thus the interpretation of benchmark results is
di�cult. Additionally, the set of queries does not re�ect the state of the XQuery
speci�cation and queries formulated by users (see slides for more details).

Future benchmarks should preserve the strengths of XMark while overcoming
its shortcomings. To this end we need to structure the process of de�ning both

XQuery Implementation Paradigms 21

application or micro benchmarks. We propose a bottom-up approach: (1) de�ne
relevant data sets, (2) de�ne statement sets (i.e. queries and updates), and (3)
de�ne the workload as a combination of statements.

To organize this process, we propose to use the MemBer repository to man-
age (1) datasets, (2) queries, (3) workloads, and (4) discussions. Moreover, the
community can participate in all these tasks.

DISCUSSION
The participants agreed that a new benchmark must be a shared e�ort of the

XML community. For this reason, we propose to assign the �Dagstuhl-label� to
the new benchmark and, hence, call it DMark. Only this way, a wide adoption
of the benchmark is possible.

Keywords: XQuery, benchmark, application benchmark, micro benchmark,
XMark

Breakout Session: XQuery interoperability

Philippe Michiels (University of Antwerp, B)

Minutes from the break-out session on XQuery Interoperability

Keywords: XQuery interoperability

Breakout Session: XQuery and Applications

Marc H. Scholl (Universität Konstanz, D)

This breakout disussion focused on the functionality of XQuery from two per-
spectives: 1. Application view: The functionality is very rich (maybe too rich),
making it di�cult to understand all subtleties. On the other hand, there may
even be the need to add some selected additional functionality (such as some
imperative language features). 2. Implementation view: The functionality is very
rich and some parts of the semantics make an (e�cient!) implementation di�-
cult.

When we look back at the history of SQL or, in particular, at OQL, we can
observe, that rich languages have been intensively studied in research and dis-
cussed in standardization e�orts for long periods, but �nally, typical application
make use of only a tiny fraction of the overall functionality. SQL's recursion
feature is rarely used, even worse: still many applications don't use complex join
queries, rather applications often program this functionality outside the DBMS
in the application code. OQL is virtually dead, as is the whole object-oriented
database systems area (with some exceptions in niche markets).

Possibly, one lesson from this could be to try to identify a small and simple
subset of XQuery as a language kernel and package additional functionality as

22 P. A. Boncz, T. Grust, J. Siméon and M. van Keulen

prede�ned sets of optional features. This could be proposed as an item on an
XQuery 2.0 wish list.

Obviously, this �keep it simple� attitude towards XQuery is motivated by
looking at XQuery as a Database Language, where the focus is on e�cient exe-
cution of a small set of salient, performance-critical base operators for fast and
scalable mass data processing. If XQuery is considered a full-�egded Functional
Programming Language, however, completeness and richness play a more im-
portant role. There is an obvious tension between the two views, one that might
potentially be resolved or at least ameliorated by a modularized de�nition of
XQuery 2.0 with a small kernel leaning itself towards DBMS-based execution
and extended packages o�ering computational completeness in a seamless �host
language� for database operations. The discussion could not, obviously, identify
this small �kernel� vs. the �extension packages�. Two sample features played a
role in the discussion: recursion and (imperative) variables with assignments (see
XQueryP).

Keywords: XQuery, database programming language, computational complete-
ness, optimization, language design

	06472 Abstracts Collection XQuery Implementation Paradigms --- Dagstuhl Seminar ---
	 Peter A. Boncz, Torsten Grust, Jérome Siméon and Maurice van Keulen

